
1

SAVITRIBAI PHULE PUNE UNIVERSITY

(Formerly University of Pune)

T. Y. B. SC. (COMPUTER SCIENCE)

LABORATORY COURSE-I

(OPERATING SYSTEM-I)

Practical course based on CS-357 Semester V

Choice Based Credit System Syllabus to be implemented from

Academic Year 2021–2022

Name of Student

Name of College

Roll No. Exam Seat No.

Academic Year Division

2

Certificate
This is to certify that Mr./Ms

University Exam Seat Number has successfully completed

the assignment for the Lab Course I (CS-357 Operating System-I)

during the Academic Year --------------- and has scored

Marks out of 15.

Head

Teacher In charge Dept. of Computer Science

Internal Examiner External Examiner

3

BOARD OF STUDIES

1. Dr. Bedekar Smita

2. Dr. Dhole Sanjay

3. Dr. Bharambe Manisha

4. Dr. Ponde Poonam

5. Dr. Sardesai Anjali

6. Dr. Mulay Prashant

7. Dr. Sayyad Razzak

8. Dr. Wani Vilas

9. Dr. Shinde Sahebrao

10. Dr. Kolhe Satish

11. Dr. Patil Ranjeet

12. Dr. Sonar Deepak

13. Dr. Yadav Jyoti

14. Dr. Kumbhojkar Nilesh

15. Dr. Dasari Abhay

4

Co-Ordinators:

➢ Dr. Prashant Muley, A. M College, Hadapsar, Pune

Member Board of Study, Computer Science SPPU Pune

➢ Dr. Manisha Bharambe , MES Abasaheb Garware College , Pune

Member Board of Study, Computer Science SPPU Pune

Editor:

Dr. Manisha Bharambe , MES Abasaheb Garware College, Pune

Prepared by:

Name of Teacher Name of College

Dr. Shelar M.N. Head, Dept. of Computer Science, K.T.H.M. College Nashik.

Dr. Reena Bharti Assistant Prof., Dept. of Computer Science,

N.Wadia College Pune

Dr. Amale B.B. Assistant Professor, Dept. of Computer Science

Padmashri Vikhe Patil College of Arts, Science And

Commerce Pravaranagar

5

4

Table of contents

Sr. No. Contents Page No.

1. Introduction 5-7

2. Assignment Completion Sheet 8-8

3. Operations on processes 9-15

4. Simulation of Operating System Shell and its
working

16-19

5. Simulation of CPU Scheduling Algorithms 20-29

6. Simulation of demand paging using memory page
replacement algorithms

30-35

6

Introduction

About the workbook

This workbook is intended to be used by T. Y. B. Sc (Computer Science)

students for the Practical Course based on CS–351 (Operating Systems-I) in

Semester V.

Operating System is an important core subject of computer science

curriculum, and hands-on laboratory experience is critical to the

understanding of theoretical concepts studied as part of this course. Study of

any programming language is incomplete without hands on experience of

implementing solutions using programming paradigms and verifying them in

the lab. This workbook provides rich set of problems covering the basic

algorithms as well as numerous computing problems demonstrating the

applicability and importance of various data structures and related

algorithms.

About the Work Book Objectives –

1. Defining clearly the scope of the course

2. Bringing uniformity in the way course is conducted across different

Colleges.

3. Continuous assessment of the students.

4. Bring variation and variety in experiments carried out by different

students in a batch

5. Providing ready references for students while working in the lab.

6. Catering to the need of slow paced as well as fast paced learners

7

How to use this book?

This book is mandatory for the completion of the laboratory course. It is a

Measure of the performance of the student in the laboratory for the entire

duration of the course.

The Operating Systems-I practical syllabus is divided into Four assignments.

Each assignment has problems divided into three sets A, B and C.

Instructions to the students:

Please read the following instructions carefully and follow them

➢ Students are expected to carry workbook during every practical.

➢ Students should prepare oneself before hand for the Assignment

by reading the relevant material.

➢ Teacher/Instructor will specify which problems to solve in the lab

during the allotted slot and student should complete them and get

verified by the instructor. However student should spend

additional hours in Lab and at home to cover as many problems as

possible given in this work book.

➢ Students will be assessed for each exercise on a scale from 0 to 5

Not done 0

Incomplete 1

Late Complete 2

Needs improvement 3

Complete 4

Well Done 5

8

Instruction to the Practical In-Charge:

➢ Explain the assignment and related concepts in around ten minutes

using white board if required or by demonstrating the software.

➢ Choose appropriate problems to be solved by students. Set A is

mandatory. Choose problems from set B depending on time availability.

Discuss set C with students and encourage them to solve the problems

by spending additional time in lab or at home.

➢ Make sure that students follow the instruction as given above.

➢ You should evaluate each assignment carried out by a student on a scale

of 5 as specified above by ticking appropriate box.

➢ The value should also be entered on assignment completion page of the

respective Lab course.

Instructions to the Lab administrator and Exam guidelines:

➢ You have to ensure appropriate hardware and software is made

available to each student

➢ Do not provide Internet facility in Computer Lab while examination

➢ Do not provide pen drive facility in Computer Lab while examination.

➢ The operating system and software requirements are as given below:

➢ Operating system: Linux

➢ Editor: Any Linux based editor like vi, gedit etc

➢ Compiler: cc or gcc

9

Assignment Completion Sheet

Sr. No. Assignment Name Marks (out 5) Signature

1 Operations on processes

2. Simulation of Operating System Shell and its
working

3. Simulation of CPU Scheduling Algorithms

4. Simulation of demand paging using memory page
replacement algorithms

b. Conduct Quiz at the time of Submission)

Total out 40

a. Total out of 10

b. Total out of 5

c. Total (Out of 15) (a + b)

This is to certify that Mr. /Ms ___ ___

University Exam Seat Number ______ _ has successfully completed the course

work for Lab Course I and has scored ______ _ Marks out of 15.

Teacher In charge Head,

Dept. of Computer Science

10

Assignment No.1: Operations on Processes

Process: A process is basically a program in execution. We write our computer programs in a

text file, during execution it is loaded in computer’s memory and then it becomes a process. A

process performs all the tasks mentioned in the program. A process can be divided into four

sections ─ stack, heap, text and data.

Stack: The process Stack contains the temporary data such as method/function

parameters, return address and local variables.

Heap: This is dynamically allocated memory to a process during its run time.

Text: This includes all instructions specified in the program.

Data: This section contains the global and static variables.

In Linux operating system, new processes are created through fork() system call.

Fork() System Call:

System call fork() is used to create new processes. It takes no arguments and returns a

process ID. The newly created process is called child process and the caller process is called as

parent process. After a new child process is created, both parent and child processes will

execute the next instruction following the fork() system call. Therefore, we have to distinguish

the parent from the child. This can be done by testing the returned value of fork():

fork() returns a zero to the newly created child process and returns a positive value (process

ID of the child process) to the parent.

If fork() returns a negative value, the creation of a child process was unsuccessful.

The returned process ID is of type pid_t defined in sys/types.h. Normally, the process ID is an

integer. Moreover, a process can use function getpid() to retrieve the process ID assigned to this

process.

11

Let us take the following example:

int main()

{ printf(“Before Forking”);

fork();

printf(“After Forking”);

return 0;

}

If the call to fork() is executed successfully, Linux will

• Make two identical copies of address spaces, one for the parent and the other for the child.

• Both processes will start their execution at the next statement following the fork() call.

Output of above program:

Before Forking

After Forking

After Forking

Here printf() statement after fork() system call executed by parent as well as child

process. Both processes start their execution right after the system call fork(). Since both

processes have identical but separate address spaces, those variables initialized before the fork()

call have the same values in both address spaces. Since every process has its own address space,

any modifications will be independent of the others. In other words, if the parent changes the

value of its variable, the modification will only affect the variable in the parent process's

address space. Other address spaces created by fork() calls will not be affected even though they

have identical variable names.

Consider one simpler example that distinguishes the parent from the child.

#include <stdio.h>

#include <sys/types.h>

void ChildProcess(); /* child process prototype */

void ParentProcess(); /* parent process prototype */

int main()

{ pid_t pid;

pid = fork();

if (pid == 0)

12

ChildProcess();

else

ParentProcess();

return 0;

}

void ChildProcess()

{ printf(“I am child process..”);

}

void ParentProcess()

{ printf(“I am parent process..”);

}

exec() system call

The exec() family of functions replaces the current process image with a new process

image. It loads the program into the current process space and runs it from the entry point. The

current process is just turned into a new process and hence the process id PID is not changed,

this is because we are not creating a new process we are just replacing a process with another

process in exec.

The exec() family consists of following functions,

execl(): l is for the command line arguments passed a list to the function.

int execl(const char *path, const char *arg, ...);

execlp(): p is the path environment variable which helps to find the file passed as an argument

to be loaded into process.

int execlp(const char *file, const char *arg, ...);

execle(): It is an array of pointers that points to environment variables and is passed explicitly to

the newly loaded process.

int execle(const char *path, const char *arg, ..., char * const envp[]);

execv(): v is for the command line arguments. These are passed as an array of pointers to the

function.

int execv(const char *path, char *const argv[]);

13

execlp() System Call:

execlp() system call is used after a fork() call by one of the two processes to replace the

processes memory space with a new program. This call loads a binary file into memory and

starts its execution. So two processes can be easily communicates with each other.

#include<sys/types.h>

#include<stdio.h>

#include<unistd.h>

int main()

{

int pid;

pid = fork(); /* fork a child process */

if (pid< 0) /* error occurred */

{ fprintf(stderr, "Fork Failed");

return 1;

}

else if (pid == 0) /* child process */

execlp("/bin/wc","wc",NULL);

else /* parent process */

{ wait(NULL); /* parent will wait for the child to complete */

printf("Child Complete");

}

return 0;

}

fork() vs exec()

• Fork() starts a new process which is a copy of the one that calls it, while exec() replaces

the current process image with another (different) one.

• Both parent and child processes are executed simultaneously in case of fork() while

Control never returns to the original program unless there is an exec() error.

Wait() system call

The wait() system call suspends execution of the calling process until one of its children

terminates.

wait(int &status);

waitpid() system call :

By using this system call it is possible for parent process to synchronize its execution with child

process. Kernel will block the execution of a Process that calls waitpid system call if a some

14

child of that process is in execution. It returns immediately when child has terminated by return

termination status of a child.

int waitpid(int pid, int *status, int options);

nice() System Call:

Using nice() system call, we can change the priority of the process in multi-tasking

system. The new priority number is added to the already existing value.

int nice(int inc);

nice() adds inc to the nice value. A higher nice value means a lower priority. The range of the

nice value is +19 (low priority) to -20 (high priority).

#include<stdio.h>

main()

{

int pid, retnice;

printf("press DEL to stop process \n");

pid=fork();

for(;;)

{

if(pid == 0)

{

retnice = nice (−5);

print("child gets higher CPU priority %d \n", retnice);

sleep(1);

}

else

{

retnice=nice(4);

print("Parent gets lower CPU priority %d \n", retnice);

sleep(1);

}

}

}

15

Orphan process

The child processes whose parent process has completed execution or terminated are

called orphan process. Usually, a parent process waits for its child to terminate or finish their job

and report to it after execution but if parent fails to do so its child results in the Orphan process.

In most cases, the Orphan process is immediately adopted by the init process (a very first process

of the system).

Practical Assignments:

Set A

(1) Implement the C Program to create a child process using fork(), display parent and child

process id. Child process will display the message “I am Child Process” and the parent

process should display “I am Parent Process”.

(2) Write a program that demonstrates the use of nice() system call. After a child process is

started using fork(), assign higher priority to the child using nice() system call.

Set B

(1) Implement the C program to accept n integers to be sorted. Main function creates child

process using fork system call. Parent process sorts the integers using bubble sort and

waits for child process using wait system call. Child process sorts the integers using

insertion sort.

(2) Write a C program to illustrate the concept of orphan process. Parent process creates a

child and terminates before child has finished its task. So child process becomes orphan

process. (Use fork(), sleep(), getpid(), getppid()).

Set C

(1) Implement the C program that accepts an integer array. Main function forks child

process. Parent process sorts an integer array and passes the sorted array to child process

through the command line arguments of execve() system call. The child process uses

execve() system call to load new program that uses this sorted array for performing the

binary search to search the particular item in the array.

16

(2) Implement the C Program to create a child process using fork(), Using exec() system call,

child process will execute the program specified in Set A(1) and parent will continue by

printing message “I am parent “.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well done []

Signature of the instructor: Date:

17

What is Shell?

Assignment No.2: Operations on Processes

Shell is an interface between user and operating system. It is the command interpreter, which

accept the command name (program name) from user and executes that command/program.

Shell mostly accepts the commands given by user from keyboard. Shell gets started

automatically when Operating system is successfully started.

When shell is started successfully it generally display some prompt (such as #,$ etc) to indicate

the user that it is ready to accept and execute the command.

Shell executes the commands either synchronously or asynchronously.

When shell accepts the command then it locates the program file for that command, start its

execution, wait for the program associated with the command to complete its execution and then

display the prompt again to accept further command. This is called as Synchronous execution of

shell.

In asynchronous execution shell accept the command from user, start the execution of program

associated to the given command but does not wait for that program to finish its execution,

display prompt to accept next command.

How Shell Execute the command?

1. Accept the command from user.

2. Tokenize the different parts of command.

3. First part given on the given command line is always a command name.

4. Creates (Forks) a child process for executing the program associated with given command.

5. Once child process is created successfully then it loads (exec) the binary (executable) image

of given program in child process area.

6. Once the child process is loaded with given program it will start its execution while shell is

waiting (wait) for it (child) to complete the execution. Shell will wait until child finish its

execution.

7. Once child finish the execution then Shell wakeup, display the command prompt again and

accept the command and continue.

18

Example

$ cat f1.dat f2.dat f3.dat

This command line has four tokens- cat, f1.dat, f2.dat and f3.dat. First token is the

command name which is to be executed. In linux operating system, some commands are

internally coded and implemented by shell such as mkdir, rmdir, cd, pwd, ls, cat, grep,

who etc.

Objective of this practical assignment is to simulate the shell which interprets all internal or

predefined Linux commands and additionally implement to interpret following extended

commands.

(1) count : To count and display the number of lines, words and characters in a given file.

(2) typeline: It will display the all or number of lines in given file.

(3) List: It will list the files in current directory with some details of files

(4) Search: It will allow searching the file for the occurrence of given string/pattern

Program Logic

1) Main function will execute and display the command prompt as $

2) Accept the command at $ prompt from user.

3) Separate or tokenize the different parts of command line.

4) Check that first part is one of the extended commands or not (count, typeline, list, search).

5) If the command is extended command then call corresponding functions which is

implementing that command

6) Otherwise fork a new process and then load (exec) a program in that newly created process

and execute it. Make the shell to wait until command finish its execution.

7) Display the prompt and continue until given command is “q” to Quit.

19

Practical Assignments:

Set A

Write a C program that behaves like a shell which displays the command prompt ‘myshell$’. It

accepts the command, tokenize the command line and execute it by creating the child process.

Also implement the additional command ‘count’ as

myshell$ count c filename: It will display the number of characters in given file

myshell$ count w filename: It will display the number of words in given file

myshell$ count l filename: It will display the number of lines in given file

Set B

Write a C program that behaves like a shell which displays the command prompt ‘myshell$’. It

accepts the command, tokenize the command line and execute it by creating the child process.

Also implement the additional command ‘list’ as

myshell$ list f dirname: It will display filenames in a given directory.

myshell$ list n dirname: It will count the number of entries in a given directory.

myshell$ list i dirname: It will display filenames and their inode number for the files in a given

directory.

Set C

(1)

Write a C program that behaves like a shell which displays the command prompt ‘myshell$’. It

accepts the command, tokenize the command line and execute it by creating the child process.

Also implement the additional command ‘typeline’ as

myshell$ typeline n filename: It will display first n lines of the file.

myshell$ typeline -n filename: It will display last n lines of the file.

myshell$ typeline a filename: It will display all the lines of the file.

(2)

Write a C program that behaves like a shell which displays the command prompt ‘myshell$’. It

accepts the command, tokenize the command line and execute it by creating the child process.

Also implement the additional command ‘search’ as

myshell$ search f filename pattern : It will search the first occurrence of pattern in the given

file

myshell$ search a filename pattern : It will search all the occurrence of pattern in the given file

myshell$ search c filename pattern : It will count the number of occurrence of pattern in the

given file

20

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion / /

21

Assignment 3- CPU Scheduling

CPU Scheduling is one of the important tasks performed by the operating system. In

multiprogramming operating systems many processes are loaded into memory for execution and

these processes are sharing the CPU and other resources of computer system.

Scheduler is a program that decides which program will execute next at the CPU or which

program will be loaded into memory for execution.

CPU scheduler is a program module of an operating system that selects the process to execute

next at CPU out of the processes that are in memory. This scheduler is also called as Short term

scheduler or CPU Scheduler

The main objective is to increase system performance in accordance with the chosen set of

criteria.

There are 3 types of schedulers as

1) Short Term Scheduler

2) Long Term Scheduler

3) Medium Term Scheduler

We have to implement various Short Term Scheduling algorithms as a part of this practical

assignment.

Various CPU Scheduling algorithms are:

1) First Come First Serve (FCFS)

2) Shortest Job First (SJF)

3) Priority Scheduling

4) Round Robin Scheduling (RR)

These scheduling algorithms are further classified into 2 types as Preemptive and Non-

Preemptive. FCFS scheduling is always Non-Preemptive while Round Robin is always

Preemptive, while Shortest Job First and Priority Scheduling can be preemptive or non-

preemptive.

The performance of various scheduling algorithms is compared on the basis of following criteria

called as scheduling criteria’s as:

1) CPU Utilization 2) Throughput 3) Turnaround Time 4) Waiting Time

5) Response Time

22

Data Structures

To simulate the working of various CPU scheduling algorithms following data structures is

required.

1) Ready Queue - It represents the queue of processes which ready to execute but waiting for

CPU to become available. Scheduling algorithm will select appropriate process from the ready

queue and dispatch it for execution. For FCFS and Round Robin this queue is strictly operated as

First In First out queue. But for Shortest Job First and Priority Scheduling it will operate as

Priority Queue.

2) Process Control Block- It will maintain various details about the each process as processID,

CPU-Burst, Arrival time, waiting time, completion time, execution time, turnaround time, etc. A

structure can be used to define all these fields for processes and we can use array of structures of

size n. (n is number of processes)

1) First Come First Serve Scheduling (FCFS):

In this algorithm the order in which process enters the ready queue, in same order they will

execute on the CPU. This algorithm is simple to implement but it may be worst for several times.

DESCRIPTION:

To calculate the average waiting time using the FCFS algorithm first the waiting time of the first

process is kept zero and the waiting time of the second process is the burst time of the first

process and the waiting time of the third process is the sum of the burst times of the first and the

second process and so on. After calculating all the waiting times the average waiting time is

calculated as the average of all the waiting times. FCFS mainly said that first come first serve the

algorithm which came first will be served first.

Note: Variables used in the Algorithm

wt - Waiting time

tat- Turnaround time

tatavg- Average Turnaround time

wtavg- Average waiting time

qt- time quantum

rembt – remaining burst time

t- Current time

23

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process name and the burst time

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)
{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];
}

Step 4: Set the waiting of the first process as ‗0‘and its burst time as its turnaround time

Step 5: for each process in the Ready Q calculate

a) Waiting time (n) = waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n) = waiting time (n) +Burst time (n)

Step 6: Calculate

a) Average waiting time = Total waiting Time / Number of process

b) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

2) Shortest Job First (SJF):

In this algorithm the jobs will execute at the CPU according their next CPU-Burst time. The job

in a ready queue which has shortest next CPU burst will execute next at the CPU. This algorithm

can be preemptive or non-preemptive.

DESCRIPTION: (non-preemptive SJF)

To calculate the average waiting time in the shortest job first algorithm the sorting of

the process based on their burst time in ascending order then calculate the waiting time of

each process as the sum of the bursting times of all the process previous or before to that

process.

24

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU

burst time

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

}

wtavg = wt[i]/n;

tatavg = tat[i]/n;

Step 4: Start the Ready Q according the shortest Burst time by sorting according to

lowest to highest burst time.

Step 5: Set the waiting time of the first process as ‗0‘and its turnaround time as its burst

time.

Step 6: Sort the processes names based on their Burt time

Step 7: For each process in the ready queue,

Calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)
b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 8: Calculate

c) Average waiting time = Total waiting Time / Number of process
d) Average Turnaround time = Total Turnaround Time /Number of process

Step 9: Stop the process

25

3) Priority Scheduling (PS):

In this algorithm the job will execute according to their priority order. The job which has highest

priority will execute first and the job which has least priority will execute last at the CPU.

Priority scheduling can be preemptive or non-preemptive.

DESCRIPTION

To calculate the average waiting time in the priority algorithm, sort the burst times according to

their priorities and then calculate the average waiting time of the processes. The waiting time of

each process is obtained by summing up the burst times of all the previous processes.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst

Time

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

}

wtavg = wt[i]/n;

tatavg = tat[i]/n;

Step 4: Sort the ready queue according to the priority number.

Step 5: Set the waiting of the first process as ‗0‘ and its burst time as its turnaround time

Step 6: Arrange the processes based on process priority

Step 7: For each process in the Ready Q

Step 8: for each process in the Ready Q calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)
b) Turnaround time (n)= waiting time(n)+Burst time(n)

26

Step 9: Calculate

c) Average waiting time = Total waiting Time / Number of process
d) Average Turnaround time = Total Turnaround Time / Number of process

(Print the results in an order.)

Step10: Stop

4) Round Robin Scheduling (RR):

This algorithm is mostly used in time-sharing operating systems like Unix/Linux. This algorithm

gives the fair change of execution to each process in system in rotation. In this algorithm each

process is allowed to execute for some fixed time quantum. If process has the CPU-burst more

than time quantum then it will execute for the given time quantum. But if it has CPU-burst less

than the time quantum then it will execute for its CPU-burst time and then immediately release

the CPU so that it can be assigned to other process. The advantage of this algorithm is that the

average waiting time is less. This algorithm use/ ready queue and is strictly operated as First In

First Out queue. This algorithm is intrinsically preemptive scheduling algorithm.

DESCRIPTION:

To calculate the average waiting time. There will be a time slice, each process should be

executed within that time-slice and if not it will go to the waiting state so first check whether the

burst time is less than the time-slice. If it is less than it assign the waiting time to the sum of the

total times. If it is greater than the burst-time then subtract the time slot from the actual burst

time and increment it by time-slot and the loop continues until all the processes are completed.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue and time quantum (or) time slice

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time

wt[0] = wtavg = 0;

tat [0] = tatavg = bt[0];

for (i=1;i<n;i++)
{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

}

wtavg = wt[i]/n;
tatavg = tat[i]/n;

27

Step 4: Calculate the no. of time slices for each process where No. of time slice for process (n) =

burst time process (n)/time slice

if (rembt[i] > qt)

{

t += qt

rembt[i] -= qt

}

else

{

t = t + rembt[i];

wt[i] = t - bt[i];

rembt[i] = qt;

}

}

}

Step 5: If the burst time is less than the time slice then the no. of time slices =1.

Step 6: Consider the ready queue is a circular Q, calculate

a) Waiting time for process (n) = waiting time of process(n-1)+ burst time of process(n-1) +

the time difference in getting the CPU from process(n-1)
b) Turnaround time for process(n) = waiting time of process(n) + burst time of process(n)+

the time difference in getting CPU from process(n).
Step 7: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process

Step 8: Stop the process

28

Set A:

i. Write the program to simulate FCFS CPU-scheduling. The arrival time and first CPU-

burst for different n number of processes should be input to the algorithm. Assume that

the fixed IO waiting time (2 units). The next CPU-burst should be generated randomly.

The output should give Gantt chart, turnaround time and waiting time for each process.

Also find the average waiting time and turnaround time.

ii. Write the program to simulate Non-preemptive Shortest Job First (SJF) -scheduling. The

arrival time and first CPU-burst for different n number of processes should be input to the

algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion / /

29

Set B:

i. Write the program to simulate Preemptive Shortest Job First (SJF) -scheduling. The

arrival time and first CPU-burst for different n number of processes should be input to the

algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

ii. Write the program to simulate Non-preemptive Priority scheduling. The arrival time and

first CPU-burst and priority for different n number of processes should be input to the

algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion / /

30

Set C:

i. Write the program to simulate Preemptive Priority scheduling. The arrival time and first

CPU-burst and priority for different n number of processes should be input to the

algorithm. Assume the fixed IO waiting time (2 units). The next CPU-burst should be

generated randomly. The output should give Gantt chart, turnaround time and waiting

time for each process. Also find the average waiting time and turnaround time.

ii. Write the program to simulate Round Robin (RR) scheduling. The arrival time and first

CPU-burst for different n number of processes should be input to the algorithm. Also

give the time quantum as input. Assume the fixed IO waiting time (2 units). The next

CPU-burst should be generated randomly. The output should give Gantt chart, turnaround

time and waiting time for each process. Also find the average waiting time and

turnaround time.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion / /

31

Assignment No. 4: Demand Paging

Demand paging the one of the most commonly used method of implanting the Virtual

Memory Management scheme. Virtual memory management scheme has the following

advantages:

1) System can execute the process of larger size than the size of available physical memory.

2) Reduced disk IO operations.

3) More numbers of processes can be loaded into memory.

4) Performance of multi-programming and multi-tasking can be improved.

In this memory management scheme instead of loading entire process into memory, only

required portion of each process is loaded in memory for execution. Different parts of physical

memory of each process are brought into memory as and when required hence the name is

demand paging.

Each process is logically divided into number of pages. Each page is of same size.

Physical memory (RAM) is also divided into number of equal size frames. Generally size of

frame and a page is same. When process is to be loaded into memory its pages are loaded into

available free frames.

Memory management scheme maintains the list of free frames.

It also maintains the page table for each process. Page table keep track of various frames

allocated to each process in physical memory. That is page table is used to map the logical pages

of a process to frames in physical memory.

Memory Management Unit (MMU) of computer system is responsible to convert the logical

address in process to physical memory in frame.

In demand paging memory management scheme no page of any process in brought into memory

until it not really required. Whenever page is required (demanded) then only it is brought into

memory.

Page Fault:

When process requests some page during execution and that page is not available in physical

memory then it is called as Page Fault.

Whenever page fault occurs Operating system check really it is a page fault or it is an invalid

memory reference. If page fault has occurred then system try to load the corresponding page in

available free frame.

32

Page Replacement:

When page fault occurs, system try to load the corresponding page into one of the available free

frame. If no free frame is available them system try to replace one of the existing page in frame

with new page. This is called as Page Replacement. Frame selected for page replacement is as

victim frame. Page replacement algorithm of demand paging memory management scheme will

decide which frame will be selected as victim frame. There are various page replacement

algorithms as:

1. First In First Out Page Replacement (FIFO) a

2. Optimal Page Replacement(OPT) b

3. Least Recently Used Page Replacement (LRU)a

4. Most Recently Used Page Replacement(MRU) c

5. Most Frequently Used Page Replacement(MFU)b

6. Least Frequently Used Page Replacement(LFU)

7. Second Change Page Replacement’s

Input to Page Replacement Algorithm:

1. Reference String: It is the list of numbers which represent the various page numbers

demanded by the process.

2. Number of Frames: It represents the number of frames in physical memory.

Ex. Reference String: 3, 6, 5, 7, 3, 5, 2, 5,7 ,3,2,4,2, 8, 3, 6

It means first process request the page number 3 then page number 6 then 5 and so on.

Data Structure:

1. Array of memory frames which is used to maintain which page is loaded in which frame.

With each frame we may associate the counter or a time value whenever page is loaded in

that frame or replaced.

2. Array of reference String.

3. Page Fault Count.

Output:

The output for each page replacement algorithm should display how each next page is

loaded in which frame.

Finally it should display the total number of page faults.

33

FIFO:

• In this page replacement algorithm the order in which pages are loaded in memory, in

same order they are replaced.

• We can associate a simple counter value with each frame when a page is loaded in

memory.

• Whenever page is loaded in free frame a next counter value is also set to it.

• When page is to be replaced, select that page which has least counter value.

• It is most simple page replacement algorithm.

OPT:

• This algorithm looks into the future page demand of a process.

• Whenever page is to be replaced it will replace that page from the physical which will not

be required longer time.

• To implement this algorithm whenever page is to be replaced, we compare the pages in

physical memory with their future occurrence in reference string. The page in physical

memory which will not be required for longest period of time will be selected as victim.

LRU:

• This algorithm replaces that page from physical memory which is used least recently.

• To implement this algorithm we associate a next counter value or timer value with each

frame/page in physical memory wherever it is loaded or referenced from physical

memory. When page replacement is to be performed, it will replace that frame in physical

memory which has smallest counter value.

MRU:

• This algorithm replaces that page from physical memory which is used most recently.

• To implement this algorithm we associate a next counter value or timer value with each

frame/page in physical memory wherever it is loaded or referenced from physical

memory. When page replacement is to be performed, it will replace that frame in physical

memory which has greatest counter value.

MRU:

• This algorithm replaces that page from physical memory which is used most recently.

• To implement this algorithm we associate a next counter value or timer value with each

frame/page in physical memory wherever it is loaded or referenced from physical

memory. When page replacement is to be performed, it will replace that frame in physical

memory which has greatest counter value.

34

MFU:

• This algorithm replaces that page from physical memory which is used most frequently.

• This algorithm is bit complex to implement.

• To implement this algorithm we have to maintain the history of each page that how many

times it is used (frequency count) so far whenever it is loaded in physical memory or

referenced from physical memory. When page replacement is to be performed, it will

replace that frame in physical memory of which frequency count is greatest.

• If frequency count is same for two or more pages then it will apply FCFS.

LFU:

• This algorithm replaces that page from physical memory which is used most frequently.

• This algorithm is bit complex to implement.

• To implement this algorithm we have to maintain the history of each page that how many

times it is used (frequency count) so far whenever it is loaded in physical memory or

referenced from physical memory. When page replacement is to be performed, it will

replace that frame in physical memory of which frequency count is smallest.

• If frequency count is same for two or more pages then it will apply FCFS.

Second Chance Page Replacement:

• This algorithm is also called as Clock replacement policy.

• In this algorithm frames from physical memory are consider for the replacement in round

robin manner. A page that has been accessed in two consecutive considerations will not

be replaced.

• This algorithm is an extension of FIFO page replacement.

• To implement this algorithm we have to associate second chance bit to each frame in

physical memory. Initially when a page is loaded in memory its second chance bit is set

to 0. Each time a memory frame is referenced set the second chance bit to 1.When page

replacement it to be performed access the memory frames in round robin manner. If

second chance bit is 1 then reset it to 0. If second chance bit is zero then replace the page

with that frame.

• This algorithm gives far better performance than FCFS page replacement.

35

Set A

i. Write the simulation program to implement demand paging and show the page

scheduling and total number of page faults for the following given page reference string.

Give input n as the number of memory frames.

Reference String : 12,15,12,18,6,8,11,12,19,12,6,8,12,15,19,8

1) Implement FIFO

2) Implement LRU

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion / /

Set B:

I. Write the simulation program to implement demand paging and show the page

scheduling and total number of page faults for the following given page reference string.

Give input n as the number of memory frames.

Reference String : 12,15,12,18,6,8,11,12,19,12,6,8,12,15,19,8

1) Implement OPT

2) Implement MFU

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion / /

36

Set C:

I. Write the simulation program to implement demand paging and show the page

scheduling and total number of page faults for the following given page reference string.

Give input n as the number of memory frames.

Reference String: 2,5,2,8,5,4,1,2,3,2,6,1,2,5,9,8

1) Implement MRU

2) Implement Second Chance Page Replacement.

3) Least Frequently Used

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of the Instructor Date of Completion / /

