

5. Introduction to Networking

References

- Held G., "Internetworking LANs and WANs - Concepts, Techniques and Methods", Wiley, 2nd Ed., 1998
$>$ Comment: Good at concepts
- Stallings W., "Data and Computer Communications", Prentice Hall, 7th Ed., 2004
$>$ Comment: Good at concepts and very up-to-date
- Forouzan B. A, "Data Communications and Networking", McGraw-Hill, 2nd Ed., 2000
$>$ Comment: Many good revision questions at ends of chapters
- Redmond W., "MCSE Training Kit: Networking Essentials Plus", Microsoft Press, 2000
$>$ Comment: Practical oriented

What is a Network?

A network consists of 2 or more computers connected together, and they can communicate and share resources (e.g. information)

Why Networking?

- Sharing information - i.e. data communication
- Do you prefer these?
- Or this?

- Sharing hardware or software
- E.g. print document

- Centralize administration and support
- E.g. Internet-based, so everyone can access the same administrative or support application from their PCs

How many kinds of Networks?

- Depending on one's perspective, we can classify networks in different ways
- Based on transmission media: Wired (UTP, coaxial cables, fiber-optic cables) and Wireless
- Based on network size: LAN and WAN (and MAN)
- Based on management method: Peer-to-peer and Client/Server
- Based on topology (connectivity): Bus, Star, Ring ...

Transmission Media

- Two main categories:
- Guided - wires, cables
- Unguided - wireless transmission, e.g. radio, microwave, infrared, sound, sonar
- We will concentrate on guided media here:
- Twisted-Pair cables:
> Unshielded Twisted-Pair (UTP) cables
> Shielded Twisted-Pair (STP) cables
- Coaxial cables
- Fiber-optic cables

Twisted-Pair Cables

- If the pair of wires are not twisted, electromagnetic noises from, e.g., motors, will affect the closer wire more than the further one, thereby causing errors

Unshielded Twisted-Pair (UTP)

- Typically wrapped inside a plastic cover (for mechanical protection)
- A sample UTP cable with 5 unshielded twisted pairs of wires

Shielded Twisted-Pair (STP)

- STP cables are similar to UTP cables, except there is a metal foil or braided-metal-mesh cover that encases each pair of insulated wires

Categories of UTP Cables

EIA classifies UTP cables according to the quality:

- Category 1 - the lowest quality, only good for voice, mainly found in very old buildings, not recommended now
- Category 2 - good for voice and low data rates (up to 4Mbps for low-speed token ring networks)
- Category 3 - at least 3 twists per foot, for up to 10 Mbps (common in phone networks in residential buildings)
- Category 4 - up to 16 Mbps (mainly for token rings)
- Category 5 (or 5e) - up to 100 Mbps (common for networks targeted for high-speed data communications)
- Category 6 - more twists than Cat 5, up to 1 Gbps

INFORMATION TECHNOLOGY - Part II
5. Introduction to Networking

Coaxial Cables

- In general, coaxial cables, or coax, carry signals of higher freq ($100 \mathrm{KHz}-500 \mathrm{MHz}$) than UTP cables
- Outer metallic wrapping serves both as a shield against noise and as the second conductor that completes the circuit

Outer conductor (shield)

INFORMATION TECHNOLOGY - Part II
5. Introduction to Networking

Fiber-Optic Cables

- Light travels at $3 \times 10^{8} \mathrm{~ms}^{-1}$ in free space and is the fastest possible speed in the Universe
- Light slows down in denser media, e.g. glass
- Refraction occurs at interface, with light bending away from the normal when it enters a less dense medium

- Beyond the critical angle \Rightarrow total internal reflection

INFORMATION TECHNOLOGY - Part II
5. Introduction to Networking

- An optical fiber consists of a core (denser material) and a cladding (less dense material)
- Simplest one is a multimode step-index optical fiber
- Multimode = multiple paths, whereas step-index = refractive index follows a step-function profile (i.e. an abrupt change of refractive index between the core and the cladding)
- Light bounces back and forth along the core
- Common light sources: LEDs and lasers

Advantages and Disadvantages

© Noise resistance - external light is blocked by outer jacket
© Less signal attenuation - a signal can run for miles without regeneration (currently, the lowest measured loss is about $\sim 4 \%$ or 0.16 dB per km)
©) Higher bandwidth - currently, limits on data rates come from the signal generation/reception technology, not the fiber itself
© Cost — Optical fibers are expensive
© Installation/maintenance - any crack in the core will degrade the signal, and all connections must be perfectly aligned

LAN and WAN

- Local Area Network (LAN)
- Small network, short distance
- A room, a floor, a building
- Limited by no. of computers and distance covered
- Usually one kind of technology throughout the LAN
- Serve a department within an organization
- Examples:
- Network inside the Student Computer Room
- Network inside CF502
- Network inside your home
- Wide Area Network (WAN)
- A network that uses long-range telecommunication links to connect 2 or more LANs/computers housed in different places far apart.
- Towns, states, countries

Your home

- Examples:
- Network of our Campus
- Internet
- Example WAN technologies:
- ISDN - Integrated Service Digital Network
- Basic rate: 192 Kbps Primary rate: 1.544Mbps
- T-Carriers - basically digital phone lines
- T1: 1.544Mbps T3: 28×T1
- Frame relay
- Each link offers 1.544Mbps or even higher
- ATM - Asynchronous Transfer Mode
- Support B-ISDN: 155Mbps or 622 Mbps or higher
- SONET - Synchronous Optical Network
- Basic rate OC1: 51.84Mbps
- Support OC12 and up to OC192 (9953.28Mbps) or even higher in the future
- Example of WAN: Broadlband Cable Network
- Cable TV services have been extensively developed in most modern cities
- Cable TV companies try to make use of their coaxial cable installed (that are supposed to carry TV signals) to deliver broadband data services
- Many cable network wiring has been replaced with hybrid fiber-coax (HFC) - i.e. use of fiber-optic cable to connect to the subscribers' buildings, and then the original coaxial cable to connect to each household

ENG224

INFORMATION TECHNOLOGY - Part II
5. Introduction to Networking

- Cable is an asymmetrical technology
- Downstream: max 36 Mbps
- Upstream: max 10 Mbps
- May be reduced to 3 - 10 Mbps downstream and 2 Mbps upstream, depending on no. of subscribers
- Need a special cable modem

Ethernet

Teryon Cable Modem

Peer-to-Peer Networks

- Peer-to-peer network is also called workgroup
- No hierarchy among computers \Rightarrow all are equal
- No administrator responsible for the network

- Advantages of peer-to-peer networks:
- Low cost
- Simple to configure
- User has full accessibility of the computer
- Disadvantages of peer-to-peer networks:
- May have duplication in resources
- Difficult to uphold security policy
- Difficult to handle uneven loading
- Where peer-to-peer network is appropriate:
- 10 or less users
- No specialized services required
- Security is not an issue
- Only limited growth in the foreseeable future

Clients and Servers

- Network Clients (Workstation)
- Computers that request network resources or services
- Network Servers
- Computers that manage and provide network resources and services to clients
- Usually have more processing power, memory and hard disk space than clients
- Run Network Operating System that can manage not only data, but also users, groups, security, and applications on the network
- Servers often have a more stringent requirement on its performance and reliability
- Advantages of client/server networks
- Facilitate resource sharing - centrally administrate and control
- Facilitate system backup and improve fault tolerance
- Enhance security - only administrator can have access to Server
- Support more users - difficult to achieve with peer-topeer networks
- Disadvantages of client/server networks
- High cost for Servers
- Need expert to configure the network
- Introduce a single point of failure to the system

Topology - 3 basic types

- How so many computers are connected together?

Bus Topology

Star Topology

Ring Topology

- Bus Topology

- Simple and low-cost
- A single cable called a trunk (backbone, segment)
- Only one computer can send messages at a time
- Passive topology - computer only listen for, not regenerate data
- Star Topology
- Each computer has a cable connected to a single point
- More cabling, hence higher cost
- All signals transmission through the hub; if down, entire network down
- Depending on the intelligence of hub, two or more computers may send message at the same time

INFORMATION TECHNOLOGY - Part II
5. Introduction to Networking

How to construct a network with Bus / Star Topology?

Bus Topology

Star Topology

- Ring Topology

- Every computer serves as a repeater to boost signals
- Typical way to send data:
- Token passing
- only the computer who gets the token can send data
- Disadvantages
- Difficult to add computers

- More expensive
- If one computer fails, whole network fails

