
Basic Object-Oriented concepts

Concept: An object has behaviors

• In old style programming, you had:

– data, which was completely passive

– functions, which could manipulate any data

• An object contains both data and methods that

manipulate that data

– An object is active, not passive; it does things

– An object is responsible for its own data

• But: it can expose that data to other objects

Concept: An object has state

• An object contains both data and methods that

manipulate that data

– The data represent the state of the object

– Data can also describe the relationships between this

object and other objects

• Example: A CheckingAccount might have

– A balance (the internal state of the account)

– An owner (some object representing a person)

Example: A “Rabbit” object

• You could (in a game, for example) create an

object representing a rabbit

• It would have data:

– How hungry it is

– How frightened it is

– Where it is

• And methods:

– eat, hide, run, dig

Concept: Classes describe objects

• Every object belongs to (is an instance of) a class

• An object may have fields, or variables

– The class describes those fields

• An object may have methods

– The class describes those methods

• A class is like a template, or cookie cutter

Concept: Classes are like

Abstract Data Types

• An Abstract Data Type (ADT) bundles together:

– some data, representing an object or "thing"

– the operations on that data

• Example: a CheckingAccount, with operations

deposit, withdraw, getBalance, etc.

• Classes enforce this bundling together

Example of a class

class Employee {

// fields

String name;

double salary;

// a method

void pay () {

System.out.println("Pay to the order of " +

name + " $" + salary);

}

}

Approximate Terminology

• instance = object

• field = instance variable

• method = function

• sending a message to an object =

calling a function

• These are all approximately true

Concept: Classes form a hierarchy

• Classes are arranged in a treelike structure called a

hierarchy

• The class at the root is named Object

• Every class, except Object, has a superclass

• A class may have several ancestors, up to Object

• When you define a class, you specify its superclass

– If you don’t specify a superclass, Object is assumed

• Every class may have one or more subclasses

Example of (part of) a hierarchy

A FileDialog is a Dialog is a Window is a Container

Container

Panel ScrollPane Window

Dialog Frame

FileDialog

C++ is different

• In C++ there may be more than one root

– but not in Java!

• In C++ an object may have more than one parent

(immediate superclass)

– but not in Java!

• Java has a single, strict hierarchy

Concept: Objects inherit from

their superclasses

• A class describes fields and methods

• Objects of that class have those fields and methods

• But an object also inherits:

– the fields described in the class's superclasses

– the methods described in the class's superclasses

• A class is not a complete description of its objects!

Example of inheritance

class Person {

String name;

String age;

void birthday () {

age = age + 1;

}

}

class Employee

extends Person {

double salary;

void pay () { ...}

}

Every Employee has a name, age, and birthday

method as well as a salary and a pay method.

Concept: Objects must be created

• int n; does two things:

– it declares that n is an integer variable

– it allocates space to hold a value for n

• Employee secretary; does one thing

– it declares that secretary is type Employee

• secretary = new Employee (); allocates the

space

Notation: How to declare and

create objects

Employee secretary; // declares secretary

secretary = new Employee (); // allocates space

Employee secretary = new Employee(); // both

• But the secretary is still "blank"

secretary.name = "Adele"; // dot notation

secretary.birthday (); // sends a message

Notation: How to reference a

field or method

• Inside a class, no dots are necessary

class Person { ... age = age + 1; ...}

• Outside a class, you need to say which object you are

talking to

if (john.age < 75) john.birthday ();

• If you don't have an object, you cannot use its fields

or methods!

Concept: this object

• Inside a class, no dots are necessary, because

– you are working on this object

• If you wish, you can make it explicit:

class Person { ... this.age = this.age + 1; ...}

• this is like an extra parameter to the method

• You usually don't need to use this

Concept: A variable can hold

subclass objects

• Suppose B is a subclass of A

– A objects can be assigned to A variables

– B objects can be assigned to B variables

– B objects can be assigned to A variables, but

– A objects can not be assigned to B variables

• Every B is also an A but not every A is a B

• You can cast: bVariable = (B) aObject;

– In this case, Java does a runtime check

Example: Assignment of

subclasses

class Dog { ... }

class Poodle extends Dog { ... }

Dog myDog;

Dog rover = new Dog ();

Poodle yourPoodle;

Poodle fifi = new Poodle ();

myDog = rover; // ok

yourPoodle = fifi; // ok

myDog = fifi; //ok

yourPoodle = rover; // illegal

yourPoodle = (Poodle) rover; //runtime check

Concept: Methods can be

overridden

• So birds can fly. Except penguins.

class Bird extends Animal {

void fly (String destination) {

location = destination;

}

}

class Penguin extends Bird {

void fly (String whatever) { }

}

Concept: Don't call functions,

send messages

Bird someBird = pingu;

someBird.fly ("South America");

• Did pingu actually go anywhere?

– You sent the message fly(...) to pingu

– If pingu is a penguin, he ignored it

– otherwise he used the method defined in Bird

• You did not directly call any method

Sneaky trick: You can still use

overridden methods

class FamilyMember extends Person {

void birthday () {

super.birthday (); // call overridden method

givePresent (); // and add your new stuff

}

}

Concept: Constructors make objects

• Every class has a constructor to make its objects

• Use the keyword new to call a constructor

secretary = new Employee ();

• You can write your own constructors; but if you don’t,

• Java provides a default constructor with no arguments

– It sets all the fields of the new object to zero

– If this is good enough, you don’t need to write your own

• The syntax for writing constructors is almost like that
for writing methods

Syntax for constructors

• Instead of a return type and a name, just use the

class name

• You can supply arguments

Employee (String theName, double theSalary) {

name = theName;

salary = theSalary;

}

Trick: Use the same name for a

parameter as for a field

• A parameter overrides a field with the same name

• But you can use this.name to refer to the field

Person (String name, int age) {

this.name = name;

this.age = age;

}

• This is a very common convention

Internal workings:

Constructor chaining

• If an Employee is a Person, and a Person is an Object,

then when you say new Employee ()

– The Employee constructor calls the Person constructor

– The Person constructor calls the Object constructor

– The Object constructor creates a new Object

– The Person constructor adds its own stuff to the Object

– The Employee constructor adds its own stuff to the Person

The case of the vanishing

constructor
• If you don't write a constructor for a class, Java

provides one (the default constructor)

• The one Java provides has no arguments

• If you write any constructor for a class, Java does

not provide a default constructor

• Adding a perfectly good constructor can break a

constructor chain

• You may need to fix the chain

Example: Broken constructor

chain

class Person {

String name;

Person (String name) { this.name = name; }

}

class Employee extends Person {

double salary;

Employee () {

// here Java tries to call new Person() but cannot find it;

salary = 12.50;

}

}

Fixing a broken constructor chain

• Special syntax: super(...) calls the superclass constructor

• When one constructor calls another, that call must be first

class Employee {

double salary;

Employee (String name) {

super(name); // must be first

salary = 12.50;

}

}

• Now you can only create Employees with names

• This is fair, because you can only create Persons with names

Trick: one constructor calling

another

• this(...) calls another constructor for this same class

• It is poor style to have the same code more than once

• If you call this(...), that call must be the first thing in your
constructor

class Something {

Something (int x, int y, int z) {

// do a lot of work here

}

Something () { this (0, 0, 0); }

}

Concept: You can control access

class Person {

public String name;

private String age;

protected double salary;

public void birthday { age++; }

}

• Each object is responsible for its own data

• Access control lets an object protect its data

• We will discuss access control shortly

Concept: Classes themselves can

have fields and methods

• Usually a class describes fields (variables) and
methods for its objects (instances)

– These are called instance variables and instance methods

• A class can have its own fields and methods

– These are called class variables and class methods

• There is exactly one copy of a class variable, not
one per object

• Use the special keyword static to say that a field
or method belongs to the class instead of to objects

Example of a class variable

class Person {

String name;

int age;

static int population;

Person (String name) {

this.name = name;

this.age = 0;

population++;

}

}

Advice: Restrict access

• Always, always strive for a narrow interface

• Follow the principle of information hiding:

– the caller should know as little as possible about how

the method does its job

– the method should know little or nothing about where

or why it is being called

• Make as much as possible private

Advice: Use setters and getters

• This way the object maintains control

• Setters and getters have conventional names

class Employee extends Person {

private double salary;

public void setSalary (double newSalary) {

salary = newSalary;

}

public double getSalary () { return salary; }

}

Kinds of access

• Java provides four levels of access:

– public: available everywhere

– protected: available within the package (in the same

subdirectory) and to all subclasses

– [default]: available within the package

– private: only available within the class itself

• The default is called package visibility

• In small programs this isn't important...right?

The End

