SAHAKAR MAHARSHI BHSUSAHEB SANTUJI THORAT COLLEGE OF ARTS, SCIENCE & COMMERCE, SANGAMNER

Department-Physics

Question Bank

Class: T.Y.B.Sc. Subject: Physics –II Semester- III – solid state Physics

Prepared by : Jadhav M. V.

Chapter- 1 The Crystalline State

Question for 1 Marks

- 1. Define the term 'Symmetry operations'.
- ←2. What are Miller indices?
- -3. Define the term 'Co-ordination number' of an atom.
 - 4. Define the term 'Unit cell' .
 - 5. Sketch (101) plane in S C unit sell.
- \sim 6. The minimum angle of rotation for a certain crystal structure which leaves it invariant is 120°. Find fold number (n).
- ~ 7. Define the term 'Packing fraction'.
 - 8. Define reciprocal lattice.
- 9. Find the number of atoms per unit cell in SC structure.
 - 10. Find the number of atoms per unit cell in BCC structure.
 - 11. Find the number of atoms per unit cell in FCC structure.

Questions for 5 Marks.

- ▶ 1. Obtain an expression for interplaner spacing for simple cubic system.
 - 2. Describe the crystal structure i) NaCl and ii) CsCl with the help of neat diagrams.
- What is reciprocal lattice? Obtain expression for reciprocal lattice vectors A, B, C.
 - 4. What is reciprocal lattice? Show that the reciprocal vectors of the reciprocal lattice are direct lattice vectors themselves.
 - 5. Find packing fraction for BCC crystal structure. Give your comment about the structure.
 - 6. Show that the volume of unit cell of the reciprocal lattice is inversely proportional to the volume of unit cell of direct lattice.
 - 7. Describe the sodium chloride (NaCl) and Dimond cubic structure with the help of neat diagram.

8. Show that every reciprocal lattice vector is perpendicular to a direct lattice plane.

Chapter- 2 X-Ray Diffraction and Other Characterization Techniques

Question for 1 Marks

- ▶1. Why continuous wavelength X-ray radiation is used in Laue Method?
 - 2. What is photoelectric effect?
- →3. Give any two application of STEM.
- → 4. What are advantages of powder method?
 - 5. State Bragg's diffraction condition in direct lattice.
 - 6. Explain crystal as a grating.
- □7. Give the Principle of photoelectron spectroscopy.
 - 8. Give two applications of scanning electron microscopy.
 - 9. State any two uses of thermal gravimetric analysis techniques.
 - 10. State any two spectroscopic techniques for the analysis of crystal structure.
- └─11. Why ordinary optical grating cannot diffract X-Rays?
 - 12. Give the names of characterization techniques.
 - 13. Give any two applications of UV-Vis spectrophotometer.
 - 14. Draw the schematic labelled diagram of UV-Vis spectrophotometer.

Questions for 5 Marks

- 1. Write a short note on ultraviolet and visible absorption spectroscopy.
- Using Ewald's construction show that Bragg's diffraction condition in reciprocal lattice is exactly equivalent to the condition in direct lattice.
 - 3. Write a short note on scanning tunneling electron microscopy.

Questions for 8 Marks

- Describe X-Ray powder diffraction method with the help of neat diagrams . explain how it is used to study crystal structure.
- 2. Obtain an expression for Braggs diffraction condition in direct lattice and in reciprocal lattice.

Chapter 3 Free Electron and Band Theory of Metals

Question for 1 Marks

- 1. What is the main assumption in classical free electron theory?
- 2. What is Fermi level and Fermi energy?
- 3. What is the Main drawback of Summerfield's theory?

- 4. Define Hall Coefficient.
- 5. Define the term 'density of States'.
- 6. Define the term 'Band gap energy (Eg)'.
- 7. State Bloch theorem.
- 8. State Fermi-Dirac distribution function.
- 9. State the parameter on which Hall coefficient depends.
- 10. State any two uses of Hall Effect.
- 11. What is 'mobility'?
- 12. State Hall Effect.
- 13. Give the formula for Fermi function.
- 14. What is mean free path?
- 15. What is Fermi energy level?

Questions for 5 Marks

- 1. Describe Hall Effect. Obtain an expression for hall angle.
- 2. Obtain an expression for energy levels in three dimension, for an electron of mass 'm' confined in a box of length 'L'.
- 3. Explain classical free electron model.
- 4. Explain Wiedemann- Franz law.
- 5. Write note on nearly free electron model.

Questions for 8 Marks

- 1. Obtain an expression for energy levels and density of states in one dimension.
- 2. On the basis of band theory of solids distinguish between insulators, semiconductors and metals.
- 3. Obtain an expression for density of states in three dimensions and average energy of an electron at absolute zero temperature.

Chapter 4 Magnetism

Questions for 1 Marks

- ←1. What is Curie temperature?
- 2. What is Superconductor?
- -3. What do you mean by 'domains' in ferromagnetic materials?
 - 4. Give two examples of ferromagnetic materials.
- 5. Define the term 'Magnetization (M). give its SI unit.
- 6. What is Neel temperature?
 - 7. Why conductivity of semiconductor increases with temperature?

- 8. What is Mobility?
- 9. What are ferrites? Give two applications.

Questions for 5 Marks

- 1. State and explain Meisner effect.
- →2. Write short note domain and hysteresis of ferromagnetic materials.
 - 3. What are ferrites? Give any two examples and six applications of ferrites.

Questions for 8 Marks

- 1. What is diamagnetism? Obtain classical Langevin's formula for the susceptibility of the diamagnetic material.
- 2. What do you mean by ferrimagnetisms? Describe lattice structure of ferromagnetic materials. What are soft and hard ferrites? And state any four applications of ferrites.
- 3. What is Meisner effect? Describe Type-I and Type-II superconductors.
- 4. Define the term 'Magnetic Susceptibility (xM). Obtain Langevin's formula for the paramagnetic susceptibility
- 5. Discuss the characteristics feature of diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism. Give an example of each type of material.