

Objectives

- Relate earthquake activity to plate tectonics
- Define earthquake, and identify the focus and epicenter of an earthquake.
- Describe the types of waves emitted during an earthquake.
- Distinguish between earthquake intensity and magnitude.
- Review some current methods of earthquake prediction.

Why do earthquakes occur?

- Fractures, faults
- Energy released and propagates in all directions as seismic waves causing earthquakes

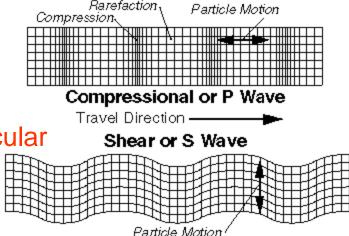
Where do earthquakes occur:

1) Most earthquakes occur along the edge of the oceanic and continental plate

2) Along faults: normal, reverse, transform

definitions

- <u>Earthquake</u> = Vibration of the Earth produced by the rapid release of energy
- <u>Seismic waves</u> = Energy moving outward from the focus of an earthquake
- Focus = location of initial slip on the fault; where the earthquake origins
- Epicenter = spot on Earth's surface directly above the focus

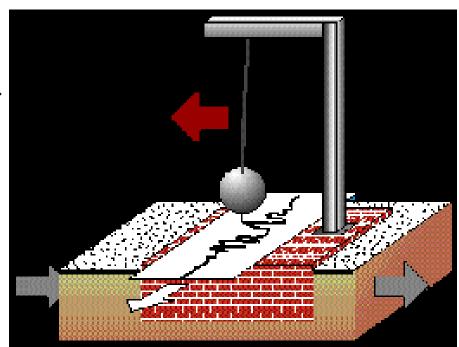

Seismic waves: forms

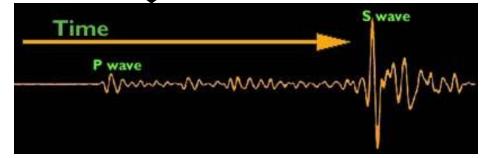
P-waves:

- called compressional, or push-pull waves
- Propagate parralel to the direction in which the wave is moving
- Move through solids, liquids

S-waves:

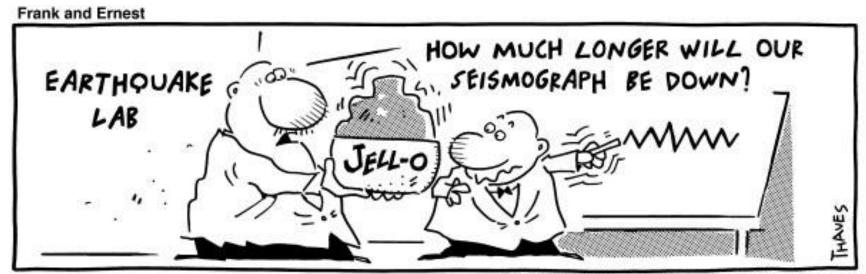
- Called shear waves
- Propagate the movement perpendicular to the direction in which the wave is moving


- Surface waves (L-waves or long waves).
 - Complex motion
 - Up-and-down and side-to-side
 - Slowest
 - Most damage to structures, buildings


Seismic waves: properties

- Velocity: function of the physical properties of the rock the wave is traveling through
 - Velocity increases with rock density
 - Velocity changes when passing from one material to another (increases/decreases)
 - Liquids: S-waves do not get transmitted through liquid; P-waves slow down
- Why is this important?
 - —If we know the velocity of the wave, we can infer the type of rock it traveled through- that's how we map the interior of the Earth!!!

Measuring earthquakes


- Seismometers:
 instruments that
 detect seismic waves
- Seismographs
 Record intensity, height and amplitude of seismic waves

Locating the shaking

- Measure time between P and S waves on a seismogram
- Need at least 3 seismographs

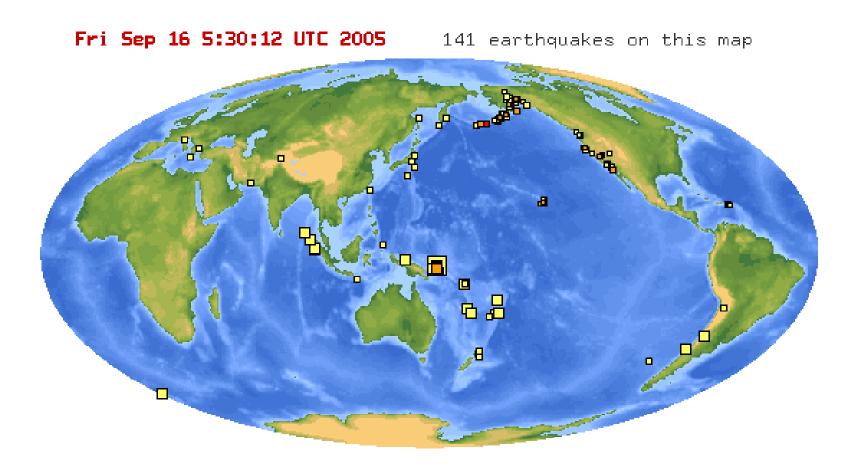
Earthquake size: two ways to measure

1) Magnitude: Richter Scale

- Measures the energy released by fault movement
- related to the maximum amplitude of the S wave measured from the seismogram
- Logarithmic-scale; quantitative measure
- For each whole number there is a 31.5 times increase in energy
 - eg. an increase from 5 to 7 on the Richter scale = an increase in energy of 992 times!!

2) Intensity: Mercalli Scale:

- What did you feel?
- Assigns an intensity or rating to measure an earthquake at a particular location (qualitative)
- I (not felt) to XII (buildings nearly destroyed)
- Measures the destructive effect
- Intensity is a function of:
 - Energy released by fault
 - Geology of the location
 - Surface substrate: can magnify shock waves e.g. Mexico City (1985) and San Francisco (1989)


Frequency of Occurrence of Earthquakes

Descriptor	Magnitude	Average Annually
Great	8 and higher	1 1
Major	7 - 7.9	17 ²
Strong	6 - 6.9	134 ²
Moderate	5 - 5.9	1319 ²
Light	4 - 4.9	13,000 (estimated)
Minor	3 - 3.9	130,000 (estimated)
Very Minor	2 - 2.9	1,300,000 (estimated)

¹ Based on observations since 1900.

² Based on observations since 1990.

Recent Earthquake Activity in the World

Largest earthquake in the world

Chile: 1960 May 22

19:11:14 UTC

Magnitude 9.5

•More than 2,000 killed, 3,000 injured, 2,000,000 homeless, and \$550 million damage in southern Chile

tsunami caused 61 deaths

•\$75 million damage in Hawaii;

• 138 deaths and \$50 million damage in Japan;

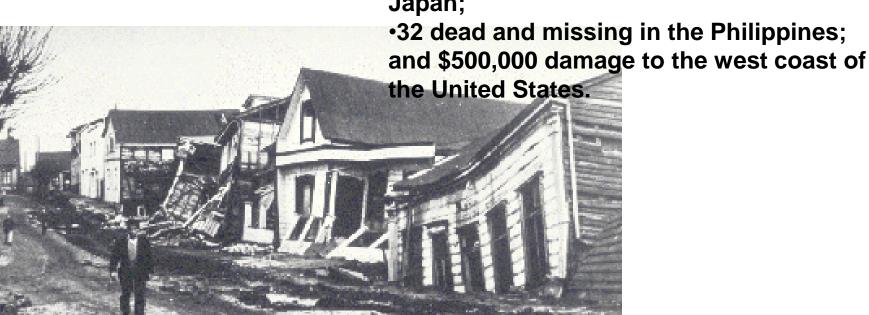


Table 12.2 A Sampling of Significant Earthquakes** Mercalli Number of Moment Magnitude Location Deaths Intensity Year Date (Richter) 1556 Jan. 23 Shaanxi Province, China 830,000 1737 300,000 Oct. 11 Calcutta, India 1812 Feb. 7 New Madrid, Missouri XI-XII Several 1857 X-XI Jan. 9 Fort Tejon, California Montreal to Québec, Canada IX 1870 Oct. 21 IX1886 Aug. 31 Charleston, South Carolina 6.7 XI1906 Apr. 18 San Francisco, California 3,000 7.7 (8.25) 1923 Sept. 1 143,000 XII Kwanto, Japan 7.9(8.2)40,000 XII 1939 Dec. 27 Erzincan, Turkey 7.6 (8.0) XII 1960 May 22 Southern Chile 5,700 9.5 (8.6) 9.2 (8.6) 1964 Mar. 28 Southern Alaska 131 X-XII 1970 May 31 Northern Peru 66,000 7.9(7.8)1971 Feb. 9 San Fernando, California 65 VII–IX 6.7(6.5)1972 Dec. 23 5,000 X-XII 6.2 (6.2) Managua, Nicaragua Jul. 28 250,000 1976 Tangshan, China XI-XII 7.4 (7.6) 1978 Sept. 16 X-XII 25,000 7.8(7.7)Iran IX-XII Mexico City, Mexico 7,000 8.1 (8.1) 1985 Sept. 19 1988 XII Dec. 7 Armenia-Turkey border 30,000 6.8(6.9)1989 Oct. 17 Loma Prieta (near Santa Cruz, California) 66 VII-IX 7.0(7.1)1991 Oct. 20 Uttar Pradesh, India 1,700 IX-XI 6.2(6.1)1994 Jan. 17 Northridge (Reseda), California 66 VII-IX 6.8 1995 Kobe, Japan 5,500 XII 6.9 Jan. 17 X 1996 Feb. 17 Indonesia 8.1 110 XII 1997 Feb. 28 Armenia-Azerbaijan 1,100 6.1 1,600 1997 May 10 Northern Iran XII 7.3 1998 May 30 Afghanistan-Tajikistan 4,000 XII 6.9 1998 Papua, New Guinea 2,200 X Jul. 17 7.1 VIII-IX 1999 Armenia, Colombia Jan. 26 1,000 6.0 1999 Aug. 17 Izmit, Turkey 17,100 VIII–XI 7.4 1999 Sept. 7 Athens, Greece 150 VI-VIII 5.9 Chi-Chi, Taiwan 2,500 1999 Sept. 20 VI-X 7.6 Sept. 30 1999 Oaxaca, Mexico 33 VI 7.5 1999 Oct. 16 Hector Mine, California 0 * 7.1 VI-X 7.2 1999 Nov. 12 Düzce, Turkey 700 X-XII 7.7 Gujarat state, India 2001 Jan. 26 19,998

^{*}Data not available.

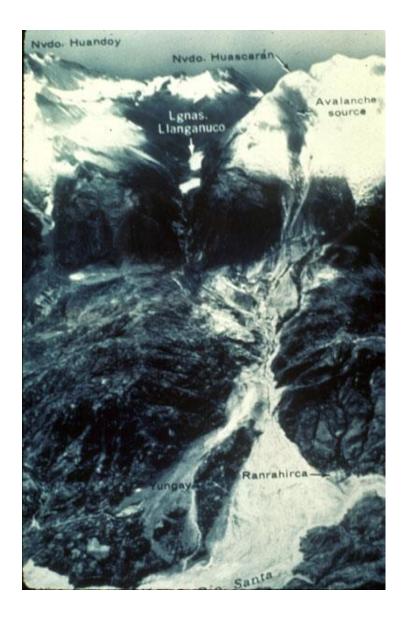
^{**}There is not a recent increase in earthquakes; this table merely reflects more detail on the recent record.

Most Destructive Known Earthquakes on Record in the World

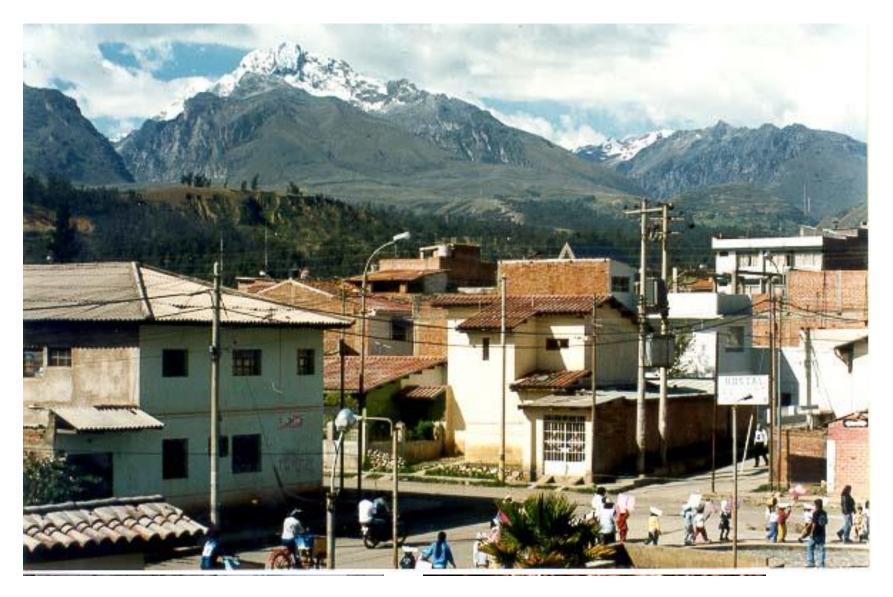
Date	Location	Deaths	Magnitude	Comments
May 31, 1970	Peru	66,000	7.9	\$530,000,000 damage, great rock slide, floods.
July 27, 1976	China, Tangshan	255,000 (official)	7.5	Estimated death toll as high as 655,000.
Sept 19, 1985	Mexico Michoacan	9500 (official)	8.0	Estimated death toll as high as 30,000 Old lake bed magnified shock waves by 500%
2001 Jan 26	India	20,023	7.7	166,836 injured, 600,000 homeless
2004 Dec 26	Sumatra	283,106	9.0	Deaths from earthquake and tsunami

Earthquake damage

- Ground Failure constructions collapse
- Fires from broken gas and electrical lines
- Landslides EQ's triggered; occur in hilly/mountainous areas.
- Liquefaction water-saturated, unconsolidated materials flow
- Tsunami (seismic sea waves; "tidal" waves) - can grow up to 65 m


Earthquakes and the San Andreas Fault

Copyright © 2005 Pearson Prentice Hall, Inc.


Landslides: May 30, 1970 Peru disaster

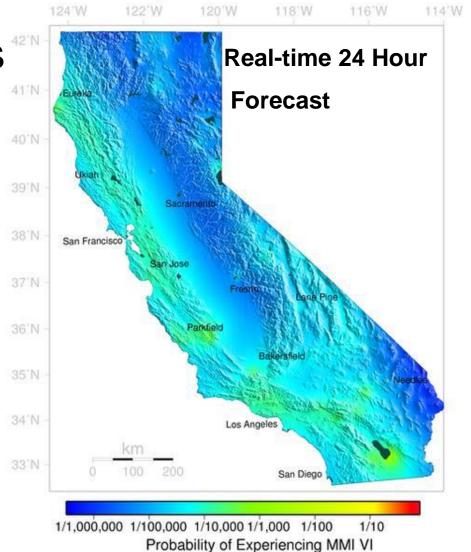
Magnitude: 7.9

- •A large mass of ice and rock slid from a vertical face on Nevado Huascaran, the highest peak in Peru
- Debris reached a velocity of 280 km/hr
- •traveled 11 km horizontally in about 4 minutes at a mean velocity of 165 km/hr.
- •Buried the towns of Yungay and Ranrahirca, The death toll in both villages was 20,000.

The town of Huaraz flattened

India, Gujarat earthquake Jan 26, 2001

Jun 23, 2001 S.Peru earthquake

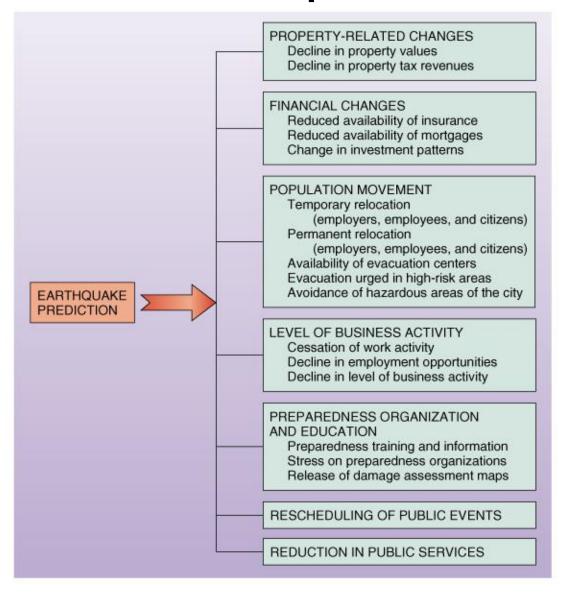


Earthquake risk and prediction

Forecast for 09/15/2005 10:28 PM PDT through 9/16/2005 10:28 PM PDT

Long-term methods

- 1) seismic hazard maps
- 2) probability analysis based on:
- historical EQ records
- geologic EQ records
- slip-rate on active faults
- frequency and magnitude of recent EQ's



Short-term predictions

Precursor phenomena (<1 year to days)

- 1. Foreshocks: usually increase in magnitude
- 2. Ground deformation
- 3. Fluctuations in water well levels
- 4. Changes in local radio wave characteristics
- 5. Anomalous animal behavior???

Impacts of Earthquake Prediction

