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Preface

Numerical Analysis 2000
Vol. VI: Ordinary Di�erential Equations and Integral Equations

This volume contains contributions in the area of di�erential equations and integral equations. The
editors wish to thank the numerous authors, referees, and fellow editors Claude Brezinski and Luc
Wuytack, who have made this volume a possibility; it has been a major but personally rewarding
e�ort to compile it. Due to the limited number of pages we were obliged to make a selection when
composing this volume. At an early stage it was agreed that, despite the connections between the
subject areas, it would be bene�cial to allocate the area of partial di�erential equations to a volume
for that area alone.
Many numerical methods have arisen in response to the need to solve “real-life” problems in

applied mathematics, in particular problems that do not have a closed-form solution. It is particularly
relevant to this comment that our Journal title involves the expression “Computational and Applied
Mathematics”. Applied mathematicians from di�ering academic cultures display di�ering approaches
to computational techniques, but one might hazard the prophecy, based on current observations,
that future generations of applied mathematicians will (without necessarily sacri�cing mathematical
rigour) almost universally regard the use of, and possibly the analysis and design of, robust numerical
algorithms as an essential part of their research activity.
The di�erences seen in applied mathematics are reected in di�ering approaches to the promotion

of numerical analysis by those who today think of themselves as “numerical analysts”: some, feeling
that it is the mathematical modelling that supports the development of the subject, work closely in
the area of mathematical modelling. Others, aware of the e�ect of advances in computers, are more
concerned with accurate and e�cient computational algorithms. Yet others prefer to construct more
abstract mathematical theories that o�er insight into, and justi�cation (at least under well-formulated
conditions) of, the numerical mathematics. Major contributions to topics represented here have been
published in the past; many of the diverse approaches are represented in this volume. At the same
time, there is a mixture of original and survey material represented here, often in the same paper.
Contributions on both initial-value problems and boundary-value problems in ordinary di�erential

equations appear in this volume. Numerical methods for initial-value problems in ordinary di�erential
equations fall naturally into two classes: those which use one starting value at each step (one-step
methods) and those which are based on several values of the solution (multistep methods). Both
methods were developed at the end of the 19th century.

• John Butcher has supplied an expert’s perspective of the development of numerical methods for
ordinary di�erential equations in the 20th century.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00454-4
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For the one-step methods we can refer to the original work of Runge of 1895 (an extract is re-
produced in John Butcher’s paper), while for the multistep methods a �rst paper was published by
Adams in 1883 (a copy of the title page appears in John’s contribution). Advances in analysis and
the advent of electronic computers has of course altered the scene drastically.

• Rob Corless and Lawrence Shampine talk about established technology, namely software for
initial-value problems using Runge–Kutta and Rosenbrock methods, with interpolants to �ll in the
solution between mesh-points, but the ‘slant’ is new — based on the question, “How should such
software integrate into the current generation of Problem Solving Environments?” They discuss
speci�cally a new code they have written for the Maple environment and the similarities and
di�erences with corresponding solvers for MATLAB and for traditional numerical libraries. The
interplay between interface, environment and algorithm raises many subtle issues and provides an
excellent example of mathematical software engineering.
• Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of
the nth power of square matrices. This problem is of central importance in the stability analysis
of numerical methods for solving (linear) initial-value problems for ordinary, partial or delay
di�erential equations. In particular, they apply the new bounds in a stability analysis of the
trapezoidal rule for delay di�erential equations (vide infra).

The dynamical system viewpoint has been of great bene�t to ODE theory and numerical methods.
The characterization and computation of bifurcations of parametrized ODEs is an active sub�eld
created some 20 years ago. Related is the study of chaotic behaviour. To reproduce long-term
behaviour realistically, special numerical methods are needed which preserve invariants of the exact
system: symplectic methods are an example.

• In the �rst of three articles in the general area of dynamical systems, Willy Govaerts discusses
the numerical methods for the computation and continuation of equilibria and bifurcation points
of equilibria of dynamical systems. The computation of cycles as a boundary value problem, their
continuation and bifurcations are considered. The basic numerical methods and the connections
between various computational objects are discussed. References to the literature and software
implementations are provided.
• In the second of this trio, Arieh Iserles and Antonella Zanna survey the construction of Runge–
Kutta methods which preserve algebraic invariant functions. There is a well-known identity on
the RK coe�cients that is necessary and su�cient for the retention of a quadratic invariant. They
extend this result and present a brief introduction to the Lie-group approach to methods that
preserve more general invariants, referring to survey articles for fuller discussion.
• Symplectic methods for Hamiltonian systems are an important example of invariant-preserving
methods. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamilto-
nian system of H�enon and Heiles with a symplectic and a nonsymplectic method with a variety
of precisions and initial conditions. The long-term behaviour of the Hamiltonian error, and the
features of Poincar�e sections, show interesting and unexpected phenomena.

Sti� di�erential equations �rst became recognized as special during the 1950s. In 1963 two seminal
publications laid to the foundations for later development: Dahlquist’s paper on A-stable multistep
methods and Butcher’s �rst paper on implicit Runge–Kutta methods. Later, order stars became a
fundamental tool for the theoretical understanding of order and stability properties of sti� di�erential
equations. Variable-order variable-step methods were the next for study.
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• Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars
as well as the principal achievements obtained by that theory, which has become a fundamental
role for the understanding of order and stability properties of numerical methods for sti� di�erential
equations. Some later extensions as well as recent developments and open questions are discussed.
• Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct expo-
nentially �tted Runge–Kutta methods with s stages, which exactly integrate di�erential initial-value
problems whose solutions are linear combinations of functions of the form
{xj exp(!x); xj exp(−!x)}, (! ∈ R or iR; j = 0; 1; : : : ; jmax), where 06jmax6bs=2 − 1c, the
lower bound being related to explicit methods, the upper bound applicable for collocation meth-
ods. Explicit methods with s ∈ {2; 3; 4} belonging to that class are constructed. For these methods
a study of the local truncation error is made, out of which follows a simple heuristic to estimate
the !-value. Error and step length control is introduced based on Richardson extrapolation ideas.

Di�erential-algebraic equations arise in control, in modelling of mechanical systems and in many
other �elds. They di�er fundamentally from ODEs, and an index can be de�ned that measures (in
some sense) how far a given DAE is from being an ODE. DAEs can in some cases be regarded
as in�nitely sti� ODEs, and methods for sti� problems work well for problems of index 1 or 2
at least. Examples are the classical backward di�erentiation formulas (BDF). Recent modi�cations
of BDF due to Cash, using the so-called super-future points, have also proved very e�ective on
DAEs as well as on highly oscillatory problems. Other variants on the classical Runge–Kutta and
multistep approaches have been studied in recent decades, such as special-purpose “exponentially
�tted” methods when the solution of the problem exhibits a pronounced oscillatory or exponential
character. A good theoretical foundation of this technique was given by Gautschi in 1961 and Lyche
in 1972. Automatic error control when solving DAEs is harder than for ODEs because changing
dominance of di�erent solution components may make both index and order of accuracy seem to
vary over the range, especially for boundary-value problems. New meshing algorithms have been
developed to cope with this.

• Je� Cash describes a fairly recent class of formulae for the numerical solution of initial-value
problems for sti� and di�erential-algebraic systems. These are the modi�ed extended backward
di�erentiation formulae (MEBDF), which o�er some important advantages over the classical BDF
methods, for general sti� nonoscillatory problems, for damped highly oscillatory problems and for
linearly implicit DAEs of index up to 3. Numerical results are given for a simple DAE example
with references to other performance tests. Pointers to down-loadable software are given.
• In the same area, Shengtai Li and Linda Petzold describe methods and software for sensitivity
analysis of solutions of DAE initial-value problems: that is, for computing derivatives of a solution
of F(t; y; y′; p) = 0 with respect to one or more parameters p. As with similar methods for
ODEs, they integrate auxiliary systems, incorporating local Jacobians which may be computed by
automatic di�erentiation using a package such as ADIFOR. Consistent initialization is shown to
need special care and suitable algorithms described. Several numerical experiments illustrate the
performance; pointers to down-loadable software are given.
• Again in the area of di�erential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and
William Hu�man present current work on mesh adaptation for DAE two-point boundary-value
problems. The context is an optimal control problem, which discretizes to a nonlinear
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programming problem, but the problem of “order variation” is more general. Not only are di�er-
ent components of a DAE computed to di�erent order of accuracy as a function of step-size, but
the “real order” can vary at di�erent points of the interval and from iteration to iteration. They
discuss the principles and details of a new meshing algorithm and show its e�ectiveness on a
computational example.

Contrasting approaches to the question of how good an approximation is as a solution of a given
equation involve (i) attempting to estimate the actual error (i.e., the di�erence between the true
and the approximate solutions) and (ii) attempting to estimate the defect — the amount by which
the approximation fails to satisfy the given equation and any side-conditions. (In collocation and
Galerkin techniques, the defect is required to satisfy certain constraints. Generally speaking, the
relationship between defect and error can be analyzed using results on the stability or conditioning
of the solution of the original problem.)

• The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have
been proposed both for ordinary di�erential equations and for delay di�erential equations in which
an attempt is made to control an estimate of the size of the defect.

Many phenomena incorporate noise, and the numerical solution of stochastic di�erential equations
has developed as a relatively new item of study in the area.

• Kevin Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for
solving stochastic di�erential equations (SDEs) are constructed. SDEs arise from physical systems
where the parameters describing the system can only be estimated or are subject to noise. The
authors focus on two important topics: the numerical stability and the implementation of the
method. Di�erent types of stability are discussed and illustrated by examples. The introduction of
variable step-size implementation techniques is stressed under the proviso that di�erent numerical
simulations must follow the same Brownian path.

One of the more recent areas to attract scrutiny has been the area of di�erential equations with
after-e�ect (retarded, delay, or neutral delay di�erential equations) and in this volume we include
a number of papers on evolutionary problems in this area. The problems considered are in general
initial-function problems rather than initial-value problems. The analytical study of this area was
already well-advanced in the 1960s, and has continued to develop (some of the names that spring
to mind are: in the fSU, Myskhis, Krasovskii, Kolmanovskii; in the USA, Bellman and Cooke,
and later Driver, Hale, etc.; in Europe, Diekmann, Halanay, Verduyn Lunel and St�ep�an). There has
been an increasing interest in the use of such equations in mathematical modelling. For numerical
analysts, one signi�cant issue is the problem of the possible lack of smoothness of the solution, for
which various strategies have been advanced, whilst another is the richer dynamics encountered in
problems with delay.

• The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology
of models using retarded di�erential equations. Although mathematical analysis allows deductions
about the qualitative behaviour of the solutions, the majority of models can only be solved ap-
proximately using robust numerical methods. There are now a number of papers on the use of
delay and neutral delay equations in parameter �tting to biological data; the most recent work
relates to a sensitivity analysis of this data-�tting process.
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• Delay di�erential equations also arise in mechanical systems, and the paper by John Norbury and
Eddie Wilson relates to a form of constrained problem that has application to the control of a
motor.
• The contribution by Christopher Baker, whose group has for some years been working in this area,
is intended to convey much of the background necessary for the application of numerical methods
and includes some original results on stability and on the solution of approximating equations.
• Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of
numerical solutions of nonlinear neutral di�erential equations; they look at problems that display
a form of contractivity. This paper extends earlier work on nonlinear delay equations by Torelli,
Bellen, and Zennaro. We note that Alfredo Bellen and Marino Zennaro are preparing a book on
the numerical solution of delay equations.
• In the papers by Koen Engelborghs, Tatyana Luzyanina and Dirk Roose and by Neville Ford
and Volker Wulf, the authors consider the numerics of bifurcation in delay di�erential equations.
Oscillations in biological phenomena have been modelled using delay equations. For some time,
it has been realized that the onset of periodicity in such equations can be associated with a Hopf
bifurcation and that chaotic behaviour can arise in scalar delay di�erential equations.
• Christopher Paul, who is the author of a code for the numerical solution of retarded equations
(named Archi) addresses various issues in the design of e�cient software and proposes methods
for determining automatically information about the delay equation.

• The preceding papers relate to deterministic problems. Evelyn Buckwar contributes a paper in-
dicating the construction and analysis of a numerical strategy for stochastic delay di�erential
equations (SDDEs). The theory of SDDEs has been developed in books written by Mohammed
and by Mao, but the numerics have been neglected. Unlike the corresponding results for stochas-
tic di�erential equations without time lag (represented herein by the paper of Burrage et al.)
some of the basic elements required in the numerical analysis have previously been
lacking.

One could perhaps argue that stochastic di�erential equations (since they are really Itô or Stratonovitch
integral equations) should be classi�ed under the heading of integral equations. In any event, this
volume contains contributions on both Volterra and Fredholm-type integral equations.

• Christopher Baker responded to a late challenge to craft a review of the theory of the basic numer-
ics of Volterra integral and integro-di�erential equations; it is intended to serve as an introduction
to the research literature. The very comprehensive book by Hermann Brunner and Pieter van der
Houwen on the numerical treatment of Volterra integral equations remains a standard reference
work.
• Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation
that arises in modelling viscoelasticity, an area in which they have already made a number of
useful contributions.

Volterra integral and integro-di�erential equations are examples of causal or nonanticipative prob-
lems, as are retarded di�erential equations. It seems likely that such causal (abstract Volterra) prob-
lems will, increasingly, be treated together, since mathematical models frequently involve both dis-
cretely distributed and continuously distributed delays. The basic discretization theory is concerned
with replacing the continuous problem with another causal problem (if one considers a vectorized
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formulation, this statement is true of block-by-block methods as well as step-by-step methods), and
the study of discrete Volterra equations is a feature of increasing importance in the analysis.
We turn now to a subclass of boundary-value problems for ordinary di�erential equation, that

comprises eigenvalue problems such as Sturm–Liouville problems (SLP) and Schr�odinger equations.
They are important for their role in physics and engineering and in spurring the development of
spectral theory. For the classical (second-order) SLP there is reliable software for eigenvalues (less
reliable for eigenfunctions) for commonly occurring types of singular behaviour. The underlying
self-adjointness is important for these methods. Among current developments are new methods for
higher-order problems, both self-adjoint and nonself-adjoint. Also of interest are the Constant Po-
tential (CP) methods, which have recently been embodied in good software for the classical regular
SLP, and whose e�ciency makes them likely to supplant existing methods.

• In the �rst of a number of articles on ODE eigenvalue problems, Liviu Ixaru describes the
advances made over the last three decades in the �eld of piecewise perturbation methods for the
numerical solution of Sturm–Liouville problems in general and systems of Schr�odinger equations
in particular. He shows that the most powerful feature of the introduced constant potential (CP)
methods is the uniformity of accuracy with respect to the eigen-parameter. He presents basic
formulae and characteristics of a class of CP methods, based on piecewise approximation by a
constant and a polynomial perturbation term. He illustrates by means of the Co�ey–Evans equation
— a standard example with pathologically clustered eigenvalues — the superiority of his code
over some other standard codes, such as SLEDGE, SLEIGN and SL02F.
• Alan Andrew surveys the asymptotic correction method for regular Sturm–Liouville problems.
Simple but unexpectedly powerful, it applies to �nite di�erence and �nite element methods which
reduce the problem to a matrix eigenproblem. It greatly improves the accuracy of higher eigen-
values and generally improves lower ones as well, which makes it especially useful where long
runs of eigenvalues need to be computed economically. The Co�ey–Evans equation is used to
show the good performance of the method even on tightly clustered eigenvalues.
• Leon Greenberg and Marco Marletta survey methods for higher-order Sturm–Liouville problems.
For the self-adjoint case, the elegant basic theory generalizes the Pr�ufer phase-angle, used in theory
and numerical methods for the classical SLP, to a complex unitary matrix. This was introduced
by Atkinson in the 1960s, but the obstacles to using it numerically are considerable. The authors’
considerable achievement over the last few years has been to identify suitable subclasses of
the problem, and a general strategy (coe�cient approximation) that leads to a usably e�cient
numerical method with error control. They also discuss theory and methods for the very di�erent
nonself-adjoint case. Numerical examples of both types are given.
• R. Moore in the 1960s �rst showed the feasibility of validated solution of di�erential equations,
that is, of computing guaranteed enclosures of solutions. Validated methods use outward-rounded
interval oating point arithmetic as the computing tool, and �xed-point theorems as the mathemat-
ical foundation. An important development in this area was the appearance in 1988 of Lohner’s
code, AWA, for ODE initial-value problems, which he also applied to the validated solution of
boundary-value problems. Recently, these techniques have been extended to eigenvalue problems,
e.g. to prove the existence of, and enclose, certain kinds of eigenvalue of a singular Sturm–
Liouville problem, and the paper of Malcolm (B.M.) Brown, Daniel McCormack and Anton Zettl
describes validated SLP eigenvalue calculation using Lohner’s code.
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We turn to papers on boundary integral equations. In the last 20 years, the numerical solution of
integral equations associated with boundary-value problems has experienced continuing interest. This
is because of the many intriguing theoretical questions that still needed to be answered, and the
many complications that arise in applications, particularly in the engineering �elds. Coming from
the reformulation of PDE boundary value problems in terms of boundary integral equations, such
problems often have complex geometries, bad aspect ratios, corners and other di�culties, all of
which challenge existing numerical techniques. In particular, much e�ort has been concentrated on
the following research themes:
— equations with singular and hyper-singular kernels,
— equations of Mellin type and equations de�ned on nonsmooth regions,
— fast solution numerical methods, especially for three-dimensional problems,
— domain decomposition, and
— the coupling of �nite element and boundary element methods.
Many numerical analysts have made major contributions to the above themes, and to other important
topics. With a limited number of pages at our disposal, we have included the seven papers below:

• Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the
numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability
of operator sequences associated with di�erent projection methods. They describe the main ideas
and approaches. Computational aspects, in particular the construction of fast algorithms, are also
discussed.
• Johannes Elschner and Ivan Graham summarize the most important results achieved in the last
years about the numerical solution of one-dimensional integral equations of Mellin type by means
of projection methods and, in particular, by collocation methods. They also consider some exam-
ples arising in boundary integral methods for the two-dimensional Laplace equation on bounded
polygonal domains.
• A survey of results on quadrature methods for solving boundary integral equations is presented by
Andreas Rathsfeld. The author gives, in particular, an overview on well-known stability and con-
vergence results for simple quadrature methods based on low-order composite quadrature rules and
applied to the numerical solution of integral equations over smooth manifolds. Useful “negative
results” are also presented.
• Qualocation was introduced in the late 1980s as a compromise between Galerkin and collocation
methods. It aimed, in the context of spline approximation methods for boundary integral equations
on smooth curves, to achieve the bene�ts of the Galerkin method at a cost comparable to the
collocation method. Ian Sloan reviews this method with an emphasis on recent developments.
• Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very e�cient treatment
of integral operators. They propose and analyze a quite general formulation of the well-known
panel clustering method for boundary integral equations, introduced by Hackbusch and Z.P. Nowak
in the late 1980s. Their approach may be applied for the fast solution of the linear integral
equations which arise in the boundary element methods for elliptic problems.
• Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element
method, including pre-conditioning techniques. In his paper he reviews the additive Schwarz
methods for the above versions of the Galerkin boundary element method applied to �rst kind
(weakly singular and hyper-singular) integral equations on surfaces.
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• Domain decomposition methods are well suited for the coupling of di�erent discretization schemes
such as �nite and boundary element methods. George Hsiao, Olaf Steinbach and Wolfgang Wend-
land analyze various boundary element methods employed in local discretization schemes. They
also describe appropriate iterative strategies, using both local and global pre-conditioning tech-
niques, for the solution of the resulting linear systems.

The latter papers not only present overviews of some of the authors’ recent research activities,
but, in some cases, also contain original results and new remarks. We think that they will constitute
fundamental references for any further research work on the numerical resolution of boundary integral
equations.

Christopher Bakera, Manchester
Giovanni Monegato, Turin
John Pryce, Shrivenham

Guido Vanden Berghe, Gent

Guest Editors
aDepartment of Mathematics

The Victoria University of Manchester
Oxford Road, Manchester M13 9PL, UK
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Abstract

Numerical methods for the solution of initial value problems in ordinary di�erential equations made enormous progress
during the 20th century for several reasons. The �rst reasons lie in the impetus that was given to the subject in the
concluding years of the previous century by the seminal papers of Bashforth and Adams for linear multistep methods
and Runge for Runge–Kutta methods. Other reasons, which of course apply to numerical analysis in general, are in the
invention of electronic computers half way through the century and the needs in mathematical modelling of e�cient
numerical algorithms as an alternative to classical methods of applied mathematics. This survey paper follows many of
the main strands in the developments of these methods, both for general problems, sti� systems, and for many of the
special problem types that have been gaining in signi�cance as the century draws to an end. c© 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Initial value problems; Adams–Bashforth method; Adams–Moulton method; Runge–Kutta method; Consistency;
Stability and convergence; Order of methods; Sti� problems; Di�erential equation software

1. Introduction

It is not possible to assess the history of this subject in the 20th century without �rst recognizing
the legacy of the previous century on which it has been built. Notable are the 1883 paper of
Bashforth and Adams [5] and the 1895 paper of Runge [57]. Not only did the former present the
famous Adams–Bashforth method, which plays an essential part in much modern software, but it
also looked ahead to the Adams–Moulton method and to the practical use of Taylor series methods.
The paper by Runge is now recognized as the starting point for modern one-step methods. These
early contributions, together with a brief introduction to the fundamental work of Euler, will form
the subject matter of Section 2.
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These early papers each formulates the general initial value problem in much the same form. That
is, given a function f(x; y) and an “initial value” y0, corresponding to a solution value at x0, we
seek to evaluate numerically the function y satisfying

y′(x) = f(x; y(x)); y(x0) = y0: (1)

The basic approach is to extend the set of x values for which an approximation to y(x) is known,
in a step-by-step fashion.
In the early writing on this problem, y is regarded as a scalar value function but the generalization

to more general problems is suggested by a consideration of a pair of simultaneous equations

y′(x) = f(x; y(x); z(x)); y(x0) = y0;

z′(x) = g(x; y(x); z(x)); z(x0) = z0:

Today it is more natural to use formulation (1) but to interpret y as a vector-valued function. In
this case, it is even possible to consider an autonomous system of di�erential equations

y′(x) = f(y(x)); (2)

because, if necessary, x can be appended to y(x) as an additional component satisfying the trivial
di�erential equation dx=dx = 1.
After the section dealing with 19th century contributions, this review paper is divided into a

number of further sections dealing either with speci�c periods of time or with contributions with a
unifying theme. The development of algorithms based on linear multistep methods continued with the
paper of Moulton [49] and to the predictor–corrector formulation together with local error estimation
using Milne’s device. This will be discussed in Section 2.6.
Sections follow on Runge–Kutta methods and on Taylor series methods. Special methods are

needed for sti� problems, and we review some of the stability and other issues involved with the
phenomenon of sti�ness in Section 6. The development of software to solve initial value problems
is discussed in Section 7. Finally, we discuss in Section 8 a number of identi�able problem classes
that call for special techniques and special methods.

2. Early work on numerical ordinary di�erential equations

2.1. The Adams–Bashforth paper

The famous booklet by Bashforth and Adams [5] has a very long title but, when this is broken
into two halves, as it appears on the title page, Fig. 1, the authorship of the two distinct aspects
of the work is clearly ascribed to the separate authors. Thus, we may assume that the numerical
component of this work is due to Mr Adams.
The numerical discussion begins by pointing out that given, for example, a second-order di�erential

equation

d2y
dt2

= f
(
dy
dt
; y; t

)
;
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Fig. 1. The title page of the Adams–Bashforth paper.

it is possible to �nd, by repeated di�erentiation and substitution of d2y=dt2 into the result, formulas
for

d3y
dt3
;
d4y
dt4
; : : : :

From these data evaluated at the initial value, the solution may then be advanced using the Taylor
series. Hence, after a small time-step, values of y and of dy=dt can be found. Further steps can then
be taken in the same manner until a desired value of t is reached.
After these remarks, Adams goes on to derive the Adams–Bashforth method, as we know it today,

in the form

y1 − y0 = !
(
q0 + 1

2�q0 +
5
12�

2q0 + · · ·
)
; (3)

where ! is the stepsize and q0; q−1; : : : denote the derivatives computed at the points t0; t−1; : : :
where the solution values are y0; y−1; : : : : In the Adams notation, � denotes the backward di�erence
�q0 = q0− q−1, in contrast to the modern terminology of reserving � for the forward di�erence and
using 3 for the backward di�erence.
Adams goes on to discuss the relative merits of using, instead of (3), the formula

y0 − y−1 = !
(
q0 − 1

2�q0 − 1
12�

2q0 + · · ·
)
: (4)

He correctly observes the advantages of (4) in terms of magnitudes of the error constants. The
use of this implicit form of the Adams method was revisited and developed many years later by
Moulton [49].
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Fig. 2. An extract from the Runge paper.

2.2. The Runge paper

The second great legacy of the 19th century to numerical methods for ordinary di�erential equa-
tions was the work of Runge [57]. Whereas the Adams method was based on the approximation of
the solution value for given x, in terms of a number of previously computed points, the approach of
Runge was to restrict the algorithm to being “one step”, in the sense that each approximation was
based only on the most recent point already computed in a previous step. To achieve the required
accuracy, approximations are found at a number of internal points within each step and the �nal
result is computed in terms of these various stage values. The short extract from Runge’s paper given
in Fig. 2, includes the formulations of methods with two derivative calculations per step, based on
the mid-point and trapezoidal quadrature rules, respectively.

2.3. The contributions of Heun and Kutta

Following the important and prophetic work of Adams and of Runge, the new century began with
further contributions to what is now known as the Runge–Kutta method, by Heun [40] and Kutta
[45]. In particular, the famous method in Kutta’s paper is often known as the Runge–Kutta method.
Heun’s contribution was to raise the order of the method from two and three, as in Runge’s paper, to
four. This is an especially signi�cant contribution because, for the �rst time, numerical methods for
di�erential equations went beyond the use of what are essentially quadrature formulas. Even though
second-order Runge methods can be looked at in this light, because the derivatives of the solution
are computed from accurate enough approximations so as not to disturb the second-order behaviour,
this is no longer true for orders greater than this. Write a three stage method in the form

Y1 = y0; F1 = f(x0; Y1);

Y2 = y0 + ha21F1; F2 = f(x0 + hc2; Y2);

Y3 = y0 + h(a31F1 + a32F2); F3 = f(x0 + hc3; Y3);

y1 = y0 + h(b1F1 + b2F2 + b3F3);
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where a21, a31, a32, b1, b2, b3, c2, c3 are constants that characterize a particular method in this family.
We can view computation of the stage values Y1, identical to the initial value for the step, Y2, which
approximates the solution at x0+hc2 and Y3, which approximates the solution at x0+hc3 as temporary
steps, whose only purpose is to permit the evaluation of F1, F2 and F3 as approximations to y′(x0),
y′(x0 + hc2) and y′(x0 + hc3), respectively. From these derivative approximations, the result at the
end of the step is found from the quadrature approximation

y(x0 + h) ≈ y(x0) + h(b1y′(x0) + b2y′(x0 + hc2) + b3y′(x0 + hc3)):

It is essential that this quadrature formula be su�ciently accurate to integrate polynomials of degree
up to 2 exactly. This gives the conditions

b1 + b2 + b3 = 1;

b2c2 + b3c3 = 1
2 ;

b2c22 + b3c
3
3 =

1
3 :

However, because of possible inaccuracies in the computation of Y2 and Y3 as approximations to
y(x0 + hc2) and y(x0 + hc3), respectively, the quadrature conditions are not enough and it is also
necessary that

b3a32c2 = 1
6 ;

to obtain third-order behaviour.
An example of a method due to Heun which satis�es the four conditions for this order uses the

coe�cients

c2 = 1
3 ; c3 = 1; a21 = 1

3 ; a31 = 0; a32 = 2
3 ; b1 = 1

4 ; b2 = 0; b3 = 3
4 :

Kutta took this investigation further and found a complete classi�cation of the solutions to the eight
conditions for four-stage methods with order 4. He also derived the 16 conditions for order 5.
The extract of Kutta’s paper given in Fig. 3, includes the formulation of the method, together with

the order conditions and the �rst line of the solution in the case that 0, c2; c3 and c4 are all distinct
numbers. In his notation we see that � = c2; � = c3 and � = c4. It is an interesting consequence of
these order conditions, that � is necessarily equal to 1.
Of the various four stages, fourth-order methods derived by Kutta, the most famous, and also the

most widely used, is

Y1 = y0; F1 = f(x0; Y1);

Y2 = y0 + 1
2hF1; F2 = f(x0 + h

2 ; Y2);

Y3 = y0 + 1
2hF2; F3 = f(x0 + h

2 ; Y3);

Y4 = y0 + hF3; F4 = f(x0 + h; Y4);

y1 = y0 + h( 16F1 +
1
3F2 +

1
3F3 +

1
6F4):

The set of conditions for �fth-order methods is actually a little more complicated than Kutta realised,
because there are actually 17 conditions. The reason for the discrepancy is that he was dealing
with scalar di�erential equations, rather than vector-valued di�erential equations, and for orders �ve
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Fig. 3. An extract from the Kutta paper.

or greater the conditions become di�erent. Another di�culty is in actually �nding solutions to the
algebraic conditions and Kutta presented methods that are slightly incorrect. It is interesting that once
the correction is made, the additional condition, to make the method applicable to high-dimensional
problems, happens to be satis�ed.

2.4. The contributions of E.J. Nystr�om

The early history of Runge–Kutta methods culminated in the work of Nystr�om [53] in 1925. He
was able to correct some of the �fth-order methods of Kutta and he also showed how to apply the
Runge–Kutta method to second-order di�erential equation systems.
At �rst sight this is quite straightforward, because every second-order system can be re-formulated

as a �rst-order system with additional dependent variables. However, solving such a problem directly
may be much more e�cient and the great prevalence of second-order problems in physical modelling
makes this sort of gain in e�ciency of considerable practical signi�cance.

2.5. Moulton’s paper and predictor–corrector methods

Implicit versions of Adams methods were �rst suggested in the Adams–Bashforth paper, but not
studied in their own right until the paper of Moulton [49]. These so-called Adams–Moulton methods
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have two great advantages over the original explicit methods. The �rst is that they do not need to
use so many past values to obtain the same order and they have smaller error constants. To use them
in practice, however, one �rst has to overcome the di�culty associated with their implicit nature.
This di�culty hinges on the fact that yn is not given in terms of rational operations on known data,
but as the solution to an algebraic equation. For example, consider the third-order Adams–Bashforth
and Adams–Moulton methods given by

yn = yn−1 + h( 2312f(xn−1; yn−1)− 4
3f(xn−2; yn−2) +

5
12f(xn−3; yn−3)); (5)

yn = yn−1 + h( 512f(xn; yn) +
2
3f(xn−1; yn−1)− 1

12f(xn−2; yn−2)): (6)

It is known that the error introduced into the result in a single step is − 3
8y

(4)h4+O(h5) for the Adams–
Bashforth method and 1

24y
(4)h4 + O(h5) for the Adams–Moulton method. The way that advantage is

gained from the desirable properties of each of the methods is to use them in “predictor–corrector
mode”. This means that a predicted value of yn is �rst found using the explicit form of the method.
The implicit or Moulton form of the method is then used with the term f(xn; yn) replaced by the
value calculated using the predicted value of yn. There are many variants of this method in common
use, but the most popular is the so-called PECE mode. In this mode, f(xn; yn) is re-evaluated for
use in later steps using yn found from the Adams–Moulton method. Thus each step requires two
evaluations of the function f and is thus twice as expensive as the simple use of the Adams–
Bashforth formula alone. However, the advantages in terms of stability and accuracy resulting from
the use of this PECE predictor–corrector mode are usually regarded as well worth the additional
computing cost.

2.6. The Milne device

Although Milne preferred methods based on Newton–Cotes quadrature formulas, methods which
are largely abandoned today in favour of Adams methods, a proposal he made [47] has been adapted
to other situations and widely used. In the context of the predictor pair (5) and (6), implemented,
for example in PECE mode, there are two approximations to y(xn) computed in each step. Since
the local truncation errors of the two approximations are in the ratio – 9 to 1, it is proposed that
the di�erence of the two approximations divided by 10 should be used as an estimate of the error
in the corrected formula.
Milne, of course, intended this device to be used to check the accuracy of hand-computed results,

but today it is used in automatic solvers, not just to verify the accuracy of any completed step, but
also to adjust the size of a subsequent step in the interests both of e�ciency and robustness.
Many modern computer codes implement predictor–corrector methods in a di�erent manner than

we have described. Speci�cally, the step number k is chosen to be the same for both the predictor
and corrector formulas. This means that the order of the predictor will be k and the order of the
corrector, which becomes the overall order of the combined method, will be p= k+1. Even though
the di�erence between the predicted and corrected solutions is no longer asymptotically equal to a
multiple of the local truncation error, this di�erence is still used as the basis for stepsize control.
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3. The modern theory of linear multistep methods

The modern analysis of linear multistep methods is intimately bound up with the work of Dahlquist
[21,22]. This large body of work is in several parts, of which the �rst deals with the concepts of
consistency, stability and convergence, expressed in terms of generating functions for the coe�cients
of the method. The key result in this phase of the work, is that consistency and stability are together
equivalent to convergence. The second principle phase relates order of accuracy to stability and
culminates in the famous “Dahlquist barrier” result, which limits the order of a convergent linear
k-step method to k+1 (if k is odd) and to k+2 (if k is even). The remaining phase of Dahlquist’s
work is more appropriately discussed in Section 6.

3.1. Generating functions

Consider a linear multistep method of the form

�kyn + �k−1yn−1 + �k−2yn−2 + · · ·+ �0yn−k
= h(�kf(xn; yn) + �k−1f(xn−1; yn−1) + �k−2f(xn−2; yn−2) + · · ·+ �0f(xn−k ; yn−k));

assuming that �k 6= 0 and that �0 and �0 are not both zero (otherwise the value of k could be reduced).
Such a method is known as a “linear k-step method” because the solution at step number n depends
on exactly k previous step values. Dahlquist introduced polynomials � and � to characterize the
method as follows:

�(z) = �kzk + �k−1zk−1 + �k−2zk−2 + · · ·+ �0;
�(z) = �kzk + �k−1zk−1 + �k−2zk−2 + · · ·+ �0:

Although Dahlquist allowed for the generality of allowing the coe�cient of zk to take on any
non-zero value, in an actual computation with the method, the value of �k has to be cancelled out
from both polynomials.
It is clear that given any linear multistep method, the corresponding pair of polynomials (�; �)

can be written down automatically and, given the polynomials, the method is completely speci�ed.
Hence, it has become customary to identify the methods with the pair of polynomials and we can
speak of “the method (�; �)”. It is convenient to assume that � and � have no common polynomial
factor, since it would be possible to describe most aspects of the computational behaviour of the
method in terms of simpler polynomials. Following Dahlquist, we will make this assumption.

3.2. Consistency, stability and convergence

There are some natural assumptions that can be made about linear multistep methods to guarantee
that they can at least solve certain speci�c problems. We will consider these one, by one.
The �rst problem is y′(x) = 0, with initial value y(0) = 0. Since we are given only this single

initial value we will need an algorithm to generate y0; y1; y2; : : : ; yk−1 which is, in the limit as
h → 0; consistent with the given initial data. Choose some x¿ 0; for example x = 1; as the point
where the numerical result approximating the solution is supposed to be found. We would like our
method to be able to compute y(1) exactly in the limiting case as x → 0.
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This requirement is equivalent to the “stability condition”: A linear multistep method (�; �) is
stable if all zeros of � lie in the unit disc and all zeros on the boundary are simple.
The second initial value problem is also based on the equation y′(x) = 0 but with y(0) = 1. To

compute the correct result y(1) = 1; in the limit, it is necessary that �(1) = 0. We will refer to this
as the “pre-consistency condition”.
Finally, consider the initial value problem y′(x)=1; y(0)=0. If a method is stable and pre-consistent,

then its ability to solve this problem in the limit hinges on the requirement that �′(1) = �(1). This
condition, when combined with the pre-consistency condition, is known as the “consistency condi-
tion”.
The de�nition of convergence is rather technical but deals with the ability of the linear multistep

method to solve any di�erential equation system on condition only that f is continuous in its
�rst variable and satis�es a Lipschitz condition in its second variable. The k initial approximations
required to start the numerical process must converge to the given initial value as the stepsize tends
to zero. This class of problems might seem restrictive but it is easy to extend it to many situations
where the Lipschitz condition is replaced by a local Lipschitz condition.
The basic theorem connecting these concepts is that a method is convergent if and only if it

is both stable and consistent. Of course convergence is not enough to ensure that the method is
computationally e�cient. In the next section we look at the criteria for the method to have some
speci�c order of accuracy and we review a famous result of Dahlquist which imposes a barrier on
what order is really achievable.

3.3. The order of linear multistep methods

Given a linear multistep method characterized by the polynomials � and �; de�ne the operator L
on the continuously di�erentiable functions I → RN by the formula

L(y)(x) =
k∑
i=0

�k−iy(x − ih)− h
k∑
i=0

�k−iy′(x − ih): (7)

A method is said to be of order p if L(P) = 0 for P any polynomial of degree not exceeding p.
To understand the signi�cance of this de�nition, assume that y is continuously di�erentiable at

least p+ 1 times and expand the right-hand side of (7) in a Taylor series about xn. We have

L(y)(xn) =
p+1∑
i=0

Cihiy(i)(xn) + O(hp+2);

where

C0 =
k∑
i=0

�i;

C1 =−
k∑
i=1

i�k−i −
k∑
i=0

�k−i ;

Cj =
(−1) j
j!

(
k∑
i=1

ij�k−i + j
k∑
i=1

ij−1�k−i

)
; j = 2; 3; : : : ; p+ 1:
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If y is replaced by a polynomial of degree p, then

L(P)(xn) =
p∑
i=0

CihiP(i)(xn)

and, for this to vanish for all such polynomials, it is necessary and su�cient that

C0 = C1 = C2 = · · ·= Cp = 0:
We derive the two methods (5) and (6) using these expressions. The Adams–Bashforth method of
order 3 requires k = 3 and assumes that �3 = 1; �2 =−1; �1 = �0 = �3 = 0. We have

C0 = �3 + �2 + �1 + �0 = 0;

C1 =−�2 − 2�1 − 3�0 − �2 − �1 − �0 = 1− �2 − �1 − �0;
C2 = 1

2(�2 + 4�1 + 9�0 + 2(�2 + 2�1 + 3�0)) = �2 + 2�1 + 3�0 − 1
2 ;

C3 =− 1
6 (�2 + 8�1 + 27�0 − 3(�2 + 4�1 + 9�0)) = 1

6 − 1
2 (�2 + 4�1 + 9�0):

The solution of C1 = C2 = C3 = 0 is �2 = 23
12 ; �1 =− 4

3 ; �0 =
5
12 ; with the �rst nonzero coe�cient in

the Taylor expansion of L(y)(xn) given by

C4 =− 1
24 (1− 4(�2 + 8�1 + 27�0)) = 3

8 :

The value of this quantity is closely related to the “error constant” for the method which is actually
given by C4=�′(1). Note that, in this case, and also for the Adams–Moulton method which we will
discuss next, �′(1) = 1.
For the Adams–Moulton method of order 3; an additional nonzero parameter �k is available and

k = 2 is su�cient for this order. We �nd C0 = 0; C1 = 1 − �2 − �1 − �0; C2 = �1 + 2�0 − 1
2 and

C3 = 1
6 − 1

2 (�1 + 4�0) and C1 = C2 = C3 = 0 implies �2 =
5
12 ; �1 =

2
3 ; �0 =− 1

12 ; with

C4 =− 1
24 (1− 4(�1 + 8�0)) =− 1

24 :

To investigate the order conditions further, it is convenient to consider the expression (�(exp(z))−
z�(exp(z))) exp(−kz) which can be expanded by Taylor series

(�(ez)− z�(ez)) e−kz = �k + �k−1e−z + �k−2e−2z + · · ·
+ z(�k + �k−1e−z + �k−2e−2z − · · ·)

=C0 + C1z + C2z2 + · · ·
=Cp+1zp+1 + O(zp+2);

if the order is p. The number Cp+1 does not vanish unless the order is actually higher than p. Hence

�(ez)− z�(ez) = O(zp+1):
Because �(1) = 0 for a consistent method, we can divide by z and we �nd

�(ez)
z
− �(ez) = O(zp)

and substituting exp(z) by 1 + z

�(1 + z)=z
ln(1 + z)=z

− �(1 + z) = O(zp); (8)
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where ln(1 + z)=z is de�ned in a neighbourhood of 0 by the series

ln(1 + z)
z

= 1− z
2
+
z2

3
− · · ·

so that(
ln(1 + z)

z

)−1
= 1 +

z
2
− z2

12
+
z3

24
− 19z

4

720
+
3z5

160
+ O(z6):

Using this expression, (8) can be used to derive methods with speci�c choices of �. Rewriting in
the form

�(1 + z) = �(1 + z)

(
z − z

2

2
+
z3

3
− · · ·

)

enables coe�cients to be found for the backward di�erence and similar methods in which the form
of � is prescribed.

3.4. The Dahlquist barrier

Even though it is possible, in principle, for linear multistep methods to have order as high as
2k; this does not yield stable methods if k ¿ 2. This is a consequence of the so-called “Dahlquist
barrier” [21], which states that

Theorem 1. The order of a stable linear k-step method is bounded by

p6
{
k + 2; k even;
k + 1; k odd:

Proof. We will give here a vastly abbreviated proof, along the same lines as originally given by
Dahlquist. Let

r(z) = �
(
1 + z
1− z

)(
1− z
2

)k
;

s(z) = �
(
1 + z
1− z

)(
1− z
2

)k
;

where we note that the order conditions can be rewritten in the form
r(z)=z

ln((1 + z)=(1− z))=z − s(z) = O(z
p): (9)

Let r(z) = a0 + a1z + a2z2 + · · · + akzk and s(z) = b0 + b1z + b2z2 + · · · + bkzk ; where a0 = 0 by
the consistency condition. By the stability condition, a1 6= 0 and no two of the coe�cients in r can
have opposite signs. If

1
ln((1 + z)=(1− z))=z = c0 + c2z

2 + c4z4 + · · · ;
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it can be shown that c2; c4; : : : are all negative [21,39]. If (9) is to hold for p¿k + 1; then the
coe�cient of zp+1 in

(c0 + c2z2 + c4z4 + · · ·)(a1 + a2z + · · ·+ akzk−1); (10)

must vanish. If the order is p¿k + 2; then the coe�cient of zk+2 in (10) must also vanish. The
two coe�cients are respectively

akc2 + ak−2c4 + · · · ; (11)

ak−1c4 + ak−3c6 + · · · : (12)

If k is odd, (11) cannot vanish because this would imply that

ak = ak−2 = · · ·= a1 = 0:
On the other hand, if k is even, then (12) cannot vanish because we would then have

ak−1 = ak−3 = · · ·= a1 = 0:

4. The modern theory of Runge–Kutta methods

The meaning of order looks quite di�erent and is relatively complicated for one-step methods, for
the very good reason that the result computed in a step is built up from the derivatives evaluated
sequentially from the stages values and, at least for the early stages, these have low accuracy. In
contrast, the result computed in linear multistep methods makes use of derivatives evaluated from
a number of step values, which themselves have been evaluated in previous steps and all share the
same order.
The basic approach to the analysis of Runge–Kutta methods is to obtain the Taylor expansions

for the exact and computed solutions at the end of a single step and to compare these series term
by term. This idea dates back to Runge, Heun, Kutta and Nystr�om and we will give as an example
the derivation of the conditions for order 3.
For the scalar di�erential equation

y′(x) = f(x; y(x)); (13)

we calculate in turn

y′′ =
@f
@x
+
@f
@y
f; (14)

y′′′ =
@2f
@x2

+ 2
@2f
@x@y

f +
@2f
@y2

f2 +
@f
@x
@f
@y
+
(
@f
@y

)2
f; (15)

where we have substituted y′=f in the formula y′′=(@f=@x)+ (@f=@y)y′ to obtain (14) and made
similar substitutions in the derivation of (15). From these expressions we can write down the �rst
few terms of the Taylor expansion y(x0 + h) = y(x0) + hy′(x0) + 1

2h
2y′′(x0) + 1

6h
3y′′′(x0) + O(h4).

Complicated though these expressions are, they are simple in comparison with the corresponding
formulas for the fourth and higher derivatives. To obtain conditions for order 3 we also need the
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Table 1
Details of Taylor expansions up to order 3

Y1 hF1 Y2 hF2 Y3 hF3 y1 y(x0 + h)

y 1 0 1 0 1 1 1 1
hf 0 1 a21 1 a31 + a32 1 b1 + b2 + b3 1

h2
@f
@x

0 0 0 c2 a32c2 c3 b2c2 + b3c3
1
2

h2
@f
@y
f 0 0 0 a21 a32a21 a31 + a32 b2a21 + b3(a31 + a32)

1
2

h3
@2f
@x2

0 0 0
1
2
c22

1
2
a32c22

1
2
c23

1
2
(b2c22 + b3c

2
3)

1
6

h3
@2f
@x@y

f 0 0 0 c2a21 a32c2a21 c3(a31 + a32) b2c2a21 + b3c3(a31 + a32)
1
3

h3
@2f
@y2

f2 0 0 0
1
2
a221

1
2
a32a221

1
2
(a31 + a32)2

1
2
(b2a221 + b3(a31 + a32)

2)
1
6

h3
@f
@x
@f
@y

0 0 0 0 0 a32c2 b3a32c2
1
6

h3
(
@f
@y

)2
f 0 0 0 0 0 a32a21 b3a32a21

1
6

formulas for the �rst, second and third derivatives of the approximation computed by a Runge–Kutta
method, which we will assume is explicit and has exactly 3 stages.
To simplify notation we will denote x, y, f and the various partial derivatives, as being evaluated

at the initial point (x0; y0) in a step and we will then �nd Taylor expansions in turn for Y1; hF1; : : : ; Y2,
hF2; Y3; hF3 and �nally y1. We will express the sequence of calculations in tabular form in Table 1,
where the coe�cients of y, hf, etc. are shown. In addition to the coe�cients in the expansion of
y1, we append the corresponding coe�cients for the exact solution at x0 + h.
By equating the last two columns of this table, we obtain conditions for order 3. These imply that

a21 = c2; (16)

a31 + a32 = c3 (17)

and that

b1 + b2 + b3 = 1;

b2c2 + b3c3 = 1
2 ;

b2c22 + b3c
3
3 =

1
3 ;

b3a32c2 = 1
6 :
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If s=p, which turns out to be possible for orders up to 4, conditions such as (16) and (17) always
hold. Even for higher orders, where the argument is a little more complicated, there is never any
reason for not assuming that

s∑
j=1

aij = ci; i = 1; 2; : : : ; s; (18)

where we adopt a convention that aij=0 for j¿i in explicit methods. For the more general implicit
methods, we will continue to assume (18).
There are three reasons for abandoning (1) as the standard problem and replacing it instead by

(2), where the values of y(x) are now in a �nite-dimensional vector space rather than scalars. The
�rst reason for the change to a high-dimensional autonomous problem is that there is no need to
retain x as an argument of f in the vector case, because nonautonomous problems can always be
transformed into equivalent autonomous problems by adding an additional component which always
has a value exactly the same as x. A consideration of this formal re-formulation can be used to
justify the assumption (18). The second reason is that the analysis is actually more straightforward
in the autonomous vector case. Finally, it is found that the conditions for order as derived using the
scalar �rst-order problem (13) are inadequate for specifying the order requirements for the general
vector case. The two theories do not diverge until the �fth-order case is reached but after that the
families of order conditions for the scalar and vector cases become increasingly di�erent.

4.1. The order of Runge–Kutta methods

The analysis of order for the vector case that we present here is due to the present author [9]
and is related to earlier work by Gill [33] and Merson [46]. Since it relates the various terms in the
Taylor series expansion of both the exact solution and the approximation computed by a Runge–
Kutta method, to the graphs known as “rooted trees” or arborescences, we briey review rooted
trees.
A rooted tree is simply a connected directed graph for which each vertex, except the root, has

a single predecessor (or parent). The root has no predecessor. The order of a rooted tree t is the
number of vertices. Denote this by r(t). Clearly, the number of arcs in the rooted tree is r(t) − 1.
Let an denote the number of distinct rooted trees with order n. Table 2 gives the �rst few values of
an together with the sums

∑n
i=1 ai.

The eight rooted trees for which r(t)64 are shown in Table 3, together with the values of �(t),
the “symmetry” of t and (t) the “density” of t. The quantity �(t) is the order of the group of
permutations of the vertices which leave the structure unchanged, while (t) is the product over all
vertices of t of the total number of descendents (including the vertex itself) of this vertex. Also

Table 2
Numbers of trees and accumulated sums up to order 8

n 1 2 3 4 5 6 7 8

an 1 1 2 4 9 20 48 115∑n
i=1 ai 1 2 4 8 17 37 85 200
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Table 3
Various functions on trees

t ·

r(t) 1 2 3 3 4 4 4 4
�(t) 1 1 2 1 6 1 2 1
(t) 1 2 3 6 4 8 12 24
�(t) 1 1 1 1 1 3 1 1
�(t) 1 2 3 6 4 24 12 24

shown are the values of �(t)=r(t)!=(t)�(t) and �(t)=r(t)!=�(t). The values of � and � have simple
interpretations in terms of possible labellings of the vertices of a tree under various restrictions.
It can be shown that the Taylor expansion of the exact solution has the form

y(x0 + h) = y(x0) +
∑
t∈T

�(t)hr(t)

r(t)!
F(t)(y0) (19)

and that the corresponding expansion for the solution computed using a Runge–Kutta method is

y(x0) +
∑
t∈T

�(t)�(t)hr(t)

r(t)!
F(t)(y0): (20)

In each of these formulas, F(t) is the “elementary di�erential” which we will de�ne below and �(t)
is the “elementary weight”. The formula for F(t)(y) is de�ned in terms of the di�erential equation
and �(t) in terms of the Runge–Kutta method being used. Each of these quantities can be de�ned
recursively but, for our present purposes, it will be enough to present one example, using a tree of
order 7 and to list these quantities for all trees of order up to 4. In the special example, the tree t
is shown with labels i, j, k, l, m, n, o attached to the vertices. The formula for F(t), is given in
terms of an expression for component number i, written as a superscript. The summation convention
is assumed and fijkl denotes the third partial derivative, @

3fi=@yj@yk@yl, of fi, evaluated at y, with
similar meanings for fjm, f

k
no. The summations in the formula for �(t) are over all subscripts running

from 1 to s. Note that the formula is simpli�ed from �(t) =
∑
biailaijajmaikaknako by summing over

l, m, n and o.

;
Fi(t) = fijklf

lfjmf
mfknof

nfo;

�(t) =
∑
biciaijcjaikc2k :

Because the elementary di�erentials are independent, in the sense that, given any set of n rooted
trees, t1; t2; : : : ; tn and any sequence of real numbers q1; q2; : : : ; qn, it is possible to �nd a function
f such that for some speci�c value of y and some speci�c coordinate direction, say eT1 , all the
equations

eT1F(ti)(y) = qi; i = 1; 2; : : : ; n;
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Table 4
Elementary di�erential and weights up to order 4

t ·

F(t) fi fijf
j fijkf

jfk fijf
j
kf

k fijkl fijkf
jfkl f

l fijf
j
klf

kfl fijf
j
kf

k
l f

l

�(t)
∑
bi

∑
bici bic2i

∑
biaijck

∑
bic3i

∑
biciaijcj

∑
biaijc2j

∑
biaijajkck

can be satis�ed simultaneously, it is only possible that (19) and (20) agree to within O(hp+1) if

�(t) = �(t)�(t)

for every tree t with no more than p vertices.
Inserting the formulas for � and �, we �nd that

�(t) =
1
(t)

(21)

as the condition corresponding to this tree (Table 4).
It is interesting that, for the single �rst-order scalar di�erential equation (13), the independence

of the elementary di�erentials breaks down and it turns out to be possible to obtain methods that
have some speci�ed order in this case, but a lower order for the more general system of equations
given by (2). This e�ect occurs for order 5 and higher orders.
Other interpretations of order are of course possible. An alternative derivation of the order condi-

tions, due to Albrecht [1], is based on expressions arising from the Taylor series for

y(x0) + h
s∑
j=1

aijy′(x0 + hcj)− y(x0 + hci) = �(2)h2 + �(3)h3 + · · · ;

where

�(2)i =
∑
j

aijcj − 12c
2
j ;

�(3)i =
∑
j

aijc2j −
1
3
c3j ;

...
...

For order 4 for example, it is found to be necessary that∑
i

bi�
(2)
i = 0;

∑
i

bici�
(2)
i = 0;

∑
i

biaij�
(2)
j = 0;

∑
i

bi�
(3)
i = 0;

which, together with the quadrature conditions∑
i

bick−1i =
1
k
; k = 1; 2; 3; 4;

are equivalent to (21), up to order four. A third approach, due to Hairer and Wanner [36], is based
on the use of B-series. This theory, used to study compositions of Runge–Kutta methods, is related
to [13], and has applications also to more general problems and methods.
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Table 5
Minimum s to obtain order p

p 1 2 3 4 5 6 7 8
s 1 2 3 4 6 7 9 11

4.2. Attainable order of Runge–Kutta methods

For explicit Runge–Kutta methods with s stages, there are s(s+1)=2 free parameters to choose. It
is easy to show that an order p is possible only if s¿p. Up to order 4, s= p is actually possible.
However, for p¿ 4, the relationship between the minimum s to obtain order p is very complicated
but is partly given in Table 5. The results given for p¿ 4 were proved in [11,15].
For implicit Runge–Kutta methods, which we will discuss below, the relationship is much simpler.

In fact, order p can be obtained with s stages if and only if p62s.

4.3. Implicit Runge–Kutta methods

One of the earliest references to implicitness, as applied to Runge–Kutta methods, was in the book
by Kunz [44] where the method of Clippinger and Dimsdale was quoted. This method with tableau

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

is the forerunner both of Lobatto methods and of block methods [59].
The method of Hammer and Hollingsworth [38] will be explored in some detail. It is the forerunner

of Gauss and other important classes of methods. The coe�cients for the method are

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

This method has order 4. This is a little surprising because the eight conditions for this order
have been seemingly satis�ed using only the six free parameters in A and bT. Although the order
conditions are trivial to check, we will verify them below using an argument that illustrates what
happens much more generally.
If the coe�cient matrix A is allowed to be fully implicit, that is any element on or above the

diagonal may have a non-zero value, then there are clearly more free parameters available to satisfy
the order conditions. The advantages, in terms of order, are even greater than might be expected
from a mere comparison of the number of conditions with the number of free parameters, because
various simplifying assumptions are easier to satisfy. These simplifying assumptions bring about a
drastic lowering of the number of further conditions required for order; furthermore they interact
and reinforce each other.
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The simplifying assumptions we will use, are denoted by C(�), D(�) and E(�; �), where we have
used the notation of [10]. In each case � and � are positive integers and the assumptions refer to
some equalities involving the coe�cients of a speci�c method. The speci�c meanings are

C(�):
s∑
j=1

aijcl−1j =
1
k
cli ; i = 1; 2; : : : ; s; l= 1; 2; : : : ; �;

D(�):
s∑
i=1

bick−1i aij =
1
k
bj(1− ckj ); j = 1; 2; : : : ; s; k = 1; 2; : : : ; �;

E(�; �):
s∑
i=1

bick−1i aijcl−1j =
1

l(k + 1)
; k = 1; 2; : : : ; �; l= 1; 2; : : : ; �:

Let us consider the relationship between these assumptions in the case that �= �= s and the further
assumption that c and bT are chosen, as in the two-stage method we are considering, so that the
ci are the zeros of the degree s Legendre polynomial, shifted to the interval [0; 1], and bi are the
corresponding Gaussian weights. These assumptions on c and bT will guarantee that

∑
i bic

k−1
i =1=k

for k=1; 2; : : : ; 2s. Under this condition, E(s; s) follows from D(s) and because the linear combinations
used to verify this have coe�cients in a nonsingular (Vandermonde) matrix, the argument can be
reversed. Similarly, C(s) is also equivalent to E(s; s).
In what has come to be referred to as a Gauss method, the bT and c vectors are chosen to satisfy

the requirements of Gaussian quadrature and the elements in each row of A are chosen so that C(s)
is satis�ed. It then follows that D(s) also holds. The method formed in this way always has order
2s and we will verify this for s= 2 in Table 6. Where no reason is given, the result is because of
Gaussian quadrature. In other cases the manipulations are based on C(2) or D(2) and make use of
order conditions already veri�ed earlier in Table 6. Gauss methods for arbitrary s¿1 were introduced
in [10,17].
Methods also exist with order 2s − 1 based on Radau quadrature of type I (c1 = 0) or type II

(cs=1). The most important of these are the Radau IIA methods. Some variants of Lobatto methods
(c1 = 0 and cs = 1) with order 2s− 2, were once considered attractive for practical computation but
have been superseded by other implicit methods.
It is now generally believed that the proper role of implicit Runge–Kutta methods is in the solution

of sti� problems (see Section 6). There is a conict between the three aims of high accuracy, good
stability, and low implementation cost. Gauss methods seem to be ideal from the stability and
accuracy points of views but they are very expensive, because of the fully implicit structure of
the coe�cient matrix. The accuracy is not as good as might be expected from order considerations
alone because of an “order reduction” phenomenon [55,29], but the cost alone is enough to make
alternative methods more attractive.

4.4. DIRK and SIRK methods

An obvious alternative to fully implicit methods, is to insist that the coe�cient matrix have a
lower triangular structure, because in this case the stages can be evaluated sequentially and the cost
of each is relatively low. It turns out to be an advantage to have the diagonal elements equal and this
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Table 6
Veri�cation of order conditions for 2 stage Gauss method

· b1 + b2 = 1

b1c1 + b2c2 = 1
2

b1c21 + b2c
2
2 =

1
3

b1(a11c1 + a12c2) + b2c2(a11c1 + a12c2)
=1
2 (b1c

2
1 + b2c

2
2) =

1
6

b1c31 + b2c
3
2 =

1
4

b1c1(a11c1 + a12c2) + b2c2(a11c1 + a12c2)
=1
2 (b1c

3
1 + b2c

3
2) =

1
8

(b1a11 + b2a21)c
2
1 + (b1a12 + b2a22)c

2
2

=b1(1− c1)c21 + b2(1− c2)c22 = 1
12∑

biai1(a11c1 + a12c2) +
∑

biai2(a21c1 + a22c2)

=1
2 (
∑

biai1c
2
1 +
∑

biai2c
2
2) =

1
24

additional requirement has little impact on the availability of methods of a required order with good
stability. Methods of this type have been variously named “semi-implicit” [10], “semi-explicit” [51]
and “diagonally implicit” or “DIRK” [2]. Although equal diagonals were originally built into the
DIRK formulation, common usage today favours using this name more widely and using “SDIRK”
(or “singly diagonally implicit”) in the more restricted sense. Other key references concerning these
methods are [3,18].
Singly implicit methods, without necessarily possessing the DIRK structure are those for which

A has only a single eigenvalue �(A)= {} [7]. If the stage order is s, it turns out that the abscissae
for the method satisfy ci = �i, where �1; �2; : : : ; �s are the zeros of the Laguerre polynomial Ls. The
advantage of these methods is that for many large problems, the component of the computer cost
devoted to linear algebra is little more than for a DIRK method. Various improvements to the design
of SIRK methods have been proposed.

5. Nontraditional methods

While the traditional methods, linear multistep and Runge–Kutta, are widely used and are generally
regarded as satisfactory for solving a wide variety of problems, many attempts have been made to
extend the range of available methods. Some of these will be discussed in this section.
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5.1. Taylor series methods

Because the Euler method is based on approximations to the Taylor expansion

y(x0 + h) ≈ y(x0) + hy′(x0);

it is natural to ask if it is possible to take this expansion further by evaluating y′′(x0), and possibly
higher derivatives, by algebraic means. Algorithms for carrying out this process can be constructed
using a recursive evaluation scheme. We mention two important early papers which exploit this
idea, using a classical view of computer arithmetic but combined with this non-classical method of
solution [4,32].
A second interesting and important contribution to Taylor series that has a further distinctive

feature is the work of Moore [48]. The distinctive feature is that the work is carried out in the
context of interval arithmetic. This means that it becomes possible, not only to advance the solution
step-by-step in a relatively e�cient manner, but it also becomes possible, owing to the standard
bounds on the truncation error of a Taylor expansion, to obtain rigorous error bounds. Thus, in
principle, it became possible to obtain intervals in which each component of the solution is certain
to lie for any particular value of x. The di�culty is, of course, that the lengths of these intervals
can grow rapidly as x increases.

5.2. Hybrid methods

These methods are similar to linear multistep methods in predictor–corrector mode, but with one
essential modi�cation: an additional predictor is introduced at an o�step point. This means that
the �nal (corrector) stage has an additional derivative approximation to work from. This greater
generality allows the consequences of the Dahlquist barrier to be avoided and it is actually possible
to obtain convergent k-step methods with order 2k+1 up to k=7. Even higher orders are available
if two or more o�step points are used. The three independent discoveries of this approach were
reported in [34,30,12]. Although a urry of activity by other authors followed, these methods have
never been developed to the extent that they have been implemented in general purpose software.

5.3. Cyclic composite methods

It is remarkable that even though a number of individual linear multistep methods may be unstable,
it is possible to use them cyclically to obtain a method which, overall, is stable. An example of a
�fth-order method given in the key paper on this subject [26] is as follows:

yn=− 8
11yn−1 +

19
11yn−2

+h( 1033f(xn; yn) +
19
11f(xn−1; yn−1) +

8
11f(xn−2; yn−2)− 1

33f(xn−3; yn−3)); (22)

yn= 449
240yn−1 +

19
30yn−2 − 361

240yn−3 + h(
251
720f(xn; yn) +

19
30f(xn−1; yn−1)− 449

240f(xn−2; yn−2)

− 35
72f(xn−3; yn−3)); (23)

yn=− 8
11yn−1 +

19
11yn−2

+ h( 1033f(xn; yn) +
19
11f(xn−1; yn−1) +

8
11f(xn−2; yn−2)− 1

33f(xn−3; yn−3)): (24)
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The method is used cyclically in the sense that in each of three steps, the �rst uses (22), the second
uses (23) and the third uses (24) (which in this particular example happens to be the same as the
�rst member of the cycle). Methods of this family have been studied by a number of authors and
have also been discovered for use with sti� problems.

5.4. Rosenbrock methods

Rosenbrock in his 1963 paper [56], discusses the problem of evaluating the stages of a diagonally
implicit Runge–Kutta methods. Normally this is carried out by an iteration process based on Newton’s
method. For each stage and each iteration, an evaluation of f is carried out together with a solution
of a linear equation system with matrix of coe�cients of the form I − h�J , where J denotes an
approximation to the Jacobian matrix. The question was then asked if improved performance can be
obtained by an alternative procedure in which exactly the same amount of work is performed but
only once per stage, with the proviso that J is exactly the Jacobian evaluated at yn−1. Amongst the
examples of this type of “Rosenbrock method” given in the original paper, the following is identi�ed
as having order 2 and possessing L-stability:

F1 = (I − h(1−
√
2
2 )J )

−1f(yn−1);

F2 = (I − h(1−
√
2
2 )J )

−1f(yn−1 + h( 12
√
2− 1

2 )F1);

yn= yn−1 + hF2:

Amongst the many further contributions to the study of Rosenbrock methods, and their generaliza-
tions, we refer to [16,52,43].

6. Methods for sti� problems

The paper by Curtiss and Hirschfelder [20] is usually acknowledged as introducing numerical
analysts to the phenomenon of sti�ness. Much has been written about what “sti�ness” really means
but the property is generally understood in terms of what goes wrong when numerical methods not
designed for such problems are used to try to solve them. For example, classical explicit Runge–
Kutta methods were not intended to solve sti� problems but, when one attempts to use them,
there is a severe restriction on stepsize that must be imposed, apparently because of stability rather
than accuracy requirements. It is easy to see how this can come about for linear problems of the
form

y′(x) =My(x);

if the matrix M happens to have all its eigenvalues close to zero or else in the left half complex
plane and with a large magnitude. Assuming for simplicity that M can be diagonalized and that the
problem is solved in its transformed form, the accuracy is determined by the ability of the numerical
method to solve problems of the form

y′(x) = �y(x);
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where |�| is small. However, the stability of the numerical approximation is limited by the fact that
we are simultaneously trying to solve a problem of the form

y′(x) = �y(x);

where |�| is large. In the exact solution, terms of the second type correspond to rapidly decaying
transients, whereas in the computed solution they represent unstable parasitic solutions, unless h is
so small that h� lies in what is known as the “stability region”.
To �nd the stability region for a numerical method it is necessary to consider the behaviour of

the numerical method with a problem of just this type. For classical methods the behaviour depends
on the product of h and � which we will write as z. For the classical fourth-order Runge–Kutta
method, the numerical solution for this problem satis�es

yn = R(z)yn−1; (25)

where

R(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
and the stability region is the set of points in the complex plane for which |R(z)|61.
If z= h� is outside this set, as it might well be, then selecting h to make h� of a reasonable size

will not be satisfactory because the unstable behaviour of the component of the solution associated
with � will swamp the solution and destroy its accuracy.
To analyse this type of possible instability, Dahlquist [23] introduced the concept of A-stability.

A numerical method is said to be “A-stable” if its stability region includes all of the left half-plane.
Even though the de�nition was �rst framed in the context of linear multistep methods, it was soon
applied to Runge–Kutta methods, for which it takes a particularly simple form. Write Y for the
vector of stage values, then this vector and the output approximation are related by

Y = yn−1e + zAY; yn = yn−1 + zbTY;

leading to (25) with the stability function given by

R(z) = 1 + zbT(I − zA)−1e:
For explicit methods the stability region is always a bounded set and these methods cannot be
A-stable. On the other hand for an implicit method, R(z) has the form N (z)=D(z) where the poly-
nomials N and D can have degrees as high as s. Methods of arbitrarily high orders can be A-stable.
For a general linear multistep method, de�ned by polynomials � and �, the stability region is the

set of points z for which the polynomial �(w)− z�(w), of degree k in w satis�es the root condition.
It was shown by Dahlquist [23] that for these methods, A-stability cannot exist for orders greater
than 2.

6.1. Order stars

Runge–Kutta methods of Gauss type have stability functions of the form

R(z) =
N (z)
N (−z) ;
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where the polynomial N has degree s. Furthermore, R(z)= exp(z)+O(z2s+1). This is an example of
a “Pad�e approximation” to the exponential function, in the sense that the order of approximation is
exactly the sum of the numerator and denominator degrees. Not only are the diagonal members of
the Pad�e table signi�cant, but the same can be said of the �rst subdiagonal (with degree s − 1 for
the numerator and s for the denominator, because these correspond to the stability functions for the
Radau IA methods, and for the practically important Radau IIA methods. The second subdiagonals
are also important because they are the stability functions for the Lobatto IIIC methods. It is known
that the Pad�e approximations to the exponential function, in each of these three diagonals, correspond
to A-stable methods. It is also clear that the approximations above the main diagonal cannot share
this property but what can be said about approximations below the second subdiagonal? Considerable
evidence existed for the “Ehle conjecture” [27] which claimed that none of these stability functions
can correspond to an A-stable method or, in Ehle’s terminology, that they are not A-acceptable.
In 1978 a new method was discovered for settling this, and many related questions. This approach

introduced “order stars” [60], based on relative stability regions. Rather than study the regions of
the complex plane for which |R(z)|¡ 1, the regions are studied for which |exp(−z)R(z)|¡ 1. Since
A-stable methods are those for which the stability function has no poles in the left half-plane and
has its magnitude bounded by 1 on the imaginary axis, changing from the stability function R(z)
to the relative stability function exp(−z)R(z) leaves this criterion unchanged, but introduces much
more structure, because exp(−z)R(z) = 1 + Czp+1 + O(zp+2), when z is small.
Consider Fig. 4 taken from [60]. Shown in this �gure are the order stars of four Pad�e approxima-

tion, with degrees j (denominator) and k (numerator). The shaded parts of the �gures, known as the
�ngers and characterized by |exp(−z)R(z)|¿ 1 and the unshaded parts, the dual �ngers characterized
by |exp(−z)R(z)|¡ 1 meet at 0 in a pattern determined by the sign of the real part of Czp+1, for
|z| small. This means that there will be exactly p+ 1 �ngers and the same number of dual �ngers
meeting at zero. Furthermore, the angles subtended by each �nger is the same �=(p+ 1). It can be
shown that all the bounded �ngers contain poles and the bounded dual �ngers contain zeros. The
two upper �gures are for A-stable methods, in which all the poles are in the right half-plane and
no �nger crosses the imaginary axis. The two lower �gures, for which j− k ¿ 2, cannot meet these
requirements, because there are too many bounded �ngers for it to be possible for them all to leave
zero in the right-hand direction. Some of these �ngers must leave zero in the left-hand direction and
either reach poles in the left half-plane or cross the imaginary axis to reach poles in the right-hand
half-plane. A rigorous form of this argument is used to prove the Ehle conjecture and to prove a
number of other results concerning both one step and multistep methods.
A recent study of order stars, which reviews most of the work up to the present time, is available

in the book by Iserles and NHrsett [42].

6.2. Nonlinear stability

To obtain a deeper understanding of the behaviour of sti� problems, and of the numerical methods
used to solve them, Dahlquist in 1975 [24], studied nonlinear problems of the form

y′(x) = f(x; y(x)); (26)

where f satis�es the dissipativity condition

〈f(x; u)− f(x; v); u− v〉60 (27)
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Fig. 4. An extract from the order star paper.

and 〈·〉 denotes an inner product, with ‖ · ‖ the corresponding norm. It is easy to see that two exact
solutions to (26) possess the property that

‖y(x)− z(x)‖6‖y(x0)− z(x0)‖; for x¿x0: (28)

The aim is now to �nd conditions on a method such that a discrete analogue of (28) holds. It turns
out to be more convenient to consider instead of a linear multistep method

�kyn + �k−1yn−1 + �k−2yn−2 + · · ·+ �0yn−k
= h(�kf(xn; yn) + �k−1f(xn−1; yn−1) + · · ·+ �0f(xn−k ; yn−k));

the corresponding “one-leg method”

�kyn + �k−1yn−1 + �k−2yn−2 + · · ·+ �0yn−k

= h

(
k∑
i=0

�i

)
f

(
�k∑k
i=0 �i

yn +
�k−1∑k
i=0 �i

yn−1 + · · ·+ �0∑k
i=0 �i

yn−k

)
:

For this type of method, Dahlquist considered contractivity in the sense that

‖Yn‖6‖Yn−1‖;
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where

Yn =




yn
yn−1
...

yn−k+1




and ∥∥∥∥∥∥∥∥∥



�1
�2
...
�k



∥∥∥∥∥∥∥∥∥
=

k∑
i; j=1

gij〈�i; �j〉:

It is assumed that

G =



g11 g12 · · · g1k
g21 g22 · · · g2k
...

...
...

gk1 gk2 · · · gkk




is a positive-de�nite matrix.
It is explained in Dahlquist’s paper how results for one-leg methods can be interpreted as having

a signi�cance also for the corresponding linear multistep methods. He also found necessary and
su�cient conditions for this property to hold. In a later paper [25], he showed that for one-leg
methods, A-stability and G-stability are essentially equivalent properties.
The corresponding theory for Runge–Kutta methods [14,19,8], leads to a consideration of a matrix

M with (i; j) element equal to biaij+bjaji−bibj. Assuming that this matrix is positive semi-de�nite,
and the same is true for diag(b1; b2; : : : ; bs), then a Runge–Kutta method applied to two distinct
solutions of (26), satisfying (27), satis�es the contractivity property

‖yn − zn‖6‖yn−1 − zn−1‖:
It is interesting that M has a more modern role in connection with symplectic methods for Hamil-
tonian problems.
A further development, initiated in the paper [29], is connected with the behaviour of truncation

error for Runge–Kutta methods applied to sti� problems.

7. The beginnings of di�erential equation software

Programs to solve di�erential equations are as old as modern computers themselves. Today, a
central aim in the design of di�erential equation software is the building of general purpose codes,
speci�c only as regards sti�ness versus nonsti�ness, which adapt their behaviour to that of the
computed solution dynamically. Variable stepsize is a characteristic feature of this software and
usually variable order is used as well.
The most famous of the early codes in this tradition is the FORTRAN subroutine named by its

designer, Gear, as “DIFSUB” [31]. Actually, this name was used generally by Gear for a range of
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possible subroutines using a range of di�erent methods. We will concentrate for the moment on the
linear multistep version of DIFSUB.
As with all linear multistep implementations, the characteristic problems of starting values, local

error estimation, change of stepsize and output interpolation have to be solved. A basic principle
used in DIFSUB are the use of the Nordsieck representation of the data passed between steps, and
this plays a crucial role in the solution of all these implementation questions, as well as the further
problem of variable order.
The single paper of Nordsieck [50] explains how it is possible to rewrite a k-step Adams methods

so that information on the values of hf(xn−i ; yn−i) for i=1; 2; : : : ; k is organized as approximations to
hy′(xn−1); 12!h

2y′′(xn−1); : : : ; 1k!h
ky(k)(xn−1). The rules for integration to the next step, are particularly

simple in the case of the Adams–Bashforth method. The solution is �rst extrapolated using the
approximation



y(xn)
hy′(xn)
1
2!h

2y′′(xn)
...

1
k!h

ky(k)(xn)



≈




1 1 1 1 · · · 1
0 1 2 3 · · · k

0 0 1 3 · · ·
(
k
2

)
...
...
...
...

...
0 0 0 0 · · · 1







y(xn−1)
hy′(xn−1)
1
2!h

2y′′(xn−1)
...

1
k!h

ky(k)(xn−1)




and a correction is then made to each component using a multiple of hf(xn; yn)− hy′(xn), so as to
ensure that the method is equivalent to the Adams–Bashforth method. Adding an Adams–Moulton
corrector to the scheme, is equivalent to adding further corrections.
Using the Nordsieck representation, it is possible to change stepsize cheaply, by simply rescaling

the vector of derivative approximations. It is possible to estimate local truncation error using the
appropriately transformed variant of the Milne device. It is also possible to measure the accuracy of
lower and one higher-order alternative methods so that the appropriateness of order-changing can be
assessed. Thus the ingredients are present to build a completely adaptive nonsti� solver. By adapting
the backward di�erence methods to a similar form, it is possible to allow also for sti�ness.
The DIFSUB program of Gear uses these techniques to obtain an e�cient solver and many

later programs are based on similar ideas. The �rst general purpose solver for di�erential–algebraic
equations, the DASSL subroutine of Petzold [54], is also closely related to DIFSUB.
Early success was also achieved in the algorithm of Bulirsch and Stoer [6]. This used extrapolation

in a similar manner to the quadrature algorithm of Romberg. The main di�erence between di�erential
equations and quadrature is that signi�cant e�ciency gains are made by reusing some of the abscissae
in a quadrature formula; this happens in the traditional version of the Romberg method because the
mesh size is halved in each iteration. For di�erential equations there is no advantage in this, because
reuse is not possible. Hence, in later developments of extrapolation methods, for both nonsti� and
sti� problems, various sequences of stepsizes have been considered, where the aim is to balance
computational cost against the quality of the convergence.
As many programs became available, using a variety of methods and variety of implementations of

the same basic method, it became appropriate to consider what is really expected of these automatic
solvers. Each person who develops this software needs to apply quality tests and to compare any new
implementation against existing codes. In the interests of providing objective standards, a number of
test sets have been developed. The earliest of these that has become widely adopted, and which in
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fact serves as a de facto standard, is the DETEST problem set [41]. While this is appropriate for
testing and comparing nonsti� solvers, a sti� counterpart, known as STIFF DETEST, [28] became
available a little later.

8. Special problems

While the general aim of providing accurate and e�cient general purpose numerical methods and
algorithms has been a central activity in the 20th century, there has always been a realization that
some problem types have such distinctive features that they will need their own special theory and
techniques. Sti� problems were recognized approximately half way through the century as such a
problem type and these have received considerable attention, especially in the last 30 years.
Another of the special problem types that has a separate claim for its own special methods, has

been second-order di�erential equations and systems. These have a natural importance as arising in
classical mechanical modelling and they were treated as a particular case by Nystr�om and others.
While any problem of this type can be rewritten as a �rst-order system, it is found that treating
them directly can lead to substantial gains in e�ciency, especially if the second-order system takes
the special form

y′′(x) = f(x; y(x));

where we note that y′(x) does not occur as an argument of f. The Runge–Kutta approach to this
type of problem was studied by Nystr�om [53] and has been of interest ever since. A modern theory
of these methods is given in [37]. Linear multistep methods for this problem were studied as part
of an investigation of a more general situation

y(n)(x) = f(x; y(x));

by Dahlquist [22].
It is interesting that one of the most active areas of modern research is closely related to this

long-standing problem. Mechanical problems that can be expressed in a Hamiltonian formulation,
rather than as a second-order system, can be studied in terms of the preservation of qualitative
properties. It is found that the symplectic property can be preserved by the use of specially designed
Runge–Kutta methods. The burgeoning subject of geometric integration, started from the study of
Hamiltonian systems by Feng Kang, J.M. Sanz-Serna and others, and is now a central activity as the
century closes. Although it is too early to view geometric integration from a historical perspective,
it is at least possible to refer to a recent review of this subject [58].
There are several other evolutionary problems that can be solved by methods closely related to

ordinary di�erential equation methods. Delay di�erential equations, and other types of functional dif-
ferential equations can be solved using a combination of a di�erential equation solver, an interpolator
and a means of handling discontinuities.
We have already noted that algebraic di�erential equations, especially those of low index, can

be e�ectively solved using linear multistep methods. Implicit Runge–Kutta methods also have an
important role in the numerical treatment of di�erential–algebraic equations. The theory of order of
these methods can be extended to allow for the inclusion of algebraic constraints in the formulation,
using generalizations of rooted trees [35].
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Abstract

A program is presented for solving initial value problems for ODEs numerically in Maple. We draw upon our experience
with a number of closely related solvers to illustrate the di�erences between solving such problems in general scienti�c
computation and in the problem solving environments Maple and MATLAB. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The problem solving environments (PSEs) Maple [8] and MATLAB [7] are in very wide use.
Although they have much in common, they are clearly distinguished by the emphasis in Maple
on algebraic computation and in MATLAB on numerical computation. We discuss here a program,
IVPsolve, for solving numerically initial value problems (IVPs) for systems of �rst-order ordinary
di�erential equations (ODEs), y′=f(x; y), in Maple. We draw upon our experience with a number
of closely related solvers to illustrate the di�erences between solving IVPs in general scienti�c
computation (GSC) and in these PSEs. The RKF45 code of Shampine and Watts [10,11] is based on
the explicit Runge–Kutta formulas F(4; 5) of Fehlberg. It has been widely used in GSC. Translations
of this code have been the default solvers in both Maple and MATLAB. Neither takes much advantage
of the PSE. In developing the MATLAB ODE Suite of solvers for IVPs, Shampine and Reichelt [9]
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exploit fully the PSE, as well as algorithmic advances. IVPsolve is the result of a similar inves-
tigation for Maple, though on a much smaller scale. It also uses the F(4; 5) formulas for non-sti�
problems.
In addition to general issues of solving IVPs in PSEs, we discuss speci�cs for the Maple PSE.

Because the user is allowed to specify the precision, the oating point arithmetic of Maple is
implemented in software. As the PSE has evolved, it has added facilities that allow users to work
directly with the underlying hardware oating point arithmetic. IVPsolve exploits these facilities to
solve IVPs faster. Using a continuous extension of the F(4; 5) pair and a new design, IVPsolve
handles output more e�ciently and avoids numerical di�culties of the kind pointed out in [2]. The
solvers of Maple look di�erent to users and solve di�erent computational problems. In contrast, it
is possible to use all the solvers of the MATLAB ODE Suite in exactly the same way. IVPsolve
achieves this in Maple. Methods for the solution of sti� IVPs require (approximations to) Jacobians.
To make it possible to use all the solvers of the ODE Suite in the same way, Shampine and Reichelt
approximate Jacobians numerically in the codes for sti� IVPs. This is accomplished in IVPsolve by
using the tools of Maple to evaluate partial derivatives analytically. IVPsolve uses a Rosenbrock
method for sti� IVPs, an excellent method for the PSE that is not widely used in GSC because it
requires analytical partial derivatives.

Conventions for this paper. Because this paper discusses implementations of similarly named solvers
in di�erent contexts (GSC, the PSE MATLAB and the PSE Maple), the following notational conven-
tions are used to distinguish the solvers. For GSC, upper-case names such as RKF45, LSODE, and
ODE=STEP, INTRP are used. For the MATLAB ODE Suite, we use the exact names ode45, ode15s,
and ode113. For the built-in Maple routines of dsolve[numeric], we use their exact names, rkf45
and lsode, which are lower-case versions of the names of the corresponding GSC codes. The new
routines that we have written are packaged together under the name NODES, but are referred to in
this paper by their names IVPsolve, IVPval, and so on.

2. IVPsolve

A number of issues distinguish solving IVPs in PSEs from solving them in GSC. Obvious ones
are interactive computation and graphical output. Less obvious but no less important are advanced
language features and interpreted computation. The emphasis on graphical output in PSEs means
that IVPs are solved to accuracies modest by the standards of GSC. This makes the convenience
of default tolerances quite practical, a distinguishing characteristic of solvers in PSEs. It also means
that fewer steps are taken. In GSC the f(x; y) are often so complicated that the cost of evaluating
this function dominates all the remaining cost of the computation, the overhead. This is much less
true of the problems solved in PSEs. Because of interactive computation, fewer steps, and relatively
simple f, overhead is much more important in PSEs. These factors inuence greatly the choice of
method, a matter we now examine in more detail.

2.1. Choice of non-sti� method

An explicit Runge–Kutta pair of orders 4 and 5 is very attractive for solving non-sti� IVPs in
a PSE because the order is appropriate for typical accuracies and the method has a low overhead.
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The original ode45 of MATLAB is a translation of RKF45 with its F(4; 5) pair, but the solver of
the same name in the ODE Suite [9] that replaced it at version 5 is di�erent in important ways. In
particular, it is based on a di�erent explicit Runge–Kutta (4,5) pair due to Dormand. The default
solver of Maple, rkf45, is a translation of RKF45. All these codes do local extrapolation so that
the integration is advanced at order 5.
Selecting a formula is a complicated matter that involves both theoretical considerations and

experimentation. There have been many investigations that attempt to identify the “best” Runge–Kutta
pair of moderate order, but most have been concerned with GSC. Some aspects of the formulas are
much more important in the present context than in GSC. We have already mentioned the importance
of overhead in a PSE. To emphasize the point, we note that the ODE Suite includes a translation,
ode113, of the well-known Adams solver ODE=STEP,INTRP. It varies both order and step size so
as to minimize the number of evaluations of f(x; y). This is very e�cient in GSC, but the overhead
is quite high, making it much less attractive in a PSE. That is why the MATLAB documentation
recommends that ode45 be tried before ode113. Furthermore, in a code with the convenient user
interface and powerful capabilities of ode45, much of the overhead and a sometimes considerable
portion of the computations are not directly associated with evaluation of the Runge–Kutta pair.
Generally the number of stages is not important in GSC, so it is scaled out in comparisons. It is
important in PSEs because generally there is a relatively small number of steps and the tolerances are
relatively large so that failed steps are relatively common. Shortly, we take up output and discuss the
use of a continuous extension of the Runge–Kutta pair for output. We shall see that both ode45 and
IVPsolve evaluate their continuous extensions several times in the course of each step. Obviously,
the cost of the continuous extension, both in terms of evaluations of f(x; y) and overhead, is quite
important in this context. We implemented several (4; 5) pairs and even a (3; 4) pair with attractive
features and compared them experimentally. The decision was not easy, but we chose to use the
F(4; 5) pair with local extrapolation and the continuous extension of [3] in IVPsolve.

2.2. Choice of sti� method

By far, the most widely used method for solving sti� IVPs is a variable order implementation of
the backward di�erentiation formulas (BDFs). Included in dsolve[numeric] is a translation, lsode,
of the well-known BDF solver LSODE. The MATLAB documentation recommends that a code of
this kind, ode15s, be tried �rst for sti� IVPs, this despite the high overhead due to variation of
order and step size. The sparsity structure of the Jacobian is crucial in solving large systems of sti�
equations, so an important feature of ode15s is its capabilities for dealing conveniently with this.
Analytical partial derivatives improve the robustness of codes for solving sti� IVPs, but they have
been avoided in GSC because it may be inconvenient for users to supply them and f(x; y) may
be only piecewise smooth. IVPsolve is limited to the sti� problems for which Maple can form
analytical partial derivatives. Because Maple does not yet have functions for sparse linear algebra
in hardware oating point, IVPsolve is also limited to relatively small systems for which Jacobians
are treated as full matrices. We use the Rosenbrock (3; 4) pair implemented as METH = 1 in the
RODAS code [5]. This pair was constructed for local extrapolation, so the integration is advanced at
order 4. Although the order is lower than that of the method for non-sti� problems, it is adequate for
the PSE. The formulas are sti�y accurate, A-stable, and have small error constants. The overhead
is low compared to a BDF code because the order is �xed and the formulas are linearly implicit.
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2.3. Use of HF arithmetic

Speed is not one of the primary goals in a PSE. Notwithstanding this, the computation is inter-
active, so the faster it can be done, the better. In developing IVPsolve we aimed to accelerate the
solution of IVPs in Maple by exploiting hardware oating point arithmetic (HF). This is an issue
particular to Maple with its emphasis on algebraic computation because its oating point arithmetic
is implemented in software (SF). The user can control the precision of computations by means of
the environment variable Digits. Naturally SF is slower, but how much slower depends strongly on
how the precision speci�ed relates to HF. Invoking functions inside a call to evalhf causes them to
be carried out in HF. We make heavy use of this function and in particular, use it to speed up the
evaluation of the ODEs in the procedure supplied by the user. Unfortunately, some of the special
functions cannot yet be evaluated in HF. This causes a considerable complication to the solver: it
must begin by testing whether the ODEs can be evaluated in HF and if they cannot, it must use SF
for all the computations. For this case, we set Digits := trunc(evalhf(Digits)) so that these
computations are carried out in approximately the same precision as is available in HF.
The hfarray data structure was added to Maple to hold an array of numbers in HF. Converting

between SF and HF representations of numbers is costly, so it is important to avoid this. At present
some of the fast builtin functions cannot be applied to hfarrays, forcing either a conversion or a
slower way of processing the data. Because we do not know in advance the number of steps required
for an integration, we might have to adjust the sizes of the arrays that hold the output. hfarrays
have �xed dimension and cannot be extended inside a call to evalhf, so we have to return from
the function that advances the integration to the main program in order to create a larger array for
the output, copy the current output array into the new one, and then return to the function through
evalhf to continue the integration with this larger array. Because Maple does not yet provide for
solving linear systems stored as hfarrays, we translated some FORTRAN programs of C.B. Moler
for this that we use inside a call to evalhf to obtain the speed of HF.

2.4. Output considerations

RKF45 provides its output in the course of the integration, either at speci�c points or at each
internal step, by returning control to the user along with the computed solution. Exploiting the
dynamic storage allocation of MATLAB, the translation of RKF45 into this PSE returns control to
the user only when the integration is complete (or fails). It returns two arrays, one containing
the mesh points and the other, corresponding solution values. This form of the output is perfectly
suited to the plot routines of MATLAB. Because of the emphasis on graphical output, the translation
did not follow RKF45 in allowing output at speci�c points, a de�ciency remedied in the ODE
Suite.
RKF45 obtains output at a speci�c point by stepping to the point. Reducing the step size for this

reason reduces the e�ciency of the integration. The natural step size of the F(4; 5) pair is so large
that solution values at each step may not result in a smooth graph. The development of continuous
extensions made it possible to deal with these matters. The solvers of the MATLAB ODE Suite have
two output modes. The user either speci�es all the points where output is desired or accepts output
at the points selected by the solver. In the �rst mode, the solvers use the largest step size possible
and obtain output at the speci�ed points by evaluating a continuous extension. In the second mode,
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the explicit Runge–Kutta solver ode45 supplements the solution values at mesh points by evaluating
its continuous extension at four points in the span of each step. It was found by experimentation
that four additional solution values generally su�ce for a smooth graph. If they do not, the user has
to increase the number of additional solution values by means of an option and solve the problem
again.
Output is handled very di�erently in Maple. dsolve makes available a number of methods for

solving ODEs analytically. Because the numerical solution of IVPs is treated as an option, it is
natural that the design of rkf45 resembles as much as possible the analytical solution of an IVP.
In particular, the solver returns a procedure for computing the solution at any speci�ed value of the
independent variable. Because the computational problem is not the same as the analytical problem,
this design leads to anomalies. A fundamental di�erence is that the stability of the IVP is crucial to
numerical integration. This stability depends on both the direction of the integration and the length of
the interval. For the sake of e�ciency, rkf45 remembers the last approximate solution and advances
the integration from it to the value of the independent variable speci�ed in the current call. This is
faithful to RKF45 except for allowing the direction to change. Changing direction can have serious
consequences noted by Coombes et al. [2] that are revealed by considering what happens if we start
with initial value at x=0, compute a solution at x=1, then at x=2, and again at x=1. It is obviously
ine�cient to recompute the solution at x=1. However, the more important point is that if the IVP is
very stable in one direction, it is very unstable in the other, so integrating back to x=1 is expensive
and inaccurate. The two values computed at x = 1 are di�erent and can be dramatically di�erent.
Some of the methods of dsolve[numeric] have an error control that depends on the history of
the integration and so get di�erent answers for an entirely di�erent reason. Getting di�erent answers
at the same point is rather unsatisfactory. There is a more subtle e�ect of the design. If the output
points chosen by the plot routines do not result in a smooth graph, the user can increase the number
of points plotted. This causes rkf45 to solve the problem again with shorter steps, resulting in a
more accurate solution. It is rather unsatisfactory that simply asking for more plot points changes
the computed solution. Generally this change is not visible in the plots, but we give an example in
Section 3 for which the plotted solutions are qualitatively di�erent.
IVPsolve requires the user to specify that the integration is to go from a to b so as to avoid

dangers inherent in the design of dsolve[numeric]. IVPsolve integrates the IVP over the whole
interval and returns the mesh, the solution at the mesh points, and some other information in a
structure. We exploit the more complex data structures available in the PSEs to simplify the user
interface. In our design all information about the solution is encapsulated as a structure. The user
has no reason to examine the contents of this structure because auxiliary procedures are used to
evaluate and plot the solution.
Some details about the form of the solution are required. Enright et al. [3] developed a continuous

extension for the Fehlberg (4; 5) pair that does not require any additional evaluations of f(x; y).
It furnishes a numerical solution S(x) ∈ C1[a; b] that is a quartic polynomial in the span of the
step from xn to xn + h. In IVPsolve this polynomial is evaluated at xn + jh=4 for j = 1; 2; 3. The
numerical solution is uniformly accurate, so these approximations at intermediate points are given
equal treatment in the output array. A great deal of experience with the F(4; 5) pair in ode45 and
a limited amount with IVPsolve shows that this many equally spaced solution values generally
yields a smooth graph. There is another reason for choosing �ve values that we take up shortly.
We proceed similarly with the method for sti� IVPs. The Rosenbrock (3; 4) pair was derived with a
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continuous extension that furnishes a numerical solution S(x) ∈ C0[a; b] that is a cubic polynomial
in [xn; xn + h]. The continuous extension is evaluated at xn + jh=3 for j = 1; 2.

2.5. Auxiliary procedures

IVPval is an auxiliary procedure for evaluating the solution at any point in the interval of inte-
gration. The user interface is simple: the user supplies the solution structure computed by IVPsolve
and the x at which the solution is desired. The solution structure contains the information needed to
evaluate S(x) anywhere in [a; b]. In more detail, the number of output points in the span of each step
depends on whether the F(4; 5) or R(3; 4) pair was used, so this number is included in the solution
structure. The number of solution values we chose to output for the step is not just enough to get a
smooth graph, but also enough that polynomial interpolation of the appropriate degree on the span
of the step reproduces the continuous extension there. IVPsolve �rst locates the step containing the
x input and then evaluates S(x) by interpolation. In contrast to dsolve[numeric], the answer at
a given point is always exactly the same. Furthermore, the IVP is integrated only once, no matter
the number and location of points where an answer is desired. An attempt to evaluate the solution
outside the interval where it has been computed results in a message to this e�ect and a reminder of
the interval [a; b] corresponding to the solution structure input. The MATLAB IVP solvers return the
solution on a mesh and there is no way to obtain solutions at other points except by solving the IVP
again. Kierzenka and Shampine [6] have written a MATLAB code for boundary value problems that
deals with output much like IVPsolve. A version of this BVP solver that exploits new capabilities
of the PSE will appear in MATLAB 6. The situation with the IVP solvers is di�erent and illustrates
an important point: The user interface of the Suite is uniform, but how capabilities are realized
in the various solvers necessarily depends on the underlying method and these methods are quite
di�erent in nature. Adding a new capability can be challenging because it must be provided for all
the solvers. In the present instance, it would be easy enough to follow IVPsolve in adding a new
mode of output to ode45, but not to the variable order solvers, especially ode113 with its high
orders.
The traditional description of ODEs and initial conditions of dsolve[numeric] is convenient for

small systems of equations, but not for large. For this reason, in IVPsolve we follow the standard
in GSC of expecting the ODEs to be provided as a procedure for evaluating a system of �rst order
equations and the initial conditions as a vector. For convenience we provide a procedure, ODE2proc,
for converting the conventional description of an IVP in Maple to the procedure and vector expected
by IVPsolve. Unlike MATLAB, Maple distinguishes clearly a scalar and a vector of one component.
This complicates the user interface for a scalar ODE and the coding of the solver: We allow vectors
of one component for the sake of consistency, but IVPsolve and its auxiliary procedures also accept
scalar IVPs because we expect that users will �nd them more natural. For example, it is more natural
to specify a scalar ODE like y′=y2− x with an operator like f:=(x; y)→ y2− x than a procedure.
Output from dsolve[numeric] in the form of procedures for evaluating the solution is convenient

for the plot routines of Maple. Unfortunately, returning the solution in arrays as in MATLAB is not
as convenient because it is necessary to form a list of pairs of points for plotting. In the PSEs it is
best to use the builtin functions as much as possible because they are compiled and execute much
faster. Plotting proved to be unacceptably slow in Maple because the builtin functions for forming
such lists do not yet accept hfarrays. Eventually we learned that we could convey hfarrays to
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the plotting procedures by means of the CURVE data structure. This increased the speed of all
plots by as much as two orders of magnitude. We also found that a low-level plot routine handled
logarithmic scales ine�ciently. Avoiding it increased the speed of such plots by more than another
order of magnitude.
By default, IVPplot plots all the solution values returned, just as the MATLAB programs do.

Generally this results in a smooth graph, but when the user zooms in on an area using the view
option or when plotting in the phase plane, it is not unusual that straight-line segments are visible in
the graph. The refine option is used to deal with this. Invoking IVPplot with, say, refine = 2
instructs it to double the number of plot points. The additional solution values are equally spaced in
the span of each step. They are formed by interpolation using IVPval. This way of getting a smooth
graph is much more e�cient than solving the IVP again as would be done in dsolve[numeric]
or one of the MATLAB solvers.
A number of the solvers of dsolve[numeric] are translations of FORTRAN codes written for

GSC. Each of the FORTRAN codes is a good one, but their authors treated important matters in
very di�erent ways and the methods themselves require certain di�erences in the user interface.
These di�erences were not resolved in dsolve[numeric], so it is fairly described as a collection
of solvers. In developing the MATLAB ODE Suite, it was considered essential that it be possible
to use all the solvers in exactly the same way. In the context of this PSE, it was natural that the
di�erent methods be implemented in codes with di�erent names. Methods for the solution of sti�
IVPs use the Jacobian matrix and perhaps @f=@x. If it is to be possible to solve sti� problems in
the same way that non-sti� problems are solved, these partial derivatives must be formed internally.
In MATLAB this is done numerically, so the only di�erence visible to the user between solving a
non-sti� IVP with ode45 and a sti� problem with, say, ode15s is that the name of the solver is
di�erent. We have implemented an explicit Runge–Kutta method for the solution of non-sti� IVPs
and a Rosenbrock method for the solution of sti� problems. In the context of Maple, it is more
natural to implement both methods in the same solver with a keyword used to indicate whether the
problem is sti�. Because we form partial derivatives analytically, the only di�erence visible to the
user between solving a sti� and a non-sti� problem with IVPsolve is that the keyword stiff is
set to true.

3. Numerical Examples

In writing IVPsolve for Maple, we aimed to make it easy and e�cient to solve an IVP, evaluate
the solution, and plot the solution. We were con�dent that the new solver would perform much
better than those of dsolve[numeric] in several ways. We hoped that it might be somewhat
competitive with the ode45 and ode15s solvers of MATLAB, at least when solving problems that
do not require the additional capabilities of those solvers. In this section we compare the solvers
using standard test problems. The NODES package and a tutorial will be made available from
http:==www.apmaths.uwo.ca=∼rcorless.
Comparing solvers is always di�cult and the present situation is no exception. Other solvers

we consider have di�erent aims and this has a�ected choices made in the codes. For example,
the error control of rkf45 and IVPsolve is the same, but the default error tolerances in rkf45
are much more stringent than those of IVPsolve. They are too stringent if the aim is to plot the
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Table 1
Non-sti� examples. Times to integrate and plot averaged over 5 runs

ode45 IVPsolve rkf45 lsode(Adams)

3 body 0.59 0.24 2.20 4.58
Lorenz 2.10 2.81 6.95

solution and arguably too stringent in general for an explicit Runge–Kutta formula of only moderate
order. Nevertheless, we use default tolerances for our examples because we believe that is what
the typical user does. As discussed earlier, the fundamentally di�erent designs of IVPsolve and
dsolve[numeric] make it impossible simply to compare the costs of integrating the IVPs; we
must include the cost of a plot or evaluation of the solution. Furthermore, the designs imply that
the cost of experimentation with plot options di�ers greatly because dsolve[numeric] causes the
IVP to be integrated for every plot and IVPsolve merely evaluates a solution already computed.
Although some of our examples do call for such experimentation, we report only the cost of an
acceptable plot. To obtain representative run times, we computed the average over �ve independent
runs. Only the relative run times matter, and only in a gross way at that, but the times reported are
in seconds of computing with a PC running at 450 MHz.
A standard test problem for codes that solve non-sti� IVPs is a restricted three body problem –

spaceship, earth, and moon. Initial conditions leading to a periodic orbit and its period were found
numerically. Because the orbit is sensitive to perturbations as the spaceship passes close to the earth,
it is necessary to use tolerances more stringent than the default values to reproduce the qualitative
behavior of the orbit. This IVP is provided as orbitode.m with MATLAB 5 and we follow it in
using relative error tolerance 1e–5 and absolute error tolerance 1e–4. When solving the IVP with
rkf45 we had to make a number of runs with di�erent values of numpoints to �nd a value that
results in a smooth graph. A value of 800 was used for the computations of Table 1. The solver
based on Adams–Moulton methods, lsode with adamsfunc, was also used. It measures error in
an RMS norm, so the tolerances must be divided by the square root of the number of equations
to make them comparable to the maximum norm used by the Runge–Kutta solvers. Again it was
necessary to experiment with numpoints and again 800 seemed adequate. The default output of
both IVPsolve and ode45 provides a satisfactory graph.
As in the computations resulting in Fig. 9:8:6 of Boyce and DiPrima [1], we integrated the

Lorenz equations with �=10; r=28; b=8=3; initial conditions y1(0)=5; y2(0)=5; y3(0)=5; and
plotted y3(t) against y1(t). IVPsolve monitors the work expended and when a maximum number
of evaluations of f(x; y) is exceeded, it terminates the run. An option allows this maximum to
be increased as needed. We integrated over a longer interval than [1], namely [0; 50], to exercise
this option. Also, the large number of steps in this integration exercises the portion of IVPsolve
that extends storage arrays. The cost of solving with rkf45 depended strongly on numpoints. The
default numpoints produces a graph that is completely unacceptable and increasing it to 1000 results
in a graph for which straight-line segments are still obvious. The entry in Table 1 corresponds to a
numpoints of 5000, which gives an acceptable graph.
We turn now to some sti� IVPs. In solving them with IVPsolve we used the Rosenbrock method

speci�ed by stiff = true and in solving them with lsode we used the BDF method speci�ed
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Fig. 1. A log–log plot of the second component of the solution of CHM6.

Table 2
Sti� examples. Times to integrate and plot averaged over 5 runs

ode15s IVPsolve lsode(BDF)

van der Pol 1.92 0.81 2.69
CHM6 0.59 0.37

by backfull. A standard test problem is the van der Pol equation, y′′ + 1000(y2 − 1)y′ + y = 0,
with initial conditions y(0) = 2; y′(0) = 0 on the interval [0; 3000]. The solution y(x) converges
quickly to a relaxation oscillation with very sharp changes. When we solved this IVP with lsode,
we found that the graph did not have su�ciently sharp corners, so we increased numpoints to 100.
This IVP is provided as vdpode.m with MATLAB 5 where it is solved with analytical Jacobian. How
Jacobians are handled is important when solving sti� IVPs: IVPsolve creates internally procedures
for analytical partial derivatives; ode15s of MATLAB approximates the Jacobian numerically, but we
have supplied a function for the analytical Jacobian in this instance; and lsode approximates the
Jacobian numerically. (The code LSODE that underlies lsode does accept analytical Jacobians, but
that capability was not implemented in the Maple version.)
Shampine and Reichelt [9] use the CHM6 problem of [4] to illustrate the sti� IVP solvers of

MATLAB. The log–log plot of the second solution component seen in Fig. 1 shows regions of ex-
ceedingly sharp change. Correspondingly, the step sizes used by the solvers range over many orders
of magnitude. The default relative error tolerance is acceptable, but some solution components are
so small that an absolute error tolerance of 1e–20 is appropriate. The solution components have
such di�erent behavior that it is appropriate to plot them in di�erent ways. In particular, it is ap-
propriate to use linear scales for the �rst component and a log–log plot for the second component.
Table 2 gives the times taken to integrate the IVP and display a log–log plot of the second compo-
nent. ode15s is a BDF solver that solved the IVP without di�culty, but that was not the case with
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the BDF solver lsode. Indeed, we were not able to make a meaningful comparison. The di�erential
equations of CHM6 have three constant solutions, steady states. The solution of the initial value
problem tends to one of these steady states as the independent variable tends to in�nity. If the
integration is not su�ciently accurate, the numerical solution might tend to the wrong steady state.
We found this much more likely to happen with lsode than with the other two solvers. Particularly
disconcerting is the fact that merely increasing the number of plot points sometimes caused lsode
to compute a solution that tended to a di�erent steady state, a consequence of the Maple design
discussed in Section 2.

4. Conclusions

We have discussed briey a new code, IVPsolve, for solving numerically IVPs for ODEs in
Maple and its auxiliary codes IVPval for evaluating the solution, IVPplot for plotting it, and
ODE2proc for converting a conventional description of ODEs in Maple to a �rst order system.
The solver provided with Maple, dsolve[numeric], is a collection of programs with di�erent user
interfaces. IVPsolve implements two methods, one for non-sti� problems and one for sti�, that are
used in exactly the same way. IVPsolve is signi�cantly faster than dsolve[numeric] because its
algorithms are tailored to the PSE and it exploits hardware oating point arithmetic. The design of
IVPsolve avoids certain numerical di�culties inherent in the design of dsolve[numeric].
Our discussion of IVPsolve has served as a framework for discussing the solution of ODEs in

general scienti�c computation and problem solving environments. In this a common thread has been
the solution of non-sti� problems with the F(4,5) pair of Runge–Kutta formulas. We have seen that
there are important and interesting di�erences between solving ODEs in GSC and in PSEs and also
between solving ODEs in a PSE oriented towards algebraic computation like Maple and one oriented
towards numerical computation like MATLAB.
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Abstract

We deal with the problem of establishing upper bounds for the norm of the nth power of square matrices. This problem is
of central importance in the stability analysis of numerical methods for solving (linear) initial value problems for ordinary,
partial or delay di�erential equations. A review is presented of upper bounds which were obtained in the literature under
the resolvent condition occurring in the Kreiss matrix theorem, as well as under variants of that condition. Moreover,
we prove new bounds, under resolvent conditions which generalize some of the reviewed ones. The paper concludes
by applying one of the new upper bounds in a stability analysis of the trapezoidal rule for delay di�erential equations.
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1. Introduction

1.1. The purpose of the paper

This paper is concerned with the analysis of numerical methods for the solution of (linear) initial
value problems. Most methods in current use are applied in a step-by-step fashion so as to obtain
numerical approximations corresponding to consecutive discrete values tn of the time variable t.
A crucial question about these methods is whether they behave stably or not. Here we use the
term stable to designate the situation where any (numerical) errors, introduced at some stage of the
calculations, are propagated mildly — i.e., do not blow up unduly in the subsequent applications of
the numerical method.
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Fourier transformations, and the corresponding famous Von Neumann condition for stability, are
classical tools for assessing a priori the stability of methods for solving (partial) di�erential equations.
However, in many practical cases these tools fail to be relevant for analysing stability: e.g., for
pseudo-spectral methods applied to initial-boundary value problems, and for �nite volume or �nite
element methods based on unstructured grids.
Recently, progress was made in analysing stability without using Fourier transformation techniques.

Conditions for stability were studied which are related to the so-called resolvent condition of Kreiss.
These conditions apply in some cases where Fourier techniques fail. Moreover, due to the framework
in which the conditions are formulated, applications are possible in the solution of ordinary and
partial di�erential equations as well as of delay di�erential equations. The purpose of the present
paper is threefold: we shall review various (recent) results related to the Kreiss resolvent condition;
furthermore, we shall present a substantial generalization of some of the reviewed material; �nally,
we apply our generalization in deriving a new stability estimate in the numerical solution of delay
di�erential equations.

1.2. Organization of the paper

Section 2 is still introductory in nature. In Section 2.1 we relate the stability analysis of numerical
processes speci�ed by square matrices B to the problem of deriving upper bounds on the norm ‖Bn‖
(for n= 1; 2; 3; : : :). Further, in Section 2.2 we recall that the eigenvalues of B can be an unreliable
guide to stability.
Section 3 gives a review of various upper bounds for ‖Bn‖ obtained in the literature. In Section

3.1 we review two bounds for ‖Bn‖ which are valid under the resolvent condition of Kreiss. The
sharpness of these bounds is discussed in Section 3.2. In Section 3.3 we review some stronger
versions as well as weaker versions of the Kreiss condition and corresponding bounds for ‖Bn‖.
Section 4 deals with a quite general resolvent condition, which generalizes some of the conditions

reviewed in Section 3. In Section 4.1 we formulate this resolvent condition, and we give a lemma
on the arc length of the image, under a rational function, of a subarc of a circle in the complex
plane. In Section 4.2 we prove Theorem 4.2 making use of this lemma. Theorem 4.2 gives upper
bounds for ‖Bn‖ under the general resolvent condition. Most of these bounds are new. Section 4.3
shortly discusses how the estimates for ‖Bn‖, given in Theorem 4.2, depend on certain parameters.
Moreover, a short discussion is given of the sharpness of these estimates.
In Section 5 we use one of the new estimates of ‖Bn‖, given by Theorem 4.2, in a stability

analysis of the trapezoidal rule applied to delay di�erential equations.

2. Stability analysis of linear numerical processes

2.1. Relating stability to bounds on ‖Bn‖

We deal with an abstract numerical process of the form

un = Bun−1 + bn (n= 1; 2; 3; : : :): (2.1)
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Here bn denote given vectors in the s-dimensional complex space Cs, and B denotes a given complex
s× s matrix. Further, the vectors un ∈ Cs (for n¿1) are computed by applying (2.1), starting from
a given u0 ∈ Cs.
Recurrence relations of the form (2.1) arise in the numerical solution of initial value problems

for linear (ordinary, partial or delay) di�erential equations. The vectors un then provide numerical
approximations to the solution of the problem under consideration. For instance, �nite di�erence
schemes for solving initial-boundary value problems in linear partial di�erential equations can be
written in the form (2.1), as soon as the time step is constant and the space steps as well as the
coe�cients in the di�erential equation only depend on the space variables. In this situation, the
dimension s is related to the space steps, and will tend to in�nity if the steps approach zero. For
actual numerical processes, written in the form (2.1), see e.g. [5] and the Sections 2.2, 5.1 of the
present paper.
Suppose the numerical computations based on (2.1) were performed using a slightly perturbed

starting vector ũ 0 instead of u0. For n¿1, we then would obtain approximations ũ n, instead of un,
satisfying the recurrence relation ũ n = Bũn−1 + bn (n = 1; 2; 3; : : :). In the stability analysis of (2.1)
the crucial question is whether, for n¿1, the propagated errors vn= ũ n−un can be bounded suitably
in terms of the initial error v0 = ũ 0 − u0. One may thus be looking for bounds of the form

|vn|6M · |v0| (n¿1): (2.2)

Here M denotes a constant of moderate size. Further, |·| stands for a norm on Cs which is considered
suitable for measuring error vectors; e.g. the familiar lp-norm for vectors x ∈ Cs, with components
�i, de�ned by

|x|p =
(

s∑
i=1

|�i|p
)1=p

(if 16p¡∞); |x|p = max
16i6s

|�i| (if p=∞):

By subtracting the recurrence relations satis�ed by ũ n and by un from each other, we �nd vn =
Bvn−1 = Bnv0. By de�ning, for s× s matrices A,

‖A‖=max{|Ax|=|x|: 0 6= x ∈ Cs}; (2.3)

we thus see that the stability analysis of process (2.1) amounts to deriving bounds on ‖Bn‖. The
following bound (2.4) would match (2.2):

‖Bn‖6M (n¿1): (2.4)

In this paper we shall deal with the general problem of deriving suitable upper bounds on ‖Bn‖.

2.2. Eigenvalue conditions

In this subsection we review some simple conditions for (2.4) formulated in terms of the eigen-
values � of the matrix B. We denote the spectral radius of B by

r(B) = max{|�|: � is an eigenvalue of B}:
It follows from the Jordan canonical form of B (see, e.g., [8]) that an M with property (2.4)

exists if and only if

r(B)61; and any Jordan block corresponding to an
eigenvalue � of B; with |�|= 1; has order 1: (2.5)
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However, it was noticed already long ago (see, e.g., [16]) that the eigenvalue condition (2.5) can be
a very misleading guide to stability. The fact is, that under condition (2.5) the smallest M satisfying
(2.4) can be prohibitively large. This phenomenon occurs in practice, even under the subsequent
condition (2.6), which is stronger than (2.5).

r(B)¡ 1: (2.6)

An instructive example, illustrating that (2.5), (2.6) are unreliable, is provided by the s × s
bidiagonal matrix

B=




�1
2 �2

. . . . . .
2 �s


 : (2.7)

We consider the situation where s is large and all |�i|¡ 1, so that (2.6) holds.
For any s× s matrix A and 16p6∞, we use the notation
‖A‖p =max{|Ax|p=|x|p: 0 6= x ∈ Cs}: (2.8)

It is easy to see that, for 16p6∞, the matrix B de�ned by (2.7) satis�es

‖Bn‖p¿2n (n= 1; 2; : : : ; s− 1): (2.9)

For moderately large values of s, say s ≈ 100, we have ‖Bs−1‖p & 1030, so that actually instability
manifests itself although (2.6) is ful�lled.
We note that matrices of the form (2.7) exist which may be thought of as arising in the numerical

solution of initial-boundary value problems, e.g.,

ut(x; t) + ux(x; t) = u(x; t); u(0; t) = 0; u(x; 0) = f(x);

where 06x61, t¿0 and f is a given function. Consider the di�erence scheme
1
�t
(um;n − um;n−1) +

1
�x
(um;n−1 − um−1; n−1) = um;n−1;

where �t ¿ 0, �x=1=s¡ 1, m=1; 2; : : : ; s and n=1; 2; 3; : : : . We de�ne u0; n−1=0 and um;0=f(m�x),
so that um;n approximates u(m�x; n�t). Clearly, when �t=�x = 2, the vectors un with components
um;n (16m6s) satisfy un=Bun−1 where B is of the form (2.7) with �i=−1+�t ∈ (−1; 1). Further,
since �x = 1=s it is natural to focus on large values of s.
The above example (2.7) shows that under the general conditions (2.5), (2.6) the size of M in

(2.4) is not under control and errors can grow exponentially — see (2.9). In the rest of this paper
we focus on reliable conditions on arbitrary s × s matrices B under which such disastrous error
growth cannot take place.

3. Stability estimates and resolvent conditions from the literature

3.1. The resolvent condition of Kreiss

Throughout this Subsection 3.1 we assume, unless stated otherwise, that ‖ · ‖ is a matrix norm
induced by an arbitrary vector norm in Cs, according to (2.3).
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We shall relate property (2.4) (with moderate M) to the condition that

r(B)61 and ‖(�I − B)−1‖6 L
|�| − 1 for all � ∈ C with |�|¿ 1: (3.1)

Here I denotes the s× s identity matrix, and L is a real constant. One usually calls (�I − B)−1 the
resolvent of B at �, and we shall refer to (3.1) as the Kreiss resolvent condition. We use the latter
terminology because (3.1) was used, with ‖ · ‖=‖ · ‖2, by Kreiss [10] in formulating what nowadays
is called the Kreiss matrix theorem. In many cases of practical interest it is easier to verify (3.1)
than (2.4).
If (2.4) holds, then r(B)61. Moreover, a power series expansion of the resolvent, for |�|¿ 1,

then yields

‖(�I − B)−1‖= |�|−1
∥∥∥∥∥

∞∑
n=0

(�−1B)n
∥∥∥∥∥6|�|−1(1− |�−1|)−1 max{1; M}:

It follows that (2.4) implies (3.1), with L=max{1; M}. For the case where ‖ · ‖= ‖ · ‖2, Kreiss [10]
succeeded in proving that conversely (3.1) implies (2.4) with M =ML;s only depending on L and s.
In the following we shall be interested in the case where s is large. Therefore, it is important to

understand how ML;s depends on s. The original proof of Kreiss does not provide a sharp value for
ML;s, and many subsequent authors studied the size of this quantity; see [31] for a historical survey.
Eventually, for arbitrary matrix norms (2.3), the following theorem was obtained — for its proof
see, e.g., [5, pp. 208, 209].

Theorem 3.1. For any real constant L and any s× s matrix B satisfying (3:1); we have

‖Bn‖6eLs (n¿1; s¿1); (3.2a)

‖Bn‖6eL(n+ 1) (n¿1; s¿1): (3.2b)

According to this theorem, under the Kreiss resolvent condition, the size of ‖Bn‖ is rather well
under control. Exponential error growth cannot occur — at the worst there may be weak instability
in that the propagated errors increase linearly with n or s.
For applications of the above theorem (and its predecessors), one may consult [5,7,10,15,17,18,23,

25]; for diverse theoretical issues related to the theorem, we refer to [5,13,14,26,29].

3.2. The sharpness of the stability estimates (3.2)

In this subsection we discuss the sharpness of the estimates (3:2) for the interesting case where
‖ · ‖ = ‖ · ‖∞. We focus on this norm because of the following three reasons: there exist rather
complete results about the sharpness of (3:2) for the norm ‖ · ‖∞; moreover, important practical
situations exist where ‖(�I −B)−1‖∞ can rather easily be estimated; �nally, error estimates in terms
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of the l∞-norm allow of a useful and easy interpretation. For sharpness results pertinent to other
norms, we refer to [5,12,24].
It is known that s× s matrices Bs exist, satisfying (3.1) with ‖ · ‖= ‖ · ‖∞ and with some �nite

L= Ls (for s= 1; 2; 3; : : :), such that the quotient ‖(Bs)s−1‖∞=(sLs) tends to e when s→∞ (see [5,
Corollary 2.3]). It follows that the estimates given in Theorem 3.1 are sharp in that the constant
e, occurring in the right-hand members of (3.2a) and (3.2b), cannot be replaced by any smaller
constant.
Unfortunately, the values Ls, in the above counterexample, tend to ∞ when s → ∞. Therefore,

the nice sharpness result just mentioned is related to the fact that the estimates in Theorem 3.1 are
required to follow from (3.1) simultaneously for all possible values of L. The above counterexample
fails to be relevant to the important question in how far the stability estimates (3.2a) and (3.2b) are
also best possible, when L is an arbitrary but �xed constant. In fact, for ‖·‖=‖·‖∞ and L=1, these
estimates can substantially be improved: in this situation the resolvent condition (3.1) is known to
imply ‖Bn‖∞61 (n¿1, s¿1) — see, e.g., [5, Theorem 2.6].
The important problem arises as to whether the upper bounds (3.2a) and (3.2b) can be improved,

for all �xed values L, to bounds on ‖Bn‖∞ which do not grow, or which grow (much) slower than
linearly with s or n.
This problem was solved by Kraaijevanger [9]. He succeeded in constructing s × s matrices Bs

satisfying (3.1), with ‖ · ‖= ‖ · ‖∞ and L= �+ 1, such that

‖(Bs)n‖∞ = 2s− 1 = 2n− 1 (whenever n= s¿1): (3.3)

In view of (3.3), we conclude that the upper bounds (3.2a) and (3.2b) cannot be improved, for all
�xed values L, into bounds which grow slower than linearly with s or n.

3.3. Variants to the Kreiss resolvent condition

Throughout this subsection we assume again, unless speci�ed otherwise, that ‖·‖ is a matrix norm
induced by an arbitrary vector norm in Cs, according to (2.3). We shall deal with two stronger
versions of condition (3.1) as well as two weaker versions.
In view of the conclusion at the end of Section 3.2, the question poses itself of whether bounds on
‖Bn‖ which grow slower than linearly with s or n can still be established under conditions that are
slightly stronger than (3.1) (and ful�lled in cases of practical interest). Below we review shortly two
conclusions, obtained in the literature, pertinent to this question. For additional results, see [3,13,22].
Consider for arbitrary s× s matrices B the condition that

r(B)61 and ‖(�I − B)−m‖6 L
(|�| − 1)m for |�|¿ 1 and m= 1; 2; 3; : : : : (3.4a)

Clearly, this so-called Hille-Yosida or iterated resolvent condition implies (3.1). Unlike (3.1), con-
dition (3.4a) implies the stability estimate

‖Bn‖6Ln!(e=n)n6eL
√
n (n¿1; s¿1): (3.4b)



N. Borovykh, M.N. Spijker / Journal of Computational and Applied Mathematics 125 (2000) 41–56 47

This estimate was obtained by various authors. It follows for instance easily from the material in
[2, p. 41] in combination with [11], or directly from [13].
A still better stability estimate can be established under the following condition (3.5a), which was

introduced in [28].

r(B)61 and ‖(�I − B)−1‖6 L
|�− 1| for |�|¿ 1: (3.5a)

Since |� − 1|−16(|�| − 1)−1, also this condition implies (3.1). Moreover, as was shown in [3],
condition (3.5a) implies the inequality

‖Bn‖6eL2=2 (n¿1; s¿1); (3.5b)

the right-hand member of which does not grow with n or s. We refer to the paper just mentioned
for an application of (3.5b) in proving numerical stability for a class of Runge–Kutta methods in
the numerical solution of initial-boundary value problems for parabolic partial di�erential equations.
Clearly, in order to apply the general stability estimates (3.2), (3.4b) or (3.5b) in any practical

situation, one has to check whether the corresponding resolvent conditions are actually ful�lled.
Sometimes this may be di�cult, and there are cases where one cannot even prove (3.1) (see, e.g.,
Section 5.2). Therefore, it is an important issue of whether estimates similar to (3.2a) and (3.2b)
still hold under resolvent conditions which are weaker than (3.1). Below we mention two results
pertinent to this issue.
Consider, for arbitrary s× s matrices B and a given constant �¿ 0, the condition that

r(B)61 and ‖(�I − B)−1‖6L
|�|�·s
|�| − 1 for |�|¿ 1: (3.6a)

This weaker version of (3.1) is known to imply that

‖Bn‖6eL[�s+min{s; n+ 1}] (n¿1; s¿1); (3.6b)

see [21] for a proof and an application of (3.6b). We conclude that under condition (3.6a), similarly
as under the stronger condition (3.1), the norm ‖Bn‖ cannot grow faster than linearly with s.
A further weaker version of (3.1), considered in the literature, requires that, for a given �xed

value �¿ 0, the s× s matrix B satis�es

r(B)61 and ‖(�I − B)−1‖6L
|�|�

(|�| − 1)1+�
for |�|¿ 1 (3.7a)

(cf. [6,17,27]). Under this condition the norm of the resolvent is allowed to grow (when |�| → 1+)
like (|�|−1)−1−�, which is faster than in the situation (3.1). In [6] it was shown that, under condition
(3.7a),

‖Bn‖6eL(n+ 1)1+� (n¿1; s¿1): (3.7b)

Further, by the arguments in [27], condition (3.7a) is seen to imply, for the case where ‖ · ‖= ‖ · ‖2,
that

‖Bn‖6cLs(n+ 1)� (n¿1; s¿1); (3.7c)

where c = 32 e1+�=�.
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We conclude this section by noting that slightly modi�ed versions of (3.1), (3.5a), (3.6a), (3.7a)
were considered in the literature as well: most of the papers mentioned above also deal with the
situation where the inequality for the norm of the resolvent is required to hold only for 1¡ |�|¡�
— where � is a �nite constant — rather than for all � with |�|¿ 1. In this situation upper bounds
for ‖Bn‖ were proved which equal the original bounds, speci�ed in (3:2), (3.5b), (3.6b), (3.7b) and
(3.7c), respectively, multiplied by a factor  only depending on � (and �). For the special case
(3.5b), the corresponding factor  is exceptionally simple in that = 1 for any � with 1¡�¡∞:
it can be proved that ‖Bn‖6eL2=2 (n¿1; s¿1) whenever r(B)61 and ‖(�I − B)−1‖6L|�− 1|−1
(1¡ |�|¡�).

4. Stability estimates under a general resolvent condition

4.1. Preliminaries

Throughout this Section 4 we assume, unless speci�ed otherwise, that ‖ ·‖ is an arbitrary norm on
the vector space of all complex s× s matrices (i.e., ‖A‖¿ 0 for A 6= 0, and ‖A+ B‖6‖A‖+ ‖B‖,
‖� · A‖= |�| · ‖A‖ for all � ∈ C and all s× s matrices A, B).
We shall present upper bounds for ‖Bn‖, under the following general resolvent condition:

r(B)61 and ‖(�I − B)−1‖6 L
(|�| − 1)k |�− 1|l (1¡ |�|¡�): (4.1)

Here L is a positive constant, k and l are nonnegative �xed integers with k + l¿1, and 1¡�6∞.
Clearly, condition (4.1) generalizes some of the resolvent conditions reviewed in Section 3.
In deriving our upper bounds for ‖Bn‖, we shall make use of

Lemma 4.1. Let �6�6� + 2�; r ¿ 0; and let � denote the subarc of a circle given by � =
reit (�6t6�): Assume R(�) = P(�)=Q(�); where P(�); Q(�) are polynomials of a degree not ex-
ceeding s; with Q(�) 6= 0 on �. Then∫

�
|R′(�)| |d�|6�s diam R(�)62�smax

�
|R(�)|: (4.2)

In (4.2) we denote by diam R(�) the diameter of the set {R(reit): �6t6�}. We note that this
lemma allows of a simple geometrical interpretation since the integral in (4.2) equals the arc length of
the image, under (the mapping) R, of �. A version of this lemma with �=�+2� was already proved
in [20] and in [31]. The more general Lemma 4.1 is no consequence of that version. But, property
(4.2), for the general case �6�6� + 2�, can easily be proved by a straightforward adaptation of
the arguments used in [20]. We omit the details.

4.2. Formulation and proof of general stability estimates

The following theorem summarizes our upper bounds for ‖Bn‖, under the resolvent condition
(4.1).
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Theorem 4.2. There is a constant  depending only on k; l; � such that; for all n¿1; s¿1 and for
each s× s matrix B satisfying (4:1);

‖Bn‖6Lnk−1 min{s; n} (if k¿1; l= 0); (4.3a)

‖Bn‖6Lnk min{log(s+ 1); log(n+ 1)} (if k¿0; l= 1); (4.3b)

‖Bn‖6Lnk+l−1 (if k¿0; l¿2): (4.3c)

Clearly, the bound (4.3a) is closely related to the estimates (3:2) and (3.7b), (3.7c) (with �=k−1).
The proof below of (4.3a) will consist in a straightforward application of arguments used earlier in
the literature. It will rely among other things on Lemma 4.1 with � = �+ 2�.
To the best of our knowledge, the estimates (4.3b) and (4.3c) are new. Our proof of (4.3b) will

require an application of Lemma 4.1 with �¡�+ 2�.

Proof of Theorem 4.2. (1) Let n¿1; s¿1 and let the s × s matrix B satisfy (4.1). We shall use
the Dunford–Taylor representation (see, e.g., [19, Chapter 10])

Bn =
1
2�i

∫
�
�n(�I − B)−1 d�;

where � is the positively oriented circle |�|= r with r =min{�; 1 + 1=(n+ 1)}.
By a well known corollary to the Hahn–Banach theorem (see, e.g., [19, Chapter 3]), there is a

linear mapping F from the vector space of all complex s× s matrices to C, with F(Bn) = ‖Bn‖ and
|F(A)|6‖A‖ for all s× s matrices A. Consequently,

‖Bn‖= 1
2�i

∫
�
�nR(�) d�; (4.4a)

where R(�) = F((�I − B)−1) and

|R(�)|6L(|�| − 1)−k |�− 1|−l for 1¡ |�|6�:

(2) Let l = 0. Similarly as in [12], [5, pp. 208, 209] we perform a partial integration so as to
obtain from (4.4a)

‖Bn‖= −1
2�i(n+ 1)

∫
�
�n+1R′(�) d�6

rn+1

2�(n+ 1)

∫
�
|R′(�)| |d�|: (4.4b)

By still using arguments similar to those in the above references, one can see that R(�)=P(�)=Q(�),
where P(�); Q(�) are polynomials of a degree not exceeding s. Furthermore, for |�| = r, we have
Q(�) 6= 0. Consequently, we can conclude from (4.4a), (4.4b) and Lemma 4.1 (with � = � + 2�)
that

‖Bn‖6 rn+1

(n+ 1)(r − 1)k Lmin{s; n+ 1}:
This inequality implies the relations (4.5a) and (4.5b), which in their turn prove (4.3a):

‖Bn‖6eL(n+ 1)k−1 min{s; n+ 1} if n+ 1¿(�− 1)−1; (4.5a)

‖Bn‖6 L�n+1

(n+ 1)(�− 1)k min{s; n+ 1} if n+ 1¡ (�− 1)−1: (4.5b)
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(3) Let l = 1. We decompose the circle � into two subarcs �0 and �1, where �0 is given by
� = reit (−�6t6�), and �1 by � = reit (�6t62� − �). Here � is a value with 06�6� to be
speci�ed below. Putting �0 = rei�, we obtain from (4.4a), by partial integration, the representation

‖Bn‖= 1
2�i

∫
�0

�nR(�) d�+
−1

2�i(n+ 1)

∫
�1

�n+1R′(�) d�

+
1

2�i(n+ 1)(
��
n+1

0 R( ��0)− �n+10 R(�0)):

We denote the three successive terms in the right-hand member of the last equality by I0; I1; I2,
respectively.
We de�ne y = 2�[�(r − 1)]−1 and assume that y¿4. We have

|I0|6 Lrn+1

�(r − 1)k
∫ �

0

dt√
(r − 1)2 + (2t=�)2 =

Lrn+1 log(y +
√
1 + y2)

2(r − 1)k

6
Lrn+1

(r − 1)k [1=2 + log(y=2)]:

By applying (among other things) Lemma 4.1, with �= �; � = 2�− �, we also have

|I1|6Ks; |I2|6K=� where K =
Lrn+1

(r − 1)k+1(n+ 1)√1 + y2
:

We �rst choose �=�. We have ‖Bn‖=|I0| and y=2(r−1)−1¿4 so that ‖Bn‖6Lrn+1(r−1)−k{1+
log[(r − 1)−1]}.
Next, we assume that s¡n and we choose �= �(s+1)=(n+1). We now have y=2(s+1)[(r−

1)(n + 1)]−1¿2(s + 1)¿4. Combining the inequality ‖Bn‖6|I0| + |I1| + |I2| and our upper bounds
for |I0|; |I1|; |I2| we arrive at the estimate ‖Bn‖6Lrn+1(r − 1)−k{1 + log[(r − 1)−1(s+ 1)=(n+ 1)]}.
The two bounds for ‖Bn‖ just obtained are equivalent to

‖Bn‖6 rn+1

(r − 1)k L
{
1 + log

[
min{s+ 1; n+ 1}
(n+ 1)(r − 1)

]}
:

This inequality implies the relations (4.6a) and (4.6b), which in their turn prove (4.3b):

‖Bn‖6eL(n+ 1)k[1 + log(1 + min{s; n})] if n+ 1¿(�− 1)−1; (4.6a)

‖Bn‖6 L�n+1

(�− 1)k
{
1 + log

[
1 + min{s; n}
(n+ 1)(�− 1)

]}
if n+ 1¡ (�− 1)−1: (4.6b)

(4) Let l¿2. In order to prove (4.3c), we use (4.4a) so as to obtain

‖Bn‖6 Lrn+1

�(r − 1)k+l
J with J =

∫ �

0

dt
(1 + (�t)2)l=2

and � =
2

�(r − 1) :
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Introducing the variable x by the relation � t = (e x − e−x)=2, we have

J62l−1�−1
∫ ∞

0
(e x + e−x)1−l dx62l−1�−1(l− 1)−1

[
2

e x + e−x

]
:

Combining this estimate of J and the above bound for ‖Bn‖, one obtains the relations (4.7a) and
(4.7b), which in their turn prove (4.3c):

‖Bn‖62
l−2e

l− 1L(n+ 1)
k+l−1 if n+ 1¿(�− 1)−1; (4.7a)

‖Bn‖6 2l−2

l− 1
L�n+1

(�− 1)k+l−1 if n+ 1¡ (�− 1)−1: (4.7b)

4.3. Remarks in connection with Theorem 4.2

The estimates (4:3) in Theorem 4.2 have deliberately been formulated concisely without indicating
how  may depend on the parameters k; l; �. Bounds for ‖Bn‖ in which the dependence on these
parameters is explicit can be obtained from (4.5)–(4.7). As an illustration we mention that (4:5)
can be used in proving, for k¿1; l= 0 and any s× s matrix B satisfying (4.1), that

‖Bn‖6cL(n+ 1)k−1 min{s; n+ 1} (n¿1; s¿1);

where c= e (for �¿3=2), c=max{e; �2 2−k(�− 1)−k} (for 1¡�¡ 3=2). We note that this bound
can be applied in the situation (3.7a) (with � = k − 1), so as to yield (3.7c) with a smaller value
for c than the one given in Section 3.3.
We conclude this section by a short discussion of the sharpness of the stability estimates, given

in Theorem 4.2, for the important case ‖ · ‖ = ‖ · ‖∞. We focus on the question of whether these
estimates can be improved, for all �xed L and �, to bounds on ‖Bn‖∞ which grow slower with n
or s than the bounds in (4:3).
Kraaijevanger’s result (3.3) makes clear that, when k =1; l=0, the estimate in (4.3a) cannot be

improved, for all L; �, into a bound of the form ‖Bn‖∞6cmin{�(s);  (n)}, where c= c(�; L) only
depends on �; L and either �(s) or  (n) grows slower than linearly with s or with n, respectively.
On the other hand, an essential improvement over the estimate in (4.3b) is possible when k=0; l=1:
in Section 3.3 we have seen that in this case ‖Bn‖6c with c = eL2=2.
The authors found that, somewhat surprisingly, a conclusion, similar to the one just mentioned

for k = 1; l = 0, can be reached whenever k 6= 0 or l 6= 1. In fact, for each k¿1, the estimate
in (4.3a) cannot be improved into a bound of the form ‖Bn‖∞6c(�; L; k)nk−1 min{�(s);  (n)} with
any functions �(s);  (n) as considered above. Further, for each k¿1, the estimate in (4.3b) cannot
be improved into ‖Bn‖∞6c(�; L; k)nk min{�(s);  (n)} with either �(s) or  (n) growing slower than
log(s+1) or log(n+1), respectively. Finally, for each k¿0 and l¿2, the estimate in (4.3c) cannot
be improved into ‖Bn‖∞6c(�; L; k; l) (n) with limn→∞  (n)=nk+l−1 = 0. More details are given in
[4].
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5. Stability analysis in the numerical solution of delay di�erential equations

5.1. Applying the trapezoidal rule to a linear test problem

The above general considerations will be illustrated in the numerical solution of the initial value
problem

Z ′(t) = f(Z(t); Z(t − �)) (t¿0); Z(t) = g(t) (t60):

Here f; g are given functions, �¿ 0 is a �xed delay, and Z(t) is unknown (for t ¿ 0).
We focus on the following well-known version of the trapezoidal rule:

zn = zn−1 +
h
2
[f(zn; zn−s+1) + f(zn−1; zn−s)] (n¿1): (5.1)

Here s denotes an integer with s¿2, and h = �=(s − 1) is the so-called stepsize. Further, zn are
approximations to Z(t) at the gridpoints t = tn = nh. Putting zn = g(tn) (n60), one may compute
successively approximations zn (for n= 1; 2; 3; : : :) from (5.1).
Many authors (see, e.g., [1,30,32]) studied the stability of numerical methods, for the above initial

value problem, by analysing the behaviour of the methods in the solution of the following linear
test problem:

Z ′(t) = �Z(t) + �Z(t − �) (t¿0); Z(t) = g(t) (t60):

Here �; � denote �xed complex coe�cients, and g(t); Z(t) ∈ C.
Method (5.1), when applied to the test equation, reduces to the recurrence relation

zn = azn−1 + bzn−s+1 + bzn−s (n¿1);

where a = (2 + x)(2 − x)−1; b = y(2 − x)−1 and x = h�; y = h�. This recurrence relation can be
written in the form

un = Bun−1 (n¿1) where un = (zn; zn−1; : : : ; zn−s+1)T:

Here the s× s companion matrix B= (�ij) is de�ned, for s¿3, by �ij = a (if i = j = 1), �ij = b (if
i = 1 and j = s − 1; s), �ij = 1 (if 16j = i − 16s − 1), and �ij = 0 otherwise. For s = 2, we have
�11 = a + b; �12 = b; �21 = 1; �22 = 0. Clearly, B depends (only) on x; y and s. Accordingly, we
shall write B= Bs(x; y).
Following standard practice in dealing with the above test problem, we consider the so-called

stability region

S = {(x; y): r(Bs(x; y))¡ 1 for all s¿2}:
It is known that all pairs (x; y) with Re x¡−|y| belong to S, and that all (x; y)∈ S satisfy Re x6−|y|
(see, e.g., [30]).
But, as highlighted in Section 2, with regard to error propagation the crucial question is not of

whether the spectral radius condition r(Bs(x; y))¡ 1 is ful�lled, but of whether ‖Bn‖ is of moderate
size, where B= Bs(x; y) and ‖ · ‖ is related to a suitable vector norm according to (2.3).
In the following we focus on estimating ‖Bn‖∞ for B = Bs(x; y); n¿1; s¿2, uniformly for all

(x; y) ∈ S.



N. Borovykh, M.N. Spijker / Journal of Computational and Applied Mathematics 125 (2000) 41–56 53

5.2. Obtaining stability results by using resolvents

In [21] it was proved that, corresponding to any given �xed s¿2, there exists no �nite L such
that B=Bs(x; y) satis�es the Kreiss condition (3.1) (with ‖ · ‖= ‖ · ‖∞) uniformly for all (x; y) ∈ S.
Since (2.4) implies (3.1) (with L = max{1; M}, see Section 3.1), it follows that the quantity Ms,
de�ned by

Ms = sup{‖Bn‖∞: n¿1; B= Bs(x; y); (x; y) ∈ S};
satis�es

Ms =∞ (for s= 2; 3; 4; : : :):

In spite of this negative stability result, it is still possible to establish an upper bound for
‖Bn‖∞ (uniformly for B = Bs(x; y) with (x; y) ∈ S) which is only slightly weaker than (3.2). This
bound can be obtained by a combination of Theorem 4.2 and the following lemma.

Lemma 5.1. Let Re x6− |y|. Then the matrix B= Bs(x; y) satis�es

r(B)61 and ‖(�I − B)−1‖∞6 11
(|�| − 1)|�+ 1| (for 1¡ |�|¡ 3

2 ): (5.2)

Proof. Let x; y ∈ C, with Re x6−|y|, and let s¿2; B=Bs(x; y). The polynomial P(�)=det(�I−B)
can be written in the form

P(�) = (�− a)�s−1 − (�+ 1)b:
Let � ∈ C, with |�|¿ 1. In [21, pp. 243, 244] it was shown that the spectral radius r(B)¿1, and

that

‖(�I − B)−1‖∞62
{

1
|�| − 1 +

|�|s−1
|P(�)|

}
:

We write � in the form

�=
2 + z
2− z

with Re z¿ 0; z 6= 2:
By straightforward calculations it can be seen that

�− a=
4(z − x)

(2− z)(2− x)
; (�+ 1)b=

4y
(2− z)(2− x)

;

|�|2 − 1 = 8Re z
|2− z|2 ; |�+ 1|= 4

|2− z| :
These equalities imply that

|P(�)|
|�|s−1¿|�|

−1{|(�− a)�| − |(�+ 1)b|}¿4(|(z − x)�|+ Re x)
|�(2− z)(2− x)| :

Since Re z − Re x6|z − x|, we have
|(z − x)�|+ Re x¿ |z − x|(|�| − 1) + Re z

¿ (|�| − 1)‖2− x| − |2− z‖+ 1
8(|�|2 − 1)|2− z|2:
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Combining this bound for |(z − x)�| + Re x with the above lower bound for |P(�)|=|�|s−1, we
obtain

|P(�)|
|�|s−1 ¿

|�| − 1
|�|

[∣∣∣∣1−
∣∣∣∣2− z
2− x

∣∣∣∣
∣∣∣∣ · |�+ 1|+ 12(|�|+ 1)

∣∣∣∣2− z
2− x

∣∣∣∣
]

¿
|�| − 1
|�|

[∣∣∣∣|�+ 1| − 4
|2− x|

∣∣∣∣+ 2
|2− x|

]

¿
|�| − 1
|�| max

{
2

|2− x| ;
|�+ 1|
2

}
:

In view of the above upper bound for ‖(�I − B)−1‖∞, we arrive at

‖(�I − B)−1‖∞62
[
1 + |�|min

{ |2− x|
2

;
2

|�+ 1|
}]
(|�| − 1)−1:

We conclude that, for |�|¿ 1,

‖(�I − B)−1‖∞6(2|�+ 1|+ 4|�|)|�+ 1|−1(|�| − 1)−1:
This implies (5.2).

The following neat stability result for the trapezoidal rule can now easily be proved.

Theorem 5.2. There is a constant c such that B= Bs(x; y) satis�es

‖Bn‖∞6cnmin{log(s+ 1); log(n+ 1)} (n¿1; s¿2);

uniformly for all (x; y) ∈ S.

Proof. Lemma 5.1 shows that the matrix −B satis�es (4.1) with ‖ · ‖= ‖ · ‖∞ and k = l= 1; L=
11; �=3=2. In view of Theorem 4.2, we have ‖Bn‖∞= ‖(−B)n‖∞6cnmin{log(s+1); log(n+1)}
with c = 11. Here  is constant.

We note that the upper bound for ‖Bn‖∞ given by the above theorem can be interpreted as a
stability result of the form

|z̃n − zn|6�(s; n)max{|z̃0 − z0|; |z̃−1 − z−1|; : : : ; |z̃−s+1 − z−s+1|};
valid for any two sequences zn; z̃n, computed from (5.1) with f(�; �) = �� + �� and Re �6 − |�|.
Here �(s; n) = cnmin{log(s+1); log(n+1)} is growing only slightly faster than linearly with n, so
that a mild error propagation is present.
Finally, we note that, in line with the �rst paragraph of Section 4.3, a fully explicit upper bound

for ‖Bn‖∞ can be obtained as well. From (4.6a) and Lemma 5.1, we easily obtain, for B= Bs(x; y)
and all (x; y) ∈ S,

‖Bn‖∞611e(n+ 1)[1 + min{log(s+ 1); log(n+ 1)} (n¿1; s¿2):
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Abstract

We discuss numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of
dynamical systems. We further consider the computation of cycles as a boundary value problem, their continuation and
bifurcations. Homoclinic orbits can also be computed as (truncated) boundary value problems and numerically continued.
On curves of homoclinic orbits further bifurcations can be detected and computed. We discuss the basic numerical
methods, the connections between various computational objects, and provide references to the literature and software
implementations. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bifurcation of ODEs is a sub�eld of dynamical systems theory. We consider parameterized ordi-
nary di�erential equations of the form

dx
dt
≡ x′ = G(x; �); (1)

where x ∈ RN is called the state variable, � ∈ Rm is called the parameter and G(x; �) ∈ RN is
a nonlinear function of x; �. The space in which x lives is called the state space. Examples of
systems of the form (1) are ubiquitous in mathematical modelling. Classical application �elds are
many branches of physics, engineering, chemistry, economy and �nance. In our opinion the most
interesting new examples are in biology and medicine. A large collection of biological examples can
be found in [20], e.g., insect outbreak models (the spruce budworm), harvesting of �sh, predator–
prey models, pest control, and biochemical reactions. For a recent work on epidemiology see [8]. A
complicated neurobiological model (a nerve cell of the crab, Cancer Borealis) is considered in [13].
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For a review of modelling the dynamics of HIV infection see [21]. Many of these models compete
with or are combined with models of another type, e.g. discrete dynamical systems, di�erential-
algebraic equations, delay di�erential equations and PDEs. For the study of these other approaches
the methods and results from bifurcation in ODEs often provide the basic ideas and inspiration.
If an initial condition x(0)= x0 is given then for a �xed parameter � the system (1) has a unique

solution x(t) under very general conditions on G(x; �). The domain of de�nition may be small but
always includes a neighborhood of t=0. Such a solution is called an orbit of (1). A relevant region
of the state space typically contains a family of orbits which do not intersect each other (because of
the uniqueness for a given initial condition). A picture of such a region is called a phase portrait.
The focus of dynamical systems theory is the behaviour of phase portraits under variations of the

parameter �. Suppose that for (1) we have a particular value �0 of � in mind. Then for values of �
near �0 the system (1) is called an unfolding of

dx
dt
≡ x′ = G(x; �0): (2)

In a region in the state space, (2) is structurally stable if the phase portraits of (1) are qualitatively
the same as those of (2) for ‖� − �0‖ su�ciently small, i.e., they can be obtained by smooth
nonlinear transformations of coordinates. Values �0 for which (2) is not structurally stable are called
bifurcation values. To make this mathematically precise a sophisticated machinery is required. We
refer to [14,15] for details. For most practical applications and numerical work it is enough to
understand intuively that phase portraits are qualitatively the same if there exists a homeomorphism
that preserves the orbits and the direction of the ow.
One important aim of analytical bifurcation theory is the classi�cation of bifurcations. To this

end an equivalence relation is de�ned and in each equivalence class a bifurcation with a mimimal
number of state variables and of simplest polynomial form is chosen. This is called a normal form.
A normal form usually contains one or more coe�cients which determine the dynamic behaviour of
the normal form itself and of its possible unfoldings.
The simplest solutions to (1) are the equilibria, i.e., solutions to the equation

G(x; �) = 0: (3)

If (x; �) is a solution to (3) then the question arises whether � is a bifurcation value. Since in many
models parameters may be introduced in various ways, the essential problem is to give conditions
on G(x; �) for a �xed value of � such that in all unfoldings of the problem the phase portraits
of the slightly perturbed systems are qualitatively the same as in the unperturbed system. If no
bifurcation can occur in an unfolding, we say that the equilibrium is structurally stable. It turns
out that the necessary and su�cient condition for structural stability of an equilibrium is that the
Jacobian matrix Gx has no eigenvalues on the imaginary axis of the complex plane. This is not to be
confused with the dynamic stability of the equilibrium itself. The equilibrium is asymptotically stable
if all eigenvalues have a strictly negative real part, it is unstable if there is at least one eigenvalue
with a stricly positive real part.
Now eigenvalues on the imaginary axis can generically appear in one-parameter problems (m=1)

in two ways, either as a simple zero eigenvalue or as a conjugate pair ±i! (!¿ 0) of pure imaginary
eigenvalues. The �rst case is called a Fold point, the second case a Hopf point. The Fold bifurcation
typically leads to a change in the stability properties of the solution under parameter perturbations,
the Hopf bifurcation to the emergence of another type of solution, namely periodic orbits, i.e.,



W. Govaerts / Journal of Computational and Applied Mathematics 125 (2000) 57–68 59

Fig. 1. Fold and Hopf points in the catalytic oscillator model.

solutions for which x(T ) = x(0) for a number T ¿ 0 called the period of the cycle. If a periodic
orbit is isolated (which is generically the case) they it is also called a (limit) cycle.
As an example, we consider the catalytic oscillator model in [5] for the catalytic reaction of

CO-oxidation. It has three state variables x; y; s and seven parameters q1; q2; q3; q4; q5; q6; k. Explicitly,
we have

x′ = 2q1(1− x − y − s)2 − 2q5x2 − q3xy;

y′ = q2(1− x − y − s)− q6y − q3xy;

s′ = q4(1− x − y − s)− kq4s:

We used CONTENT [16] to study this system and produce some relevant pictures. The system has
a stable equilibrium at x = 0:0014673, y = 0:826167, s = 0:123119 for the parameter values q1 =
2:5; q2 = 1:92373; q3 = 10; q4 = 0:0675, q5 = 1; q6 = 0:1; k = 0:4. Freeing the parameter q2 we can
compute a curve of equilibria. In Fig. 1 we present a part of this curve in (q2; x)-space. It has two
Fold points (LP in Fig. 1) and two Hopf points (H in Fig. 1). The equilibria in the upper left and
bottom right corners are stable, the equilibria between the two Hopf points are unstable. As can be
expected generically, the Fold points are turning points with respect to the parameter q2.
The Hopf point in the bottom right of Fig. 1 is found for the parameter value q2 = 1:051556;

the state values are x = 0:01635814; y = 0:5239649; s= 0:3283407. From this point we can start a
family of periodic orbits, again with free parameter q2. We present it in Fig. 2 in (x; y)-space. We
note that close to the Hopf point the periodic orbit looks like an ellipse (the boundary of the inner
white space in Fig. 2) but later becomes irregular (the outer contour of the drawing in Fig. 2).
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Fig. 2. Growing periodic orbits in the catalytic oscillator model.

In the case of more parameters (m¿ 1) more complicated equilibrium bifurcations can be ex-
pected. We deal with these in Section 3.2.
In generic one-parameter problems cycles can bifurcate in several ways. One possibility is that the

period of the orbit tends to in�nity if � approaches a bifurcation value. Then the orbit becomes a
homoclinic orbit at the bifurcation value (see Section 5). Some other possibilities are characterized by
the properties of the monodromy matrix, i.e., the linearized return map of the cycle. The eigenvalues
of this matrix are called the multipliers of the cycle. We deal with cycles in Section 4.
A third well-studied solution type of (1) are the connecting orbits, i.e., solutions x(t) which

converge to �nite limit values x+ an x− if t tends to ±∞, respectively. If the two limit values
are the same, then the connecting orbit is called a homoclinic connection, otherwise a heteroclinic
connection.
There are other types of solutions as well. We mention invariant tori. Chaotic behaviour is also a

solution type.

2. Numerical continuation

Numerical continuation is one basic ingredient of the numerical study of bifurcation problems (for
good reasons the interactive software package [16] is called CONTENT = CONTinuation ENviron-
menT). It is a technique to compute curves of solutions to an underdetermined system of equations.
In bifurcation problems it allows to �nd bifurcations of more and more complicated types, starting
from simple objects like equilibria.
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Consider a system of nonlinear equations

f(z) = 0; (4)

where z ∈ RN+1, f(z) ∈ RN . In the context of (1) z might consist of the N components of x and
one free parameter. If z0 is a solution to (4) and the Jacobian matrix fz(z0) has full rank N then by
the implicit function theorem (4) has a curve of solutions through z0. Numerical continuation is a
technique to “compute” this curve, i.e., to compute sequences of points on the curve. Practically all
currently used packages (in particular, AUTO [9], CONTENT [16]) use a tangent predictor step and a
Newton-type corrector step. For details we refer to [4, Vol. III]; a full discussion is given in [12,
Chapter 2].
The tangent vector v ∈ RN+1 to the solution curve of (4) is determined by the equation fzv = 0

and some normalization condition that ensures that v is nonzero and points in the desired direction
along the curve. Typically one adds a condition of the form vT0v = 1 where v0 is an approximation
to v, e.g., from a previous continuation step. If in z one distinguishes a state component x ∈ RN and
a parameter component � ∈ R then this leads to a bordered system of equations(

fy f�

vT0y v0�

)(
vy

v�

)
=

(
0N

1

)
: (5)

Such bordered systems are ubiquitous in numerical continuation and bifurcation. Then we normalize
v by replacing v ← v=‖v‖ and the prediction for the next step along the curve is z1 = z0 + (�s)v
where �s is the predicted steplength along the tangent, a quantity which is updated during the
continuation. Starting with z1 as an initial guess, a new point along the curve is computed. A simple
way to achieve this is to look for a point in the hyperplane orthogonal to v, i.e., to solve by Newton’s
method the system

f(z) = 0; (6)

vT(z − z1) = 0: (7)

This method is used in AUTO [10]; it is called pseudo-arclength continuation. The linearized equations
again form a bordered matrix. Other software packages use slightly di�erent corrector algorithms
(and so compute slightly di�erent points on the curve). The convergence properties of the iteration
can be used (in one of several ways) to update the choice of the steplength. If the iteration does
not converge in a satisfactory way, then a popular strategy is to halve the stepsize and try again.
If convergence is obtained, then the number of Newton iteration steps can be used to update the
steplength.

3. Bifurcation of equilibria

3.1. Codimension-1 bifurcations

If an equilibrium is found and one parameter is freed (m= 1) then one can numerically continue
a path of equilibria of (1). The equilibrium is structurally stable if Gx has no eigenvalues on
the imaginary axis. Bifurcations occur if either a real eigenvalue crosses the imaginary axis (Fold
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bifurcation) or a conjugate pair of complex eigenvalues crosses it (Hopf bifurcation). In the Fold
case the dynamic behaviour at the Fold point depends on a normal form coe�cient

a= 1
2p

TG0
xxqq; (8)

where p; q are the left and right singular vectors of Gx, respectively, normalized so that 〈p; q〉 =
〈q; q〉= 1. Generically, a 6= 0 and the system behaves like

w′ = aw2: (9)

The case a=0 is a codimension-2 situation (see Section 3.2). In the Hopf case the dynamic behaviour
depends on another coe�cient, called the �rst Lyapunov value

‘1 = 1
2Re〈p;C(q; q; �q) + B( �q; �)− 2B(q; A−1B(q; �q))〉; (10)

where � = (2i!IN − A)−1B(q; q); A = Gx and B; C denote the tensors of second- and third-order
derivatives of G at the Hopf point; p; q are determined by the conditions Aq = i!q, pHA = i!pH,
〈p; q〉=1. If stability is lost in the Hopf point and ‘1¡ 0 then stable periodic orbits arise at the side
where the equilibrium is unstable (soft loss of stability). If stability is lost and ‘1¿ 0 then there
are unstable cycles at the side where the equilibrium is stable (hard loss of stability).

3.2. Codimension-2 bifurcations

If two parameters are freed (m=2) then bifurcations of a more complex type can be expected. In
fact, there are �ve such bifurcations. Three of them are determined by the Jacobian structure of Gx;
they are called the Bogdanov–Takens (BT), Zero-Hopf (ZH) and double-Hopf (DH) bifurcations,
respectively. In the BT-case Gx has a double-zero eigenvalue with geometric multiplicity one. In the
ZH-case a zero eigenvalue and a conjugate pair of pure imaginary eigenvalues are simultaneously
present. In the DH-case there are two (di�erent) conjugate pairs of pure imaginary eigenvalues. The
two other codimension-2 bifurcations are the cusp point (CP) and the Generalized Hopf point (GH).
A CP point is found on a Fold curve if the value a in (8) vanishes, a GH point is found on a
Hopf curve if ‘1 vanishes. The dynamic behaviour near codimension-2 points is quite complicated:
bifurcations of cycles, homoclinic connections and chaotic behaviour are all generic. Therefore ap-
plications of bifurcation methods require a good understanding of the mathematical background, as
can be obtained from, e.g., [15]. On the other hand, the results obtained in this way can be quite
powerful in explaining the complex behaviour of dynamical systems. We refer to [12, Chapter 9]
for examples in the case of GH.

3.3. Detection, computation and continuation of codimension-1 bifurcations

In a computational study of parameterized dynamical systems we typically start by computing
equilibria for a given set of parameters. These can be found by solving (3) by any appropriate
method. The eigenvalues of the Jacobian Gx tell us the stability properties of the equilibrium, i.e.,
some information on the behaviour of the dynamical system in a nearby region. Asymptotically stable
equilibria can also be found by direct simulation of (1). If an equilibrium is found then we free a
parameter of the problem and continue numerically the curve of equilibria. To detect bifurcations on
this curve (Fold or Hopf) we need test functions. A test function is a function that can be computed
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in each continuation point and changes sign at the bifurcation point. It can also be used to compute
the bifurcation point, e.g., by the bisection method. If it has a regular zero at the bifurcation point,
then it can further be used to continue a curve of bifurcation point if another parameter is freed.
The determinant function det(Gx) provides a test function for Fold which is often available as a

byproduct of an LU-factorization of Gx. A related but somewhat more sophisticated function is the
value s obtained by solving(

Gx b

cT d

)(
v

s

)
=

(
0N

1

)
; (11)

where b; c ∈ RN ; d ∈ R must be such that the square matrix in (11) is nonsingular. So it is necessary
to update b; c; d along the equilibrium curve.
A test function for Hopf is the determinant of the bialternate product matrix 2A�IN where A=Gx.

We recall that if A; B are N × N matrices, then A � B is an m × m matrix where 2m = N (N − 1).
The rows and columns of A � B are labeled by multi-indices (p; q) and (r; s), respectively, where
16q¡p6N , 16s¡ r6N and the elements of A� B are given by

(A� B)(p;q); (r; s) = 1
2

{∣∣∣∣∣
apr aps

bqr bqs

∣∣∣∣∣+
∣∣∣∣∣
bpr bps

aqr qps

∣∣∣∣∣
}

: (12)

The eigenvalues of 2A � IN are precisely all sums of the form �i + �j where i¡ j and �1; : : : ; �N

are the eigenvalues of A. So det(2A � IN ) detects not only Hopf pairs where �i; j = ±i! but also
neutral saddles where Gx has two real eigenvalues with opposite sign. Neutral saddles do not have a
dynamic meaning for general equilibria (there is no bifurcation) but are quite useful in the numerical
study of dynamical systems because they help to �nd Hopf points. Furthermore, Bogdanov–Takens
points are often connected by curves of neutral saddles.
Also, they get a dynamic meaning in the case when the equilibrium is the hyperbolic �xed point

of a homoclinic connection, see Section 5.
If a Fold or Hopf point is computed then we want to know its dynamic properties; this information

is contained in the normal form coe�cients, i.e., a for Fold and ‘1 for Hopf.
If a second parameter is freed, then we can compute curves of Fold or Hopf points. To this end we

need de�ning systems, i.e., systems of equations whose regular solutions are the Fold, respectively,
Hopf points.
A classical de�ning system for Fold curves [19,24] is

G(x; �) = 0;

Gx(x; �)v= 0;

cTv= 1:

(13)

This is a system of 2N + 1 equations in the 2N + 2 unknowns x; �; v. It is a typical example of
a so-called large augmented system in the sense that it contains unknowns additional to the state
and parameter variables. The additional unknown is the singular vector v of Gx. The vector c is an
auxiliary variable, it is �xed and chosen somewhat arbitrarily. Formally, it is only required that it
is not orthogonal to v. In practice, it is updated along the Fold curve; an obvious choice for c is
the value of v obtained in the previous computed equilibrium point.
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It is also possible to compute Fold curves using a minimally extended system, i.e., one whose
only unknowns are the state and parameter variables. A typical example is the system

G(x; �) = 0;

s(x; �) = 0;
(14)

where s is obtained by solving (11). An advantage of this method is that the derivatives of s can be
obtained easily from the derivatives of Gx. The determinant function can replace s in this de�nition;
however, it is usually not so well scaled and the computation of derivatives is more di�cult.
For Hopf bifurcations, a rich variety of large extended systems and at least one minimally extended

system is known; several systems for Fold and Hopf are incorporated into [16].

3.4. Detection, computation and continuation of bifurcations with higher codimension

To detect codimension-2 bifurcations on Fold and Hopf curves we need new test functions. BT,
ZH and CP points can be expected on Fold curves. ZH, DH and GH points can be expected on
Hopf curves. Large and minimally extended systems are available in all cases, cf. [16].
Many techniques for codimension-2 cases can be extended to codimension-3 and higher cases.

However, each new codimension also introduces essentially new situations that require a novel
approach. For example, for codimension-3 the case of 1 : 1 resonant Double Hopf (two identical
Hopf pairs) was considered (numerically) in [13]. A survey of existing methods is given in [12].
Since the mathematical analysis of codimension-3 points is extremely complicated and can hardly

be applied in practical situations, further numerical work in this direction does not seem urgently
needed.

4. Bifurcation of cycles

4.1. Computation and continuation of cycles

To compute a cycle of period T of (1) one �xes the interval of periodicity by rescaling time.
Then (1) becomes

x′(t) = TG(x(t); �); (15)

and we want solutions of period 1, i.e.,

x(0) = x(1): (16)

The period T is one of the unknowns of the problem. In a continuation context we assume that a
solution (xk−1(:); Tk−1; �k−1) is already known and we want to �nd (xk(:); Tk ; �k). Eqs. (15) and (16)
together do not �x the solution completely since any solution can be translated freely in time, i.e.,
if x(t) is a solution then so is x(t + �) for any �. So it is necessary to add a “phase condition” to
�x the solution. In AUTO [10] and CONTENT [16] this is done as follows. Let x(t) be a solution of
(15) and (16). We want the phase-shifted solution that is closest to xk−1, i.e., that minimizes

D(�) ≡
∫ 1

0
‖x̃(t + �)− xk−1(t)‖22 dt: (17)
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The optimal solution must satisfy (dD(�)=d�) = 0, which leads to the condition∫ 1

0
x(t)x′k−1(t) dt = 0: (18)

Now the cycle is determined by (15), (16) and (18) which together form a boundary value problem
with integral condition. In a continuation context x; T; � vary along the curve of cycles in a function
space and the continuation condition is∫ 1

0
(x(t)− xk−1(t))Tẋk−1(t) dt + (T − Tk−1)Ṫ k−1 + (�− �k−1)�̇k−1 = �s; (19)

where the derivatives are taken with respect to arclength in the function space and should not be
confused with the time derivatives in (18).
The most widely used method to discretize this problem is the method of orthogonal collocation

with piecewise polynomials. It is used in the code COLSYS [1] as well as in AUTO and CONTENT.
The method is known for its high accuracy [7] and particularly suitable because of its known mesh
adaptation techniques [23]. The numerical continuation of the discretized equations leads to linear
systems with a structured sparsity. These are solved in AUTO by a sophisticated elimination strategy
that allows to recover the multipliers as a byproduct.

4.2. Starting a cycle from a Hopf point

Asymptotically stable cycles can be found by time integration of (1). A more general way to �nd
stable or unstable cycles is to start from a Hopf point. Let it be (x0; �0) with Hopf eigenvalues ±i!0.
The Hopf bifurcation theorem ensures the existence of a bifurcating branch of cycles. This branch
can be locally parameterized by a real number � and the asymptotic estimates hold:

x(t; �) = x0 + ��(t) + O(�2); T (�) = T0 + O(�2); �(�) = �0 + O(�2); (20)

where T (�) is the period, T0=(2�=!0). The function �(t) is the normalized nonzero periodic solution
of the linearized, constant coe�cient problem

d�(t)
dt

= G0
x�(t): (21)

To compute a �rst cycle we can, in principle, solve (15), (16), (18) and (19) if in the last two we
replace xk−1; Tk−1; �k−1 by known quantities. The obvious choice is x0+� (t); T0; �0, respectively, for
some small value of � where  (t) is a time-scaled version of �(t), i.e.,  (t)=sin(2�t)ws+cos(2�t)wc,
where ws; wc ∈ RN are such that ws + iwc is a right eigenvector of G0

x for the eigenvalue i!0. By
rescaling, if necessary, we may assume ‖ ‖= 1. So (18) is replaced by∫ 1

0
x(t)

d (t)
dt

dt = 0: (22)

Next, in (19) we set Ṫ k−1 = 0, �̇k−1 = 0 and ẋk−1 =  (t) so that (19) is actually replaced by∫ 1

0
(x(t)− x0)T (t)dt = �s: (23)
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4.3. Codimension-1 bifurcations of cycles

A cycle always has a multiplier equal to 1. If all other multipliers are strictly inside the unit circle
in the complex plane, then the cycle is asymptotically stable. If at least one multiplier has modulus
greater than one, the cycle is unstable. Three bifurcations are generic on a curve of cycles: Fold,
Flip and Neimark–Sacker. In a Fold point 1 is a double multiplier with geometric multiplicity one.
Typically, this indicates a turning point in the curve of cycles. In a Flip point there is a multiplier
equal to −1. Typically, this indicates a period doubling of the cycle, i.e., the cycle is replaced by a
cycle with initially double period. In a Neimark–Sacker point there is a conjugate pair of complex
eigenvalues with modulus 1. Typically, this indicates a bifurcation to an invariant torus, i.e., the
periodic behaviour of the dynamical system is replaced by a much more complicated movement on
an invariant torus. The Fold, Flip and Neimark–Sacker bifurcations can be detected by monitoring the
multipliers. It is also possible to give test functions for these bifurcations. To numerically compute
and continue curves of codimension-1 bifurcations of cycles, de�ning systems can be obtained in
the form of generalized boundary value problems. See [4, Vol. III] for details.

5. Connecting orbits

The numerical methods to compute homoclinic orbits can easily be extended to heteroclinic orbits.
We restrict to homoclinic orbits since they are particularly important in global bifurcation theory.
In fact, the appearance of a homoclinic orbit is often related to the disappearance of cycle solutions
and the onset of chaotic behaviour. Wild dynamic behaviour is the rule near homoclinic orbits
and numerical time integration can be expected to have problems (this applies also to heteroclinic
connections, for an example see [22]).
Nevertheless, homoclinic orbits are quite common. In fact, they are codimension-1 phenomena,

i.e., they appear generically in problems with one free parameter. Let x0 be the limit of x(t) for t →
±∞. Obviously, x0 has to be an unstable equilibrium. Actually, there are two types of codimension-1
homoclinic orbits. In one type x0 is a hyperbolic equilibrium of (1), i.e., Gx(x0) has no eigenvalues
with real part zero. In the second type x0 is a Fold point with one zero eigenvalue and no other
eigenvalue with real part zero.
Homoclinic orbits can be computed as a boundary value problem in the following way. If x0 is

hyperbolic with parameter value �0 then there exists a unique equilibrium xe(�) for � in a neighbor-
hood of �0 such that xe(�0)= x0. If x0 is a Fold, then we set xe(�) ≡ x0. Now consider the following
boundary value problem on an in�nite interval:

x′(t) = G(x(t); �); (24)

lim
t→±∞ x(t) = xe(�): (25)

As in the case of cycles, any time-shift of a solution to (24) and (25) is again a solution, so we
need a phase condition. If an initial guess x̃(t) is known, then an integral phase condition∫ +∞

−∞
(x(t)− x̃(t))Tx̃′(t) dt = 0 (26)

similar to (18) can be used to �x the phase.
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In [2,3] Beyn proposes to truncate the boundary-value problem (24)–(26) to a �nite interval
[ − T−; T+] with suitable boundary conditions. Suppose that Gx(xe(�); �) has ns eigenvalues with
negative real part, nc eigenvalues with zero real part and nu eigenvalues with positive real part. So
nc is either 0 or 1 and ns + nc + nu = N . Now (25) can be interpreted as

x(−T−) ∈ Bu(xe(�)); x(T+) ∈ Bs(xe(�)): (27)

Here Bu and Bs denote the unstable and stable sets of xe(�), respectively. The right eigenvectors
corresponding to the eigenvalues with positive (respectively, negative) real part span the tangent
space to the unstable (respectively, stable) manifold. So let Ls(�) (respectively, Lu(�)) be an n× ns
matrix (respectively, an n× nu matrix) whose columns span the left-singular space that corresponds
to the eigenvalues with negative real part (respectively, positive real part). So we can linearize the
conditions (25) by

LTs (x(−T−)− xe(�)) = 0; (28)

LTu (x(T+)− xe(�)) = 0: (29)

These conditions force x(−T−) to be in the center-unstable and x(T+) to be in the center-stable
eigenspaces of Gx(xe(�)). Finally, the phase condition (26) is simply truncated to [− T−; T+].
The above method is implemented in AUTO, using a collection of routines called HomCont, cf.

[6]. We note that starting points for the continuation of homoclinic orbits may be hard to �nd. One
approach is to compute cycles to large period, cf. [10]. Also, it is known that some codimension-2
equilibrium bifurcations, in particular BT-points, are starting points for homoclinic orbits.
We note that there is another approach to the computation of connecting orbits which avoids the

truncation of the interval by parametrizing the orbits in a di�erent way, say by arclength instead of
time. We refer to [17,18] for more details.
Along branches of homoclinic orbits several codimension-2 bifurcations can appear. Among other

possibilities, n-homoclinic orbits may emerge which follow the homoclinic loop n times. Another
possibility is a change in the stability of the cycles that accompany the homoclinic orbit. For details
of the dynamics near codimension-2 homoclinic orbits we refer to [4,11].
As in the case of equilibria and cycles, codimension-2 homoclinic bifurcation points are detected

by locating zeroes of certain test functions. In the simplest cases, test functions can be obtained
from the eigenvalues of the equilibrium. For example, in the case of a hyperbolic equilibrium, a
resonant saddle bifurcation is detected by the test function �s1 + �u1 where �s1 (respectively, �

u
1) is

the smallest in absolute value stable (respectively, unstable) eigenvalue. We note that test functions
for neutral saddles of equilibria can be used in this situation.
In other cases, the computation of the test functions requires the homoclinic solution or the solution

to an adjoint variational equation. We refer to [4, Vol. III] for details.
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Abstract

We study Runge–Kutta methods for the integration of ordinary di�erential equations and the retention of algebraic
invariants. As a general rule, we derive two conditions for the retention of such invariants. The �rst is a condition on
the coe�cients of the methods, the second is a pair of partial di�erential equations that otherwise must be obeyed by
the invariant. This paper extends previous work on multistep methods in Iserles (Technical Report NA1997=13, DAMTP,
University of Cambridge, 1997). The cases related to the retention of quadratic and cubic invariants, perhaps of greatest
relevance in applications, are thoroughly discussed. We conclude recommending a generalized class of Runge–Kutta
schemes, namely Lie-group-type Runge–Kutta methods. These are schemes for the solution of ODEs on Lie groups but
can be employed, together with group actions, to preserve a larger class of algebraic invariants without restrictions on the
coe�cients. c© 2000 Elsevier Science B.V. All rights reserved.

1. Background and notation

In this paper we study the numerical solution by Runge–Kutta methods of the ordinary di�erential
system

y′ = f (t; y); y(0) = y0 (1)

for t¿0, where y ∈ Rd and f :R+ × Rd → Rd is a Lipschitz function. We assume that the exact
solution y(t) of (1) is known to obey the condition that there exists a nontrivial function � :Rd×Rd →
R (or a family of such functions) such that

�(y(t); y0) ≡ 0; t¿0: (2)
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We say, in this case, that the solution y is �-invariant. 1 Sometimes, we say that � is a �rst integral
of (1) or that it is a conservation law or that it de�nes a manifold M on which the solution y
evolves. All these terms will be used interchangeably in the course of the paper. The degree of
smoothness of � is related to the degree of smoothness of the function f de�ning the di�erential
equation (1). Moreover, we say that � is a strong invariant if there exists a nonempty open set U
in Rd such that for all y0 ∈ U the solution y with initial value y(0) = y0 satis�es �(y(t); y0) ≡ 0
for t¿0. In the present paper, we restrict our attention to the case when � is a strong invariant.
There exist numerous problems in applied mathematics that can be paraphrased in the above

formalism. Just to mention a few, many physical systems evolve in time and yet their total energy
or the phase-space volume or angular momentum stay put. In particular, the Hamiltonian energy of
Hamiltonian systems is preserved. See [11,26,27,19] for further examples and applications.
Given the di�erential equation (1) in tandem with the invariance condition (2) and having intro-

duced a subdivision t0 = 0¡t1¡ · · ·¡tn ¡ · · · of the integration interval, we say that a one-step
numerical method

yn+1 = �h(yn); h= tn+1 − tn (3)

is �-invariant (or equivalently M-invariant) if

�(yn; y0) = 0; ∀n¿0 (4)

for all h¡ �h, or, equivalently,

y0 ∈M⇒ yn ∈M for all n¿0; (5)

M being the manifold de�ned by the function � [7].
Conditions that ensure preservation of invariants by Runge–Kutta methods have been already

considered in a number of papers. Let us mention �rst the work of Cooper [4] who proved that there
exists a subclass of Runge–Kutta methods that preserve quadratic invariants: all the functions � of the
form �(y; y0)=

∑d
i; j=1 �i; jy iy j +

∑d
i=1 �iy i+  where �i; j; �i and  are coe�cients allowed to depend

on y0. The very same schemes that preserve quadratic invariants preserve also canonical symplectic
structure, a result independently discovered in [26]. Later, in their investigation on numerical methods
and isospectral ows, Calvo et al. proved that there is no subclass of such schemes that preserves
also cubic laws: in other words, given an RK method that preserves quadratic manifolds, it is always
possible to construct a di�erential equation with a cubic invariant � for which (4) does not hold for
n= 1; 2; : : : (see [3,27]).
With regard to other classes of methods and their preservation of conservation laws, we men-

tion that results along similar lines have been derived by Iserles for multistep methods and for
Taylor-type methods [14] and independently by Hairer and Leone in the context of symplecticity
[10]. We will follow here the approach of [3,27,14] and show that cubic invariance is equivalent to
requiring a very strong condition on the invariant, namely that it has to be the solution of a partial
di�erential equation called the Bateman equation. Although the Bateman-equation condition arises
also in the case of multistep and Taylor-type methods [14], Runge–Kutta methods are a case apart
since their error term is not a constant times a derivative of the function but is a linear combination

1 Note that in this paper we discuss algebraic invariance. Therefore, � should be confused with neither a symmetry nor
a di�erential invariant. We refer the reader to [15] and to the references therein for a treatment of symmetry invariants
and to [2] for discussion of di�erential invariants.
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of mixtures of derivatives of various orders (elementary di�erentials [12]), a feature that makes RK
schemes di�erent from many other numerical schemes for integration of ODEs.
The paper is organised as follows. In Section 2 we discuss classical RK methods and their

condition for invariance, deriving the Bateman equation (a second-order partial di�erential equation),
and a third-order partial di�erential equation, for the algebraic invariant �. The main result of the
paper is presented in Section 3. First, we analyse the third-order counterpart of the Bateman equation.
Secondly, we focus on the case of polynomial conservation laws and deduce that Runge–Kutta
schemes cannot preserve any polynomial conservation law except for linear and quadratic.
We conclude with Section 4, relating Runge–Kutta methods with a larger class of numerical

scheme on Lie groups of which classical RK schemes are but one representative. Numerical meth-
ods that stay on Lie groups are nowadays a very active area of research, and constitute an alter-
native approach to more classical stabilization and projection techniques, and di�erential-algebraic
equations.
Although the material of Section 4 is not original, it furnishes an important example how to by-

pass the restrictions of this paper and of [14], which limit the applicablity of classical time-stepping
methods when the retention of algebraic invariants is at issue. The material of Section 4 is relevant
not just because Lie groups represent a major instance of invariants and symmetries, with a wide
range of applications, but also for a deeper reason. Traditionally, numerical analysis of di�erential
equations concerned itself mainly with methods that minimise error and cost. Lately, greater atten-
tion is being paid to correct modelling of geometric features of di�erential equations: invariants,
asymptotics, symmetries etc. The main thrust of [14] and of this paper is that little can be expected
of classical methods insofar as invariants are concerned. The lesson of Section 4 and of much of
contemporary e�ort in geometric integration is that a very powerful approach toward correct ren-
dition of invariants originates in the introduction of ideas from di�erential geometry and topology
to numerical mathematics [2]. We �rmly believe that this will increasingly become a major area of
computational activity.

2. Necessary condition for invariance: the Bateman equation and its third-order counterpart

Without loss of generality, let us assume that the di�erential equation (1) is autonomous, namely
that the function f ≡ f (y) does not depend explicitly on time. Throughout the exposition, we also
assume that f and � are analytic functions.
The exact solution of (1) is approximated numerically by means of a �-stage Runge–Kutta method,

Yi = yn + h
�∑

j=1

ai; jKj;

Ki = f (Yi); i = 1; 2; : : : ; �; (6)

yn+1 = yn + h
�∑

i=1

biKi ;

de�ned in terms of the RK matrix A= (ai; k) and the RK weights b= (bi) [12,13].
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Recall that any system (1) that is �-invariant and autonomous can be written in the skew-gradient
form

y′ = S(y)3�(y); (7)

whereby S(·) is a d×d skew-symmetric matrix [18,25], and in particular we will restrict our attention
to the case of two variables, i.e. d= 2, whereby (7) yields

y′
1 =  (y)

@�(y)
@y2

;

y′
2 =− (y)

@�(y)
@y1

(8)

for some arbitrary smooth function  :R2 → R. Since we wish to derive necessary conditions for
invariance, we may assume without loss of of generality that  ≡ 1.

Proposition 1. Assume that the function � ∈ C2[R2] is not a solution of the Bateman equation

B(u) =
(

@u
@y2

)2 @2u
@y21
− 2 @u

@y1

@u
@y2

@2u
@y1@y2

+
(

@u
@y1

)2 @2u
@y22

= 0 (9)

[5]; where u ≡ u(y1; y2). A necessary condition for the RK method (6) to preserve � for all h¡ �h
is

biai; j + bjaj; i = bibj; i; j = 1; 2; : : : ; �: (10)

Proof. For clarity’s sake we suppress the dependence of � on the initial condition y0. Expanding in
powers of h and using (6), we have

�(yn+1) = �

(
yn + h

�∑
i=1

biKi

)

= �(yn) +
∞∑
k=1

hk

k!

�∑
i1 ;:::; ik=1

bi1 · · · bik

×
k∑

l=1

(
k

l

)
@k�(yn)

@k−ly1@ly2
f1(Yi1) · · ·f1(Yik−l)f2(Yik−l+1) · · ·f2(Yik ); (11)

whereby the index of f denotes either its �rst or its second component, namely,

f1(Yi) =
@�(Yi)
@y2

; f2(Yi) =−@�(Yi)
@y1

; i = 1; 2; : : : ; �:

Let us assume that �(yn) = 0 and let us focus on the terms up to order 2 in h. Using the identity

yn = Yi − h
�∑

j=1

ai; jKj;
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and expanding the functions @�=@yl, l= 1; 2, we obtain

@�
@y1

(yn)
@�
@y2

(Yi)− @�
@y2

(yn)
@�
@y1

(Yi)

=− h
�∑

j=1

ai; j

[
@2�(Yi)
@y21

@�(Yi)
@y2

@�(Yj)
@y2

− @2�(Yi)
@y1@y2

@�(Yi)
@y2

@�(Yj)
@y1

−@2�(Yi)
@y1@y2

@�(Yi)
@y1

@�(Yj)
@y2

+
@2�(Yi)
@y22

@�(Yi)
@y1

@�(Yj)
@y1

]
:

Taking into account that Yj = Yi + O(h), we expand the above expression at Yi to obtain

@�
@y1

(yn)
@�
@y2

(Yi)− @�
@y2

(yn)
@�
@y1

(Yi) =−h
�∑

j=1

ai; jB(�)(Yi) + O(h3):

By the same token,

h2

2

�∑
i; j=1

bibj

2∑
l=1

(
2

l

)
@2�(yn)

@2−ly1@ly2
f1(Yi1) · · ·f1(Yi2−l)f2(Yi2−l+1) · · ·f2(Yi2)

=
h2

2

�∑
i; j=1

bibjB(�)(Yi) + O(h3):

Hence, reordering indices, we obtain

�(yn+1) =
1
2
h2

�∑
i; j=1

(bibj − biai; j − bjaj; i)B(�)(Yi) + O(h3):

Thus, unless � is a solution of the Bateman equation (9), annihilation of the O(h2) term requires
relations (10).

The Bateman equation (9) plays a very important role also in the context of linear multistep
methods and retention of conservation laws. As a matter of fact, Iserles proves that a necessary
condition for �-invariance of a multistep method is that � obeys the Bateman equation [14].
The following result characterises the level sets of the solutions of the Bateman equation (9):

essentially, they are determined by linear functions!

Proposition 2 (Iserles [14]). Solutions �(x; y) of the Bateman equation (9) such that �(x; y)=const
have the form

�(x; y) = !(�x + �y + );

where �; � and  are arbitrary constants and ! ≡ !(z) is an arbitrary analytic function.

An important consequence of the above result is that linear multistep methods (and in general
Taylor-type methods) can be invariant solely in linear manifolds.
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We have seen that

�(yn+1) =
1
2
h2

�∑
i; j=1

(bibj − biai; j − bjaj; i)B(�)(Yi) + O(h3);

whereby the O(h3) term contains partial derivatives of � of order greater than two. Hence, if � is a
quadratic manifold, all these derivatives are zero and we are left with the condition

�(yn+1) =
1
2
h2

�∑
i; j=1

(bibj − biai; j − bjaj; i)B(�)(Yi);

which implies that condition (10) is necessary and su�cient for the retention of quadratic conser-
vation laws, a result well known and understood in the literature of Runge–Kutta methods [4,3,27].

Theorem 3. A necessary condition for preserving a nonquadratic algebraic invariant � is that
� ∈ C3[R] is a solution of the partial di�erential equation

L(u) =
(

@u
@y2

)3 @3u
@y31
− 3

(
@u
@y2

)2 @u
@y1

@3u
@y21@y2

+ 3
@u
@y2

(
@u
@y1

)2 @3u
@y1@y22

−
(

@u
@y1

)3 @3u
@y32

= 0: (12)

Proof. Proceeding as in Proposition 1 but carrying the expansions a step further, we obtain, as a
�rst contribution, the term

1
3
h3

�∑
i; j;l=1

bibjblL(�) (Yi) + O(h4)

when k=3 in (11). The second contribution is obtained from the term for k=2 in (11): substituting
yn = Yi − h

∑�
l=1 ai; lKl and collecting similar terms, we obtain

1
2
h2

�∑
i; j=1

bibj

[
@2�(yn)
@y21

f21 + 2
@2�(yn)
@y1@y2

f1f2 +
@2�(yn)
@y22

f22

]

=
1
2
h2

�∑
i; j=1

bibjB(�)(Yi)− 12h
3

�∑
i; j;l=1

bibjai; lL(�)(Yi) + O(h4);

whereby f1 ≡ f1(Yi) and f2 ≡ f2(Yi). Finally, the last contribution arises from the series expansion
of the O(h) term. We have

@�
@y1

(yn)
@�
@y2

(Yi)− @�
@y2

(yn)
@�
@y1

(Yi)

=
@�(Yi)
@y2


@�(Yi)

@y1
− h

�∑
j=1

ai; j[�y1y1 (Yi)f1(Yj) + �y1y2 (Yi)f2(Yj)]
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+
1
2
h2

�∑
j;l=1

ai; jai; l[�y1y1y1 (Yi)f1(Yj)f1(Yl) + 2�y1y1y2f1(Yj)f2(Y2) + �y1y2y2f2(Yj)f2(Yl)]




+
@�(Yi)
@y1


@�(Yi)

@y2
− h

�∑
j=1

ai; j[�y1y2 (Yi)f1(Yj) + �y2y2 (Yi)f2(Yj)]

+
1
2
h2

�∑
j;l=1

ai; jai; l[�y1y1y2 (Yi)f21(Yj) + 2�y1y2y2f1(Yj)f2(Yj) + �y2y2y2f
2
2(Yj)]


+ O(h3):

Let us focus on the term
�∑

i; j=1

biai; j�y2 (Yi)�y1y1 (Yi)f1(Yj)

and similar expressions. We write this term in the form

1
2

�∑
i; j=1

biai; j�y2 (Yi)�y1y1 (Yi)f1(Yj) +
1
2

�∑
i; j=1

bjaj; i�y2 (Yj)�y1y1 (Yj)f1(Yi)

and expand in series whilst exploiting the relation

Yj = Yi + h
�∑

l=1

(aj; l − ai; l)Kl:

We have
1
2

�∑
i; j=1

biai; j�y2 (Yi)�y1y1 (Yi)f1(Yj)

=
1
2

�∑
i; j=1

biai; j�y2 (Yi)�y1y1 (Yi)�y2 (Yi)

− h
�∑

i; j;l=1

biai; j(ai; l − aj; l)�y2 (Yi)�y1y1 (Yi) [�y1y2f1(Yl) + �y2y2f2(Yl)] + O(h2)

and
1
2

�∑
i; j=1

bjaj; i�y2 (Yj)�y1y1 (Yj)�y2 (Yi)

=
1
2

�∑
i; j=1

bjaj; i�y2 (Yi)− h
�∑

l=1

(aj; l − ai; l) (�y1y2f1 + �y2y2f2)�y1y1 (Yj)�y2 (Yi)

− 1
2
h

�∑
i; j;l=1

bjaj; i(aj; l − ai; l)�y2 (Yi) [�y1y1y1 (Yi)f1 + �y1y1y2 (Yi)f2]�y2 (Yi) + O(h2):

Expanding in an identical manner all similar terms, we observe that the terms containing two second
derivatives of � sum up to zero, hence we are left with terms containing just one second derivative
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and one third derivative of the function �. After some tedious algebra along the lines of [3,27], the
contribution of the k = 1 term in (11) reduces to

−1
2
h2

�∑
i; j=1

(biaij + bjaj; i)B(�) (Yi) +
1
2
h3

�∑
i; j;l=1

bjaj; iai; lL(�)(Yi) + O(h4):

Collecting all the relevant terms, we obtain

�(yn+1) =
1
2
h2

�∑
i; j=1

(bibj − biai; j − bjaj; i)B(�)(Yi)

+
1
6
h3

�∑
i; j;l=1

(bibjbl − 3bibjai; l + 3biai; jaj; l)L(�)(Yi) + O(h4);

where the coe�cients of B and L are exactly those derived in [3,27], in the context of cubic
invariants.
Assume now that � does not obey the Bateman equation (see above), whose level sets are straight

lines. Hence, in order to annihilate the O(h2) term, condition (10) must be satis�ed by the coe�cients
of the RK scheme in question.
In order to annihilate the O(h3) term, we have two possibilities: either the coe�cients of the

scheme obey � = O, where

�i;j; l= bibjbl − (bibjai; l + bjblaj; i + blbialj)

+ (biai; jaj; l + bjaj; lal; i + blal; iai; j) = 0; ∀i; j; l= 1; : : : ; � (13)

(which has been already encountered in [3,27] in a discussion of cubic invariants) or � obeys the
di�erential equation (12). However, it is well known that condition (10) and �=O are contradictory
[3,27], therefore the only possibility is that the di�erential condition (12) is satis�ed.

3. On the solutions of the equation L(u) = 0

In this section we wish to analyse some properties of the solutions of the partial di�erential
equation (12). Following the same approach as [14], we distinguish two cases. Firstly, we note that
when @�=@y2 then � does not depend on the second variable, hence the system (8) can be reduced
to the univariate case which is trivial to integrate: from �(y1; y2) = f(y1), we have

y′
1 = 0;

y′
2 =−f(y1);

hence y1 = c is constant and y2 =−f(c)t + y2(0).
Let us assume thus that @�=@y2 6= 0 at some point, hence, as a consequence of the analyticity of

�, the same is true in a proper neighbourhood U. Because of the implicit function theorem, there
exists a function �, such that

�(y1; y2) = 0 ⇔ y2 = �(y1) ∀y ∈ U;
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hence �(y1; �(y1)) = 0. To avoid confusion, let us denote such independent variable by x; thus,

�(x; �(x)) = 0: (14)

Di�erentiating �(x; �(x)) = 0 with regards to x, we have

@�(x; �(x))
@y1

+
@�(x; �(x))

@y2
�′(x) = 0;

from which we deduce that

�′ =−@�(x; �(x))
@y1

[
@�(x; �(x))

@y2

]−1
:

Further di�erentiation of (14) implies that

B(�)(x; �(x)) +
[
@�(x; �)
@y2

]3
�′′ = 0;

as in [14]. In particular, we deduce that

�′′ =−B(�)(x; �(x))
[
@�(x; �)
@y2

]−3
: (15)

Di�erentiating (14) for a third time, we obtain

L(�)(x; �)− 3B(�)(x; �)
[
@2�(x; �)
@y1@y2

+
@2�(x; �)

@y22
�′
]
+
[
@�(x; �)
@y2

]4
�′′′ = 0: (16)

Assume that � obeys the partial di�erential equation (12). Substituting in (16) the expression for �′′

and dividing by (@�=@y2)2, which we are assuming not equal identically to zero, we deduce

�′′′
@�(x; �)
@y2

+ 3�′′
d
dx

(
@�(x; �)
@y2

)
= 0: (17)

Lemma 4. Assume that @�=@y2 6= 0. Then all solutions of the equation (17) obey the di�erential
equation

B(�)(x; �(x))) = const:

Proof. We distinguish two cases. Firstly �′′ = 0, in which case the assertion is satis�ed because of
(15), choosing the constant equal to zero. Otherwise, it is true that �′′ 6= 0 in a certain neighbourhood
of x. Hence, we can write

�′′′

�′′
=−3(d=dx) (@�=@y2)

@�=@y2
;

and, integrating both sides with respect to x, we obtain

log �′′ =−3 log @�
@y2

+ an integration constant;

from which we deduce that

�′′ = K
(

@�
@y2

)−3
;
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K being an arbitrary constant of integration. The result follows by comparing the above expression
for �′′ with (15).

Theorem 5. Assume that �(x; y) is a polynomial in x; y of degree n¿ 2; that �y 6= 0 and that (1)
has no other conservation laws except for �. Then the RK scheme (6) cannot preserve � for all
su�ciently small h¿ 0.

Proof. As a consequence of the above lemma, the problem reduces to studying solutions that render
the Bateman operator B constant. Note that if �(x; y) is a polynomial of degree n in x and y, then

�xx�2y − 2�xy�x�y + �yy�2x
is a polynomial of degree (n− 2) + 2(n− 1) = 3n− 4. In particular, it follows that 3n− 4 = n for
n= 2, while 3n− 4¿n for all n¿3. Assume that

�(x; y) = ax2 + bxy + cy 2 + dx + ey + f = 0:

Direct computation reveals that
1
2B(�) = (4ac − b2)[�(x; y)− f] + ae2 − bde + cd2;

hence B(�) is constant, provided that so is �. If n¿ 2 then B(�) is a proper polynomial in x and
y of degree strictly greater then n. Therefore, the system must admit a conservation law other than
�, of order lower then n if � is a factor of the polynomial B(�), larger than n otherwise. This, rules
out the important case when � is the only integral of the system.

It has been already established in [3] that Runge–Kutta schemes cannot preserve all arbitrary cubic
algebraic invariants. The method of proof in [3] is based on the construction of a speci�c cubic
integral, depending on the coe�cients of a scheme which cannot be preserved by the method.
In passing, we mention that, as in the case of Proposition 2, the results of Theorem 5 can be

extended to analytic functions of polynomials in the following manner. Assume that � is not a
polynomial but an analytic function ! of q(x; y), namely �(x; y) = !(q(x; y)). Di�erentiating and
substituting into B(�)=const, we obtain !′(q(x; y))B(q)=K , hence, if q is such that B(q)=const,
also !′(q) is constant and we obtain a new solution. Thus, the solutions of B(�)=const are de�ned
up to an arbitrary analytic function !. This reects the observation that the manifolds {�(x) = c}
and {!(�(x)) = !(c)} are identical for bijective !.
Theorem 5 does not rule out the existence of ‘proper’ su�ciently smooth functions that may be

automatically preserved by the Runge–Kutta scheme for su�ciently small h. Seeking an example of
such function, we employ the technique of separation of variables. Assume that �(x; y) = v(x)w(y),
whereby v and w are two C3 functions of x and y respectively such that v′; w′ 6= 0, hence v and w
are at least linear functions. Then the condition L(�) = 0 is equivalent to

v′′′v2

v′3
− 3v

′′v
v′2

+ 3
w′′w
w′2 −

w′′′w2

w′3 = 0

(the prime denoting di�erentiation with respect to the independent variable) which results in an
identical ordinary di�erential equation for the functions v and w, namely

z′′′z2

z′3
− 3z

′′z
z′2

= K; z ≡ z(t);
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where K is an arbitrary constant. When K = 0, we can reduce the above third-order di�erential
equation into a second-order one by integration,

z′′ = cz3;

whereby c is an arbitrary integration constant. The solution of the latter is given in implicit form by

t =±
∫ z(t)

0

2ds√
2cs4 + 4C1

+ C2;

where c; C1 and C2 are arbitrary integration constants. This, however, is unlikely to represent an
invariant of practical importance. In general, the determination of all level sets of (12) is incomplete,
although we believe that virtually all nonquadratic invariants of interest are excluded and, anyway,
it is trivial to check by direct di�erentiation whether L(�) = 0 for any speci�c function �.

4. Runge–Kutta methods in a Lie-group formulation

Although we have already seen that the equation L(�) admits solutions that are not necessarily
linear or quadratic in y1; y2, the sheer complexity of (17) reveals that such manifolds described
by �(y1; y2) = 0 are exceptional. Moreover, recall that L(�) = 0 is merely a necessary condition
for invariance. We deduce that generic retention of conservation laws by means of classical RK
integration cannot be achieved easily, if at all.
A standard way to treat ODEs with invariants that classically are not automatically preserved by

RK methods is to reformulate the invariants as constraints and use a di�erential–algebraic approach
[20]. Discussion on numerical preservation of invariants can be traced already to the early 1970s,
especially in the �elds of constrained mechanics and electronic circuits [6]. There exists a rich
literature on Runge–Kutta methods applied to the solution of di�erential equations with algebraic
invariants (DAEs) and these methods, essentially based on projections, have proved themselves to
be very e�ective and successful in many practical applications [12]. It is sometimes argued that
numerical schemes that employ projection damage geometric properties of the underlying problem,
and this has provided strong motivation to devise numerical schemes that intrinsically retain the
underlying invariants. New types of symmetric projections have been recently introduced by Hairer
[8] so that not only the invariant, but most of the remaining geometric properties are retained under
discretization. Other successful methods for the exact or almost-conservation of invariants are based
on splitting of the vector �eld f into simpler vector �elds that are easy to integrate or can be
integrated exactly. We refer to the surveys of Hairer [9] and of McLachlan and Quispel [21] for
an up-to-date list of techniques for various problems that posses invariants, or, more generally,
geometrical structure that one would like to preserve under discretization.
In the last few years there has been a growing interest in devising Lie-group methods that somehow

follow the logic of Runge–Kutta schemes in a di�erent manner from the RK schemes for DAEs
above. Let us present here the main ideas, referring the reader to [23,17,28] and to the review article
[16] for further details.
Lie groups are smooth manifolds endowed with a multiplicative group operation, and without loss

of generality, we can identify them with subgroups of GL(d;R), the set of all d× d real matrices.
(Identical theory can be extended to the complex �eld.) Familiar examples are O(d;R), the set of
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all d×d orthogonal matrices, and SL(d;R), the special linear group of all d×d matrices with unit
determinant. A (�nite-dimensional) Lie algebra is a linear space, closed under commutation. The
tangent space at identity of a Lie group is a Lie algebra, hence the importance of the latter construct
in any discussion of ODEs evolving on a Lie group. For example, the Lie algebra corresponding to
O(d;R) is so(d;R), the linear space of d × d skew-symmetric matrices, while the Lie algebra of
SL(d;R) is sl(d;R), the set of all d× d matrices with zero trace.
An ordinary di�erential system on a Lie group G can be always written in the form

y′ = (t; y)y; y(0) = y0;

where y ∈ G and  :R+×g, where g is the Lie algebra of G, and can be solved so that the numerical
approximation resides in G,

yn ∈ G n= 0; 1; 2; : : : ;

provided that y0 ∈ G, by using a Lie-group modi�cation of classical Runge–Kutta schemes. The
main idea is to translate the original ODE in each step from G to g by means of the exponential
map, y(t) = exp(�(t))y0, by means of the so-called dexpinv equation,

�′ = dexp−1� ; �(tn) = 0;

which acts in g instead of G. The function dexp−1 is de�ned as

dexp−1� () =
∞∑
k=0

Bk

k!
adk�;

where the Bk’s are Bernoulli numbers [1] and the adjoint operators ad
k are k-times iterated com-

mutators of � with , namely adk�= [�; [�; · · · [�; ] · · · ]] (see [23,17,28,16]).
The redeeming feature of this transformation is that g is a linear space, while G is usually described

by nonlinear conservation laws. Thus, following a construction of Munthe-Kaas [22], an arbitrary
Runge–Kutta method can be employed in g to produce a numerical approximation �n+1 ≈ �(tn+1),
so that

yn+1 = exp(�n+1)yn ∈ G

is a numerical approximation for y(tn+1) which has the same order as the original RK scheme while
remaining in the Lie group. Thus, for example, if G=SL(d;R), such Lie-group-based RK schemes
allow us to preserve to machine accuracy the algebraic invariant det y=1, a polynomial equation of
degree d, while, as we have seen in Section 2, standard RK schemes are bound to fail. Similarly,
when G=O(d;R), with Lie-groups schemes we can use an explicit Lie-group RK method and obtain
an orthogonal approximation, while with standard schemes we would require that the RK method
obeys condition (10), hence being an implicit scheme.
Such Lie-group schemes do not apply only to Lie groups, but also to a wider class of problems,

evolving on homogeneous spaces [24], i.e. manifolds on which the dynamics is described by a
Lie-group action. (Examples include a d-sphere, a d-torus, isospectral matrices, symmetric matrices,
Stiefel and Grassmann manifolds.) In this setting one can obtain the classical Runge–Kutta schemes
as a special case of Lie-group Runge–Kutta methods for which the acting group is Rd with the
group operation ‘+’ and the manifold acted upon is also Rd. Although such schemes are not yet
fully competitive in comparison with the more established DAE methods, a pleasing feature of this
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approach is that one might choose a di�erent group action to preserve di�erent underlying geometrical
features of the problem in question. The search for a good action has to take into account qualitative
features that need be preserved, as well as the computational cost of the scheme. This is an area
currently under active investigation.
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Abstract

We make qualitative comparisons of �xed step symplectic and variable step nonsymplectic integrations of the separable
H�enon–Heiles Hamiltonian system. Emphasis is given to interesting numerical phenomena. Particularly, we observe the
relationship of the error in the computed Hamiltonian to the presence and absence of chaos, when computing with a
symplectic (�xed step) method, qualitative phenomena in the Hamiltonian error for a variable step method, and the
sensitivity of the chaotic behavior and of the computation of features in Poincar�e sections to very small changes in initial
conditions, step sizes and error tolerances. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Assume the autonomous Hamiltonian H ( p; q) is a smooth real function where p represents the
generalized momenta and q the generalized coordinates, and ( pT; qT)= (p1; p2; : : : ; pd; q1; q2; : : : ; qd);
d is the number of degrees of freedom. The Hamiltonian system corresponding to H ( p; q) is

dpi

dt
=−@H

@qi
;
dqi

dt
=

@H
@pi

; i = 1; 2; : : : ; d (1)

and we need initial conditions p(t0) = p0; q(t0) = q0. Note that H (p; q) is constant with time (i.e.,
dH=dt = 0).
A separable Hamiltonian has the structure

H ( p; q) = T (p) + V (q): (2)

In mechanics, T= 1
2p
TM−1p represents kinetic energy (M is the mass matrix) and V potential energy.

The Hamiltonian system has ‘partitioned form’:
dp
dt
=−3qV;

dq
dt
=3pT =M−1p: (3)

∗ Corresponding author.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
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Fig. 1. Poincar�e sections [15, pp. 12,13].

This system can be integrated using specially designed methods, for example the partitioned Runge–
Kutta and certain Runge–Kutta–Nystr�om methods.
H�enon and Heiles (see [5]) formulated the Hamiltonian system

dp1
dt

=−(q1 + 2q1q2); dp2
dt

=−(q2 + q21 − q22);
dqi

dt
= pi; i = 1; 2 (4)

with d= 2 but with only one conserved quantity, the Hamiltonian

T = 1
2(p

2
1 + p22); V = 1

2(q
2
1 + q22) + q21q2 − 1

3q
3
2: (5)

For later comparison, in Fig. 1, we show ‘Poincar�e cross sections’ of Sanz-Serna and Calvo [5, pp.
12,13], intersections of the solution (p2; q2) with the plane q1 =0. The left �gure corresponds to the
initial condition IC1:

q1 = q2 = p2 = 0; p1 =
√
2H (6)

(H=0:15925) integrating to tend=3×104. In [5], this solution is described as ‘randomly scattered’ or
‘chaotic’ or ‘stochastic’. The right �gure depicts the corresponding ‘quasiperiodic’ Poincar�e section
for initial condition IC2:

q1 = q2 = p1 = p2 = 0:12 (7)

(H = 0:029952) generated by integrating to tend = 2× 105.
In the remainder of the paper, we introduce numerical methods for Hamiltonian problems and

discuss the qualitative numerical phenomena observed in a variety of integrations of the H�enon and
Heiles problem (4). In Section 2, we discuss a symplectic method used in a �xed-step integration
and, in Section 3, a nonsymplectic method in a variable step integration. It is not intended that this
discussion provides a comparison of the e�ciency of the two types of methods. Such a comparison
would require a more careful choice of methods.
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Table 1
Fixed step RUTH4; initial condition IC1, DP

h tend Poincar�e H errormax

0.200 3× 104 C 5:27× 10−4
0.100 3× 104 NC 2:31× 10−5
0.050 3× 104 NC 1:42× 10−6
0.025 3× 104 C 1:23× 10−7
0.010 3× 104 C 3:16× 10−9
0.100 3× 105 C 3:19× 10−5
0.050 3× 105 C 1:98× 10−6

2. Symplectic methods

A discrete method is symplectic if it is a symplectic map. A symplectic map is one which,
operating on any two-dimensional set D in the 2d-dimensional space in which the system is
formulated, preserves the sum of the areas of the projections of D onto the (pi; qi) planes. Symplectic
discrete methods are often preferred as they have bounded Hamiltonian error.
For partitioned Hamiltonian systems, we can apply (explicit) partitioned RK (PRK) methods. We

use a symplectic fourth-order PRK method (RUTH4) of [2,3], as implemented in the Fortran 90 code
new-hamint [4]. 1 (We have checked numerically that this implementation is fourth-order.) RUTH4
was used with initial condition IC1 and step sizes h= 0:2; 0:1; 0:05; 0:025; 0:01 in
(1) single precision (SP) with an approximate unit roundo� 1:19× 10−7,
(2) double precision (DP) with an approximate unit roundo� 2:22× 10−16,
(3) extended precision (EP) with an approximate unit roundo� 1:93× 10−34.

(Precision is adjusted simply using the “module” feature of Fortran 90.) Initial tests used double
precision (see Table 1). For all step sizes except h= 0:1 and h= 0:05, the solution displays chaotic
behavior (C) when integrating to tend = 3× 104. Longer integrations (to tend = 3× 105) using these
step sizes also show chaotic behavior. The relative error in the Hamiltonian (Herror) is oscillatory;
this relative error is computed over all output points. As anticipated, the maximum error decreases
as h decreases. Fig. 2 depicts the Poincar�e section for a typical chaotic solution (h=0:2) while Fig.
3 shows the nonchaotic solution (h = 0:1). (The Poincar�e section is computed by calculating the
root of cubic Hermite interpolating polynomial �tted to the output values immediately on opposite
sides of the section. Of course, the accuracy of the calculated section depends on the precision of
the arithmetic and on the integration error.) Figs. 2 and 3 also present the corresponding relative
Hamiltonian error showing the oscillatory behavior. Note, in Fig. 2, that the oscillatory band in the
error widens around t=2:2× 104, approximately where the chaotic behavior in the Poincar�e section
begins. For this reason the anticipated fourth-order behavior of the Hamiltonian error computed
using the RUTH4 formula is not apparent in Table 1. In our computations, for all choices of h
the quasiperiodic precedes the chaotic behavior. We computed a nonchaotic solution step size range

1 The software used here, the integrator new-hamint.f90 and a driver code for the H�enon–Heiles problem, may be
accessed at the ftp site ftp.cygnus.math.smu.edu=pub=gladwell=new-hamint.f90.
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Fig. 2. RUTH4, h= 0:2, IC1, DP; Poincar�e section and Hamiltonian error.

Fig. 3. RUTH4, h= 0:1, IC1, DP; Poincar�e section and Hamiltonian error.

Table 2
Fixed step RUTH4; initial condition IC1, EP, tend = 3× 104

h Poincar�e H errormax

0.10 NC 2:29× 10−5
0.05 C 1:98× 10−6
0.01 NC 2:27× 10−9

around h=0:1, that is 0:099¡h¡ 0:102. That this range exists implies a real possibility of being
deceived numerically about long-term solution behavior.
Extended precision integration to tend=3×104 gives a nonchaotic solution around h=0:1 and h=0:01

but not at h = 0:05 (see Table 2), the Hamiltonian error is always oscillatory and essentially the
same as for the double-precision calculation. Integrating further to tend=3×105 gives chaotic solutions
for all three step sizes. In single precision, the relative Hamiltonian error is characterized by both
low- and high-frequency oscillations (see Fig. 4). The corresponding Poincar�e section is similar to
that on the left of Fig. 2. A di�erent step size, h=0:097, produces an (isolated) nonchaotic solution.
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Fig. 4. RUTH4, h= 0:1, IC1, SP; Hamiltonian error.

Note that the e�ect of precision can be su�cient to induce di�erent qualitative behaviors. For
example, for h = 0:1 double and extended-precision integrations to tend = 3 × 104 are nonchaotic
whereas single-precision integration is chaotic. Starting with the single precision initial values in
both the double and extended-precision calculations still gives nonchaotic behavior. Looking more
closely, if we compare the coordinates of corresponding points in the Poincar�e sections then double-
and extended-precision integrations agree to 15 digits initially but only to seven at the end. In
contrast, double- and single-precision agree to seven digits initially but to no digits at the end of
the integration, and the two integrations exhibit di�erent qualitative behaviors.
In an extended-precision integration with h = 0:05, additional structures appear in the Poincar�e

section, particularly symmetrical (about the q2 axis) clusters of points on the right side of the
�gure and an “envelope” for the section. Most of these features appear early in the integration;
however, some do not, particularly the “envelope”, but after a brief chaotic regime following the
initial quasiperiodic regime. In Fig. 5, we show the results for an integration to tend =3×104 and, in
Fig. 6, for an integration to tend=3×105. Note that, in general, the chaotic regime corresponds to the
largest relative Hamiltonian errors and the smaller errors correspond to the initial quasiperiodic state
and to later quasiperiodic states where structures internal to the section are computed. In contrast,
the part of the integration where the envelope is computed is in the time period t=(2:23–4:76)×104
approximately, and the relative Hamiltonian error is about the size seen in the chaotic regime. Here
again the sensitivity of the system may be observed. The qualitative features (the envelope and the
special interior structures) may vanish if the initial value for p1 is perturbed slightly. So, computing
p1 =

√
2H in extended precision then solving the Hamiltonian system in extended precision leads

to a rich set of structures. Just changing the initial value by computing it in double precision then
solving the Hamiltonian system in extended precision is su�cient that the qualitative features are
lost. The corresponding computations for initial condition IC2 are summarized in Table 3. The
solution is quasiperiodic for both double and extended precision. Typically, for h=0:05 (Fig. 7) the
Poincar�e section resembles that in [5]. For both double and extended precision, the relative error in
the Hamiltonian oscillates, see Fig. 7 for h= 0:05.
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Fig. 5. RUTH4, h= 0:05, IC1, EP; Poincar�e section, Hamiltonian error, tend = 3× 104.

Fig. 6. RUTH4, h= 0:05, IC1, EP; Poincar�e section, Hamiltonian error, tend = 3× 105.

Table 3
Fixed step RUTH4; initial condition IC2, tend = 3× 105

h Precision H errormax

0.200 DP 1:61× 10−4
0.100 DP 9:74× 10−6
0.050 DP 6:04× 10−7
0.025 DP 3:77× 10−8
0.010 DP 9:64× 10−10
0.200 EP 1:61× 10−4
0.100 EP 9:74× 10−6
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Fig. 7. RUTH4, h= 0:05, IC2, DP; Poincar�e section and Hamiltonian error.

Table 4
Variable step RKL; initial condition IC1

Tolerance tend Precision Poincar�e H errormax

10−3 3× 104 DP C 1:70× 10−2
10−4 3× 104 DP C 1:66× 10−3
10−5 3× 104 DP C 9:92× 10−5
10−5 3× 104 EP NC 8:20× 10−6
10−6 3× 104 DP C 4:97× 10−6
10−7 3× 104 DP C 2:48× 10−7
10−8 3× 104 DP C 1:12× 10−8
10−8 3× 104 EP C 1:06× 10−8
10−9 3× 104 DP C 5:49× 10−10
10−5 3× 105 EP C 9:92× 10−4
10−8 3× 105 EP C 1:18× 10−7
10−9 3× 105 EP C 6:07× 10−9

3. Runge–Kutta–Nystr�om methods

We may integrate systems

dp
dt
=−3qV = f(q);

dq
dt
= p (8)

using nonsymplectic Runge–Kutta–Nystr�om methods as implemented in new-hamint [4]. Here we
use RKL — a sixth-order explicit method with a fourth-order embedded error estimate, originally
developed for integrating the special second-order systems of celestial mechanics [1].
Results for initial condition IC1 are given in Table 4. All Poincar�e sections are chaotic except for

the isolated instance of the extended-precision integration at tolerance = 10−5, for which the section
(see Fig. 8) is concentrated around the quasiperiodic structure in Fig. 3 but with more ‘spreading’
than in Fig. 1. A re�ned search (near tolerance = 10−5) for other nonchaotic solutions failed to
reveal any.
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Fig. 8. RKL, tolerance = 10−5, IC1, DP; Poincar�e section and Hamiltonian error.

Fig. 9. RKL, tolerance = 10−8, IC1, EP; Poincar�e section and Hamiltonian error.

In Fig. 8 the Hamiltonian error has an almost linearly increasing trend on which a small oscillation
is superposed. This behavior is observed in all accurate integrations in double and extended precision
throughout the quasiperiodic regime. For less-accurate integrations this behaviour is less marked and
does not appear immediately. Particularly, the oscillations are atter for the less accurate integrations.
Fig. 9 shows a chaotic case in extended precision for tolerance=10−8. Linear changes with superposed
oscillations in the relative Hamiltonian error in the quasiperiodic regimes are observable, as in other
similar integrations. See the left �gure in Fig. 10 which presents a detail of the error for a typical
double precision case for the range t = 0–103. This is a macroscopic view of the error. At the
microscopic level, within a single oscillation there are (mainly) small di�erences in error behavior.
These are most marked at relaxed tolerances. In the chaotic regime the relative Hamiltonian error
is essentially linearly increasing (without superposed oscillations); the average slope of the error is
slightly greater in the chaotic regime than in the quasiperiodic regime. In addition, other features
(slope changes and at regions) are observed; see the right �gure in Fig. 10 which presents a detail
of the error for a typical extended-precision case for the range t=(1:2–1:8)×104. These correspond
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Fig. 10. RKL, tolerance = 10−8, IC1; Hamiltonian error detail.

Table 5
Variable step RKL; initial condition IC2, tend = 3× 105, DP

Tolerance H errormax

10−3 5:51× 10−2
10−4 6:04× 10−3
10−5 4:25× 10−4
10−6 2:59× 10−5
10−7 1:21× 10−6
10−8 5:49× 10−8
10−9 3:02× 10−9

to the appearance of additional structures in the Poincar�e section, particularly symmetrical (about the
q2 axis) clusters of points on the right side of the �gure and an “envelope” for the section partially
completed on the right. These features appear early in the integration. However, some features do
not appear at the beginning of the integration, particularly the “envelope”, but after a brief chaotic
regime following the initial quasiperiodic regime.
Table 5 displays the results for initial condition IC2. All tolerances produce a quasiperiodic solution

similar to that on the right of Fig. 1 and to that obtained with the �xed step size RUTH4 (Fig. 7).
The relative Hamiltonian error has a similar linear with superposed oscillations behavior as that seen
in Fig. 10. We observe that for given initial conditions, the number of oscillations in the error per
unit time seems approximately constant. Of course, the size of the error at a given time depends
almost linearly on the tolerance. So, for initial conditions IC1 and any tolerance we observe almost
eight oscillations per thousand units of time. For IC2, the corresponding number is close to two.
In either Table 4 or Table 5, plotting the logarithm of the maximum error against the logarithm

of required tolerance, a closely �tted straight line has slope slightly greater than one, i.e., close to
tolerance proportionality. Assuming that when we measure the error we are already in the �nal
integration regime, this enables us to predict a tolerance to control the Hamiltonian error below a
given threshold for a given time interval.
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Abstract

Order stars, introduced in G. Wanner, E. Hairer, S.P. NHrsett (Order stars and stability theorems, BIT 18 (1978)
475–489), have become a fundamental tool for the understanding of order and stability properties of numerical methods
for sti� di�erential equations. This survey retraces their discovery and their principal achievements. We also sketch some
later extensions and describe some recent developments. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Sti� di�erential equations; Order stars; A-stability

1. Ehle’s conjecture

Sti� di�erential equations �rst became popular mainly during the �fties; for an overview of the
early literature see the �rst section of [13]. In 1963, two seminal publications laid the foundations for
later development: Dahlquist’s paper on A-stable multistep methods [8], and Butcher’s �rst paper on
implicit Runge–Kutta methods [4]. One year later, Butcher developed the general class of Gaussian
implicit Runge–Kutta methods of order 2s [5], as well as his e�orts to �nd Radau and Lobatto
methods with fewer implicit stages [6]. The merger of the two subjects, i.e., the study of A-stable
implicit Runge–Kutta methods began some 5 years later. Of great inuence was the elegant paper
of Axelsson [2] on Radau methods as well as the comprehensive Thesis of Ehle [10].

Standard stability analysis. This proceeds as follows (see the scheme in Table 1): The di�erential
equation is linearized and diagonalized, so that it becomes a linear scalar di�erence equation. The
latter is solved by putting yn :=Rn · y0, which leads to a characteristic equation �(R; z) = 0, where
z = h� is a complex variable, � an eigenvalue of the Jacobian and h is the step size. Numerical
stability requires that |R(z)|61 for all roots of �(R; z) = 0. The method is called A-stable if the
stability domain S := {z; |R(z)|61 for all roots of �(R; z)= 0} covers the entire left half plane C−.
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Table 1
Scheme of stability analysis

One-step methods. Here, the equation �(R; z)=0 is of degree 1 in R, thus R(z)=P(z)=Q(z), where
P and Q are polynomials. Examples are:

R(z) = 1 + z (explicit Euler method; not A-stable);

R(z) =
1 + z=2
1− z=2 (trap: rule and impl: midpoint; A-stable);

R(z) =
1

1− z (implicit Euler method; A-stable):

(1)

These are particular entries of the Pad�e table of the exponential function with, in general,

Pkj(z) = 1 +
k

j + k
z + · · ·+ k(k − 1) : : : 1

(j + k) : : : (j + 1)
· z

k

k!
(2)

and Qkj(z) = Pjk(−z). Low-order explicit Runge–Kutta methods have their stability functions in the
�rst row (j = 0) while Butcher’s implicit Gauss methods are on the diagonal (j = k).

Major signi�cance of Ehle’s thesis. Starting from the known result, that diagonal Pad�e fractions
are A-stable for all degrees [3], Ehle concluded that Butcher’s implicit Gauss methods were all
A-stable, but found that Butcher’s Radau and Lobatto methods were above the diagonal and therefore,
not A-stable. Ehle then extended the result of Birkho�–Varga to the �rst and second subdiagonal
j = k + 1; j = k + 2 and constructed A-stable modi�cations of Radau and Lobatto methods. Next
he showed that the entries for the third and fourth subdiagonals j = k + 3; j = k + 4 were never
A-stable. The proofs of these results were based on two criteria for A-stability:

Criterion A. All poles (= zeros of Q) are in C+.

Criterion B. E(y) = Q(iy)Q(−iy)− P(iy)P(−iy)¿0 for all y ∈ R.
While Criterion B is easy for the �rst two subdiagonals (E(y) is of the form C·y2j), the veri�cation

of Criterion A required tedious algebraic developments based on the explicit formulas (2) [10, pp.
37–62]. Ehle then stated his famous conjecture:

Conjecture (Ehle [10; p: 65]). With the exception of the diagonal and �rst two subdiagonals, i.e.,
of k6j6k + 2, no entry of the Pad�e table is A-stable.
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Fig. 1. Early plots of |R(z)| for Pad�e fractions.

At �rst sight, a general proof of the conjecture seemed to be a di�cult task, because numerical
computations revealed that sometimes Criterion A was violated, but not B (as for example with k=0
and j=6); sometimes Criterion B was violated, but not A (as for example with j=k+3; j=k+4);
and sometimes both were violated.

2. The discovery of order stars

Hamilton discovered the quaternions 1843 while walking over Broughham Bridge in Dublin; in
1964, Buchberger had the crucial idea which lead to Gr�obner bases 1964 while riding a bicycle in
the B�urgerstrasse in Innsbruck; fresh air seems to be bene�cial to good mathematical ideas. The idea
for order stars also came at a windy place, the railway station in Lausanne, waiting on track 8 for
the train to Geneva, on Friday evening, February 17, 1978.
Many numerical computations of the roots of the polynomial E(y) as well as the poles of R, i.e.,

the zeros of Q, were performed for various values of k and j. Computer plots of |R(z)| were also
made with the graphical tools of the seventies (see reproductions in Fig. 1). One observes in these
pictures vertical contour lines, which imitate the contour lines of |ez| = ex in the neighbourhood of
the origin.
Idea (Wanner, Hairer, NHrsett [25]). Try to look at “contour lines” which follow the slope of |ez|,

in hoping for more information:

A := {z; |R(z)|¿ |ez|}=
{
z;
∣∣∣∣R(z)ez

∣∣∣∣¿ 1
}

(3)

(see reproductions in Fig. 2). Since on the imaginary axis |ez|= 1, the order star is there precisely
complementary to S and Criterion B is equivalent to

Criterion B′. A ∩ iR= ∅.
The “star” with p+ 1 sectors at the origin is produced by the error term

ez − R(z) = C · zp+1 + · · · or 1− R(z)
ez

= C · zp+1 + · · · ; (4)
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Fig. 2. Early plots of order stars for Pad�e fractions.

Fig. 3. Two possible order stars for Pad�e with k = 2 and j = 1.

which suggested the name “order star”. By the maximum principle, each bounded “black �nger”
of A must contain a pole, and, by the maximum principle applied to ez=R(z), each bounded “white
�nger” contains a zero of R.

Proof of Ehle’s Conjecture. If there are not enough zeros, there must be black �ngers growing out
from the origin in C−, which either cross iR (hence, violating Criterion B′), or carry a pole in C−,
violating Criterion A (see Fig. 2).

Lemma on the number of poles and zeros. For many further results, the use of the maximum
principle, as above, is not su�cient: for example, each of the order stars in Fig. 3 could represent
the Pad�e approximant with k = 2 and j = 1: The clari�cation comes from a new idea: along the
boundary of A, the argument of R(z)=ez turns clockwise. This is a consequence of the Cauchy–
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Fig. 4. Early (and modern) plot of the order star for method (5).

Riemann equations written in polar coordinates. At the origin, the argument is 0. Hence, if the
boundary curve of a bounded subset F ⊂A with @F ⊂ @A returns m times to the origin, F must
contain at least m poles (Argument Principle). This allows us to exclude the right picture of Fig. 3
(because F requires 2 poles) and leads to the conclusion that all Pad�e fractions possess order stars
with j simple black �ngers to the right and k simple white �ngers to the left, as in Fig. 2. All
results of Ehle are now an easy consequence.
The above result has been made more precise by Iserles [14]: The number of poles in F is equal

to the number of exponential interpolation points of R on @F .

Multistep and general linear methods. Here, the di�erence equation in Table 1 involves yn-values
from several steps, consequently, the characteristic equation �(R; z) = 0 will be of higher degree in
R. Example:

(2z2 − 10z + 17)R2 − (8z + 16)R− 1 = 0
⇒ R1;2 = ((4z + 8)± 3

√
2z2 + 6z + 9)=(2z2 − 10z + 17): (5)

We can graph each of these roots (divided by ez) separately (see Fig. 4). At some places the roots
have discontinuities, but extend continuously on another sheet. If we superpose the two sheets, cut
and glue them together appropriately, we obtain a Riemann surface M, on which the order star is
now located (see Fig. 4, right). The order condition produces a star on the principal sheet, but not
for the “parasitic roots”. For A-stability, Criterion B′ must hold on all sheets.

3. Main results

The Daniel and Moore Conjecture. This conjecture [9, p. 80] extended the famous theorem of
Dahlquist [8], to multistep methods with higher stage or derivative number: the highest order of such
an A-stable method is 2j (where j is the number of implicit stages, i.e., the number of poles), and
“of those A-stable methods”, the smallest error constant is that of the diagonal Pad�e approximation.
Fig. 5 demonstrates, in the case of j=3, why the �rst part of this conjecture (p62j) follows from
the order star. This is because for p¿ 2j the order star either covers iR or needs additional poles.
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Fig. 5. Method with 3 poles, order 5 (left), order 6 (middle), order 7 (right; not A-stable); R(z) given by (14) and (16).

Fig. 6. Order star B for Daniel and Moore Conjecture, Part II (R same as in Fig. 5(b)).

Daniel and Moore Conjecture, Part II. The solution of the “error-constant”-part of this conjecture
is based on the observation, that the �ngers of the order star represent oscillations of |R(z)=ez|, whose
amplitude is governed by the error constant (see (4)). Thus, an inequality of the form |C|¿ |C0| is
expressed by the colours of the �ngers of the relative order star

B := {z; |R(z)|¿ |R0(z)|}=
{
z;
∣∣∣∣ R(z)R0(z)

∣∣∣∣¿ 1
}
; (6)

where R0(z) is the stability function of any other method, here the diagonal Pad�e method (see
Fig. 6).

Jeltsch–Nevanlinna Theorem. It came as a surprise that the order star (6) had a much wider �eld
of application than initially intended: If the two methods, which are compared, are both explicit
and have the same number of function evaluations per step, then the two stability domains cannot
be included one in the other [20]. The reason is that explicit methods have all their poles at in�nity
and, with equal multiplicity, the quotient R(z)=R0(z) has no pole left at all outside S0. A condition for
this result is that the instability of methods R0 must be produced on one Riemann sheet only. This
is called “Property C” by [20]. An illustration is presented in Fig. 7. This result called in question
the general belief in the 1950s and 1960s, that multistep methods were superior to Runge–Kutta
methods (“simply because they use more information : : :”) and that the latter were, if at all, just
useful for starting the computation. Many extensions for implicit methods are also possible [21].
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Fig. 7. Order star B for Adams2 versus (scaled) RK2.

Fig. 8. Approximations with real poles.

NHrsett–Wolfbrandt barrier. Since the computational complexity of fully implicit Runge–Kutta
methods, specially when applied to high-dimensional nonlinear problems, seemed enormous, many
publications in the late 1960s and early 1970s, especially the Thesis of A. Wolfbrandt [26], were
developing so-called “diagonally implicit Runge–Kutta (DIRK) methods”, Rosenbrock methods, and
“singly implicit Runge–Kutta (SIRK) methods”. These methods avoided complex linear algebra, but
always encountered the order barrier

p6s+ 1; (7)

where s is the number of stages. Once again, order stars delivered a natural explanation for this
barrier: since all poles must be on the real axis, only two of the p+1 white sectors are “free” and
require no zero (see Fig. 8). Thus, p+ 16s+ 2 and (7) follows.
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This concludes the survey of the principal applications of order star theory. For more details see
[12, Sections IV:4; V:4] and the book [17].

4. Further applications

Many extensions and applications to generalized or specialized situations have been made in the
meantime.

Dahlquist’s �rst barrier. When Dahlquist’s second barrier was obtained so easily with order stars,
his �rst barrier should also be provable by this method. This proof, which indeed was possible, has
been published by Iserles and NHrsett [16].

Partial di�erential equations. Much research, initiated by G. Strang, A. Iserles, R. Jeltsch and J.H.
Smit (see [15,18,19,24]) is devoted to the application of oder stars to obtain order bounds for
di�erence schemes for partial di�erential equations. An overview of many of these results is given
in Chapters 6 and 7 of [17].
A prominent model problem is the advection equation

@u
@t
= c

@u
@x

(8)

solved by a di�erence scheme, say, with 3 levels
s2∑

‘=−r2
a‘um+2; ‘ +

s1∑
‘=−r1

b‘um+1; ‘ +
s0∑

‘=−r0
c‘um;‘ = 0: (9)

Stability analysis leads to the characteristic equation

�(R; z) :=R2
s2∑

‘=−r2
a‘z‘ + R

s1∑
‘=−r1

b‘z‘ +
s0∑

‘=−r0
c‘z‘ = 0 (10)

with the requirement that for |z|=1 we have |R(z)|61 for all roots of (10). The order condition is
here

z� − R1(z) =O((z − 1)p+1); z → 1 (11)

for the principal root, where �=c�t=�x is the Courant number. The fact that the exponential function
of (4) is now replaced by z� with its branching point at the origin, is an additional complication to
these studies.
The main result, proved in a series of papers for two and three level methods and conjectured in

general (see [22]), is that

p62min(D;U );

(12)
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Fig. 9. Increasing stability domain for explicit Adams4.

where D and U are, respectively, the number of downwind and upwind points of the stencil. This
bound has the quality of being an extension of the Courant–Friedrichs–Lewy condition, to which it
reduces for p= 1.

Chebyshev methods for large problems. Important for the cheap integration of large and mildly
sti� equations are the so-called Chebyshev methods. Their stability polynomials have a certain order
and maximal stability along the negative real axis. The implementation of these methods in the
“Lebedev style” (see [12, p. 33]) requires information about the number of complex zeros of R(z).
The application of order stars has led to a complete description of this question and also delivered
inequalities for the error constants (see [1]).

Delay equations. For the study of unconditional stability with respect to the test equation y′(t)=a ·
y(t)+ b ·y(t− 1) with real a and b, a su�cient condition, for symmetric stability functions R(z), is
that ArgR(iy)¡y for all y. This condition can be elegantly seen from the shape of the order star
close to the imaginary axis (see [11]).

5. Three counter examples

These examples show that many hypotheses of the theory in Section 3 cannot be removed.

“Jeltsch–Nevanlinna” without Property C. The necessity of Property C for the validity of the
Jeltsch–Nevanlinna Theorem is illustrated in [20, p. 69] (see also “Exercise 4” in [12, p. 297] and
“Open Problem 8” in [17, p. 218]). The following example has been computed by R. O’Donovan.
It perturbs the explicit Adams4 method, whose root locus curve presents “loops”, in such a way,
that the stability domain increases in all directions. For the result see Fig. 9.

Breaking the NHrsett–Wolfbrandt barrier. The above proof of (7) used the fact that two symmetric
branches joining a real pole include a white sector, i.e., employs in a certain sense the Jordan Curve
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Fig. 10. Region for which the Psihoyios–Cash method is A-stable.

Theorem. On a general Riemann surface this is no longer valid and the barrier (7) is, for example,
broken by BDF3. Psihoyios and Cash in [23] even found an A-stable method with real poles which
breaks this barrier. The method is an extension of the MEBDF-method of Cash (see [12, p. 269]):
we use three consecutive steps of BDF5 to produce three “future points” �y n+5, �y n+6, and �y n+7, and
compute yn+5 by the corrector

5∑
j=0

�jyn+j = h(� − )fn+5 + h �f n+5 + h� �f n+6 + h� �f n+7 (13)

where � and  are taken as free parameters. The remaining parameters are determined such that
(13) has order 6. This then leads to a 5-step general linear method of order 6 with 4 real poles.
If the stability analysis is done by modifying the formulas of [12, p. 269], one obtains a charac-
teristic equation of degree 5. The result, depending on the free parameters � and , is presented in
Fig. 10 and exhibits a small region where A-stability actually occurs. The order star of the method
for � = 0:05 and  = 0:1 is presented in Fig. 11. On three sheets, lurk boundary curves of A
ready to invade the imaginary axis when the point (�; ) dares to leave the tiny region for A-
stability.

The Butcher–Chipman Conjecture. The search for high order general linear methods motivates the
following problem: given integers k; l; m, �nd K(z), L(z), M (z) of degree k; l; m, respectively, such
that

K(z)R2 + L(z)R+M (z) = 0 (14)

produces an algebraic approximation of highest possible order to ez,

ez − R(z) =O(zk+l+m+2): (15)



E. Hairer, G. Wanner / Journal of Computational and Applied Mathematics 125 (2000) 93–105 103

Fig. 11. Order star on 5-sheet Riemann surface for the Psihoyios–Cash method.

Answer [7]:

K(z) = (D + 2)−m−1(D + 1)−l−1
zk

k!

L(z) = (D + 1)−m−1(D − 1)−k−1 z
l!

M (z) = (D − 1)−l−1(D − 2)−k−1 z
m

m!

(16)

Here D = d=dz and (D + a)−n−1 = a−n−1(1 + D=a)−n−1 must be replaced by its binomial series in
order to produce generalizations of the formulas (2).

Examples. For (k; l; m) = (3; 1; 1) and (3; 0; 2) we obtain

�(R; z) =
(
−54 + 69

2
z − 9z2 + z3

)
R2 + (48 + 24z)R+

(
6 +

3
2
z
)
;

�(R; z) =
(
−63
2
+ 24z − 15

2
z2 + z3

)
R2 + 48R+

(
−33
2
− 9z − 3

2
z2
)
; (17)

which correct some sign errors in [7, p. 123].

The Butcher–Chipman Conjecture. After extensive numerical testing for A-stable approximations,
Butcher and Chipman arrive at the conjecture that

06(k + 1)− (l+ 1)− (m+ 1)62 (18)

were necessary and su�cient for A-stability. This would nicely generalize the Ehle Conjecture to
the case of quadratic Pad�e approximations.
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Fig. 12. Order stars for order 5 Butcher–Chipman approximations (right); counter example (left).

First counter example. When k =m, Eq. (16), as well as the order star, become symmetric. The
order of the particular roots drop, as described in [12, p. 292], and 1 becomes a double eigenvalue
of the matrix A. Nevertheless, the corresponding general linear method can remain A-stable. This
happens, for example, with the A-stable case k = m= 2; l= 0 in Fig. 12, which violates (18).
Second counter example. The approximations satisfying (18) remain A-stable only for low orders.

The �rst counter-example occurs for k = 7; l = 0; m = 4, an approximation of order 12. See, again,
Fig. 12. Computations using the Schur criterion reveal that the leftmost black �nger crosses the
imaginary axis for |y|61:97.
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Open problem. It appears that Condition (18) remains necessary for all non-symmetric examples.
Hiervon w�are allerdings ein strenger Beweis zu w�unschen.
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Abstract

Exponentially �tted Runge–Kutta methods with s stages are constructed, which exactly integrate di�erential initial-value
problems whose solutions are linear combinations of functions of the form {x j exp(!x); x j exp(−!x)}, (! ∈ R or iR; j=
0; 1; : : : ; jmax), where 06jmax6bs=2−1c, the lower bound being related to explicit methods, the upper bound applicable
for collocation methods. Explicit methods with s ∈ {2; 3; 4} belonging to that class are constructed. For these methods, a
study of the local truncation error is made, out of which follows a simple heuristic to estimate the !-value. Error and step
length control is introduced based on Richardson extrapolation ideas. Some numerical experiments show the e�ciency
of the introduced methods. It is shown that the same techniques can be applied to construct implicit exponentially �tted
Runge–Kutta methods. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last decade, a lot of research has been performed in the area of the numerical solution of
initial value problems related to systems of �rst-order ordinary di�erential equations, i.e.,

y′ = f(x; y); y(x0) = y0: (1)

Particular tuned methods have been proposed when the solution of the above problem exhibits a
pronounced oscillatory character. If a good estimate of the frequency is known in advance, one
can use linear multistep methods, whereby exact integration of a given set of linearly independent
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functions is achieved. A �rst good theoretical foundation of this technique was given by Gautschi
[2] and Lyche [5]. Since then, a lot of exponentially �tted linear multistep methods have been
constructed; most of them were developed for second-order di�erential equations where the �rst
derivative is absent, and applied to solve equations of the Schr�odinger type. Also for �rst-order
equations special tuned algorithms have been constructed. For an exhaustive list of references we
refer to [4] and references cited therein. The study of exponentially �tted Runge–Kutta (EFRK)
methods is limited and of a very recent date. Paternoster [6] used the linear stage representation of
a Runge–Kutta method given in Albrecht’s approach and derived some examples of implicit Runge–
Kutta–(Nystr�om) methods of low algebraic order (for the de�nition of that property see [6]). On the
other hand, Simos [7,8] constructed an explicit Runge–Kutta–(Nystr�om) method of algebraic order
4, which integrates certain particular �rst-order initial-value problems with periodic or exponential
solutions. In the present paper a general technique for the construction of exponentially �tted Runge–
Kutta methods is introduced.
An s-stage Runge–Kutta method can integrate exactly at most a set of s linearly independent func-

tions. This maximum is reached if the method is a collocation method. In the latter case, classically
the set {1; x; x2; : : : ; xs} is considered; in our approach we choose the set {xm exp(!x); xm exp(−!x)}
or equivalently for ! = i� the set {xm sin(�x); xm cos(�x)} with m = 0; 1; : : : ; bs=2 − 1c. For explicit
EFRK methods only two functions are present in the basis, i.e. m = 0; this is due to the fact that
classical explicit Runge–Kutta methods have a stage order of at most 1.
In order to realize this goal we de�ne an EFRK method as

yn+1 = yn + h
s∑
i=1

bif(xn + cih; Yi) (2)

with

Yi = iyn + h
s∑
j=1

aijf(xn + cjh; Yj) (3)

or in tableau form

c1 1 a11 a12 : : : a1; s
c2 2 a21 a22 : : : a2; s

: : :
cs s as1 as2 : : : ass

b1 b2 : : : bs

(4)

This formulation is an extension of the de�nition of a classical Butcher tableau. A motivation
for the introduction of i-values is given in [10]. In this paper we de�ne that a function g(x) is
integrated exactly by a (EF)RK method if yn=g(xn) for all problems whose solution is g(x). If each
stage equation and the �nal step equation exactly integrate g(x) then the (EF)RK scheme itself also
integrates g(x) exactly. Indeed, for small h the uniqueness of the solution of system (3) is guaranteed
by a proof similar to that of Theorem 341 of [1], while on the other hand this unique solution is
Yi = g(xn+ cih) by construction, given that each equation in (2) and (3) exactly integrates g(x) and
that the solution of the problem to be solved is g(x). The above conditions give rise to a system of
equations for the components of b and A of the following form (we present the exponential form
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and v=!h, ! ∈ R). The number of equations to retain depends on the number 2(m+1) of elements
present in the basic set.

exp(±v)− 1∓ v
s∑
i=1

bi exp(±civ) = 0;

exp(±v)−
s∑
i=1

bi(1± vci) exp(±civ) = 0;

...

(5)

together with

exp(±civ)− i ∓ v
s∑
j=1

aij exp(±cjv) = 0;

ci exp(±civ)−
s∑
j=1

aij(1± vcj) exp(±cjv) = 0;

...

(6)

with i = 1; : : : ; s.

2. Explicit EFRK methods

In the case of explicit EFRK methods the number of equations in (5) and (6) is restricted to two.
Below we give some examples.
For the two-stage method we have chosen c0 = 0 and c1 = 1. Eqs. (5) and (6) fully de�ne

b1; b2; 1; 2 and a21 as (here we always present the trigonometric solution, i.e. != i�; v= h�):

0 1
1 cos(v) sin(v)=v

sin(v)
v[cos(v) + 1]

sin(v)
v[cos(v) + 1]

(7)

This EFRK method reduces in the limit v→ 0 to the classical scheme with a21 = 1 and b1 = b2 = 1
2 ,

which has algebraic order 2.
For the three-stage explicit method we have chosen c1 = 0; c2 = 1

3 and c3 =
2
3 . Eqs. (5) leave

one degree of freedom. In order to fully de�ne all components of b we have added the following
supplementary equation:

b1 + b2 + b3 = 1; (8)
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which expresses that (2) reproduces exact results whenever f(x; y) = 1. Eqs. (6) again leave one
degree of freedom; we have chosen a31 = 0. The following exponentially �tted method emerges:

0 1

1
3
cos(v=3)

sin(v=3)
v

2
3

1 0
sin(2v=3)
v cos(v=3)

b1 b2 b3

(9)

with

b1 =
−4 cos(v=3) sin(v=3) + v cos(v=3)− 2 sin(v=3) + v

2v sin2(v=3)
;

b2 =
−2 cos(v=3) sin(v=3) + v cos(v=3)− sin(v=3)

v(cos(v=3)− 1) ;

b3 =
−4 cos(v=3)2 sin(v=3)− 2 cos(v=3) sin(v=3) + v cos(v=3) + v

v sin2(v=3)
:

This method reduces for v→ 0 to the classical scheme with a21= 1
3 ; a32=

2
3 and b1=

1
4 ; b2=0; b3=

3
4

which has algebraic order 3.
For the four-stage method two additional equations can be added to (5) [10]. We require that the

�rst equation (2) reproduces exact results whenever f(x; y) is 1 or x. This delivers the following
two equations for the b components:

4∑
i=1

bi = 1;

4∑
i=1

bici = 1
2 :

(10)

Eqs. (5) and (10) fully determine the components of the b-vector. Eqs. (6) leave three degrees of
freedom. Inspired by the classical fourth-order scheme we choose a31 = 0 and a42 = 0; additionally,
we also set 4 = 1. The following tableau emerges:

0 1

1=2 cos(v=2)
sin(v=2)
v

1=2
1

cos(v=2)
0

tan(v=2)
v

1 1 0 0
2 sin(v=2)

v

b1 b2 b3 b4

(11)
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with

b1 = b4 =
2 sin(v=2)− v
2v(cos(v=2)− 1) ; b2 = b3 =

v cos(v=2)− 2 sin(v=2)
2v(cos(v=2)− 1) :

For v → 0 this method reduces to the well-known classical scheme with a21 = 1
2 ; a32 =

1
2 ; a43 = 1

and b1 = b4 = 1
6 ; b2 = b3 =

1
3 , which has algebraic order 4.

In order to have an idea of the form of the local truncation error (LTE) for the explicit EFRK
method, we have calculated for the three above-mentioned schemes the di�erence y(xn+1) − yn+1
with y(xn+1) a notation for the exact solution in the point xn+1. Note that the well-known theory of
Butcher based on rooted trees cannot be applied here, since the row-sum rule is not ful�lled. We
present the LTE for a non-autonomous scalar equation. All occurring partial derivatives of f(x; y(x))
with respect to x and y are collected in order to express these LTEs in terms of total derivatives of
y(x). The following results were obtained.

• For the two-stage method (7)

LTE =− h
3

12
[y(3) − 3fyy(2) + �2(y′ − 3fyy)] + O(h4): (12)

• For the three-stage method (9)

LTE =
h4

216
[y(4) + 2fyy(3) + 6f2yy

(2) + �2(y(2) + 2fyy′ + 6f2yy)] + O(h
5): (13)

• For the four-stage method (11)

LTE=− h5

2880
[y(5) − 5fyy(4) − 10fxyy(3) − 10fyyfy(3) + 10f2yy(3)

+15fyy(y(2))2 + 30fxyfyy(2) + 30fyyffyy(2) − 30f3yy(2)

+�2(y(3) − 5fyy(2) − 10fxyy′ − 10fyyfy′

+10f2yy
′ + 15fyyyy(2) + 30fxyfyy + 30fyyffyy − 30f3yy)

+15�2((fy + fyyy)y(2) + �2(fy + fyyy)y)] + O(h6): (14)

All functions are evaluated at x = xn and y = yn. Note that the leading order terms in the given
LTEs become zero for y = sin(�x) or y = cos(�x). Moreover in each of the LTE-expressions the
derivative of lowest order occurring for �= 0 is y(2), showing that classically only the set {1; x} is
integrated exactly.

3. Local error estimation and a good choice for �

There exists no mathematical theory to determine � in an exact way. The only goal we can put
forward is to make the LTE as small as possible by calculating � by means of a heuristically chosen
algorithm. Since for a scalar equation in each of the expressions for the LTEs (12)–(14) the term
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y(2) +�2y is present we propose to calculate � in each integration interval [xn; xn+1] in the following
way:

�=

√
−y

(2)(xn)
y(xn)

; n= 0; : : : if y(xn) 6= 0 and �= 0 otherwise:

Note that if y(x) is a linear combination of sin(�x) and cos(�x), and y(xn) 6= 0, we obtain from this
recipe � = � and y(x) will be integrated exactly (if in�nite precision arithmetic is assumed). For a
system of n �rst-order equations, we propose to make the Euclidean norm of all (ty(2) + �2 ty; t =
1; : : : n) present as small as possible. This results in

�=

√
−
∑n

t=1
ty(xn) ty(2)(xn)∑n
t=1

ty(xn)2
: (15)

The expressions for the occurring second derivatives can be obtained analytically from the given
ODEs or calculated numerically using previously derived y(xn−j) values. The �-values used are
then in each integration interval taken as the positive square root of the numerically obtained �2. If
negative �2-values are obtained, � is replaced in the corresponding formulae by i� (i2 =−1). In fact,
in this case, the exponential functions instead of the trigonometric ones are integrated.
Since the �-values used are calculated, they are never exact due to �nite precision arithmetics. As

a consequence, the leading term of the LTE does not vanish. This means that one can try to estimate
numerically, for a chosen �, the LTE. A technique which can be used is Richardson extrapolation.
First we �x � by (15). We consider a Runge–Kutta method of order p ∈ {2; 3; 4} to obtain the
solution yn+1 at xn+1. Under the usual localizing assumption that yn = y(xn) it follows from (12) to
(14) that the LTE can be written in the form Tn+1 = y(xn+1)− yn+1 =C(y; f)hp+1 +O(hp+2); where
C(y; f) is some function of y, its derivatives, f(x; y) and its partial derivatives with respect to x
and y, all evaluated at the point (xn; yn). Let us now compute a second numerical solution at xn+1
by applying the same method twice with steplength h=2 and also starting in xn; denote the solution
so obtained by zn+1. By starting in both calculations at the same point xn one can work during these
two processes with the same value of �. The error is now

Tn+1 = y(xn+1)− zn+1 = 2C(y; f)(h=2)p+1 + O(hp+2):
From these two estimates for the LTE one can derive that the error in the second calculation is

given by: error = 2C(y; f)(h=2)p+1 ≈ (zn+1 − yn+1)=(2p − 1) If the user asks for a given tolerance
tol, he can control the steplength and the error in the following way:

if |error|¡= tol accept the step and progress with the zn+1 value
if |error|¿ tol reject the step

The step is then adapted in the following way:

hnew = hold min(facmax;max(facmin; fac(tol=error)1=(1+p)));

with facmax and facmin, respectively, the maximum and minimum acceptable increasing or decreas-
ing factors. The symbol fac represents a safety factor in order to have an acceptable error in the
following step. The method for estimating the LTE and the notation used to de�ne hnew is given in
Hairer et al. [3]. In the code we have developed the following values for these factors were taken:
facmax = 2, facmin = 0:5, fac = 0:9.
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4. Numerical experiments

In this section we solve some initial-value problems having as solution a combination of sine or
cosine functions. The following cases have been considered.

Example 1.

y′′ =−30 sin(30x); y(0) = 0; y′(0) = 1 (16)

with y(0) = 0; y′(0) = 1; its exact solution is y(x) = sin(30x)=30. Eq. (16) has been solved in the
interval 06x610 with tol = 10−10.

Example 2.

y′′ + y + y3 = B cos(
x); y(0) = 0:20042672806900; y′(0) = 0 (17)

with B=0:002, 
=1:01; accuracy is judged by comparison with a Galerkin approximation obtained
by Van Dooren [9]

y(x)≈ 0:200179477536 cos(
x) + 0:246946143 · 10−3 cos(3
x)
+0:304014 · 10−6 cos(5
x) + 0:374 · 10−9 cos(7
x):

Eq. (17) has been solved in the interval 06x6300 with tol = 10−8.

Example 3.

y′′ + y = 0:001 cos(x); y(0) = 1; y′(0) = 0; (18)

with exact solution y(x)=cos(x)+0:0005x sin(x). Eq. (18) has been solved in the interval 06x61000
with tol = 10−8.

Example 4.

y′′ + 0:2y′ + y = 0; y(0) = 1; y′(0) = 0; (19)

with exact solution y(x) = exp(−0:1x)(sin(√0:99x)=√99 + cos(√0:99x)). Eq. (19) has been solved
in the interval 06x62� with tol = 10−8.

After having rewritten the above equations as equivalent �rst-order systems, we have solved them
with the new fourth-order EFRK method (11) and the equivalent classical fourth-order RK method;
in both cases we applied the above-described Richardson extrapolation technique. We have calculated
at the endpoint of the integration interval for each example the Euclidean norm of the error vector
with components de�ned as the di�erence between the numerical and the exact values of the solution
and its �rst derivative. These data are collected in Table 1 together with the number of accepted
and rejected steps.
It is clear from Table 1 that for equations with a purely trigonometric solution (Example 1), the

new method is superior to the classical one. In this example, (15) initially gives a quite accurate
value for �, such that there is a small error and a huge increase in the stepsize in each step.
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Table 1
Comparison of the Euclidian norms of the endpoint global errors obtained by using the fourth-order EFRK and classical
RK-methods with step-length and order control based on Richardson extrapolation techniques

Accepted steps Rejected steps Error

Example 1 Exponentially �tted 33 16 4:01 · 10−9
Classical 3495 5 1:01 · 10−8

Example 2 Exponentially �tted 1191 0 1:01 · 10−7
Classical 2167 0 2:79 · 10−5

Example 3 Exponentially �tted 1946 1 1:14 · 10−5
Classical 9826 0 5:75 · 10−5

Example 4 Exponentially �tted 46 3 1:96 · 10−7
Classical 57 0 2:70 · 10−7

However, these errors accumulate and at a certain moment such a large stepsize causes a rejected
step. After decreasing the stepsize, this process is repeated. In cases where the solution is of a mixed
trigonometric form, although one of the terms dominates the solution (Examples 2 and 3), the new
method is still more e�cient than the classical one. In Example 4 where the solution is a mixture
of exponential and trigonometric functions both methods considered are practically equivalent.

5. Implicit EFRK schemes

For a collocation RK scheme with s stages the set of functions {1; x; : : : ; xs} are exactly inte-
grated. It is obvious that in the case of EFRK schemes the couples {xm exp(!x); xm exp(−!x)};
m=0; 1; : : : ; bs=2−1c have to be taken into account together. Two- and three-stage implicit methods
have been studied. For the two-stage case, where we have chosen 1 = 2 = 1 identical results have
been obtained as the ones derived by Paternoster [6]. For general, three-stage methods the length of
the resulting expressions is large; therefore, we present a rather simple case, the LobattoIIIA EFRK
method; we have �xed beforehand the ci-values, i.e. c1 = 0; c2 = 1

2 and c3 = 1. For these methods
as well the m = 0 as the m = 1 couples are taken into account in the set of basic functions. The
following results emerge:

a11 = 0; a12 = 0; a31 = 0; 1 = 0;

a21 =
−v2 − 4 + (4 + 2v2) cos2(v=2)

2v2D
; a23 =

v2 − 4 + 4 cos2(v=2)
2v2D

;

a22 =−(v
2 − 4) cos(v=2) + 2v sin(v=2)− 2v cos2(v=2) sin(v=2) + 4 cos3(v=2)

v2D
;

2 =
−v cos(v=2) sin(v=2)− 2 + 2 cos2(v=2)

D
;

with

D =−v sin(v=2)− 2 cos(v=2) + 2 cos3(v=2);
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b1 = a31 =
2 sin(v=2)− v cos(v=2)

v2 sin(v=2)
; b2 = a32 =

−2 sin(v) + 2v
v2 sin(v=2)

;

b3 = a33 =
2 sin(v=2)− v cos(v=2)

v2 sin(v=2)
; 3 = 1:

For �→ 0 this method reduces to the classical LobattoIIIA method and has algebraic order 4.

6. Conclusions

We have developed a technique to construct explicit and implicit exponentially �tted Runge–
Kutta methods. Some examples of both types are given. A heuristic way of determining � is given
for the case of explicit methods, which is based on the typical expression of the LTEs. In cases
where the solutions are purely trigonometric the use of Richardson extrapolation is doubtful. The
large percentage of rejected steps in the �rst example supports this statement. Better methods for
error estimation are welcome. It is shown that the introduced construction method can also be
straightforwardly applied to obtain exponentially �tted implicit methods.
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Abstract

For many years the methods of choice for the numerical solution of sti� initial value problems and certain classes
of di�erential algebraic equations have been the well-known backward di�erentiation formulae (BDF). More recently,
however, new classes of formulae which can o�er some important advantages over BDF have emerged. In particular,
some recent large-scale independent comparisons have indicated that modi�ed extended backward di�erentiation formulae
(MEBDF) are particularly e�cient for general sti� initial value problems and for linearly implicit DAEs with index 63.
In the present paper we survey some of the more important theory associated with these formulae, discuss some of the
practical applications where they are particularly e�ective, e.g., in the solution of damped highly oscillatory problems,
and describe some signi�cant recent extensions to the applicability of MEBDF codes. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In the 1950s Curtiss and Hirschfelder [12] published one of the �rst papers which identi�ed
clearly the di�culties of solving sti� initial value problems of the form

y′ = f (x; y); y(x0) = y0; y ∈ Rs: (1)

Since that time a whole variety of methods have been proposed for the numerical solution of (1).
The fact that this class of problems has remained so challenging is not at all surprising given the fact
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that it is still not clear exactly what is meant by the term sti�ness. Although numerous attempts have
been made to give a rigorous de�nition of this concept, it is probably fair to say that none of these
de�nitions is entirely satisfactory. Indeed the authoritative book of Hairer and Wanner [18] deliber-
ately avoids trying to de�ne sti�ness and relies instead on an entirely pragmatic de�nition given in
[12]. What is clear, however, is that numerical methods for solving sti� initial value problems have to
satisfy much more stringent stability requirements than is the case for methods intended for nonsti�
problems. One of the �rst, and still one of the most important, stability requirements particularly for
linear multistep methods is that of A-stability which was proposed in [13]. However, the requirement
of A-stability puts a severe limitation on the choice of suitable linear multistep methods. This is artic-
ulated in the so-called Dahlquist second barrier which says, among other things, that the order of an
A-stable linear multistep method must be 62 and that an A-stable linear multistep method must be
implicit.
This pessimistic result has encouraged researchers to seek other classes of numerical methods for

solving sti� equations. For Runge–Kutta methods, for example, the situation regarding stability is
much more satisfactory. In fact, there exist A-stable Runge–Kutta methods of arbitrarily high order.
In particular, the s-stage Gauss Runge–Kutta methods have order 2s and are A-stable for all s.
However, as is well known, these fully implicit Runge–Kutta methods can be very expensive to
implement.
We are therefore faced with the classic dilemma that, generally speaking, linear multistep methods

are relatively cheap to implement but su�er severe degradation of stability as their order increases
while implicit Runge–Kutta methods can have excellent stability properties but tend to be expensive
to implement. Most attempts to ‘get around’ the Dahlquist barrier have involved either lessening
the requirement of A-stability to something which is less restrictive, but which is still appropriate
for some classes of sti� equations, or proposing a totally di�erent class of formulae. However, the
desirability of having methods which are A-stable is su�ciently well documented that it seems the
only way to achieve real e�ciency for general sti� problems is to consider formulae other than
linear multistep methods.
One very successful proposal in this direction was by Hairer and Wanner [18] who developed a

code Radau5 based on Radau Runge–Kutta formulae. We will return to this code at a later stage.
A second proposal that we wish to describe is to use what have become known as boundary value
methods. These methods are able to achieve excellent stability by using information at advanced step
points (also known in the literature as superfuture points). As with Runge–Kutta methods it is the
e�ciency of implementation of these methods rather than their stability which is the real challenge
and we will discuss this in the next section.

2. Boundary value methods

To introduce the general class of boundary value methods that we will be interested in we consider
again the linear multistep method

yn+k +
k−1∑
j=0

�ajyn+j = h �bkf(xn+k ; yn+k): (2)
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In the limit h= 0 this formula reduces to the linear recurrence relation

yn+k +
k−1∑
j=0

�ajyn+j = 0: (3)

Eq. (3) can be regarded as a linear multistep method ‘integrating forward’ with a step h = 0. It is
clear that the required solution of (3) is

yn = yn+1 = · · ·= yn+s = c: (4)

If, however, we appeal to the theory of linear recurrence relations it is well known that if we solve
(3) by direct forward recurrence starting with the initial conditions

yn+i = c; 06i6k − 1 (5)

in an attempt to compute the solution

yn+m = c; m¿k − 1; (6)

then this process is stable if and only if

(i) r = 1 is the root of largest modulus of

k∑
j=0

�ajrj = 0 (7)

and
(ii) all roots of (7) of unit modulus are distinct.

If these conditions are not satis�ed then forward recurrence is unstable. In the parlance of the
theory of linear recurrence relations, requirements (i) and (ii) simply impose the condition that
r = 1 is the dominant zero of (7) so that yn = c; for all n, is the dominant solution of (3). In
essence the theory tells us that only the dominant solution of (3) can be generated in a stable
manner by forward recurrence. However, conditions (i) and (ii) are precisely the conditions for
(2) to be zero-stable. Thus, an alternative way of looking at this is to realize that we have to
impose the condition of zero-stability on (2) precisely because we demand that we should solve
(2) by forward recurrence; that is we solve for yn+k from given values yn; yn+1; yn+2; : : : ; yn+k−1. If
we were to interpret (2) not as a prescription for yn+k but as an equation which, if satis�ed for
k = 0; 1; 2; : : : ; determines the sequence of approximations we are interested in then the relevant
question becomes how we solve the resulting simultaneous equations in a stable way without exces-
sive cost. If we were to solve (2) in a di�erent way then we would no longer need to impose the
condition of zero-stability and this in turn o�ers us the possibility of obtaining high order A-stable
formulae.
One possible alternative way of solving (3) is to rewrite it as a boundary value problem. (This

is the basis of some celebrated algorithms for �nding nondominant solutions of linear recurrence
relations [23,22,8,9].) To describe one variant of this approach we consider the third order, linear 2
step method:

yn+2 + 4yn+1 − 5yn = h(4fn+1 + 2fn): (8)
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It is well known that this formula does not satisfy the condition of zero-stability and so is unsuitable
for the solution of initial value problems. It was shown in [10] that if we apply (8) to the linear
scalar equation

dy
dx
= �y; � ∈ R (9)

to give

yn+2 + (4− 4�h)yn+1 − (5 + 2h�)yn = 0; (10)

then the required solution of (10) is subdominant for all h�. This fact suggests that, instead of solving
(10) by forward recurrence starting from two initial conditions on y which would be an unstable
process, we should instead generate the required solution using the boundary value formulation

y0 = y(x0);

yn+2 + 4yn+1 − 5yn = h(4fn+1 + 2fn); n= 0; 1; 2; : : : ; N − 2;
yN = 0

(11)

for some large N . Note, in particular, that this de�nes a tridiagonal system of linear algebraic
equations of size N +1 for the N +1 unknowns. It was shown in [10] that this formulation produces
an A-stable algorithm which has order 3. Theoretically, this approach is a very successful one due
to the high-order A-stability that we have achieved. In fact, we have used a linear multistep method
and achieved A-stability with order ¿ 2. However computationally this algorithm is not, in general,
satisfactory for solving initial value problems since it does not allow easy change of stepsize or
order and for large systems the storage requirement can be prohibitive. Even more important is
the problem that there may be a lack of convergence in the solution of the simultaneous nonlinear
algebraic equations. Ideally, what we need is a special kind of boundary value approach which shares
the improved stability obtained by (11) but which does allow variable stepsize and order. One of
the easiest ways of achieving this is to develop special classes of formulae to which a boundary
value approach can be applied.
An early attempt in this direction was in [9] where such a method was derived from a standard

Adams–Moulton formula. This early work has since been extended in several ways. In particular,
Brugnano and Trigiante [2] have developed a whole theory of boundary value methods suitable for
several important classes of initial value problems, such as sti� problems, Hamiltonian problems and
di�erential algebraic equations. However, a major di�erence is that we set up a ‘local’ boundary value
problem so that when computing yn+k the boundary condition is imposed at xn+k+1. The approach of
Brugnano and Trigiante can be regarded as a more conventional one where the boundary condition
is imposed at a large distance from the initial point. Their results are too extensive to quote here
and we refer the reader to [2].
In what follows, we will extend the approach suggested by (11) to formulae which are particularly

suitable for sti� problems. There are numerous ways in which this could be done and in the next
section we will describe one particular approach which is based on modi�ed extended backward
di�erentiation formulae and which has proved to be particularly e�cient for general sti� initial
value problems and di�erential algebraic equations.
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3. Modi�ed extended backward di�erentiation formulae

Modi�ed extended backward di�erentiation formulae (MEBDF) were originally proposed as a
class of formulae to which an e�cient variable order, variable step boundary value approach could
easily be applied. The precise form taken by the general k step MEBDF is

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+1fn+k+1 + b̂kfn+k]; (12)

where the coe�cients are chosen so that this formula has order k + 1. This order requirement
uniquely speci�es the coe�cients of (12). Starting from given data yn; yn+1; : : : ; yn+k−1, a predictor
is �rst used to predict yn+k+1, the derivative approximation y′

n+k+1 is then computed and �nally yn+k
is computed from yn; yn+1; : : : ; yn+k−1; y′

n+k+1. Of course, the accuracy and stability of this method is
critically dependent on the predictor used to compute yn+k+1 and in particular this predictor must be
of order at least k if the whole process is to be of order k + 1. A natural kth-order predictor is the
k-step BDF and this leads to the so-called EBDF algorithm
Stage 1: Use a standard BDF to compute �y n+k :

�yn+k +
k−1∑
j=0

�ajyn+j = h �bkf(xn+k ; �yn+k): (13)

Stage 2: Use a standard BDF to compute �y n+k+1:

�yn+k+1 + �ak−1 �yn+k +
k−2∑
j=0

�ajyn+j+1 = h �bkf(xn+k+1; �yn+k+1): (14)

Stage 3: Compute a corrected solution of order k + 1 at xn+k using

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+1 �fn+k+1 + b̂kfn+k]: (15)

Note that at each of these three stages a nonlinear set of equations must be solved in order that the
desired approximations can be computed. The boundary value nature of this approach can be seen
from Stage 3 where yn+k is computed from past values yn+i as well as from the future value �yn+k+1.
One of the main drawbacks of this approach is the need to compute and factorize the two iteration

matrices arising in the application of a modi�ed Newton iteration at each stage. To avoid this, the
EBDF approach described above can be modi�ed (to give the so-called MEBDF approach [5]) by
changing Stage 3 to
Stage 3∗:

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+1 �fn+k+1 + �bkfn+k + (b̂k − �bk) �fn+k]: (16)

Fortunately, this modi�cation not only improves the computational e�ciency of this approach, it
also improves its stability. The stability properties of the MEBDF together with the reasons for their
computational e�ciency are fully described in [6,18] and a code MEBDFDAE based on the MEBDF
approach is available from NETLIB and from the author’s web page. In particular, the MEBDF are
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A-stable for order up to 4 and A(�)-stable for order up to and including 9 and this is considerably
better than the stability achieved by BDF. In the next section we will consider one particular class
of problems for which this enhanced stability is particularly appropriate.

4. Damped sti� highly oscillatory problems

As was explained earlier, attempts to give a precise general mathematical de�nition of sti�ness
have been largely unsuccessful. However, some important insights into the concept of sti�ness can
be gained by considering a suitably restricted class of problems. Normally, the aim of considering
these problems has been to de�ne a new stability concept which is appropriate for dealing with
sti� problems rather than to de�ne sti�ness per se. Often these new de�nitions have evolved from
consideration of problems for which there is a contractivity property for the solutions and, for a
survey of this, the interested reader is referred to [3]. The most straightforward problem to analyse
for linear methods is the constant coe�cient equation

dy
dx
= Ay: (17)

A de�nition of sti�ness for this problem has been given, for example, in [21]. This de�nition is not
the whole story, however, because other quantities such as the initial conditions and the interval of
integration also need to be considered. However if we assume for the time being that all components
of the general solution of (17) are in the solution that we require, and that we are integrating over a
su�ciently long interval of x, then we can say something about the likely performance of standard
codes on (17). In particular if all the eigenvalues of A are real, or lie close to the real axis, then
we can expect codes based on BDF and MEBDF to normally perform well since they have linear
stability properties appropriate for dealing with such problems. However, if some of the eigenvalues
of A have relatively large imaginary part then we would expect BDF to perform rather poorly since
they are A-stable only up to order 2. In the case where there exist eigenvalues lying close to or on
the imaginary axis whose imaginary part is large in modulus then there are two distinct classes of
problems that we need to distinguish between rather carefully. The �rst is where the large eigenvalues
are purely imaginary so that there is no damping in the components of the solution corresponding
to these eigenvalues. In this case it is necessary to follow the oscillations exactly and we would
expect nonsti� methods to be more e�cient than (implicit) sti� methods for this problem. However
if the large eigenvalues lie close to the imaginary axis but not on it, so that the rapid oscillations
are damped, then it is only necessary to follow them for a short time and in this case highly stable
implicit methods normally perform very well. We can conveniently characterize highly oscillatory
problems of the form (17) as ones where the eigenvalues �j of A satisfy

�j = �j + i�j; (18)

where �j ¡ 0 for all j, max16j6n|�j| � min16j6n|�j| and |�j|�|�j| for at least one pair of eigenvalues
of large modulus. In their famous DETEST test set [15], Enright et al. devised a problem denoted
by B5 for which one component of the solution is of the form

exp(−10x)(A cos!x + B sin!x) where != 50: (19)
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This problem was specially designed to trap BDF-based methods (and succeeded in doing so!).
However, it is important to realize that the performance of BDF codes on these problems can be very
di�erent depending on which code is used. For example, when faced with sti� oscillatory problems,
LSODE [20] will often use high-order methods with small stepsizes rather than correctly reducing
the order to allow the possibility of large stepsize increases. However, the BDF code DASSL is
geared towards selecting lower order and this code will often reduce the order to 2 (so that A-stable
formulae are being selected) when faced with such problems [1]. We feel that this strategy of
DASSL of being biased towards lower order is an extremely important one and the incorporation
of this strategy into the MEBDF code MEBDFDAE has had a strong positive inuence on its
performance. This strategy is fully described in [11]. For a long time these sti� highly oscillatory
problems were regarded as being rather intractable mainly because of the relatively poor performance
of BDF. Indeed writing in 1984 Ga�ney [16] concluded that none of the currently available codes was
satisfactory for dealing with these problems. However, recently some excellent codes have become
available and this allows these problems to be solved very routinely. In particular, we mention the
codes MEBDFDAE, Radau5 and DESI [4] which all have excellent stability properties and can be
recommended for these problems. For a survey of the performance of these codes on the highly
oscillatory problem the reader is referred to [11].

5. Extensions to the MEBDF approach

In the particular formulation of MEBDF that was considered in Section 3 we set up the boundary
value approach using just one superfuture point. The main theoretical result that is indicated by
numerical experiment for this particular algorithm is that it is A-stable for order up to and including
4. It would, of course, be valuable to have a proof of this result. It is possible to develop this
approach in various directions. For example, we could use more super future points. In particular, it
is of interest to see what can be achieved by using two superfuture points. The natural way to de�ne
such an algorithm would be to have three predictor steps based on BDF as described in Section 3
and then to apply a corrector of the general form

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+2 �fn+k+2 + b̂k+1 �fn+k+1 + b̂kfn+k]: (20)

Here the coe�cients are chosen so that the corrector has order k+1 and this de�nes a one parameter
family of coe�cients for (20). The stability properties of this approach were investigated in detail
in [24]. He found that by using this approach it is possible to �nd A-stable formulae with order up
to and including 6. However, rather disappointingly, it is not possible to achieve this stability and
still retain the property that only one iteration matrix needs to be factorized. There is, however, a
very important theoretical result that comes out of this investigation. This concerns the conjecture
that a well-known result of Norsett and Wolfbrandt [25] for one-step methods carries over to the
multistep case. Basically, this conjecture is that the order p of an A-stable general linear method
whose characteristic function has s poles, all of which are real, satis�es p6s+ 1. Remarkably, the
order 6 MEBDF, with two advanced step points, has 4 real poles and p=6. This serves as a rather
surprising counterexample to this conjecture. For more details on this the reader is referred to [26].
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If we summarize what can be achieved in the way of stability using superfuture points we note that

(1) For linear multistep methods with no superfuture points we have that A-stability implies the
order is 62.

(2) With one superfuture point we have that A-stability implies the order is 64.
(3) With two superfuture points we have that A-stability implies the order is 66

It is tempting to conjecture that with k superfuture points we have that A-stability implies that the
order p satis�es p62k + 2. This would be an interesting and important result but, based on the
di�culty of �nding A-stable methods of order 6 with k = 2, we expect this conjecture to be false
although a proof of this is elusive.
Due to the fact that when using 2 superfuture points we need to factorize two iteration matrices in

order to obtain A-stability with order 6 it seems unlikely that the ‘two superfuture points’ approach
will be competitive with the standard MEBDF for the solution of general sti� problems. It may
however have a role to play in the highly oscillatory case where high accuracy is requested. However
for parallel implementation the situation is quite di�erent. There are many ways in which the MEBDF
approach can be parallelized and, in particular, in a parallel environment the need to factorize two
iteration matrices is no longer a problem. One possible way of deriving a parallel MEBDF code was
investigated in [24]. He developed an approach whereby all predicted solutions can be computed
simultaneously and he showed that there is a signi�cant gain in e�ciency using this approach.
A di�erent and rather ingenious method of parallelization was proposed in [27]. He modi�ed the
EBDF approach with two superfuture points to obtain new classes of formulae which are immediately
parallelizable. His results indicate that he is able to achieve signi�cant speed ups using this approach
and it seems likely that this will be one of the most e�ective of all parallel algorithms for the solution
of general sti� initial value problems.
The second extension we wish to consider in this section is where extra derivative terms are

introduced. We illustrate this by considering the one-step case which is of order 2. Here the standard
MEBDF is replaced by the three stages:
Stage 1:

�y n+1 = yn + h[�f(xn+1; �y n+1) + (1− �)f(xn; yn)]: (21)

Stage 2:

�y n+2 = �y n+1 + h[�f(xn+2; �y n+2) + (1− �)f(xn+1; �y n+1)]: (22)

Stage 3:

yn+1 = yn + h[(c − 1
2 )f(xn+2; �y n+2) + (

3
2 − 2c − �)f(xn+1; �y n+1)

+ �f(xn+1; yn+1) + cf(xn; yn)]:

Note that the standard MEBDF is of this form with �=1, c=0. Applying these three stages to the
standard scalar test equation y′ = �y we obtain an expression of the form

yn+1
yn

= R(q); q= �h: (23)

In order to get the correct asymptotic behaviour, that is

lim
q→−∞ R(q) = 0; (24)
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we require

(c − 1
2 )(1− �)2 − ( 32 − 2c − �)(1− �)�+ c� 2 = 0: (25)

This de�nes c in terms of � and leaves � as a free parameter to improve the accuracy and=or stability
of the method. In general, for a k-step formulation, we will again have two free parameters, one of
which will be used to give the correct asymptotic behaviour and the other will be used to improve
stability. Research is at present in progress to see by how much this approach improves stability
and, in particular, whether it is possible to obtain A-stability with k=4. However as k increases the
situation becomes very complicated since there are many ways in which the extra derivative terms
can be added. What is really needed is some theory linking the order and stability of these methods
to the step number k.

6. Di�erential algebraic equations

One of the important properties of MEBDF is that, in common with BDF, they can be extended
to the solution of di�erential algebraic equations in a straightforward way. The extension to linearly
implicit DAEs is the most natural and we consider this �rst of all. Many important classes of
di�erential algebraic equations can be written in the linearly implicit form

M
dy
dx
= f(x; y); (26)

where the coe�cient matrix M is singular. In particular, the constrained system

dy
dx
= F(x; y; z); 0 = g(y; z) (27)

can be rewritten as(
1 0
0 0

)(
y′

z′

)
=
(
F(x; y; z)
g(y; z)

)
; (28)

which is of the form (26). The MEBDF approach described in the previous sections is very straight-
forward to extend for (26), from ODEs to linearly implicit DAEs. This can be done simply by using
the algorithm of Section 3 and being careful to arrange the computation so that we never call for
the inverse of the singular matrix M . The one-step MEBDF, for example, would be expressed in a
completely analogous way to the one-step BDF as

M (yn+1 − yn) = h(− 1
2f(xn+2; yn+2) +

3
2f(xn+1; yn+1)): (29)

An important concept when dealing with DAEs is that of the index. Perhaps the most widely used
de�nitions are of di�erentiation index and perturbation index. In particular, the di�erentiation index
is i, if i is the minimum number of analytic di�erentiations that need to be performed on the system
to allow an explicit ODE to be extracted. For more on this important concept the reader is referred
to [18, p. 445]. The major change from the ODE case is the way in which the errors (i.e., both the
local truncation error and the error in the Newton iteration) are controlled. Following the approach
described in [19], the error E that we control when using a steplength h is de�ned as

E = ErrorIndex1 + hErrorIndex2 + h2 ErrorIndex3: (30)
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Here we use the obvious notation that, for example, ErrorIndex1 is the error in the index 1 variables
[19, p. 124]. As explained in [19] this approach is needed essentially to deal with the near singularity
(for small h) of the iteration matrix. Numerical results presented on the author’s web page [7] indicate
the good performance of MEBDFDAE on a variety of linearly implicit test problems of indices 1–3
and this has recently been con�rmed by some extensive independent comparisons [14].
It would perhaps be valuable to extend the MEBDF approach to more general equations such as

the fully implicit equation

F(x; y; y′) = 0: (31)

This problem could be solved by rewriting (31) in the linearly implicit form

y′ = z; F(x; y; z) = 0; (32)

but at the cost of increasing the size and more importantly the index of the system since one more
analytic di�erentiation now has to be performed to allow an explicit ODE to be extracted.
Another problem we may wish to deal with directly is

C(y)
dy
dx
= g(y); (33)

where C(y) is singular. This can be rewritten in the form (28) where the left-hand side of this
equation remains the same and the right-hand side is now

f(x; y) =
(

z
C(y)z − g(y)

)
;

providing that the matrix C(y) satis�es some rather general conditions [18, p. 445]. One way of
dealing with (33) is by adding extra variables so making it again of the form (26). If the linear
algebra is carried out in a careful way [18, p. 576] then the computational e�ort is increased
by relatively little. However, users may not be prepared to change their problems to �t into a
more restrictive framework and a more satisfactory approach may be to develop MEBDFDAE to
deal directly with these more general equations. The necessary theory to allow this is relatively
straightforward to develop and MEBDF codes for the direct solution of (33) and (31) are now
available on the author’s web page.
A second major problem concerning MEBDF follows from the well-known phenomenon of order

reduction. There are at present no theoretical results concerning the order of MEBDF when applied
to DAEs. However, the numerical results that have been obtained are highly suggestive. This leads
us to make the following conjecture:
A (p−1)th step MEBDF when applied to a DAE of index i has order p+1−i. The MEBDF code

is implemented on the assumption that this is indeed the correct behaviour and it is a serious gap
in the theory that we do not have a proof of this result. Finally, we note that this order reduction
is particularly serious when dealing with damped highly oscillatory problems of index 3 in the
case where it is not required to follow the oscillations. If our conjecture is correct, and the order is
indeed reduced by 2, then we in e�ect have A-stability only up to order 2. In this case the extensions
described in the previous section where either two superfuture points are used or possibly where
extra derivatives are used will be potentially very important.



J.R. Cash / Journal of Computational and Applied Mathematics 125 (2000) 117–130 127

7. Numerical results

In this section we will present some numerical results to illustrate the performance of the code
MEBDFDAE. The drivers used to obtain these results are available on the web page of the author [7].
The example we consider is that of a simple constrained mechanical system, namely the pendulum.
This is a particularly nice example since it is straightforward to derive systems of indices 1, 2 and 3
which describe the equations of motion. In what follows, we will consider the equations of motion
of a point mass, m, at the end of a massless rod of length 1 oscillating under the inuence of gravity
g in the cartesian coordinates (p; q). The �rst four equations of motion are

p′ = u;

q′ = v;

mu′ =−p�;
mv′ =−q�− g:

(34)

Here u and v are velocities and � is the rod tension. The �fth equation which completes index 3
formulation is

0 = p2 + q2 − l2: (35)

To obtain index 2 formulation we di�erentiate constraint (35) to obtain

0 = pu+ qv: (36)

Eqs. (34)–(36) give index 2 formulation. If we di�erentiate (36) again we obtain

0 = m(u2 + v2)− qg− l2�: (37)

Eqs. (34) together with (37) give index 1 formulation. We note that, starting from the original index
3 formulation, there are several ways of rewriting the constraint to reduce the index. In particular,
the process of di�erentiating the constraint may result in the original constraint not being satis�ed.
This ‘drift o� ’ phenomenon is described for example in [18, p. 468; 19, p. 7]. In an attempt to avoid
this problem Gear et al. [17] proposed adding in the original constraint via a Lagrange multiplier
which vanishes on the exact solution. Thus, index 2 reformulation of index 2 problem (34)–(36)
proposed in [17] is

p′ = u− p�;
q′ = v− q�;
mu′ =−p�;
mv′ =−q�− g;
0 = p2 + q2 − l2;
0 = pu+ qv:

(38)

In Table 1 we present the results for (34), (35); (34), (36); and (34), (37). We normalize the
equations by taking m= g= l= 1. The initial conditions are

p(0) = v(0) = �(0) = 1; q(0) = u(0) = 0 (39)
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Table 1
MEBDF results for index 1 pendulum problem

Tol Fn Jac Steps Time Figs 3 2 1

10−2 18 4 13 0.01 2.78 0.3d−3 0.6d−3 0.5d−2
10−3 23 5 16 0.01 3.89 0.1d−3 0.2d−3 0.2d−3
10−4 30 4 21 0.02 5.49 0.8d−5 0.5d−5 0.4d−5
10−5 43 5 27 0.03 6.31 0.1d−6 0.1d−6 0.3d−6
10−6 51 7 34 0.04 7.70 0.1d−7 0.5d−8 0.3d−7
10−7 77 11 53 0.06 8.30 0.5d−8 0.5d−8 0.1d−8
10−8 86 10 61 0.06 8.88 0.1d−10 0.4d−9 0.4d−8
10−9 119 12 77 0.10 10.25 0.1d−10 0.6d−10 0.3d−10

Table 2
MEBDF results for index 2 pendulum problem

Tol Fn Jac Steps Time Figs 3 2 1

10−2 18 4 13 0.02 2.42 0.3d−2 0.1d−3 0.8d−2
10−3 23 4 16 0.02 3.29 0.9d−4 0.9d−3 0.1d−2
10−4 31 4 21 0.02 4.54 0.1d−6 0.2d−5 0.3d−4
10−5 52 4 28 0.03 5.10 0.1d−5 0.2d−5 0.3d−4
10−6 60 6 39 0.04 5.93 0.4d−7 0.8d−7 0.3d−5
10−7 69 8 45 0.05 7.50 0.6d−8 0.1d−8 0.8d−7
10−8 117 11 68 0.08 8.40 0.8d−10 0.2d−9 0.9d−8
10−9 138 15 84 0.10 9.41 0.2d−10 0.3d−10 0.1d−8

and the range of integration is [0,1]. The results given in Table 1 should be largely self-explanatory.
In particular, Tol is the speci�ed local tolerance, Fn is the number of function evaluations, Jac is
the number of Jacobian evaluations, Steps is the number of integration steps, Time is the time in
seconds taken on an IBM RS6000 and Figs is the number of correct �gures at x=1. Under columns
3, 2, 1 we also give the amounts by which the constraints (35), (36), (37), which are index 3, index
2 and index 1, respectively, are not satis�ed at x = 1. We see from Table 1 that the code performs
well for all three problems. As the index is increased the code obtains less accuracy, as would be
expected, but is still satisfactory (see Tables 2 and 3).

8. Conclusions

These results back up the claims made in this paper regarding the promise of MEBDF. In par-
ticular, it is clear that the MEBDF have better theoretical properties than the BDF methods. The
MEBDF are also excellently suited to sti� oscillatory ODEs. The results presented in [7,14], partic-
ularly on the FEKETE problem, indicate that MEBDF perform well on some di�cult DAE systems
although there are still some gaps in the theory which have been highlighted in this paper and which
need to be �lled in. However, the BDF codes and Radau5 are powerful codes in their own right. In
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Table 3
MEBDF results for index 3 pendulum problem

Tol Fn Jac Steps Time Figs 3 2 1

10−2 15 3 9 0.01 1.85 0.5d−3 0.1d−2 0.4d−1
10−3 25 4 14 0.01 2.23 0.2d−2 0.4d−4 0.2d−1
10−4 52 5 25 0.03 2.73 0.1d−4 0.5d−4 0.5d−2
10−5 99 12 38 0.05 3.67 0.8d−9 0.5d−5 0.7d−3
10−6 73 9 41 0.04 4.57 0.2d−8 0.1d−6 0.5d−4
10−7 100 9 55 0.06 5.01 0.1d−7 0.4d−6 0.3d−4
10−8 130 14 81 0.08 6.42 0.3d−9 0.1d−6 0.1d−4
10−9 154 15 96 0.11 6.78 0.1d−10 0.3d−8 0.4d−6

particular, BDF codes are often well suited to large ODE=DAE systems and it remains to be seen
how competitive MEBDFDAE is compared to BDF on such problems.
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Abstract

Sensitivity analysis for DAE systems is important in many engineering and scienti�c applications. The information
contained in the sensitivity trajectories is useful for parameter estimation, optimization, model reduction and experimental
design. In this paper we present algorithms and software for sensitivity analysis of large-scale DAE systems of index up
to two. The new software provides for consistent initialization of the solutions and the sensitivities, interfaces seamlessly
with automatic di�erentiation for the accurate evaluation of the sensitivity equations, and is capable via MPI of exploit-
ing the natural parallelism of sensitivity analysis as well as providing an e�cient solution in sequential computations.
c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

This paper is concerned with the solution and sensitivity analysis of initial value problems for
di�erential–algebraic equation systems (DAEs) in the general form

F(t; y; y′) = 0; (1)

where F; y, and y′ are N -dimensional vectors. A number of powerful solvers have been written for
the solution of DAEs, including RADAU5 [9], SPRINT [1], PSIDE [17], DASSL [3] and DASPK
[4]. Many of these solvers are compared in [13], where it was found that DASSL=DASPK works very
well compared with other methods and can solve a broader class of problems than the other codes
tested. Several methods and codes have been designed in the last decade to compute sensitivities for
DAEs [14,6]. In this paper we outline the algorithms and issues for sensitivity analysis of large-scale
DAE systems, describe our new software DASPK3.0 for these problems and present some numerical
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examples illustrating the e�ectiveness of this approach. The sensitivity algorithms presented here
are applicable to most solvers. We have based our software on DASPK so as to make use of the
excellent properties, particularly for large-scale systems, of this powerful and widely used code.
We begin by giving some background in Section 2 on the basic algorithms used in the DAE

solver DASSL and its extension DASPK for large-scale DAE systems. In Section 3 we describe
three algorithms for sensitivity analysis of DAEs using a direct approach. These are the staggered
direct method [6], simultaneous corrector method [14] and staggered corrector method [8]. Accurate
evaluation of the sensitivity residuals is an important problem; an adaptive increment �nite di�erence
method is presented, and methods for computing residuals via automatic di�erentiation are described.
In Section 4 we present methods for determining consistent initial conditions for several classes
of index-0, index-1 and index-2 DAEs and the associated sensitivities. The methods, which are
new for index-2 DAEs, have the important property that they can be implemented with very little
additional information required from the user. In Section 5, several issues which are critical for a
robust and e�cient implementation of sensitivity analysis are explored, along with their resolution
in DASPK3.0. These include the error and convergence tests and formulation of the Krylov method
for sensitivity analysis. The method used for parallelization in DASPK3.0 is described in Section 6.
Finally, numerical experiments illustrating the e�ectiveness of this approach on both sequential and
parallel computers are given in Section 7.
Further details on the implementation and use of DASPK3.0 are given in [11]. DASPK3.0 is

available via “http:==www.engineering.ucsb.edu/˜ cse”.

2. Background – Algorithms in DASSL and DASPK

DASSL was developed by Petzold [3] and has become one of the most widely used software
packages for DAEs. DASSL uses backward di�erentiation formula (BDF) methods [3] to solve
a system of DAEs or ODEs. The methods are variable step size, variable order. The system of
equations is written in implicit ODE or DAE form as in (1). Following discretization by the BDF
methods, a nonlinear equation

F(t; y; �y + �) = 0 (2)

must be solved at each time step, where � = �0=hn is a constant which changes whenever the step
size or order changes, � is a vector which depends on the solution at past times, and t; y; �; � are
evaluated at tn. DASSL solves this equation by a modi�ed version of Newton’s method

y(m+1) = y(m) − c
(
�
@F
@y′ +

@F
@y

)−1
F(t; y(m); �y(m) + �); (3)

where the linear system is solved via a dense or banded direct solver. The iteration matrix

A= �
@F
@y′ +

@F
@y

is computed and factored and is then used for as many time steps as possible. The reader can refer
to [3] for more implementation details.
DASPK2.0 was developed by Brown et al. [4] for the solution of large-scale systems of DAEs. It

is particularly e�ective in the method-of-lines solution of time-dependent PDE systems in two and
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three dimensions. In contrast to DASSL, which is limited in its linear algebra to dense and banded
systems, DASPK2.0 is able to make use of the preconditioned GMRES iterative method [16] for
solving the linear system at each Newton iteration.
When solving DAEs, the integration must be started with a consistent set of initial conditions y0

and y′
0. This is a set of initial conditions which satisfy the algebraic constraints for the DAEs (and

for higher-index DAEs, the hidden constraints). The initialization algorithms in DASPK3.0 are new,
and will be discussed further in Section 4.

3. Sensitivity analysis of DAEs

3.1. Methods for sensitivity analysis

Several approaches have been developed to calculate sensitivity coe�cients [6,14]. Here we sum-
marize the direct methods for sensitivity analysis of ODEs and DAEs.
To illustrate the basic approach for sensitivity analysis, consider the general DAE system with

parameters,

F(t; y; y′; p) = 0; y(0) = y0; (4)

where y ∈ Rny ; p ∈ Rnp . Here ny is the number of time-dependent variables y as well as the
dimension of the DAE system, and np is the number of parameters in the original DAE system.
Sensitivity analysis entails �nding the derivative of the solution y with respect to each parameter.
This produces an additional ns=np ·ny sensitivity equations which, together with the original system,
yield

F(t; y; y′; p) = 0;

@F
@y
si +

@F
@y′ s

′
i +

@F
@p

= 0; i = 1; : : : ; np;
(5)

where si = dy=dpi. De�ning

Y =




y

s1
...

snp



; F =




F(t; y; p)

@F
@y
s1 +

@F
@y′ s

′
1 +

@F
@p1

...

@F
@y
snp +

@F
@y′ s

′
np +

@F
@pnp



;
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the combined system can be rewritten as

F(t; Y; Y ′; p) = 0; Y (0) =




y0
dy0
dp1
...

dy0
dpnp



:

This system can be solved by the kth order BDF formula with step size hn+1 to yield a nonlinear
system

G(Yn+1) = F
(
tn+1; Yn+1; Y

′(0)
n+1 −

�s
hn+1

(Yn+1 − Y (0)n+1); p
)
= 0; (6)

where Y (0)n+1 and Y
′(0)
n+1 are predicted values for Yn+1 and Y

′
n+1, which are obtained via polynomial

extrapolation of past values [3]. Also, �s is the �xed leading coe�cient which is de�ned in [3].
Newton’s method for the nonlinear system produces the iteration

Y (k+1)n+1 = Y (k)n+1 − J−1G(Y (k)n+1);

where

J =




J

J1 J

J2 0 J
...

...
...

. . .

Jnp 0 · · · 0 J




(7)

and

J = �
@F
@y′ +

@F
@y
; Ji =

@J
@y
si +

@J
@pi

and �= �s=hn+1.
There are three well-established methods to solve the nonlinear system (6):

• Staggered direct method, described in [6].
• Simultaneous corrector method, described in [14].
• Staggered corrector method, described in [8].
Analysis and comparison of the performance of these three methods have been given in [8,12].
Because the relative e�ciencies of the methods depend on the problem and on the number of
parameters, all of them were made available as options in DASPK3.0. Here we describe briey the
three methods.
The staggered direct method �rst solves Eq. (6) for the state variables. After the Newton iteration

for the state variables has converged, the sensitivity equations in (6) are updated with the most
recent values of the state variables. Because Eq. (8) is linear with a matrix J for the sensitivity
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equations, it is solved directly without Newton iteration. However, to solve the linear system in this
way requires computation and factorization of the Jacobian matrix at each step and also extra storage
for the matrix @F=@y′. Since the Jacobian is updated and factorized only when necessary in DASPK,
the additional matrix updates and factorizations may make the staggered direct method unattractive
compared to the other methods. However, if the cost of a function evaluation is more than the cost
of factorization of the Jacobian matrix and the number of sensitivity parameters is very large (see
[12]), the staggered direct method is more e�cient. We have modi�ed the implementation of [6] to
make the staggered direct method more reliable for ill-conditioned problems.
The simultaneous corrector method solves (6) as one whole nonlinear system, where Newton

iteration is used. The Jacobian matrix J in (7) is approximated by its block diagonal in the Newton
iteration. Thus, this method allows the factored corrector matrix to be reused for multiple steps.
It has been shown in [14] that the resulting iteration is two-step quadratically convergent for full
Newton, and convergent for modi�ed Newton iteration.
The staggered corrector method is similar to the staggered direct method. However, instead of

solving the linear sensitivity system directly, a Newton iteration is used

s(k+1)i = s(k)i − J−1Gsi(s(k)i ); (8)

where Gsi is the residual for the ith sensitivity and J is the factored Jacobian matrix which is used
in the Newton iteration for the state variables. Like the simultaneous corrector method, this method
does not require the factorization of the Jacobian matrix at each step. One of the advantages of
the staggered corrector method is that we do not need to evaluate the sensitivity equations during
the iteration of solving for the state variables. This can reduce the computation time if the state
variables require more iterations than the sensitivity variables. After solving for the state variables
in the corrector iteration, only the diagonal part of J in (7) is left. We can expect the convergence
of the Newton iteration will be improved over that of using an approximate iteration matrix in the
simultaneous corrector method. This has been observed in our numerical experiments.

3.2. Methods for evaluating sensitivity residuals

Several approaches have been developed to calculate the sensitivity residuals that may be used
with either the staggered corrector or the simultaneous corrector methods. Maly and Petzold [14]
used a directional derivative �nite di�erence approximation. For example, the ith sensitivity equation
may be approximated as

F(t; y + �isi; y′ + �is′i ; p+ �iei)− F(t; y; y′; p)
�i

= 0; (9)

where �i is a small scalar quantity, and ei is the ith unit vector. Proper selection of the scalar �i is
crucial to maintaining acceptable round-o� and truncation error levels [14]. If F(t; y; y′; p) is already
available from the state equations, which is the case in the Newton iteration of DASPK, (9) needs
only one function evaluation for each sensitivity. The main drawback of this approach is that it may
be inaccurate for badly scaled problems.
The selection of the increment �i for Eq. (9) in DASPK3.0 is an improvement over the algorithms

of [14] which was suggested by Hindmarsh [10]. The increment is given by

�i = �max(|pi|; 1=‖ui‖2); (10)
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where � is a scale factor

ui =
(
WTiny+j=WT j: j = 1; : : : ; ny

)
and WT is a vector of weights determined by the relative and absolute user error tolerances and the
solution y,

WTj = RTOLj · |yj|+ATOLj:
Alternatively, the sensitivity residuals can be evaluated analytically by an automatic di�erentiation
tool such as ADIFOR [2] or other automatic di�erentiation (AD) methods. We recommend using AD
to evaluate the sensitivity equations. Even for some well-scaled problems, the ADIFOR-generated
routine has better performance in terms of e�ciency and accuracy than the �nite di�erence approx-
imation.
All of the ADIFOR-generated routines require the support of the ADIFOR library [2]. For further

information, see http:==www-unix.mcs.anl.gov=autodi�=-ADIFOR=. DASPK3.0 can be used without
the ADIFOR library, for problems where automatic di�erentiation is not needed.

4. Consistent initial condition calculation for solution and sensitivity analysis

4.1. Consistent initial conditions for index-one problems

The basic initialization technique in DASPK3.0 for index-1 problems is an extension of the method
proposed in [5]. It is applicable to two classes of index-1 initialization problems. Initialization prob-
lem I is posed for systems of the form

f(t; u; v; u′) = 0;

g(t; u; v) = 0; (11)

where u; f ∈ RNd and v; g ∈ RNa , with the matrices fu′ = @f=@u′, gv= @g=@v square and nonsingular.
The problem is to �nd the initial value v0 of v when the initial value u0 for u is speci�ed. Hence
it is required for the user to specify which variables are algebraic and which are di�erential.
In initialization problem II, which is applicable to the general index-1 system (1), the initial

derivatives are speci�ed but all of the dependent variables are unknown. That is, we must solve for
y0 given y′

0. For example, beginning the DAE solution at a steady state corresponds to specifying
y′
0 = 0.
Both of these initial condition problems are solved with the help of mechanisms already in place for

the solution of the DAE system itself, rather than requiring the user to perform a special computation.
It is also possible in DASPK3.0 to specify some of the solution variables and derivatives at the initial
time, and solve for the rest. This will be described in more detail in the next subsection.
The sensitivity problem for (11) is given by

f(t; u; v; u′; p) = 0;

g(t; u; v; p) = 0;
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@f
@u
su +

@f
@v
sv +

@f
@u′
su′ +

@f
@p

= 0;

@g
@u
su +

@g
@v
sv +

@g
@p

= 0: (12)

The algebraic variables in Eq. (11) generate algebraic sensitivity variables in Eq. (12). Eq. (12) also
has the same index as (11).
DASPK3.0 uses a staggered approach to compute the consistent initial conditions for the sensitivity

variables. First the consistent initial conditions are computed for the state variables, and then for
the sensitivity variables. It is easy to see by di�erentiating the initial conditions that the sensitivity
variables fall into the same class of initialization problems as the state variables.

4.2. Consistent initial conditions for index-two problems

With partial error control (excluding the algebraic variables from the error control), DASPK3.0
can solve Hessenberg index-2 problems with given consistent initial conditions. However, consistent
initial conditions may not be readily available in many cases. Taking the Hessenberg index-2 problem
as an example,

u′ = f(t; u; v);

0 = g(u);
(13)

the objective for index-2 initialization is to compute a new triple (û′0, û 0, v̂0) that satis�es the con-
straints and consistent initial conditions. The problem is under-determined. Following the idea of
[5] for index-1 problems, we solve the consistent initialization problem with the help of mecha-
nisms already in place for the DAE solution itself. We search for the consistent initial conditions
in the direction given by the di�erential equations. This method has a potential advantage that the
hidden constraints derived from the equations may also be satis�ed. To do that, we should incre-
ment the derivative u′ by (1=h)�u if the solution u is incremented by �u. Consider a general DAE
system

F(t; u; u′; v) = 0: (14)

After introducing two new variables �u and �v and an arti�cial time step h, we transform Eq. (14)
into

F
(
t; u0 + �u; u′0 +

1
h
�u; v0 + �v

)
= 0: (15)

Then �u and �v in (15) are computed by Newton iteration with initial values of zero. The iteration
matrix is

J =
(
1
h
Fu′ + Fu; Fv

)
; (16)

where h is chosen to be the initial step size that satis�es the error tolerance for a zeroth-order
method.
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It is easy to �x some of the di�erential variables in (15). However, �xing a di�erential variable
u does not imply �xing the derivative u′ in our algorithm, and vice versa. For example, if we �x
the �rst element u01 of the vector u in (15), the equation becomes

F
(
t; u01; u0r + �ur; u′0 +

1
h
�u; v0 + �v

)
= 0;

where u0r is the rest of u (excluding u01), and �ur is the rest of �u (excluding �u1). In the algorithm
of [5] for initialization problem I, all of the di�erential variables are �xed and Eq. (15) becomes

F
(
t; u0; u′0 +

1
h
�u; v0 + �v

)
= 0: (17)

The initialization problem II for Eq. (11) can also be cast into (15) by �xing all of the derivatives
u′, which yields

F(t; u0 + �u; u′0; v0 + �v) = 0:

As in [5], the implementation is designed so that forming the Jacobian for the initialization and
solving the nonlinear system requires no information from the user beyond what is already needed
for the time stepping.
If the constraint g(u) = 0 in (13) is satis�ed, all of the di�erential variables can be �xed and Eq.

(17) becomes

�u′ + u′0 = f(t; u0; v0 + �v);

0 = g(u0);
(18)

where �u′ = (1=h)�u. Since �u′ and �v are not related to g(u0), the iteration matrix for (18) is
singular, which means the solution is not unique. However, we can replace the constraint equation
in (18) with guu′ = 0, which yields

�u′ + u′0 = f(t; u0; v0 + �v);

0 = gu(u0)(�u′ + u′0):
(19)

It is easy to evaluate the �rst equation in (19), however the second equation is not available to
DASPK3.0. To evaluate it requires the user to specify which equations are algebraic. We can avoid
evaluating guu′=0 if f(t; u; v) is linear in v. Note that if (19) is linear with respect to u′= �u′+ u′0
and v = v0 + �v, it has a unique solution for u′ and v. The u′ and v can be solved via only one
iteration for a linear system, independent of the initial values. If we set u′0=0 and �u

′=0 in our �rst
guess, the value of the second equation in (19) is zero, which is also the result of g(u0). Therefore,
the residual evaluations can be used without modi�cation. If f(t; u; v) is nonlinear with respect to
v, then it might take more than one iteration to solve for u′ and v. Since guu′ might not be zero
during the intermediate iterations, guu′ must be evaluated in addition to the residual evaluations. If
f(t; u; v) is nonlinear with respect to v, the user can either evaluate the guu′ in the residual routine
or specify which equations are algebraic and DASPK3.0 will compute guu′ automatically, via �nite
di�erence approximation or automatic di�erentiation.
In our implementation, a linesearch backtracking algorithm [5] has been used to improve the

robustness of the Newton algorithm for the initial condition calculation.
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5. Implementation issues

5.1. Error and convergence tests

In DASPK3.0, the norm is evaluated separately for the state variables and for the sensitivities
with respect to each parameter. For the error and convergence tests, we choose the largest one
among all the norms. We have found from experience that this leads to the most robust and e�cient
implementation. It is possible to exclude sensitivity variables from the error test, but not from the
Newton iteration convergence test.

5.2. Staggered direct method

In the staggered direct method as described in Caracotsios and Stewart [6], system (6) is trans-
formed into

Jsi(n+1) =

(
− @F
@y′

n+1
� − @F

@pi

)
; (20)

where �i = s
′(0)
i(n+1) − �s(0)i(n+1) . To solve a linear system in this way requires extra storage for the matrix

@F=@y′
n+1. Moreover, this implementation often fails when the matrix J is ill-conditioned. This is

because the right-hand side of Eq. (20) can be very large and can introduce large round-o� errors
when J is ill-conditioned [12].
In DASPK3.0, the following linear system is solved for the sensitivities:

J�= Js(0)i(n+1) +
@F
@y′

n+1
�
@F
@pi

; (21)

where �= s(0)i(n+1) − si(n+1) . The right-hand side of (21) is easy to obtain in DASPK3.0 by evaluation of
the sensitivity equations. It does not require any extra storage or special handling. What is important
is that it works well for ill-conditioned problems. This is because the right-hand side of Eq. (21) is
usually much smaller than that of Eq. (20) for a successful step (which means the predicted value
s(0) is close enough).

5.3. Krylov method

Since the sensitivity equations are linear with respect to the sensitivity variables, Newton iteration
is not necessary for the staggered method. Therefore the staggered corrector method and staggered
direct method are the same for the preconditioned Krylov iteration. The matrix–vector product Jvsi
is evaluated directly via directional derivative �nite di�erence approximation

Jvsi = (�Fy′ + Fy)vsi

≈ F(t; y + �vsi ; �(y + �vsi) + �; p)− F(t; y; �y + �; p)
�

; (22)

where F(t; y′; y; p) are the state equations. The function evaluations in (22) involve only the state
equations. Because there is no coupling between di�erent sensitivity variables, the linear iteration for
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each sensitivity equation can be done separately, which allows us to split the large linear system into
several small ones and reduce the length of each orthonormal basis to the number of state variables.
For the simultaneous corrector method, we approximate the Newton–Krylov iteration matrix by its
block diagonal as for the direct method. Then (22) can be used to calculate the matrix–vector
product.
One might consider replacing all �nite di�erencing with ADIFOR-generated routines. However,

this does not turn out to be a good idea for the Krylov iteration. There is a trade-o� when we
consider the e�ciency and accuracy of the computations. The ADIFOR-generated routine not only
computes the derivatives but also the original functions. To compute one matrix–vector product in an
ADIFOR-generated routine requires at least one evaluation of the original function and possibly more
than one evaluation of the derivatives. But the matrix–vector product approximated by �rst-order
�nite di�erence requires only one evaluation of the original functions. Since the �nite di�erence
approximation in the matrix–vector product for the Krylov iteration has the scaling incorporated into
its implementation, in practice it has been quite robust.

6. Parallel implementation of DASPK for sensitivity analysis

Several parallel implementations for sensitivity analysis of DAEs via message-passing interface
(MPI) [7] have been compared in [15]. In this section, we describe the parallelization in DASPK3.0.
Although all the tests in [15] are for DASSL with the direct method, the comparative results are
similar for DASPK3.0 with both the direct method and the Krylov method with the new implemen-
tation described in Section 5.3. We have found that the distributed parameter only (DPO) approach
of [15] is also the fastest for DASPK3.0.
Our implementation distributes the sensitivity parameters inside the DASPK code so as to reduce

the burden on the user. To balance the workload between processors, we allocate the parameters
randomly to each processor: if we have NP processors and NPAR parameters, N = NPAR=NP, we
distribute parameter numbers

j; : : : ; j + i ∗ NP; : : : ; j + N ∗ NP if j6mod(NPAR; NP);

j; : : : ; j + i ∗ NP; : : : ; j + (N − 1) ∗ NP if j¿mod(NPAR; NP);
(23)

to the jth processor. Each processor computes the state variables locally, and the Jacobian matrix is
also computed and factorized locally when needed. To minimize the storage and memory require-
ments in each processor, we assume that each processor has distributed memory, i.e., each processor
has a local value of the same variable. Therefore, the work space in each processor can be reduced
to approximately 1=NP of the total work space. Since the sensitivities are independent of each other,
each processor can work independently without communicating with the others.
We have attempted to develop software for which both parallel and serial computation can run

e�ciently. We enforce the same step size control for all the processors in the parallel implementation.
The communication overhead is very small. In each time step, each processor may be using di�erent
orders of the BDF formulae. Since this implementation requires an MPI-related routine and the
support of the MPI library, which may not be accessible by users doing serial computation, we
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provide a dummy routine which can be linked without involving the MPI library, for use with serial
computation

7. Numerical experiments

In this section we describe several numerical experiments. All tests were run on an SGI O2
workstation. The following quantities are used to compare di�erent methods:

METH Integration method
NSTP Number of time steps used
NRES Number of calls to residual subroutine
NSE Number of sensitivity evaluations
NJAC Number of Jacobian evaluation
NNI Number of nonlinear iterations
NLI Number of linear iterations (only for Krylov method)
CPU The total cpu time taken to solve the problem

The integration methods we use include the direct method (D) and Krylov method (K). The
integration methods for the sensitivity equations include the staggered corrector method (ST), the
staggered direct method (SD) and simultaneous corrector method (SI). Therefore we use STD to
represent the staggered corrector direct method, STK to represent the staggered corrector Krylov
method, SID to represent the simultaneous corrector direct method, SIK to represent the simultaneous
corrector Krylov method, and SDK to represent the staggered direct Krylov method.
The �rst example models a multi-species food web [5], in which mutual competition and=or

predator–prey relationships in the spatial domain are simulated. Speci�cally, the model equations for
the concentration vector c = (c1; c2)T are

c1t = f1(x; y; t; c) + (c
1
xx + c

1
yy);

0 = f2(x; y; t; c) + 0:05(c2xx + c
2
yy)

with

fi(x; y; t; c) = ci

bi + 2∑

j=1

aijcj

 :

The coe�cients aij; bi are

a11 = a22 =−1; a12 =−0:5 · 10−6; a21 = 104;

b1 =−b2 = 1 + �xy + � sin(4�x) sin (4�y):
The domain is the unit square 06x; y61 and 06t610. The boundary conditions are of Neumann
type with normal derivative equal to 0. The PDEs are discretized by central di�erencing on an
M × M mesh, for M = 20. Therefore the resulting DAE system has size NEQ = 2M 2 = 800. The
tolerances used were RTOL = ATOL = 10−5.
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Table 1
Results for multi-species food web. The upper part is for the ADIFOR option with error control including the algebraic
variables. The middle part is for the ADIFOR option with error control excluding the algebraic variables. The bottom part
is for the �nite di�erence option with error control excluding the algebraic variables

METH NSTP NRES NSE NJAC NNI NLI NLIS NETF CPU

STD 312 770 389 45 381 0 0 4 30.84
SID 335 508 508 42 508 0 0 3 36.56
STK 341 2712 353 36 406 732 0 1 22.98
SIK 505 4262 617 47 617 1532 0 9 39.12

STD 128 377 190 42 205 0 0 0 17.90
SID 128 228 228 40 228 0 0 0 18.91
STK 133 1456 147 38 165 329 425 0 11.36
SIK 131 1888 202 38 202 332 697 0 15.47
SDK 133 1442 133 38 165 329 425 0 11.03

STD 128 3589 190 42 187 0 0 0 24.85
SID 128 3240 228 40 228 0 0 0 26.11
STK 133 1442 147 38 165 329 425 0 10.36
SIK 131 1818 201 38 201 332 700 0 14.37
SDK 133 1442 133 38 165 329 425 0 10.12

For sensitivity analysis, � and � were taken as the sensitivity parameters with initial values �=50
and � = 100. The initial conditions were taken as

c1 = 10 + (16x(1− x)y(1− y))2;
c2 = 105;

which does not satisfy the constraint equations. The initial conditions for the sensitivity variables
were taken as zero, which are not consistent either. We solved this problem with both the direct
and Krylov methods. For the Krylov methods, we used the block-grouping preconditioner (which is
included in the package DASPK2.0 [5]). To eliminate the e�ect of �nite di�erencing when comparing
di�erent methods, we used the ADIFOR option in DASPK3.0 to generate the Jacobian matrix (only
for the direct method) and sensitivity equations. Without initialization, the integration failed because
of too many convergence test failures. The consistent initial conditions were computed quickly with
both the direct and Krylov methods. Table 1 shows the results of the staggered corrector method and
the simultaneous corrector method. Full error control (including the sensitivity variables) was used.
Although there were no convergence test failures for this problem, the staggered corrector method
(ST) performed better than the simultaneous corrector method (SI).
The �nite di�erencing options for the sensitivity equations were also tested. We used the central

di�erence and �= 10−3 (default value). The results are shown in Table 1.
The next example is the heat equation,

@u
@t
= p1uxx + p2uyy;
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Table 2
Results for heat equation with ADIFOR evaluation. The upper half is for partial error control (excluding the sensitivity
variables). The bottom half is for full error control

METH NSTP NRES NSE NJAC NNI NLI NETF CPU

STD 64 160 65 22 95 0 3 36.20
SID 64 97 97 22 97 0 3 46.35
STK 71 1527 72 18 100 149 1 25.67
SIK 71 1572 102 18 102 184 1 29.40

STD 92 220 103 23 123 0 2 53.58
SID 93 130 130 25 130 0 3 63.63
STK 106 1823 114 24 141 182 2 35.68
SIK 116 1776 155 24 155 213 2 39.06

Table 3
Results for heat equation with �nite di�erence approximation for sensitivities and full error-control

METH NSTP NRES NSE NJAC NNI NLI NETF CPU

STD 92 2118 103 23 117 0 2 64.07
SID 93 2175 130 25 130 0 3 75.76
STK 107 3917 114 24 143 187 2 38.39
SIK 116 3695 157 24 157 207 2 44.24

where p1=p2=1:0, posed on the 2-D unit square with zero Dirichlet boundary conditions. An M+2
by M + 2 mesh is set on the square, with uniform spacing 1=(M + 1). The spatial derivatives are
represented by standard central �nite di�erence approximations. At each interior point of the mesh,
the discretized PDE becomes an ODE for the discrete value of u. At each point on the boundary,
we pose the equation u=0. The discrete values of u form a vector U , ordered �rst by x, then by y.
The result is a DAE system G(t; U; U ′) = 0 of size (M + 2)× (M + 2). Initial conditions are posed
as

u(t = 0) = 16x(1− x)y(1− y):
The problem was solved by DASPK3.0 on the time interval [0; 10:24] with M =40. To compute the
sensitivities, we took 10 sensitivity parameters; p1 and p2 were two of them. The other eight were
chosen from the initial conditions. The error tolerances for DASPK are RTOL=ATOL= 1:0D− 4.
For the direct method, we used ADIFOR with SparsLinC to generate the Jacobian. For the Krylov
method, we used the incomplete LU (ILU) preconditioner, which is part of the DASPK package.
The Jacobian for the ILU preconditioner was evaluated by ADIFOR with SparsLinC. The sensitivity
residuals were evaluated by ADIFOR with the seed matrix option. Table 2 gives the results of the
staggered corrector and simultaneous corrector methods.
Because this problem is linear and well scaled, �nite-di�erencing in the Jacobian and=or sensitivity

equation evaluation gets a good result. Table 3 shows the results when central di�erencing is used for
evaluation of the sensitivity equations. The default perturbation factor (10−3) is used in evaluating
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Table 4
Results for heat equation with �nite di�erence approximation and partial error-control. MPI was used in all the parallel
computations. The same step size control was enforced on all the processors

METH NPROC NSTP NRES NJAC NNI NLI CPU

1 64 1810 19 91 0 35.33
Direct 2 19.64

4 12.50
8 8.78

1 71 3410 18 100 181 24.59
Krylov 2 71 1935 18 100 159 12.94

4 71 1109 18 100 160 7.43
8 71 696 18 100 156 4.75

the sensitivity equations. The Jacobian is also evaluated by �nite-di�erencing. Only the data for full
error-control are listed.
We tested DASPK3.0 on a cluster of DEC alpha machines at Los Alamos National Laboratory.

Each processor is 533 MHz with 64 MB memory. The heat equation with 24 sensitivity parameters
was used as the test problem. The staggered corrector method was used. The synchronization to
achieve the same step size on each processor does not introduce much overhead to the computation,
as shown in Table 4.
The next example models a single pendulum

y′
1 = y3;

y′
2 = y4;

y′
3 =−y1y5;

y′
4 =−y2y5 − g;

0 = y1y3 + y2y4;

where g=1:0. This is an index-two problem. The initial conditions are y1=0:5; y2=−
√
p2 − y21 ; y3=

10:0; y4 = 10:0; and y5 = 0:0. The sensitivity parameter is p, which has initial value p = 1:0. The
initial conditions for the sensitivity variables are (0:0;−1:1547; 0:0; 0:0; 0:0). All of the derivatives
were set to 0 initially. The tolerance for DASPK was taken as RTOL = ATOL = 10−6. Because

g(y) = y1y3 + y2y4 =−3:660254 6= 0;
the consistent initial conditions were �rst computed via the initialization algorithm for index-2 prob-
lems. During the initial condition computation, we monitored three constraints,

g1 = y21 + y
2
2 − p;

g2 = y1y3 + y2y4;

g3 = y23 + y
2
4 − (y21 + y22)y5 − y2:
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Table 5
Results for consistent initial conditions for pendulum problem

Fixed y1 y2 y3 y4 g1 g2 g3

No 0.512 −0:859 11.777 7.016 −1:88e− 4 0.0 3:77e− 15
y1; y2 0.5 −0:866 11.83 6.83 −1:1e− 16 0.0 9:28e− 13

Initially, we have

g1 = 0; g2 =−3:66; g3 = 200:866:

We also tried to �x y1; y2 during the experiments on the initial condition computation. The results
are shown in Table 5. Note that if y1 and y2 are not �xed, g1 may be violated.
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Abstract

The numerical theory for Implicit Runge–Kutta methods shows that there can be order reduction when these methods
are applied to either sti� or di�erential algebraic equations. This paper discusses how this theory can be utilized in direct
transcription trajectory optimization by modifying a currently used mesh re�nement strategy. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

One approach to solving optimal control problems is to parameterize the dynamic variables using
values at mesh points on the interval. The resulting optimal control problem is thus transcribed into
a �nite-dimensional nonlinear programming (NLP) problem. Since the discrete variables directly
optimize the approximate problem this approach is referred to as the direct transcription method.
It is necessary to insure that the solution to the �nite-dimensional nonlinear programming problem
is a good discrete approximation to the original continuous optimal control problem. A method for
re�ning the mesh such that the discrete problem is an adequate approximation to the continuous one
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was presented in [8]. This method assumes the order of the discretization is known and constant.
However, during the course of the optimization process the actual order may vary with iteration
and location either because the activation of constraints means we really have di�erential algebraic
equations (DAEs) [10] on subarcs or there is a local change in sti�ness. There is a complex in-
teraction between order and the optimization process. As noted in [9] while the DAE theory correctly
predicts order reduction it does not always correctly predict what that order reduction is for opti-
mization problems. Having the wrong value for the order can seriously impact on mesh re�nement
algorithms [9].
In this paper we consider a major modi�cation of the mesh re�nement strategy in [8] in order to

compensate for this order reduction. In practical optimization problems it can be extremely di�cult
to get the order right theoretically due to the large number of constraints and events. Accordingly,
we are interested in estimating what the order reduction is at di�erent places in the discretization and
then using this estimate. It is not important to us whether the order reduction comes from sti�ness,
the presence of di�erential algebraic equations, or other sources. The new mesh re�nement strategy
not only computes an order estimate that varies with mesh interval and mesh iteration but also has
a di�erent logic than [8] for determining the location and number of mesh points.
Our discussion will be in terms of a particular industrial optimization code SOCS developed at

Boeing. However, the comments and observations are relevant to any other optimization code with a
similar overall design philosophy. Section 2 provides needed background. The new mesh re�nement
algorithm is described in Section 3. A computational example is in Section 4. This paper describes
work in progress. Additional analysis and testing will be described more fully in upcoming reports.

2. Transcription formulation

Typically, the dynamics of the system are de�ned for tI6t6tF by a set of equations

(State equations) y′ = f (y(t); u(t); t); (1a)

(Initial conditions at time tI)  IL6 (y(tI); u(tI); tI)6 IU; (1b)

(Terminal conditions at tF)  FL6 (y(tF); u(tF); tF)6 FU; (1c)

(Algebraic path constraints) gL6g(y(t); u(t); t)6gU; (1d)

(Simple state bounds) yL6y(t)6yU; (1e)

(Simple control bounds) uL6u(t)6uU: (1f)

Equality constraints can be imposed if an upper and lower bound are equal.
The optimal control problem is to determine the u(t) that minimizes the performance index

J = �(y(tI); tI; y(tF); tF): (1g)

This control problem is in Mayer form. SOCS can handle other formulations and problems with
multiple phases [7] (that is, where di�erent systems (1) are allowed on di�erent intervals). Tran-
scription has been discussed in detail elsewhere [1,2,5,6,12–14,16,17]. SOCS is described in detail
in the references. We focus here on mesh re�nement.
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There are three primary operations that are performed when solving an optimal control problem
using a transcription method; transcribing the optimal control problem into a nonlinear programming
(NLP) problem by discretization; solving the sparse NLP (SOCS uses sequential quadratic program-
ming), and assessing the accuracy of the approximation and if necessary re�ning the discretization
by carrying out a mesh re�nement, and then repeating the optimization steps.
At each mesh iteration, the time interval is divided into ns segments or subintervals tI = t1¡t2

¡ · · ·¡tM = tF, where there are M = ns + 1 mesh points. SOCS allows for tI; tF to be variable.
Let yk , uk be the computed estimates of y(tk), u(tk). The control variable estimates at the midpoint
�t=1

2(tk+tk−1) of a mesh subinterval are �uk . The two primary discretization schemes used in SOCS are
the trapezoidal (TR) and Hermite–Simpson (HS). Both are equivalent to Implicit Runge–Kutta (IRK)
methods. Each scheme produces a distinct set of NLP variables and constraints. The default strategy
is to do one or two iterations with the TR discretization and then switch to the HS discretization
for the remaining mesh re�nement iterations.
For the trapezoidal discretization, the NLP variables are {{yj; uj}Mj=1; tI; tF}. The state equations

(1a) are approximately satis�ed by solving the defect constraints

�k = yk+1 − yk − hk2 [ fk+1 + fk] = 0; (2)

where hk ≡ tk+1−tk , and fk ≡ f (yk ; uk ; tk). For the Hermite–Simpson discretization, the NLP variables
are {{yj; uj}Mj=1; { �uj}Mj=2; tI; tF}. The defects are given by

�k = yk+1 − yk − hk6 [ fk+1 + 4
�f k+1 + fk]; (3)

where

�f k+1 = f ( �yk+1; �uk+1; �t ); �yk+1 =
1
2
[yk + yk+1] +

hk
8
[ fk − fk+1]: (4)

As a result of the transcription, the optimal control constraints (1a)–(1d) are replaced by the NLP
constraints. The boundary conditions are enforced directly by the constraints on  , and the nonlinear
path constraints are imposed at the mesh points. In a similar fashion the state and control variable
bounds (1e) and (1f) become simple bounds on the NLP variables. The path constraints and variable
bounds are always imposed at the mesh points and for the Hermite–Simpson discretization the path
constraints and variable bounds are also imposed at the subinterval midpoints. This large, sparse
NLP can be solved e�ciently using a sequential quadratic programming (SQP) method as described
in [3,4].

3. Mesh re�nement

The �rst step in the mesh re�nement process is to construct an approximation to the continuous
solution from the information available at the solution of the NLP. For the state variable y(t) we
use the C1 cubic B-splines approximation ỹ(t). We require the spline approximation to match the
state estimates at the mesh points, ỹ(tk)=yk and the derivative of the spline approximation to match
the right-hand side of the di�erential equations, (d=dt)ỹ(tk)= fk . We also require the spline approxi-
mation ũ(t) to match the control estimates at the mesh points, ũ(tk)= uk . When a Hermite–Simpson
solution is available it is possible to utilize a higher order approximation for the control using a
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basis for C0 quadratic B-splines. The coe�cients can be de�ned from the values at the mesh points
as well as the values of the computed control at the midpoint of the subinterval, ũ(�tk+1) = �uk+1.

3.1. Estimating the error on a mesh

The true optimal solution y(t), u(t) must satisfy a set of necessary conditions which leads to a
two-point boundary value problem in y(t), u(t) and the adjoint variables �(t). A direct transcription
method does not explicitly form the necessary conditions. One reason direct transcription methods
are popular is that it is not necessary to derive expressions for the necessary conditions and it
is not necessary to estimate values for the adjoint variables �(t). On the other hand, because the
necessary conditions are not available, they cannot be used to assess the accuracy of the solution.
When estimating the error we assume ũ(t) is correct (and optimal), and estimate the error between
ỹ(t) and y(t). This is a subtle but very important distinction, for it implies that optimality of the
control history ũ(t) is not checked when estimating the local error. However, it does mean that ỹ(t)
will accurately reect what y will be if ũ(t) is used in (1a).
The controls will be represented as C0 quadratic B-splines. This implies that one can expect

to accurately solve an optimal control problem provided the optimal state variable y(t) is C1 and
the optimal control variable u(t) is C0 within each phase. The solution to (1) may require dis-
continuities in the control and=or state derivatives. In particular, when the path constraints do not
involve the control variable explicitly, the optimal solution may contain corners. Similarly, when the
control appears linearly in the di�erential equations, bang–bang control solutions can be expected.
Consequently, if the transcription method described here is applied to problems of this type, some
inaccuracy must be expected unless the location of discontinuities are introduced explicitly as phase
boundaries. We will be satis�ed to accurately solve problems when the control is continuous and
the state is di�erentiable. If this is not true, we will be satis�ed if the method “does something
reasonable”.
When analyzing an integration method for (1a) it is common to ascribe an order of accuracy to

the algorithm [11]. For a �xed control u(t), the global error at tk+1 is the di�erence between the
computed solution yk+1 and the exact solution y(tk+1). The method is order p if this error is O(hp)
where h=maxk hk . For a �xed control u(t), the local error is the di�erence between the computed
solution yk+1 and the solution of the di�erential equation which passes through the computed point
yk . The Hermite–Simpson discretization (3) is order 4, while the trapezoidal discretization (2) is
order 2. Their local error orders are 5 and 3, respectively. The local error associated with the kth
mesh subinterval can be shown to statisfy

�k ≈ ‖ckhp+1k ‖: (5)

On a subinterval where constraints are active or there is sti�ness, we assume that (5) is replaced by

�k ≈ ‖ckhp−r+1k ‖; (6)

where r is the order reduction. For our purposes r also measures any change in ck . Unfortunately, the
amount of order reduction is not known and often di�cult to predict theoretically. There is a further
problem in which the theory for IRK methods applied to DAEs usually leads to di�erent amounts of
order reduction in di�erent variables [10]. This is true for both the trapezoid and Hermite–Simpson
discretizations [9,15]. In addition, the di�erence between the order of the local and global error can
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sometimes be greater than one. In a complex optimization problem, the activation and deactivation
of constraints can not only change the index but can change what the “index” of a particular variable
is. We distinguish only between the control and the state so that order reduction is always taken to
be the largest order reduction in all the state variables. To estimate the order reduction we need to
�rst estimate the local error on a given mesh. Consistent with the philosophy of SOCS discussed
earlier, in estimating the local error we assume the computed control is correct.
Consider a single subinterval tk6t6tk+hk . Suppose the NLP has produced a spline solution ỹ(t),

ũ(t). Assume yk is correct so that y(tk) = ỹ(tk). Then

y(tk + hk) = y(tk) +
∫ tk+hk

tk
y′ dt = y(tk) +

∫ tk+hk

tk
f (y; u; t) dt: (7)

Both y and u are unknown. Consequently, on [tk ; tk + hk] we might consider the following two
approximations to y(t):

ŷ(t) = y(tk) +
∫ t

tk
f ( ỹ(t); ũ(t); t) dt; (8)

ŷ(t) = y(tk) +
∫ t

tk
f (y(t); ũ(t); t) dt: (9)

When working on a �xed mesh subinterval [tk ; tk + hk], we let zi(t) denote the ith component of the
vector function z. With either (8) or (9) we could estimate the local error on the kth subinterval as

�k =max
i
ai|ỹ i(tk + hk)− ŷ i(tk + hk)|; (10)

where the weights ai are chosen to appropriately normalize the error.
Our particular use for these estimates imposes certain special restrictions. First, we want them to

be part of a code that will be used on a wide variety of problems. Secondly, we want to use the
estimates on coarse meshes. While (9) might be the most accurate, its computation would require
an explicit integration of y′= f (y; ũ; t) on a possibly coarse mesh. An estimate based on an explicit
integrator may be unstable on coarse meshes. The trapezoidal and Hermite–Simpson discretizations
are implicit schemes with very good stability properties. Suppose that we use (8). Then

ỹ i(tk + hk)− ŷ i(tk + hk) = ỹ i(tk + hk)− ỹ(tk)− (ŷ i(tk + hk)− ỹ(tk))
=
∫ tk+hk

tk

dỹ i
dt
− fi(ỹ; ũ; t) dt: (11)

This would seem to suggest using

�i; k =

∣∣∣∣∣
∫ tk+hk

tk

dỹ i
dt
− fi( ỹ; ũ; t) dt

∣∣∣∣∣ :=
∣∣∣∣∣
∫ tk+hk

tk
�i(t) dt

∣∣∣∣∣ (12)

as the estimate of the error in the ith variable on the kth mesh interval. However, �i(t) is an
oscillatory function on the interval [tk ; tk + hk] when using HS. At the solution to an NLP, the
collocation conditions are satis�ed at the mesh points and the subinterval midpoint, so �i(t) is zero
at these three points. If one uses (12) the error tends to cancel. For some problems test results show
that (12) indicates zero error with the initial coarse mesh and no mesh re�nement is done. This
means that not only is (12) not a good error estimate but ỹ i(tk + hk)− ŷ i(tk + hk) will also be too
small. Thus we turn to estimating ỹ i(t)− ŷ i(t) on [tk ; tk + hk] instead.
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We de�ne the absolute local error estimator in the ith variable on the kth mesh subinterval by

�i; k =
∫ tk+1

tk
|�i(t)| dt =

∫ tk+1

tk
| ˙̃y i(t)− fi( ỹ(t); ũ(t); t)| dt: (13)

Notice that the integrand utilizes the spline approximations for the state and control evaluated over
the interval. We de�ne the relative local error estimate by

�̂k =max
i

�i; k
(wi + 1)

: (14)

The scale weight wi is the maximum value for the ith state variable or its derivative over the M
mesh points in the phase. ODE integrators typically emphasize the error in prediction while (14)
emphasizes the error in solving the equations. This is closer to the SOCS termination criteria. We
utilize (14) in the ensuing algorithms.
Now let us consider how to compute an estimate for �i; k . Since this error is essential for esti-

mating the order reduction we construct an accurate estimate for integral (13). Because the spline
approximations for the state and control are used, integral (13) can be evaluated using a standard
quadrature method. We use a Romberg quadrature algorithm.
We �rst look at the relationship between (8), (10) and (14). We are working on one mesh

subinterval [tk ; tk + hk]. Let y be the solution of y′= f (y; ũ; t), y(tk)= ỹ(tk) The next theorem shows
that (13) measures the di�erence between the functions ỹ(t); y(t) on [tk ; tk + hk]. One might try to
show this by considering � = ỹ − y and try to linearize directly but we are especially interested in
what happens on possibly coarse meshes for problems which might be sti�.

Theorem 1. Let 〈·; ·〉 be the Euclidian inner product. Assume that f (y(t); ũ; t) satis�es a one-sided
Lipschitz condition. That is; 〈y−z; f (y; ũ; t)−f (z; ũ; t)〉6�‖y−z‖2 for all y; z. Let K=max{e�h; 1}.
Then

sup
tk6t6tk+hk

|y
i
(t)− ỹ i(t)|6K

∫ tk+hk

tk
|�i(s)| ds:

We omit the proof because of page limitations. If the original problem is sti�, then K is close to
1 for larger h also.

3.2. Estimating the order reduction

In order to utilize (6) it is necessary to know the order reduction r. We compute an estimate
for this quantity by comparing the behavior on two successive mesh re�nement iterations. Assume
that the current mesh was obtained by subdividing the old mesh, that is, the current mesh has more
points than the old mesh. Consider a single subinterval in the old mesh. Denote the local error on
this subinterval by

�= chp−r+1; (15)

where p is the order of the discretization on the old mesh, and h is the stepsize for the sub-
interval. If the subinterval on the old mesh is subdivided by adding I points, the resulting local error
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estimate is

�= c
(

h
1 + I

)q−r+1
; (16)

where q is the order of the discretization on the current mesh which can be di�erent if the dis-
cretization has changed. If we assume the order reduction r and the constant c are the same on the
old and current meshes, then we can solve (15) and (16) for these quantities:

r̂ = q+ 1− log(��
−1hq−p)

log(1 + I)
: (17)

The estimated order reduction is then given by

r =max[0;min(nint(r̂); q)]; (18)

where nint denotes the “nearest integer”. Note that �; � in (18) will be the estimates of the error
computed on the two meshes. As a �nal practical matter we assume that the order reduction is the
same for all I + 1 subdivisions of the old subinterval. Thus the “resolution” of our order reduction
estimates is dictated by the old “coarse” mesh. We have found this more robust than estimating
di�erent orders on each new subinterval.
Let

Q(a; b) = q+ 1− log(h
q−pa=b)

log(1 + I)
:

Then

Q(p1a; p2b) = Q(a; b)− log(p1=p2)log(1 + I)
:

Here p1=p2 is the ratio in the weights. Note that p1=p2=1:07 and I=1 gives r=1 while p1=p2=1:15
gives r=2. Thus a change of 15% in the weights could easily a�ect an r estimate. Accordingly for
the order reduction calculation we take �k =maxi ( �wi�i; k), where �wi are �xed weights computed on
the �rst mesh iteration and then r = Q(�k ; �k+1), However, we still use variable weights wi in the
mesh re�nement algorithm and termination criteria.

3.3. Constructing a new mesh

We now describe an approach for constructing a new mesh using the estimates for order reduction
and local error on a current mesh. “Old mesh” is the previous re�nement iteration, “current mesh” is
the current iteration, and “new mesh” is the next iteration. Simply adding a large number of points
to the current mesh increases the size of the NLP problem which must be solved, thereby causing
a signi�cant computational penalty. The goal is to reduce the local error as much as possible using
a limited number of new points.
The preceding section described how to compute a local error estimate for each segment or

subinterval in the current mesh. Equating the local error �k in (6) with the relative local error
estimate �̂k from (14) we obtain

‖ck‖hp−rk+1 = max
i

�i; k
(wi + 1)

(19)
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so that

‖ck‖=max
i

�i; k
(wi + 1)hp−rk+1

: (20)

Let Ik be the number of points to add to subinterval k, so that from (6) and (20) we may write

�k ≈ ‖ck‖
(

h
1 + Ik

)p−rk+1
= max

i

�i; k
(wi + 1)

(
1

1 + Ik

)p−rk+1
(21)

for integers Ik¿0. This is an approximation for the local error on each of the 1+Ik subintervals. The
new mesh can be constructed by choosing integers Ik to solve the nonlinear integer programming
problem:

minimize: �(Ik) = maxk �k (22a)

ns∑
k=1

Ik6M − 1; (22b)

Ik6M1 for all k: (22c)

That is, we minimize the maximum error over all of the subintervals in the current mesh, by adding
at most M − 1 total points. At most M1 points are added to a single subinterval. Typically we use
M1 = 5.
When the local errors on each subinterval of the current mesh are approximately the same, the error

is equidistributed. If the estimated local error for the current mesh is dominated by the estimated
error on a single subinterval �, that is, �� � �k with k 6= �, the solution to (22) will require adding
as many as M1 points into subinterval �.
If the desired local error tolerance is �, we would like the new mesh to be constructed such that it

has an estimated local error below this tolerance. In fact when making predictions we would like the
predicted error estimates to be “safely” below, �̂= �� where 0¡�¡ 1. Typically we set �=1=10.
The procedure begins with estimates for the discretization error �k on all subintervals in the current
mesh and we initialize Ik = 0. When I� 6= 0 the error �� is “predicted” and presumably less reliable.
In this case we force it to be “safely” less than the tolerance before stopping.

Mesh Construction Procedure

(1) Subinterval with Maximum Error; Determine subinterval �, such that �� =maxk �k .
(2) Discretization Error; Terminate if:

(a) ��6� and I� = 0 or;
(b) ��6�� and 0¡I�¡M1.

(3) Update Information:
(a) Set I� ← I� + 1 (subdivide subinterval �),
(b) Update �� from (21).

(4) Next Iteration;
(a) Terminate if: I� =M1, or if

∑ns
k=1 Ik =M − 1,

(b) Otherwise return to step 1.
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3.4. The mesh re�nement algorithm

We now outline the complete mesh re�nement algorithm. Denote the mesh re�nement iteration
number by jr. Assume that the sparse NLP has been solved for the current discretization. Assume
the current mesh has M points and the desired accuracy is �. The goal of the mesh re�nement
procedure is to select the number and location of the mesh points in the new mesh as well as the
order of the new discretization. Typically, we begin with the trapezoidal discretization and switch
to a Hermite–Simpson discretization at some point in the process.

Mesh Re�nement Algorithm

(1) Construct Continuous Representation; Compute the cubic spline representation from the discrete
NLP solution.

(2) Estimate Discretization Error; Compute an estimate for the discretization error �k in each
segment of the current mesh by evaluating (13) using Romberg quadrature; compute the average
error ��= (1=M)

∑M
k=1 �k .

(3) Select Primary Order for New Mesh;
(a) If p¡ 4 and ��62��, then set p= 4 and go to step 1.
(b) otherwise if (p¡ 4) and jr ¿ 2, then set p= 4 and go to step 1.
(c) otherwise continue.

(4) Construct New Mesh; containing the M points in the current mesh, and M1 = M ′ − M¿0
new points chosen to minimize the maximum estimated error according to (22) using the Mesh
Construction Procedure.

This algorithm is somewhat heuristic and is designed to be e�cient on most applications. Compu-
tational experience demonstrates the value of initiating the process with a coarse mesh and low-order
method. In SOCS [7], it is possible to specify the initial discretization, which may be e�ective when
the user can provide a good initial guess for the solution. If the discretization error appears to be
equidistributed it is reasonable to switch to a higher order discretization (Hermite–Simpson). When
the error is badly distributed at least two di�erent discrete solutions are obtained before the or-
der is increased. The new mesh always results in a subdivision of the current mesh, which has
been found desirable in practice. The min=max approach to adding points is designed to emphasize
equidistributing the error.

4. Computational example

To illustrate the e�ect of the new mesh re�nement algorithm we consider an example (23) due
to A.V. Rao which has fast transients very close to either end of the long interval. In these regions
we expect order reduction. Fig. 1 shows the solution x of (23).
The problem is

min
u
J =min

u

∫ tf

0
x2 + u2 dt (23a)

x′ =−x3 + u; (23b)

x(0) = 1; x(tf) = 1:5; tf = 10 000: (23c)
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Fig. 1. State solution of optimal control problem (24).

Fig. 2. Discretization error and mesh size.

Starting with an initial mesh of 25 points, the new mesh re�nement strategy proposed here used 11
iterations and gave a �nal mesh with 226 points. The old mesh re�nement strategy not using order
estimation took 10 iterations but had 374 mesh points. The new algorithm gave a slightly more
accurate answer on a substantially smaller mesh.
An examination of the order reduction estimate shows that starting on the third iteration there

was a small layer of points at the ends of the interval where r = 4. It was zero elsewhere. As the
iteration progressed, the order reduction region was always several mesh intervals at each end but
the actual length of the region shrunk in keeping with the narrow boundary layer.
Fig. 2 shows the mesh selection on each iteration and graphs the estimated discretization error.

Here �= t=10000 and darker corresponds to earlier iterations.
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Fig. 3. Order reduction in the boundary layers for iterations 4 and 9.

Fig. 3 shows the order reduction in the boundary layers for iterations 4 and 9. The circles plot
the order reduction at mesh points. The dark line is the state solution estimate on that mesh.

5. Summary and conclusions

This paper describes an approach for mesh re�nement in the direct transcription method. It di�ers
from many other mesh re�nement algorithms in which it dynamically estimates what the real order
of the method is at di�erent parts of the interval and on di�erent iterations. A computational example
illustrates how the algorithm can be advantageous on sti� problems.
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Abstract

Over the last decade several general-purpose numerical methods for ordinary di�erential equations (ODEs) have been
developed which generate a continuous piecewise polynomial approximation that is de�ned for all values of the inde-
pendent variable in the range of interest. For such methods it is possible to introduce measures of the quality of the
approximate solution based on how well the piecewise polynomial satis�es the ODE. This leads naturally to the notion
of “defect-control”. Numerical methods that adopt error estimation and stepsize selection strategies in order to control
the magnitude of the associated defect can be very e�ective and such methods are now being widely used. In this paper
we will review the advantages of this class of numerical methods and present examples of how they can be e�ectively
applied. We will focus on numerical methods for initial value problems (IVPs) and boundary value problems (BVPs)
where most of the developments have been introduced but we will also discuss the implications and related develop-
ments for other classes of ODEs such as delay di�erential equations (DDEs) and di�erential algebraic equations (DAEs).
c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Consider the ordinary di�erential equation

y′ = f(t; y); (1)

with exact solution denoted by y(t). Traditional discrete numerical methods partition the interval of
interest, [t0; tF ], by introducing a mesh t0¡t1 · · ·¡tN = tF and generate a discrete approximation
yi ≈ y(ti) for each associated meshpoint. The number of meshpoints, N , and the distribution of
these meshpoints is usually determined adaptively by the method in an attempt to deliver acceptable
accuracy at a minimum cost. These methods generally accomplish this objective by keeping N as
small as possible subject to a constraint that an indirect measure of maxi=1; :::;N‖y(ti) − yi‖ be kept
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small (relative to an accuracy parameter TOL). (We use ‖ · ‖ to represent the max–norm for vectors
and the induced matrix norm for matrices.) Di�erent methods implement very di�erent strategies
in an attempt to achieve this indirect error control and this can make it particularly challenging to
interpret the accuracy of a numerical solution.
In recent years, the notion of a continuous extension (of an underlying discrete method) has

received considerable attention. With this approach, one associates with each discrete approximation,
{ti; yi}Ni=1, a piecewise polynomial, u(t), de�ned for all t in the interval [t0; tF ] and satisfying u(ti)=yi

for i=1; 2; : : : ; N . (For a detailed discussion of the advantages and costs of generating such extensions
see [7,13,17,23,26]). For example, consider applying a method based on a standard s-stage, pth-order
Runge–Kutta formula to (1). The corresponding discrete approximations will then satisfy

yi = yi−1 + hi

s∑
j=1

!jkj; (2)

where

kj = f

(
ti−1 + hicj; yi−1 + hi

s∑
r=1

ajrkr

)
;

for j= 1; 2; : : : ; s; i= 1; 2; : : : ; N and hi = ti − ti−1. A continuous extension is derived by introducing
the additional stages, ks+1; ks+2; : : : ; k �s and polynomials bj(�) of degree 6p for j = 1; 2; : : : ; �s such
that the polynomial ui(t) de�ned by

ui(t) = yi−1 + hi

�s∑
j=1

bj

(
t − ti−1

hi

)
kj (3)

satis�es ui(t)=y(t)+O(hp) for t ∈ (ti−1; ti) and h=maxNi=1 hi. Formulas of this type are called contin-
uous Runge–Kutta (CRK) formulas. The polynomials {ui(t)}Ni=1 then de�ne a piecewise polynomial,
u(t), which will be continuous on [t0; tF ] and interpolate the underlying discrete approximation if
bj(1) = wj for j = 1; 2; : : : ; s and bs+1(1) = bs+2(1) · · ·= b �s (1) = 0.
In deriving CRK formulas of order p, several issues arise which can have a signi�cant impact on

the implementation and hence on the performance of the resulting continuous method. If the extra
stages are restricted to be “explicit”, that is if

ks+j = f

(
ti−1 + cs+jhi; yi−1 + hi

s+j−1∑
r=1

as+j; rkr

)

for j=1; 2; : : : ; ( �s−s), then implementation is straightforward and the cost of obtaining the continuous
approximation is only the additional �s − s evaluations of the di�erential equation on each step. It
is, therefore, generally preferable to derive and implement explicit CRK methods although there are
classes of problems where one can only use implicit CRK formulas. Di�erential algebraic problems,
DAEs, are one such class and we will consider them in more detail in Section 5.
Another issue that can be important is the magnitude of the defect or residual that is associated

with the continuous approximation. This quantity can be interpreted as a measure of the quality of
the numerical solution. For a piecewise polynomial approximation u(t) associated with the ODE (1)
one de�nes the defect, �(t), for t ∈ (t0; tF) by

�(t) = u′(t)− f(t; u(t)):
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Note that, in deriving CRK formulas, our assumption that u(t) be order p implies, for su�ciently
smooth problems,

u′(t) = y′(t) + O(hp−1): (4)

Furthermore, since

�(t) = u′(t)− f(t; u(t))− y′(t) + f(t; y(t))

= (u′(t)− y′(t)) + (f(t; y(t))− f(t; u(t))); (5)

then for di�erential equations that are Lipschitz continuous, ‖�(t)‖ will be at worst O(hp−1).
If we let zi(t) be the solution of the local initial value problem

z′i = f(t; zi); zi(ti−1) = yi−1;

for i = 1; 2; : : : ; N ; then the local error, lei(t), associated with the continuous approximation on step
i is de�ned for t ∈ (ti−1; ti) to be

lei(t) = zi(t)− ui(t):

It is well known that the discrete local error of a pth-order Runge–Kutta formula (2) must be
O(hp+1

i ). That is

lei(ti) = zi(ti)− ui(ti)

= zi(ti)− yi

=O(hp+1
i ): (6)

If we derive order p CRK formulas which satisfy the additional constraint that the associated local
error be O(hp+1

i ) for t ∈ (ti−1; ti) then we will have
u′i(t) = z′i (t) + O(h

p
i ) (7)

and therefore, for t ∈ (ti−1; ti),
�(t) = (u′i(t)− z′i (t)) + (f(t; zi(t))− f(t; ui(t)))

=O(hp
i ): (8)

Furthermore, if we derive order p CRK formulas with the stronger additional constraint that, for
t ∈ (ti−1; ti), the local error be O(hp+1

i ) and satisfy

lei(t) =  i(�) D(ti−1)h
p+1
i +O(hp+2

i ); (9)

where �=(t− ti−1)=hi, D(t) is a function depending only on the problem, and  i(�) is a polynomial
in � whose coe�cients are independent of the problem and the stepsize, it can be shown from (8)
(see [3] for details) that

�(t) =  ′
i (�) D(ti−1) hp

i +O(h
p+1
i ): (10)

In this paper we are considering continuous methods which are designed to directly monitor and
control the maximum magnitude of an estimate of the defect of the piecewise polynomial u(t) that is
delivered as the approximate solution. We will focus on methods based on an order p CRK formula
but most of the discussion and analysis will apply to other classes of continuous methods such as
those based on multistep formulas. Note that an order p CRK will always satisfy (5) but, without
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additional constraints, such formulas may be more di�cult to implement in an e�ective and reliable
way (when the objective is to control the magnitude of ‖�(t)‖) since:
• The magnitude of the associated defect will generally only be O(hp−1

i ),
• Although the defect can be sampled at any point in the interval of interest it may not be easy to
justify a rigorous, inexpensive estimate of its maximum magnitude over each step.

The �rst of these di�culties can be overcome by considering only order p CRK formulas with local
error that is O(hp+1

i ) and both di�culties can be overcome by considering only those order p CRK
formulas that satisfy (9). In this latter case as hi → 0, for any t ∈ (ti−1; ti), �(t) will satisfy (10)
and therefore for �t ∈ (ti−1; ti) (corresponding to a local maximum of | ′

i ((t − ti−1)=hi)|), ‖�(�t)‖ will
be an asymptotically correct estimate of the maximum magnitude of the defect on the ith step. Note
that since  ′

i (�) is a polynomial which is independent of the problem and the stepsize, the location
of its local maximum magnitude, �� (for � ∈ (0; 1)), is known and the corresponding value for �t is
�t = ti−1 + ��hi.
In Section 2, we will consider continuous methods for IVPs based on defect-control and in sub-

sequent sections we will consider such methods for BVPs and DDEs. In each of these areas there
are some general purpose software packages available. Finally, we will consider the development of
methods for DAEs based on defect-control. We will discuss some prototype and experimental codes
that implement this approach.

2. Initial value methods

The development of software based on defect-control for the numerical solution of IVPs in ODEs
has a history that goes back several decades and is closely related to the notion of backward error
analysis. Consider the standard IVP

y′ = f(t; y); y(t0) = y0; t ∈ [t0; tF ]: (11)

Hull [18] and Stetter [24] investigated the reliability (or “e�ectiveness”) of various error control
strategies for discrete methods applied to (11) by establishing conditions which would guarantee the
existence of a piecewise approximating function, û(t) ∈ C0[t0; tF ], which interpolates the discrete
approximate solution yi and satis�es a slightly perturbed IVP

û′ = f(t; û) + �̂(t); û(t0) = y0; (12)

where �̂(t) ∈ C0[t0; tF ] and satis�es

‖�̂(t)‖6k̂ TOL; (13)

for some modest value of k̂ (independent of both the problem and the method), and TOL is the
speci�ed error tolerance. In these investigation, û(t) and �̂(t) were generally not computable but one
could use standard results from mathematics, such as the Grobner–Alekseev variation of constants
formula (see [22] for details), to obtain appropriate global error bounds. For example, if (11), (12)
and (13) are satis�ed then it is straightforward to show

y(ti)− yi = y(ti)− û(ti) =
∫ ti

t0
K(t; s)�̂(s) ds; (14)
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Table 1
Cost per step of relaxed and strict defect control for some CRK formulas

Formula p s �s s̃

CRK4 4 4 6 7
CRK5 5 6 9 11
CVSS6B 6 7 11 14
CVSS7 7 9 15 20
CVSS8 8 13 21 28

where K(t; s) is a variational matrix that depends only on the problem, and this implies

‖y(ti)− yi‖6(ti − t0)k̂ Kmax TOL; (15)

where Kmax is a bound on ‖K(s; t)‖. Note that this is an example of backward error analysis where
the computed solution is guaranteed to exactly satisfy a slightly perturbed IVP and one can interpret
Kmax as a type of condition number for the problem (which quanti�es how sensitive the solution can
be to small changes in the problem speci�cation).
Subsequently, several investigators, who were primarily interested in dense output (or o�-

mesh approximations), analysed and developed computable piecewise polynomial interpolants, u(t),
which could be e�ciently implemented with new or existing discrete methods (see, for example,
[7,17,23,25,27]). It was soon recognized that, once u(t) was generated, the corresponding defect
could be sampled and new reliable error and stepsize-control strategies could be developed with the
objective of directly satisfying relationships analogous to (12) and (13).
As we have noted earlier, when one considers CRK formulas, the requirement that ‖�(t)‖ be of

optimal order and easy to bound by an inexpensive error estimate (for t ∈ (ti−1; ti)) will gener-
ally impose additional constraints on what would comprise a suitable local interpolating polynomial,
ui(t). In a series of investigations [1–3,14–16], several order p CRK formulas have been devel-
oped and compared. These investigations have also considered the relative advantages of several
alternative defect-control strategies for 36p68. We will now consider two of the most promising
strategies.
The �rst strategy assumes that the local interpolant ui(t) de�ned by (3) satis�es (7) and that the

estimate of the maximum magnitude of the defect is obtained by the heuristic

esti = ‖�(ti−1 + �̂hi)‖
= ‖u′i(ti−1 + �̂hi)− f(ti−1 + �̂hi; ui(ti−1 + �̂hi))‖; (16)

where �̂ is chosen in a careful way (see [1] for a detailed discussion of how �̂ can be chosen). We
will refer to this strategy as the “relaxed” defect-control strategy. This heuristic for controlling the
maximum magnitude of the defect works well on most problems but the strategy is not asymptotically
justi�ed (as h → 0) and it can severely underestimate the size of the defect for some problems.
Table 1 reports for 46p68 the value of s and �s for some order p CRK which have been found to
be particularly e�ective. The higher-order formulas are members of families of formulas derived in
[26] (the particular coe�cients are identi�ed in [3]). Note that the cost per step of a method using
this error-control strategy for these particular CRKs is �s derivative evaluations. This follows since
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although one must perform an additional derivative evaluation to sample the defect (at ti−1 + �̂hi),
each of the formulas is designed to ensure that u(t) ∈ C1[t0; tF ] by requiring that u′i(ti−1 + hi) =
f(ti−1 + hi; yi). This implies that, on all but the �rst step, k1 will be available (as an internal stage
of the previous step).
A more rigorous error-control strategy (which we will refer to as the “strict” defect-control strat-

egy) for the same set of underlying discrete formulas can be developed by requiring that the cor-
responding continuous extension satisfy (9) as well as (7). With this additional constraint we have
available (as discussed earlier) an asymptotically correct estimate of the maximum magnitude of
the defect (on the ith step) given by esti = ‖�(ti−1 + ��hi)‖ where �� is �xed and independent of
the problem or stepsize. One way to generate such a CRK (although it may not be optimal) is to
begin with an �s-stage order p CRK, ui(t), satisfying (3) and (7) and replace the “extra” stages,
ks+j; j = 1; : : : ; ( �s− s) (whose corresponding cs+j 6= 1) with the more accurate values

k̃ s+j =
{
f(ti−1 + cs+jhi; ui(ti−1 + cs+jhi)) if cs+j 6= 1;
ks+j if cs+j = 1:

(17)

A new, more suitable interpolant, ũ i(t) can then be de�ned by

ũ i(t) = yi−1 + hi

s∑
j=1

bj

(
t − ti−1

hi

)
kj +

�s−s∑
j=1

bj+s

(
t − ti−1

hi

)
k̃ s+j: (18)

It can easily be shown that ũ i(t) will satisfy (7), (9) and, when cj = 1 for one value of j in the
range 16j6( �s− s) (as is the case for each of the CRK formulas identi�ed in Table 1), it will be
an s̃-stage order p CRK with s̃= s+ 2(�s− s)− 1. Table 1 also reports the value of s̃ for this strict
defect-control strategy using the CRK corresponding to (18).
Clearly a trade-o� between e�ciency and reliability needs to be addressed when choosing which

defect-control strategy should be used to solve a particular problem. Fortunately, it is convenient
and straightforward to implement a numerical method which can apply either strategy (using either
(3) with �̂ or (18) with �� to de�ne the respective interpolants and defect estimates) and thus the
choice can be an option which can be selected by the user. From Table 1 we can observe that the
cost per step of using the strict defect-control strategy can be between 20 and 33% more than that
for the relaxed strategy but better control of the size of the defect should be realised.
To illustrate and quantify this trade-o� we have run both versions of a numerical method based

on the CRK formula CVSS6B, on the 25 standard nonsti� problems of the DETEST package [11] at
nine error tolerances and assessed how well the defect was controlled. The performance on a typical
problem, problem B4, is summarised in Table 2.
These results are typical of that observed on all problems. Both methods are robust in that they

are able to deliver, over a wide range of tolerances, a close and consistent relationship between the
size of the defect and the speci�ed error tolerance.
Both versions of CVSS6B required over 13 500 steps to solve all of the problems at all tolerances.

With the strict defect-control strategy the maximum magnitude of the defect rarely (on fewer than
1.8% of the steps) exceeded TOL and never exceeded 7 TOL. With the relaxed defect-control
strategy the maximum magnitude of the defect exceeded TOL on 20% of the steps but it rarely
exceeded 5 TOL (on fewer than 1.2% of the steps) and it never exceeded 18 TOL.
An alternative rigorous defect control strategy based on the use of a di�erent norm has been

proposed and justi�ed in [19]. On each step one introduces a weighted L2-norm (which can be
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Table 2
Performance of CVSS6B on problem B4 of DETEST

Strategy TOLa Timeb FCNc Stepsd GL Erre Max Def f % Succg

Relaxed defect control 10−2 0.010 166 15 4.7 1.9 73
10−3 0.015 254 22 18.0 1.2 91
10−4 0.023 375 32 28.4 1.3 84
10−5 0.031 507 46 34.5 1.7 74
10−6 0.046 749 68 37.6 1.5 62
10−7 0.067 1101 100 39.0 1.5 49
10−8 0.099 1618 147 40.5 1.5 45
10−9 0.145 2377 216 41.1 1.5 45

Strict defect control 10−2 0.014 253 17 1.2 0.88 100
10−3 0.021 379 24 9.5 0.94 100
10−4 0.027 491 35 15.6 0.98 100
10−5 0.041 743 53 16.6 0.76 100
10−6 0.061 1093 78 16.6 0.66 100
10−7 0.090 1625 116 16.5 0.61 100
10−8 0.131 2381 170 16.5 0.58 100
10−9 0.193 3501 250 16.5 0.56 100

aTOL, speci�ed error tolerance.
bTime, computer time required to solve the problem measured in seconds on a SUN Sparc4.
cFCN, number of derivative evaluations required to solve the problem.
dSteps, number of time steps required to solve the problem.
eGL Err, maximum observed global error measured in units of TOL and determined by measuring the global error at

100 equally spaced points per step.
fMax Def, maximum magnitude of the defect measured in units of TOL and determined by sampling the defect at 100

equally spaced points per step.
g% Succ, percentage of steps where the magnitude of the defect is less than TOL.

interpreted as an average magnitude of the defect),

‖�i(t)‖2 = 1=hi

(∫ ti

ti−1

‖�i(s)‖2 ds
)1=2

; (19)

A method can then be developed with an error control strategy that attempts to ensure that

‖�i(t)‖26TOL: (20)

As is pointed out in [19], �i(t) is usually known at the meshpoints and therefore, for su�ciently
smooth problems, one can derive a low cost, asymptotically correct estimate of ‖�i(t)‖22 using a
suitably chosen Lobatto quadrature formula (which would require only a few additional evaluations
of the defect). This approach has been implemented and shown to be very e�ective for a large class
of problems.
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3. Boundary value methods

Numerical methods for BVPs of the form

y′ = f(t; y); t ∈ [t0; tF ]; g(y(t0); y(tF)) = 0 (21)

generally produce a discrete approximation on a mesh t0¡t1¡ · · ·¡tN = tF by solving a large
coupled nonlinear system of equations. If the underlying formula that determines the discrete solution
is a Runge–Kutta or collocation formula then it is straightforward to introduce a continuous extension
u(t) and the associated defect �(t) (as we have done for IV methods). From Table 1 we see that
the cost per step to compute u(t) and estimate the size of the corresponding defect can be as great
as applying the underlying discrete formula. For BV methods the cost per step to determine u(t)
and �(t), after the discrete solution has been computed, remains the same while the cost of solving
for the discrete solution is generally much greater. A consequence of this is that once a converged
discrete solution is determined by a BV method (based on the use of a CRK or collocation formula),
a continuous extension with an optimum O(hp) defect can be computed at very little incremental
cost (see, for example, [10,12]).
When these formulas are used to determine the discrete solution, defect-based error control and

mesh-re�nement strategies can be particularly attractive. This approach has been followed in the
development of the methods MIRKDC [9] and bvp4c [19] which have been found to be e�ective
for solving a wide class of problems.
In the numerical solution of BVPs, one often encounters di�culties with convergence of the

iteration scheme that is used to solve the nonlinear system associated with the discrete mesh. This
can be the result of a poor choice of mesh and=or a poor initial guess for the discrete solution. In
either case, if the method has available a piecewise polynomial approximation �u(t) with an associated
defect ��(t) (as would be the case, for example, if �u(t) were associated with a mesh and previously
computed discrete solution that was judged not to be su�ciently accurate), then these de�ciencies
can often be overcome by using the size of the defect to help guide the mesh re�nement and using
�u(t) to generate the required initial guess. With this approach one can also use the estimates of the
maximum magnitude of the defect to help ensure that the approximate solution that is ultimately
delivered by the method, u(t), satis�es

‖�(t)‖= ‖u′(t)− f(t; u(t))‖6 TOL; (22)

and

g((u(t0); u(tF)) = 0:

Note that, with this approach, one could consider using inexpensive interpolants for the mesh re-
�nement strategies, and the more expensive rigorous interpolants for assessing the accuracy of the
numerical solution.
When such strategies are adopted by a method, one only has to compute the interpolant and defect

estimate on the �nal iteration after the underlying discrete approximation has converged. Intermediate
calculations associated with preliminary coarse meshes or initial iterations (before convergence) either
would not require the determination of any interpolant or would only require the less expensive
relaxed interpolant.
Numerical experience reported in [9,19] shows that BV methods that implement such defect-based

strategies can outperform methods based on more traditional strategies especially when a strongly
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nonuniform mesh is appropriate. Even on problems where asymptotic analysis is not necessarily
relevant, carefully designed defect-based strategies can quickly lead to a suitable mesh and rapid
convergence on that mesh.

4. Delay di�erential equation methods

A class of numerical methods based on CRK formulas with defect control has been analysed [6]
for systems of retarded and neutral DDEs of the form

y′ = f(t; y; y(t − �1(t; y(t))); y′(t − �2(t; y(t)))); t ∈ [t0; tF ]: (23)

y(t) = �(t); t6t0; (24)

where �1(t; y) and �2(t; y) are positive scalar functions. One particular sixth-order formula from this
class (the formula CVSS6B discussed in Section 2) has been implemented in a software package,
DDVERK [4], and shown to be e�ective for these DDEs [5].
For this class of problems a discrete method must be able to approximate the solution at o�-mesh

points in order to evaluate the di�erential equation at an arbitrary point, t ∈ [t0; tF ]. Therefore,
the requirement that the numerical solution be a piecewise polynomial, u(t), does not impose any
extra cost and one can associate an approximation u(t) (with corresponding defect �(t)) with any
numerical method.
To be e�ective for this class of problems a numerical method must be able to detect and e�-

ciently handle the discontinuities that inevitably arise and are propagated as the integration proceeds.
Automatic techniques for detecting and accurately crossing points of discontinuity for standard IVPs
based on monitoring changes in the associated defect have been proposed and justi�ed in [8]. This
technique has been adapted and re�ned for DDEs in the solver DDVERK (see [4] for a discussion
of the details) where it has proved to be very e�ective for a wide class of problems. It is certainly
competitive with the alternative strategy which explicitly checks for discontinuities at all possible
locations where propagation is possible. This is particularly true for systems of equations with mul-
tiple delays where the number of potential points of discontinuity can be quite large relative to the
number of signi�cant or relevant points of discontinuity. The defect based strategy for coping with
discontinuities essentially adjusts the stepsize selection (as well as the error-control mechanism) only
on those steps where the presence of a point of discontinuity has severely reduced the stepsize.

5. Di�erential algebraic equation methods

In recent years, there has been considerable interest and progress made in the development of
numerical methods for special classes of DAEs. Nevertheless, very few methods can be applied
directly to a system of DAEs in the most general form

F(t; y; y′) = 0; y(t0) = y0; t ∈ [t0; tF ]; (25)

with (@F=@y′) known to be singular. Note that if this matrix is nonsingular for all t ∈ [t0; tF ] the
problem is said to have index 0. In this case one can solve the nonlinear system associated with
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(25) to determine y′(t) for any prescribed value of t and y(t). Any initial value method can be
applied and special DAE methods are not necessary.
In general the “index” of a problem of the form (25) refers to the minimum number of times one

has to di�erentiate the equation, F(t; y; y′)=0, in order to derive an equivalent initial value problem
where y′(t) can be determined uniquely in terms of t; y(t); F and various partial derivatives of F .
The higher the index of a problem, the more sensitive the solution can be to perturbations in the
data and the more di�cult it becomes to develop reliable numerical methods. Currently, there are
several reliable general-purpose numerical methods for index 1 problems and other reliable methods
designed for special classes of index 2 and index 3 problems.
The DAEs that arise in application areas, such as the modelling of constrained mechanical systems

or the design of electrical circuits often are of index 2 or index 3 but they possess special structure
and numerical methods which exploit this structure have been developed and have received wide
acceptance. For example, the algebraic constraints can often be explicitly identi�ed and the system
decoupled, y(t) = [y1(t); y2(t)]

T, and written in the semi-explicit form

y′
1(t) = f(t; y1(t); y2(t)); (26)

0 = g(t; y1(t); y2(t)): (27)

When one considers the development of defect-based error control for DAE methods two key ques-
tions must �rst be answered:

(1) How does one de�ne a su�ciently accurate continuous extension, ui(t), of the discrete approx-
imation (for t ∈ [ti−1; ti])?

(2) What measure of the size of the defect is appropriate to control? That is, can one introduce a
measure �i(�) such that for t ∈ [ti−1; ti] the condition that �i(�(t))6TOL will ensure that the
global error will be proportional to TOL and �i(�) will be inexpensive to estimate on each step?

These questions were considered in [21] where defect-based error-control strategies suitable for
important classes of index 2 and index 3, semi-explicit problems were introduced and justi�ed.
The approach that was introduced can be applied with any discrete, order p, implicit Runge–Kutta
formula to generate, on each step, interpolating polynomials ui(t) and vi(t) that approximate y1(t)
and y2(t), respectively. If one de�nes the defect of the resulting vector of piecewise polynomials
associated with u(t) and v(t) we have (from (26) and (27))

�1(t) = u′(t)− f(t; u(t); v(t)); (28)

�2(t) = g(t; u(t); v(t)): (29)

The global errors ‖y1(t) − u(t)‖ and ‖y2(t) − v(t)‖ were analysed and shown to be bounded by
a suitable multiple of TOL provided �1(t); �2(t), and �′2(t) were all suitably bounded in norm.
Corresponding measures �i(�) were proposed and associated estimates introduced which could be
the basis for an e�ective defect-based numerical method for semi-explicit DAEs.
Another approach has been considered in [20] where no assumptions are made on the structure of

the DAE. In order to determine the piecewise polynomial, u(t) which approximates the solution to
(25) one begins with an implicit continuous extension of a discrete, order p, implicit Runge–Kutta
formula. One then introduces an associated overdetermined system of nonlinear equations on each
time step by requiring that the corresponding approximating polynomial, ũ i(t) satisfy (in a least
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squares sense) the de�ning equations of the underlying continuous extension as well as additional
“collocation” equations (which are equivalent to asking that (25) be satis�ed at a prescribed set of
sample points). The defect, �̃(t), associated with the resulting piecewise polynomial, ũ(t), is de�ned
by

�̃(t) = F(t; ũ(t); ũ′(t)): (30)

Conditions on the choice of underlying implicit CRK formulas and on the number and choice of
collocation points are identi�ed which result in ‖�̃(t)‖ being O(hp) for su�ciently di�erentiable
index 1 and index 2 problems. Estimates of ‖�̃(t)‖ are justi�ed and an experimental code introduced
to illustrate the validity of this approach. A general-purpose numerical method based on this approach
is under development.

6. Summary and conclusions

As is clear from our discussion so far there are now several general purpose numerical methods
for important classes of ODEs that produce piecewise polynomial approximate solutions and attempt
to directly control the magnitude of the associated defect. These methods, although more costly than
the classical discrete methods, can be e�ciently implemented and they produce solutions whose
accuracy can be more readily interpreted and compared.
We have also shown that when implementing numerical methods using defect control one must

address a trade-o� between reliability and e�ciency. This trade-o� arises from a choice between
the use of an inexpensive heuristic or a more expensive (but asymptotically correct) estimate of the
maximum magnitude of the defect. This choice can be left to the user but the implications must be
understood when interpreting the numerical results.
There are two di�culties that have not been discussed which limit the applicability of this class

of methods and which should be addressed in future investigations. If the underlying problem is not
su�ciently smooth, then one is restricted to the use of lower-order methods and defect control can
be less competitive with the more classical approach at low orders. Also, at limiting precision, where
the e�ect of round-o� error may dominate the local error, the currently employed defect estimates
are unreliable. More research is required to develop e�ective strategies for detecting and coping with
this situation.
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Abstract

Stochastic di�erential equations (SDEs) arise from physical systems where the parameters describing the system can
only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for
solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically
solving SDEs e�ectively. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Stability; Stochastic di�erential equations; Variable stepsize

1. Introduction

This paper presents an overview of stability and implementation issues of numerical methods for
solving stochastic di�erential equations. Due to space constraints it is not possible to give details
behind the construction of numerical methods suitable for solving SDEs, instead the paper will
focus on the stability and implementation of numerical methods. Thus Section 2 discusses numerical
stability both of SDEs and of numerical methods for solving these SDEs, while the implementation
of numerical methods using a �xed stepsize is discussed in Section 3; in Section 4 a variable stepsize
implementation is presented.
This section continues with some necessary background details covering the form of an SDE

together with de�nitions of order of convergence for numerical methods to solve such SDEs.
Stochastic di�erential equations describe physical systems where noise is present, with the noise be-

ing modelled by a Wiener process that is nowhere di�erentiable. The general form of an autonomous
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SDE is

dy(t) = f(y(t)) dt + g(y(t)) dW (t); y ∈ Rm; y(0) = y0; (1)

where f is the drift coe�cient (an m-vector-valued function), g is the di�usion coe�cient (an m×d
matrix-valued function), and W (t) is a d-dimensional process having independent scalar Wiener
process components (t¿0). A Wiener process W is a Gaussian process with the property that

E(W (t)) = 0; E(W (t)W (s)) = min{t; s}:
The Wiener increments W (t)−W (s) are independent Gaussian processes with mean 0 and variance
|t − s|.
Eq. (1) can be written as a stochastic integral equation

y(t) = y(t0) +
∫ t

t0
f(y(s)) ds+

∫ t

t0
g(y(s)) dW (s)

where the �rst integral is a regular Riemann–Stieltjes integral and the second integral is a stochastic
integral, commonly interpreted in either Itô or Stratonovich form. The Stratonovich interpretation
follows the usual rules of Riemann–Stieltjes calculus, and for this reason is the form used in this
paper (the symbol ◦ in front of dW (s) will serve to con�rm a Stratonovich integral). However, an
SDE presented in Itô form can be converted to Stratonovich form using a simple formula which
relates the two interpretations. Indeed the solution of (1) and its related Stratonovich SDE are exactly
the same:

dy(t) = �f(y(t)) + g(y(t)) ◦ dW (t); (2)

�fi(y(t)) = fi(y(t))− 1
2

m∑
j=1

d∑
k=1

gjk(y(t))
@gik(y(t))
@yj

; i = 1; : : : ; m: (3)

A multiple Stratonovich integral is given by

Jj1j2···jl(t0; t) =
∫ t

t0

∫ sl

t0
· · ·
∫ s2

t0
◦ dWj1

s1 ◦ · · · ◦ dWjl
sl ;

where jl ∈ {0; 1; : : : ; d} for d Wiener processes. Note that the integral J0(t0; t) =
∫ t
t0
◦ dW 0

s1 =
∫ t
t0
ds1:

For ease of notation, the written dependence on t0 and t will be dropped when the meaning is clear
from the context.
There are two ways of measuring the accuracy of a numerical solution of an SDE – these are

strong convergence and weak convergence – only strong convergence will be considered in this
paper. Strong convergence is required when each trajectory of the numerical solution must be close
to the exact solution:

De�nition 1. Let �yN be the numerical approximation to y(tN ) after N steps with constant stepsize
h = (tN − t0=N ); then �y is said to converge strongly to y with strong global order p if ∃C¿ 0
(independent of h) and �¿ 0 such that

E(‖ �yN − y(tN )‖)6Chp; h ∈ (0; �):
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This de�nition is for global order – the local error can behave as O(hp+1=2); fractional orders arise
as the root mean square order of the Wiener process is h1=2.
Numerical methods for SDEs are derived by comparing the stochastic Taylor series expansion of

the numerical solution with that of the exact solution, over one step assuming exact initial values.
This comparison results in a set of order conditions to be satis�ed – see [2,13] for the development
of these order conditions using Rooted Tree theory in the case of Stratonovich problems.
This section has provided an overview of the basic de�nitions required for studying numerical

methods for solving SDEs; in the next section, stability of the SDE and of numerical methods is
discussed.

2. Numerical stability analysis

As in other areas of numerical analysis, numerical stability is signi�cant in the case of SDEs
which usually require a long (numerical) time-integration.

2.1. Stochastic stability

Consider the scalar version of (1). We assume that there exists a unique solution y(t; t0; y0) of
the equation for t ¿ t0: Moreover, we suppose that the equation allows a steady solution y(t) ≡ 0.
This means that f(0) = g(0) = 0 holds. A steady solution is often called an equilibrium position.
Has’minskii [10] gave the following three de�nitions of stability.

De�nition 2. The equilibrium position of the SDE is said to be stochastically stable, stochastically
asymptotically stable and stochastically asymptotically stable in the large, respectively, if the follow-
ing conditions hold:
(i) For all positive � and for all t0 the following equality holds.

lim
y0→0

P
(
sup
t¿t0
|y(t; t0; y0)|¿�

)
= 0

(ii) In addition to the above,

lim
y0→0

P
(
lim
t→∞ |y(t; t0; y0)|= 0

)
= 1:

(iii) Moreover to the above two,

P
(
lim
t→∞ |y(t; t0; x0)|= 0

)
= 1 for all y0:

Each item in De�nition 2 can be seen as the stochastic counterparts of stability, asymptotic stability
and asymptotic stability in the large, respectively, in the ODE case.
Actually we can derive a criterion of the asymptotic stochastic stability for the SDE. Assume that

the functions f and g are uniformly asymptotically linear with respect to x; that is, for certain real
constants a and b,

f(x) = ax + �f(x); g(x) = bx + �g(x)
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with

lim
|x|→0

| �f(x)|+ | �g(x)|
|x| = 0

hold uniformly in t: The solution y(t) of the SDE is stochastically asymptotically stable if a −
b2=2¡ 0. This criterion found in [8, p. 139] strongly suggests a possibility of analogous linear
stability analysis for numerical schemes of SDE to those of ODE. We can consider that the linear
parts of f and g are dominant in the asymptotic behaviour of solutions around the equilibrium
position.

2.2. Numerical asymptotic stability

To cope with linear stability analysis, we introduce a linear test equation (supermartingale equa-
tion)

dy(t) = �y(t) dt + �y(t) dW (t ¿ 0) with �; � ∈ C (4)

with the initial condition y(0)=1 to the numerical stability analysis. Since the exact solution of (4)
is written as

y(t) = exp{(�− 1
2�

2)t + �W (t)};
it is quite easy to show that the equilibrium position y(t) ≡ 0 is stochastically asymptotically stable
if

Re (�− 1
2�

2)¡ 0: (5)

We can arrive at the following de�nition which is found in [11].

De�nition 3. When a numerical scheme is applied to the stochastically asymptotically stable equation
(4) and generating the sequence {yn}, it is said to be numerically asymptotically stable if

lim
n→∞ |yn|= 0 with probability 1:

To analyze the behaviour of real stochastic processes derived from various numerical schemes,
the following lemma given in [11] is useful.

Lemma 4. Given a sequence of real-valued, nonnegative, independent and identically distributed
random variable {Zn}; consider the sequence random variable {Yn} de�ned by

Yn =

(
n−1∏
i=0

Zi

)
Y0;

where Y0¿0 and Y0 6= 0 with probability 1. Suppose that the random variable log(Zi) are
square-integrable. Then limn→∞ Yn = 0 with probability 1 i� E(log(Zi))¡ 0 for all i.

However, the numerical asymptotic stability criterion does not work well. The reason is that
criterion (5) allows the case Re �¿ 0: It implies that some sample paths of the solution surely
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decrease to 0, whereas their distributions possibly increase. This can be understood through the fact
that when Re �¿ 0 the equation cannot be asymptotically stable even in the ODE sense. Henceforth,
it is impossible to carry out a numerical scheme until all the sample paths of the exact solution
diminish to 0 if two conditions Re �¿ 0 and Re (� − 1

2�
2)¡ 0 are valid simultaneously. Since the

numerical solution would reect this statistical property, nobody can expect a numerically stable
solution. Even in the case of the stochastic �-method given by

yn+1 = yn + (1− �)f(yn)h+ �f(yn+1)h+ g(yn)�Wn (� ∈ [0; 1]) (6)

there are combinations of the parameters � and � in (4) which do not give numerical asymptotic
stability with any h (see [11]).
This investigation implies the necessity of another stability concept for SDEs. That is, we try to

answer the question what SDE has all sample paths whose distribution tends to 0 as t →∞.

2.3. MS-stability

Analysis of the previous subsection suggests an introduction of a norm of the SDE solution with
respect to the underlying stability concept.

De�nition 5. The equilibrium position y(t) ≡ 0 is said to be asymptotically stable in pth mean if
for all positive � there exists a positive � which satis�es

E(|y(t)|p)¡� for all t¿0 and |y0|¡� (7)

and, furthermore, if there exists a positive �0 satisfying

lim
t→∞ E(|y(t)|p) = 0 for all |y0|¡�0: (8)

The most frequently used case p=2 is called the mean-square case. Thus we introduce the norm
of the solution by ‖y‖= {E|y|2}1=2.
The necessary and su�cient condition is rather simple (see [18]).

Lemma 6. The linear test equation (supermartingale equation) (4) with the unit initial value is
asymptotically stable in the mean-square sense (abbreviated as MS-stability) i� Re �+ |�|2=2¡ 0.

Note that since the inequality Re(2�− �2)62Re �+ |�|2 is always valid, the asymptotic stability in
the mean-square sense implies the stochastic stability.

2.4. Numerical MS-stability

For asymptotically MS-stable problems of SDEs, what conditions are imposed to derive numeri-
cally asymptotically MS-stable solutions? That is to say, what conditions should be for the numerical
solution {yn} of the linear test equation (4) to achieve ‖yn‖ → 0 as n→∞?
Denote E|yn|2 by Yn. When we apply a numerical scheme to the linear test equation and take the

mean-square norm, we obtain a one-step di�erence equation of the form Yn+1 =R( �h; k)Yn where two
scalars �h and k stand for h� and �2=�, respectively. We can call R( �h; k) the stability function of the
scheme, and arrive at the following.
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De�nition 7 (Saito and Mitsui [18]). The scheme is said to be numerically MS-stable for �h and
k if its stability function R( �h; k) is less than unity in magnitude. The set in C2 given by R =
{( �h; k); |R( �h; k)|¡ 1 holds} is called the domain of MS-stability of the scheme.

In addition, we can say that a numerical scheme is A-stable if it is MS-stable for arbitrary h which
is su�ciently small for the convergence.
We will derive the stability function of some numerical schemes known in the literature. Details

with �gures can be seen in [18].
First is the Euler–Maruyama scheme (6) (with �= 0), whose application to (4) implies

yn+1 = yn + h�yn + �yn�Wn:

We obtain the stability function as

R( �h; k) = |1 + �h|2 + |k �h|:
Fortunately, the function depends on �h and |k|, not on k: Therefore, we obtain the domain of
MS-stability in the three-dimensional space of ( �h; |k|):
Next is the stochastic �-method (6). Note, we assume the implicitness only on the drift term f.

A calculation leads to the stability function

R( �h; k; �) =
|1 + (1− �) �h|2 + |k �h|

|1− � �h|2 :

By comparing the regions of MS-stability of the Euler–Maruyama and the semi-implicit Euler
schemes under the restriction of real �h and k we can see that the latter is superior to the for-
mer with respect to the stability. Further discussion is carried out in [11].

2.5. T-stability

From the viewpoint of computer implementation, MS-stability may still cause di�culty. To eval-
uate the quantity of the expectation Yn = E(|yn|2) where yn is an approximating sequence of the
solution sample path, in a certain probability yn happens to overow in computer simulations. This
actually violates the evaluation of yn.
The above situation suggests an introduction of another stability notion with respect to the approx-

imate sequence of sample path (trajectory). It must take into account the driving process, whose way
of realization a numerical scheme for SDE requires for the increment �Wn of the Wiener process.
For example, in the Euler–Maruyama scheme given in (6) �Wn, which stands for W (tn+1)−W (tn),
can be exactly realized with �n

√
h. More sophisticated schemes need more complicated normal

random variables. And these random variables are to be realized through an approximation with
pseudo-random numbers on computer, for the normal random number requires in�nitely many trials.
Therefore, we arrive at the following.

De�nition 8. Assume that the test equation (4) is stochastically asymptotically stable in the large.
The numerical scheme equipped with a speci�ed driving process said to be T-stable if |yn| → 0 (n→
∞) holds for the driving process.
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The above de�nition gives rise to another problem: a criterion of T -stability depends not only on
the scheme but also on the driving process. It causes our analysis more di�culty. To resolve it, we
can employ Lemma 4 again. For example, if the Euler–Maruyama scheme is applied to (4) then the
quantity T (h; �; �) de�ned through

log T (h; �; �) =
∫ ∞

−∞
log|1 + �h+ �

√
hx|p(x) dx

can stand for the T -stability function of the scheme, for T (h; �; �)¡ 1 implies the T -stability.
For an illustration, we treat the Euler–Maruyama scheme with three-point random variables. The

random variable �n is taken as Un
√
h whose probability distribution is given by

P(Un =±
√
3) = 1=6; P(Un = 0) = 2

3 :

Since the density function is discrete, the integral is easily calculated to derive

A6(h; �; �) = (1 + �h+ �
√
3h) (1 + �h)4(1 + �h− �

√
3h)

= (1 + �h)4{(1 + �h)2 − 3�2h}:
Similar to the Euler–Maruyama case, we may introduce the T -stability function for other schemes
(see [16,17]).
In [5], a more practical restriction of T -stability is introduced. To avoid stability violation due to

T -stability function close to 1, for a certain positive constant A less than 1 the scheme is said to be
T (A)-stable if the T -stability function is smaller than A.
Stability analysis for numerical schemes of SDEs is still in a premature stage, although much work

has been devoted to it. One of the present di�culties is, contrary to the ODE case, linear stability
on the supermartingale equation cannot straightforwardly be extended to the multi-dimensional case,
for then we have two matrices for the drift and the di�usion terms, not necessarily commuting with
each other. Therefore, much more study is expected.

3. Fixed stepsize implementation

The �rst method for solving SDEs numerically was the Euler–Maruyama method which is in-
e�cient due to its strong order of convergence 1

2 . Because of this limitation in order, numerical
methods of higher order have been developed. Burrage and Burrage [1] have focussed their attention
on stochastic Runge–Kutta methods (SRKs) of the form (for i = 1; : : : ; s)

Yi = yn + h
i−1∑
j=1

aijf(Yj) +
i−1∑
j=1

(
J1b

(1)
ij +

J10
h
b(2)ij

)
g(Yj);

yn+1 = yn + h
s∑
j=1

�jf(Yj) +
s∑
j=1

(
J1

(1)
j +

J10
h
(2)j

)
g(Yj):

(9)

If the method does not include J10, then the maximum strong order is 1.0; the inclusion of
this Stratonovich integral allows methods with strong order greater than 1 to be developed (see
[1]). Methods formulated from (9) can be extended for use in the d-Wiener process case (as long
as the SDE system coe�cients are fully commutative — otherwise the order of the method is
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reduced to 0.5) by sampling additionally from 2; : : : ; d random number generators. One way of
overcoming this order reduction is to include commutators in the method formulation (see [3]).
However, implementation costs are increased for methods with commutators, due to the expense of
calculating derivatives, leading to the development of suitable methods without commutators [6].
A �xed stepsize implementation of a SRK involves sampling the random variables in the method

(represented by J1 and J10, for example). The built-in random number generator that produces
samples from a N (0; 1)-distribution can be used; an alternative is to obtain samples from the
uniform distribution and to use the Polar–Marsaglia technique to produce pairs of normally dis-
tributed random numbers. Thus, given a pair (g1; g2) of normally distributed random variables,
J1 =

√
hg1; J10 = h3=2(g1 + g2=

√
3)=2.

With an initial value for the SDE, and with the means of sampling the necessary random variables,
the numerical method can be implemented step by step to obtain a trajectory of the solution. However,
�xed stepsize implementations of numerical methods have limitations when, for example, the SDE
being solved is sti� in some subdomain of the integration as this forces the stepsize to be very small
for the entire range of the integration. Thus it is natural to adapt the implementation technique to
use a variable stepsize, and it is this approach that is discussed in the next section.

4. Variable stepsize implementation

In order to use a variable stepsize technique, it is necessary to estimate the error at each step so
that a new and appropriate stepsize can be determined. This error estimation must be cheap, and in
this paper the errors are estimated via the process of embedding. In this paper, a two-stage SRK of
strong order 1 is embedded within a four-stage SRK of strong order 1.5, and the error at each step
is determined by comparing the numerical results from each of the two methods; only two extra
function evaluations are required to calculate the update value from the two-stage method, and so
the error estimate is achieved with minimal overhead.
Let ŷn+1 be the numerical result obtained from the implementation of the s-stage method, and

let yn+1 be that obtained from the higher stage method (where the methods have order p̂ and p;
respectively). Then yn+1 is used to advance the numerical computation on the next step, while both
ŷn+1 and yn+1 are used to estimate the error. Here it is absolute error that is under consideration. For
an m-dimensional system, let toli be the tolerance permitted for the ith component; then an error
estimate of order q+ 1

2 (where q=min(p̂; p)) is given by

error =

√√√√ 1
m

m∑
i=1

(yn+1; i − ŷ n+1; i
toli

)2
:

For the (R2,E1)-embedded pair of methods, in which q=1, we extend the variable stepsize strategy
in [9], and decrease the optimal stepsize by a safety factor (for example, fac=0:8) to avoid oscillatory
behaviour in the stepsize, and place bounds so that the stepsize does not increase or decrease too
quickly. Thus

hnew = hmin(facmx;max(facmn; fac(1=error)2=3)); (10)

where facmx and facmn are the maximal and minimal stepsize scaling factors allowed, respectively,
for the problem being solved.
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The embedded pair used to produce the numerical results in this paper consists of method R2
de�ned by

0 0
2
3 0
1
4

3
4

0 0
2
3J1 0
1
4J1

3
4J1

and the four-stage method E1 given by (9) with parameters

A=




0 0 0 0
2
3 0 0 0
3
2 − 1

3 0 0
7
6 0 0 0


 ; B(1) =




0 0 0 0
2
3 0 0 0
1
2

1
6 0 0

− 1
2 0 1

2 0


 ; B(2) =




0 0 0 0

0 0 0 0

− 2
3 0 0 0
1
6

1
2 0 0


 ;

�T = (14 ;
3
4 ;− 3

4 ;
3
4 ); (1)T = (− 1

2 ;
3
2 ;− 3

4 ;
3
4 ); (2)T = (32 ;− 3

2 ; 0; 0):

Most implementations of numerical methods for solving SDEs use a �xed stepsize, and indeed
convergence of the method was only demonstrated for such stepsizes. However, recently [7] have
proved that a method must have strong order at least 1 to guarantee convergence to the correct
solution if variable stepsizes are used. This result demonstrates that the embedded pair (R2,E1) will
converge to the correct solution in a variable stepsize implementation.
It is important when using a variable stepsize implementation to remain on the correct Brownian

path. The Brownian path consists of the Wiener increments sampled from the N (0; 1) distribution;
these increments are scaled according to the stepsize currently being used, so when a stepsize is
rejected, the increment must be rescaled in such a way that the integration remains on the true path.
This approach ensures that the same Brownian path can be traversed if the numerical calculations
are repeated with a di�erent initial value or a di�erent initial stepsize.
The approach in [7] was to use a Brownian tree of increments in the integration. The tree was

formed by �xing a top level of increments with a nominal stepsize h0 and then successively halving
the stepsize and calculating the new increments on the subintervals so that the top level path was
adhered to. These increments accounted for J1, while any higher-order Stratonovich integrals (for
example, J10) could be calculated using a L�evy area (see [14,7,3]). At any stage of the integration,
if the current stepsize h was rejected, the step would be retried with a stepsize of h=2, while if the
step was successful the next step would proceed with either h or 2h, depending on the alignment of
the current position within the tree. This binary tree structure necessitates only a halving or doubling
of stepsize, and in practice this can be too restrictive.
Another approach is in [15] who demonstrates that, given J1 and J10 on a �xed Brownian path,

then for 0¡h1¡h and h2 = h− h1,

J1(t0; t0 + h1)

J10(t0; t0 + h1)

J1(t0 + h1; t0 + h)

J10(t0 + h1; t0 + h)


= AU




N1
N2

A−1
h

(
j1
j10

)

 ; (11)
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is also on the same Brownian path; here (j1; j10)T are the sampled values corresponding to J1(t0; t0 +
h) =

∫ t0+h
t0
◦ dW (1)

s and J10(t0; t0 + h) =
∫ t0+h
t0

∫ s
t0
◦ dW (1)

s1 ds respectively, N1; N2 ∼ N (0; 1);

Ah =



√
h 0

1
2h
3=2 1=2

√
3h3=2


 ; A=

(
Ah1 0

0 Ah2

)
; �=

h2
h1
;

U =




0 −(� 2 − �+ 1)=c2 1=c3
√
3�=c4

� 3=2=c1
√
3=c2 0 1=c4

0 1− �+ � 2=c2
√
�
√
�=c3 −

√
3�=c4

−1=c1
√
3� 3=2=c2 0 � 3=2=c4



;

c1 =
√
� 3 + 1; c2 =

√
(1− �+ � 2) (1 + �)3

�
; c3 =

√
�+ 1; c4 =

√
(�+ 1)3:

Setting h1 = h2 = h=2 yields the transformation required when a simple halving of h takes place.
Indeed, Mauthner [15] only develops this latter case, due to the ease of storing the simulated values
in a binary tree as well as the reduced cost associated with their simulation.
However, in this paper, the case with arbitrary stepsize change is developed as this provides

the most exibility for a variable stepsize implementation. First, the Brownian path is �xed for a
nominated stepsize h�x — this can represent a series of output points, for example. If this stepsize is
the maximum allowed for the integration, then all subsequent simulations are generated ‘downwards’;
however, if the integration requires h¿h�x, the simulated Stratonovich integrals can just as easily
be generated ‘upwards’ from the �xed path. Given the �xed Brownian path, the integration proceeds,
using the desired stepsize h1; the values of J1 and J10 on these subintervals do not need to be stored
— they can be merely generated as required based on the �xed path. At the end of the integration,
the sum of the J1-values along the path actually followed equals the sum of the J1-values along the
�xed path. Similarly, the J10-values adhere to the de�nition

J10(t1; t3) =
∫ t3

t1

∫ s

t1
◦ dWs1 ds=

∫ t2

t1

∫ s

t1
◦ dWs1 ds+

∫ t3

t2

∫ s

t1
◦ dWs1 ds;

= J10(t1; t2) +
∫ t3

t2

(∫ t2

t1
◦ dWs1 +

∫ s

t2
◦ dWs1

)
ds;

= J10(t1; t2) + J10(t2; t3) + (t3 − t2)J1(t1; t2);
for the subintervals [t1; t3] = [t1; t2] ∪ [t2; t3]. Further details using this approach, together with other
examples, can be found in [4].
This section will conclude with the presentation of an example which demonstrates the e�cacy

of the variable stepsize approach.

Example 9. This SDE is taken from [12], (Eq. 4:4:46) and has been converted to Stratonovich form

dy =−�(1− y2) dt + �(1− y2) ◦ dW
with � = 1 and �= each of 0.8, 1.5 and 2.0. The �xed stepsize results (using method E1) are
presented in Table 1, with the variable implementation results for a range of tolerances in Table 2
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Table 1
Fixed stepsize

� = 0:8 � = 1:5 � = 2:0

h Error Steps h Error Steps h Error Steps

1
3 — 30 1

4 — 40 1
5 — 50

1
5 8:88(−5) 50 1

8 — 80 1
10 — 100

1
10 6:67(−5) 100 1

24 2:51(−2) 240 1
35 3:94(−2) 350

1
36 1:01(−5) 360 1

84 6:90(−3) 840 1
140 8:30(−3) 1400

Table 2
Variable stepsize

� = 0:8 � = 1:5 � = 2:0

Tol Error Tried OK Error Tried OK Error Tried OK

0.1 1:63(−2) 29 23 2:17(−2) 44 35 2:52(−2) 105 78
0.01 1:86(−3) 47 37 1:89(−3) 81 61 3:08(−3) 112 82
0.001 1:58(−4) 114 86 1:78(−4) 261 191 2:69(−4) 399 289
0.0001 1:64(−5) 383 279 1:61(−5) 961 694 3:00(−5) 1588 1143

(average steps tried and steps accepted are given too). The initial value is 0, the integration is carried
out from 0 to 10, and for the variable implementation an arbitrary initial stepsize of 1

32 was used.
The results were averaged over 100 trajectories.

5. Conclusions

It is clear from the discussion in this paper that stability is a critical aspect in designing useful
numerical methods. Just as crucial, and what has been given less attention until recently, is that
any e�ective implementation must consider a number of important issues, one of which is a variable
stepsize implementation (under the proviso that di�erent numerical simulations must follow the same
Brownian path).
The numerical results in this paper have demonstrated that the variable stepsize implementation

is far superior to that of �xed stepsize unless the stochasticity is small enough (e.g., � = 0:8) for
the numerical solution to be smooth (in which case any variable stepsize implementation does not
have a chance to perform under conditions suited to it). Also, although there is not exact tolerance
proportionality when the tolerance is reduced by a factor of 10, the decrease in error is nearly
in proportion. Clearly, our approach and the approach in [4] is very promising and o�ers great
exibility.
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Abstract

Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena
in the biosciences that are based on delay di�erential equations and for which numerical approaches are a major tool in
understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show
that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with
ordinary di�erential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature
of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play
in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and
cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems
emerging in the biosciences, comparing them with those implemented by the bio-modellers. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Retarded functional di�erential equations (RFDEs),

y′(t) = f
(
t; y(t); y(�(t; y(t)));

∫ t

−∞
K(t; s; y(t); y(s)) ds

)
; t¿t0; (1)

wherein �(t; y(t))6t and y(t) =  (t); t6t0, form a class of equations which is, in some sense,
between ordinary di�erential equations (ODEs) and time-dependent partial di�erential equations
(PDEs). Such retarded equations generate in�nite-dimensional dynamical systems. RFDEs (1) where
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the integral term is absent are usually called delay di�erential equations (DDEs) and they assume
forms such as y′(t)=f(t; y(t); y(�(t; y(t)))) with �(t; y(t))6t. The introduction of the “lagging” or
“retarded” argument �(t; y(t)) is to reect an “after-e�ect”.
Two early references for DDEs are the books by Bellman and Cooke [4], and Elsgol’ts and Norkin

[8]. These are rich sources for analytical techniques and many interesting examples. Kolmanovskii
et al. [14,15] gave a rigorous treatment of a wide class of problems. Starting from the �rst edition,
the monograph of Hale [12] (subsequently Hale and Verduyn Lunel [13]) is a standard source on
the theory of delay equations. Another substantial monograph is by Diekmann et al. [6]. Kuang
[16] and Banks [3] pay particular attention to problems in population dynamics; the former also
looked at “neutral” equations. Marchuk [18] presented various issues of numerical modelling with
delay equations in immunology. Gopalsamy [9] and Gy�ori and Ladas [10] addressed the question
of oscillations in delay di�erential equations. Early books by Cushing [5], Driver [7], Halanay [11],
MacDonald [1, Ref. 111], [17], May [19], Maynard Smith [20], and Waltman [22] have been very
stimulating for the development of the �eld.
An early use of DDEs was to describe technical devices, e.g., control circuits, where the delay is

a measurable physical quantity (for example, the time that the signal takes to travel to the controlled
object and return plus the reaction time). In most applications in the life sciences a delay is introduced
when there are some hidden variables and processes which are not well understood but are known to
cause a time-lag (see 3 Cooke and Grossman [1, Ref. 45], Murray [21]). A well-known example is
the phenomenon of Cheyne–Stokes breathing: some people show, under constant conditions, periodic
oscillations of breathing frequency [21]. This behaviour is considered to be caused by a delay in
the physiological circuit controlling the carbon dioxide level in the blood. However, in some cases,
e.g., in simplistic ecological models, it seems that delays have been introduced rather ad hoc, thus
putting subsequent researchers on the wrong track (Cushing [1, Ref. 49]). Research on qualitative
analysis of RFDEs has pro�ted greatly by considering models from theoretical biology. In order to
develop appropriate computational strategies, numerical analysts should classify the various types of
mathematical problems with delay (there are point delays, distributed delays, state-dependent delays,
integrals within or taken over the delay) and it is helpful to follow recent developments in the life
sciences to see what problems require further study. We shall be somewhat selective in the areas of
biomathematics that we detail, describing qualitative and quantitative studies based on DDEs.

2. Delay equations and population dynamics

A standard delay model for population dynamics was introduced by Hutchinson [1, Ref. 93], when
he modi�ed the classical model of Verhulst to account for hatching and maturation periods

y′(t) = ry(t)
(
1− y(t − �)

K

)
: (2)

Here the nonnegative parameters r and K are known, respectively, as the intrinsic growth rate and
the environmental carrying capacity. Although Eq. (2) appears at �rst sight to be simple, the solution
can display complicated dynamics and, in particular, an oscillatory behaviour. The basic assumption

3 As the list of publications referred to in this paper exceeds space limitations, we cite the bibliography in [1]: [1, Ref.
XX] refers to citation [XX] given in [1].
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underlying Eq. (2) is that the present change in population size depends exactly on the population
size of time � units earlier. Commencing with the early work of Volterra [1, Ref. 172], modellers
considered more general equations

y′(t) = ry(t)

(
1− 1

K

∫ 0

−�
y(t + s) d�(s)

)
: (3)

One may formally ask: Why does the delay enter the removal term −y2=K and not the production
term y, or both terms, as suggested, for example, in [3]? This question was examined by applying
the theory of structured populations by Hadeler and Bocharov in [1, Ref. 35], where the connec-
tion between some models of population dynamics using neutral delay di�erential equations and the
widely accepted Sharpe–Lotka–McKendrick model and its extension due to Gurtin and MacCamy
[1, Ref. 131],

ut(t; a) + ua(t; a) + �(a;W )u(t; a) = 0; u(t; 0) =
∫ ∞

0
b(a;W )u(t; a) da (4)

was studied. This hyperbolic PDE provides the standard model in the theory of age-structured popu-
lations. In Eq. (4) u(t; a) stands for the density of the population with respect to age a, the mortality
� and the fertility b depend on age and on some functional W of the population density, traditionally
the total population size W (t) =

∫∞
0 u(t; a) da. Under the assumption that (i) there is a maturity age

�¿ 0, separating juveniles from adults; (ii) � is a step function �(a)=�0 +(�1−�0)H�(a); and (iii)
b is a combination of a step function and a sharp peak b(a) = b1H�(a) + b2��(a), where H�(·), ��(·)
denote the Heaviside and delta function, respectively, it was shown that for t¿�, the populations of
juveniles U (t) =

∫ �
0 u(t; a) da and adults V (t) =

∫∞
� u(t; a) da satisfy a system of neutral DDEs:

U ′(t) = b1V (t) + (b2 − 1)(b1 + b2�1)e−�0�V (t − �)

+ (b2 − 1)× b2e−�0�V ′(t − �)− �0U (t); (5)
V ′(t) = ((b1 + b2�1)V (t − �) + b2V ′(t − �))e−�0� − �1V (t): (6)

For t ∈ [0; �], the variables U (t) and V (t) satisfy a nonautonomous system of ODEs and this time
interval of length � is “needed” to “forget” the information contained in the initial data for the PDE
(4) (see [1, Ref. 35] for further details). The neutral character of Eq. (6) for the adult population is a
consequence of the fertility peak at age �. If this peak is absent, i.e., b2=0, then one gets the standard
DDE: V ′(t)=b1V (t−�)e−�0�−�1V (t). A similar approach was applied to yield a nonlinear equation
with state-dependent b1, �1. For example, if one assumes that the birth and the death coe�cients
depend on W , de�ned above, and chooses W = V , then instead of the previous equation one has

V ′(t) = b1(V (t − �))V (t − �)e−�0� − �1(V (t))V (t):

An equation of this form has been used in modelling an oscillating insect population [1, Refs. 80,141].
A framework for deriving delay models for age-structured populations and further references can be
found in [1, Refs. 35,77,162,165].

3. Qualitative features of delay equations

It is generally accepted that the presence of delays in biological models is a potent source of
nonstationary phenomena such as periodic oscillations and instabilities. This can manifest itself as
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the loss of stability of an otherwise stable-steady state if the delay exceeds a certain threshold related
to the dominant time-scale of a system. However, there also exists evidence that a time delay
can sometimes enhance stability, and short delays were shown to stabilize an otherwise unstable
dynamical system discussed in [19], [1, Refs. 141,143]. Recently, it has been suggested that delays
can damp out oscillations; this was shown with models for coupled oscillators under the condition
that the delays in mutual interactions exceed a threshold value [1, Refs. 152,164].
A simple delay model of cell population growth is given by the linear DDE ([1, Ref. 13])

y′(t) = �y(t) + �y(t − �). This equation is used as a standard test equation in the analysis of
numerical methods for DDEs. Its qualitative behaviour is well understood and can be summarized as
follows: the equilibrium solution y(t) ≡ 0 becomes unstable when the value of the delay exceeds the
threshold given by �∗=cos−1[−�=�]=(

√
�2 − �2) and there is a solution that demonstrates oscillatory

behaviour, with a period T = 2�=(
√

�2 − �2).
For a long time, the classical delayed logistic equation (2) was a subject of qualitative and

numerical studies in mathematical biology (see [3,17,18,21]). Its solution y(t) converges monoton-
ically to the carrying capacity K for 0¡r�¡ e−1; it converges to K in an oscillatory fashion for
e−1¡r�¡ �=2; it oscillates in a stable limit cycle pattern for �¿ �=2. Eq. (2) assumes (by a simple
re-scaling of the variables) the form

y′(t) =−�(1 + y(t))y(t − �) (y(t)¿ 0; t¿− �); (7)

known as Wright’s equation, which has been investigated in number theory. With x(t) = ln{y(t)},
and f(x)= ex− 1, Eq. (7) can be further transformed into x′(t)=−�f(x(t− �)). In the early 1970s
equations of this form became the standard subject for qualitative analysis; see [1, Refs. 56,145,174].
Extending the last equation by a feedback term one arrives at the equation

w′(t) =−�w(t) + �f(w(t − �)); (8)

which was used to explain bursting in neurons by delays and also used as a model of blood-cell
dynamics (see earlier work by an der Heiden, Glass, Mackey, Milton [1, Refs. 2,113,115]). For this
equation, the existence of nontrivial periodic solutions has been shown by Hadeler and Tomiuk [1,
Ref. 82]. For a �xed �¿ 0 and every �¿0, there is a critical �� such that the zero solution is stable
for �∈ (−�; ��), and unstable for �¿��. For �=1 and �=0, the critical value is �0 =�=2. Thus, for
�¿��, the constant solution becomes unstable, and a stable periodic solution appears. This transition
can be treated as a Hopf bifurcation.
Gopalsamy [1, Ref. 74] considered the linear NDDE of the form

y′(t) + by′(t − �) + ay(t − �) = 0: (9)

He proved that if a; b; �, and � are nonnegative constants and [a=(1+ b)](�−�)e¿ 1, then bounded
solutions of (9) are oscillatory. This result was extended to the nonlinear case y′(t) + f(y′(t −
�))+g(y(t− �))=0, where f and g are continuous functions. Under the conditions yf(y)¿ 0 and
yg(y)¿ 0 for y 6= 0; 06f(x)=x¡b61; g(x)=x¿a¿ 0, and [a=(1 + b)](� − �)e¿ 1, all bounded
solutions of this equation are oscillatory.
So far, we have discussed delay equations with constant time-lag �. One can imagine situations

(e.g., remote control problems) where the delay is not constant but depends on the state of the system.
If such state-dependence is introduced, we get a state-dependent DDE, y′(t) = f(y(t − �(y(t)))),
where � :R → [0; ��] is a given function, with some upper bound ��. It was shown by Mallet–
Paret and Nussbaum [1, Ref. 118] that for the main branch of periodic solutions, the equation
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with state-dependent delay behaves about the same as a constant delay equation. In some biological
applications the delay itself can be governed by a di�erential equation that represents adaption
to the system state. Such systems of the form: y′(t) = f(y(t − �(t))); �′(t) = g(y(t); �(t)), with
g(y; �) = g̃(y)− � have been studied recently by Arino and Hadeler in [1, Ref. 4].
Although in�nite delays are biologically unrealistic, it is sometimes mathematically convenient to

allow for arbitrarily large delays, as in the RFDE y′(t)=f(
∫ 0
−∞ y(t+ s) d�(s)). A particular class of

problems consists of systems of equations where the weight function � is an exponential polynomial
�(s) = e−s; these could be reduced to a system of ODEs: y′(t) =f(z(t)); z′(t) = y(t) + z(t), where
z(t)=

∫ 0
−∞ e

−sy(t+s) ds; see Fargue [1, Ref. 66] and W�orz-Busekros [1, Ref. 177]. We note in pass-
ing that distributed delay models with a gamma-distribution function Fm(t)= ((tm−1am)=(m− 1)!)e−at

used as the kernel function, with real-valued parameter a and integer-valued parameter m are quite
popular in biomodelling. One of the reasons is that the corresponding system of integro–di�erential
equations can be transformed to an equivalent system of ODEs through a linear chain trick technique
[1, Ref. 111], [17].
The authors are indebted to Prof. Hadeler (T�ubingen) for his input (private communication) to

the above.

4. Numerical studies

Numerical studies using mathematical models with delays are undertaken in various branches of
biosciences in order to understand the system dynamics, estimate relevant parameters from data,
test competing hypotheses, assess the sensitivity to changes in parameters or variations in data
and optimize its performance with the least possible cost. These objectives are associated with an
increasing complexity of the numerical procedures.

4.1. Ecology

Mathematical studies using delay models of ecological and chemostat systems are built upon
various generalizations of Volterra’s integro-di�erential system of predator–prey dynamics:

y′
1(t) = b1y1

(
1− c11y1 − c12

∫ t

−∞
y2(s)k1(t − s) ds

)
;

y′
2(t) = b2y2

(
−1 + c21

∫ t

−∞
y1(s)k2(t − s) ds

)
;

(10)

where y1(t); y2(t) represent the populations of the prey and the predator 4 (see [5]). These equations
can be extended naturally to describe the dynamics of multi-species ecological systems. In chemo-
stat models the delay indicates that the growth of a species depends on the past concentration of
nutrients. One can, however, face some di�culties in introducing delays in chemostat models as
reported in Cunningham and Nisbet [1, Ref. 47]. For early studies of the chemostat see references
cited in the book by Smith and Waltman [1, Ref. 163] and the recent exposition of delay models
given in Wolkowicz et al. [1, Ref. 180]. Numerical modelling was used to study the behaviour of

4 There are variations of these equations, including forms with di�ering limits of integration and forms that incorporate
Stieltjes integrals, in the literature.
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periodic orbits around the stability–instability boundary. It was reported that the numerical simula-
tions provided evidence that the models with distributed delays are more realistic and accurate in
reproducing the observed dynamics [1, Ref. 158].
Various classes of di�erential equations are used as building blocks for increasingly complex

models, with a recent example from parasitology [1, Ref. 36]. The mechanism of oscillations in the
populations of hosts and parasitoids was studied with a mixed model that combines the McKendrick–
von Foerster equation (PDE) for the juvenile host population, an ODE for the adult hosts and a
DDE for the adult parasitoid population. Numerical simulations suggested that it is the delayed
density dependence in the parasitoid birth rate that can induce the cycles, in addition to the classic
Lotka–Volterra consumer-resource oscillations. Other examples are reaction–di�usion systems with
delays in the reaction terms used to model the Lotka–Volterra competition system [1, Ref. 75]. It
was found numerically that the stability diagrams in the case of �xed delays have a much more
complicated structure than for gamma-distribution delays.

4.2. Epidemiology

In modelling the spread of infections the population is usually considered to be subdivided into
disjoint epidemiological classes (or compartments) of individuals in relation to the infectious disease:
susceptible individuals, S, exposed individuals, E, infectious individuals, I and removed individuals,
R. The development of the infection is represented by transitions between these classes. The assump-
tion that individuals remain for a constant length of time in any of the compartments leads to DDEs.
There are examples of delay models using �xed delays to represent the duration of the infectious
period (SIS-model [1, Ref. 91]), the immune period (SIRS-model [1, Ref. 92]), or the periods of
latency and temporary immunity (SEIRS-model [1, Ref. 44]). A distributed duration of the latent
period was considered in a distributed delay SIR-model [1, Ref. 23]. In epidemic models that seek
to take into account the age structure of the population, the delay represents the maturation period
[1, Ref. 79]. It is considered that the major e�ect of delays in the epidemic models is to make them
less stable than the analogous models without delays. Numerical studies are usually carried out to
support analytical results and provide some insight into more general situations which are di�cult
to treat analytically. For references on epidemic models with delays we refer to the recent paper by
Hethcote and van der Driessche [1, Ref. 91].

4.3. Immunology

Immunology presents many examples of mathematical models formulated using DDEs (see [1,
Refs. 50,51,121,122,130,151] for references). Marchuk and associates [1, Refs. 9,121], developed a
hierarchy of immune response models of increasing complexity to account for the various details of
the within-host defense responses. The delays are used to represent the time needed for immune cells
to divide, mature, or become “destined to die”. The numerical approaches to parameter estimation
allowed one to quantify relevant parameters of pathogen–host interactions for human infections
caused by inuenza A [1, Ref : 32], hepatitis B viruses [1, Refs: 124; 125; 161], bacterial infections
in lungs [1, Ref : 101], mixed infections [1, Ref : 127] and murine LCMV and inuenza infections
[1, Refs: 30; 59; 121]. In [1, Refs: 34; 121], two adaptive numerical codes were developed, based
(i) on embedded Runge–Kutta–Fehlberg methods of order 4 and 5 supplemented by the Hermite
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interpolation, and (ii) on Gear’s DIFSUB, with the Nordsieck interpolation technique to approximate
the variables with delays.
A recent example of �xed time-lag equations in immunology is the nonlinear model of humoral

immune response to H. inuenzae by Rundell et al. [1, Ref : 160]. The parameter identi�cation
problem was treated as a sequence of “reduced” parameter estimation problems by splitting the
observation interval into a sequence of smaller subintervals. The numerical approach to the opti-
mal control problem with a simpler version of the model [1, Ref : 159] suggested continuous drug
administration, as opposed to the standard approach based on periodic dosages.
In studies of lymphocyte migration through various anatomical compartments by Mohler et al. [1,

Refs. 68; 135] the delays represent (i) the time that cells reside in a particular compartment, or (ii)
the transit times through compartments, or (iii) the duration of inter-compartmental transfer. The
problem addressed numerically was the estimation of the lymphocyte intra- and inter-compartment
transfer rates (directional permeabilities) using experimental data on the dynamics of labelled cell
radioactivity distribution to various organs of the immune system. For other compartmental delay
models see Gy�ori and Ladas [10].

4.4. HIV infection

The key problem in mathematical studies of the within-host dynamics of HIV infection undertaken
by Nowak with associates and by Perelson with co-workers is to get reliable estimates for the turnover
of virus and infected cells [1, Refs. 89; 132]. It was shown that adding more realism to the models
by accounting for intracellular delay in virus production, either in the form of a �xed delay or a
gamma-distributed delay [1, Ref : 132], could give better accuracy in estimating the viral clearance
rate provided detailed patient data are available. A similar problem of reliable estimation of the HIV
turnover rate has been addressed recently in the model by Grossman et al. [1, Ref : 76] that takes
into account that virus producing cells die after a certain time-lag rather than at an exponential rate.

4.5. Physiology

The great potential for simple DDEs to capture complex dynamics observed in physiological
systems was convincingly shown in a series of related works by an der Heiden, B�elair, Glass,
Mackey and co-workers [1, Refs. 1–3; 113; 114; 142]. A key element in the models is an assumption
that either the production or elimination rates are nonlinear functions of the past state: f(y(t − �))
= ym(t − �)=(� + yn(t − �)) with m6n and n¿1. The delay models were used to study unstable
patterns (periodic solutions and chaotic regimes) of (i) the human respiration system and regulation
of blood concentration of CO2, (ii) the production of blood cells, (iii) hormone regulation in the
endocrine system, and (iv) recurrent inhibition in neural networks. In the respiratory system, delays
represent the transport time between the lung and the peripheral and central chemoreceptors [1, Refs.
43; 113; 153]. In the study of periodic haematological diseases, DDEs with time and state-dependent
lags have been used to formulate physiologically realistic mathematical models [1, Ref : 117], which
were solved by a modi�ed fourth-order RK scheme with �xed stepsize and a linear interpolation
for the delay variable. The same authors advanced a model of granulopoiesis using a non-linear
integro–di�erential equation [1, Ref : 87]: y′(t)=−�y(t)+M0(

∫ t−�m
−∞ y(s)g(t−s) ds), where the kernel

is de�ned by a gamma-distribution function. It was reported that use of a noninteger value of the
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parameter m in the gamma-distribution function provides a good �t to real data. Mathematically,
the transition from a normal state to a disease can be associated with a loss of stability of the
unique steady state in the model and a supercritical bifurcation of a periodic solution. Numerical
examination of the model allowed the authors to test whether the realistic period and amplitude of
oscillations in cell numbers can be obtained under a systematic variation of parameters, within their
physiological ranges. To treat the model numerically a trapezoidal scheme was used both to advance
the time and to evaluate the integral term.
A model for neural reex mechanisms [1, Ref : 8] is an example of an implicit DDE: �y′(t) =
−�(�y′(t))y(t) + f(y(t − �)). The need for such models is related to the fact that neuromuscular
reexes with retarded negative feedback have di�erent rates depending on the direction of movement.
Both the qualitative and numerical studies of such equations represent a challenge to be addressed.

4.6. Neural networks

The modelling of neural networks (NNs) is an important area of application of delay equations.
In the living nervous system the delays can represent the synaptic processing time or the time
for action potential to propagate along axons. In arti�cial NNs the delays arise from the hardware
implementation due to �nite switching and transmission times of circuit units. Marcus and Westervelt
were the �rst to include the delay in Hop�eld’s equations [1, Ref : 126] and various generalizations
have been suggested [1, Refs. 27; 41; 57; 90; 181]. A “standard” delayed Hop�eld NN model assumes
the form

Ciy′
i(t) =−

yi(t)
Ri

+
n∑

j=1

Tijfj(yj(t − �j)) + Ii; i = 1; : : : ; N: (11)

The origin of instabilities in NNs is in the focus of qualitative and numerical studies, which seek
to relate the values of the delay, the network structure=connection topology and the properties of
the function fj in Eq. (11) to the emergence of sustained or transient oscillations. For numerical
treatment of DDEs modi�cations of Euler’s method and of Gear’s code are reported.

4.7. Cell kinetics

Cell growth provides a rich source of various types of delay models. A biochemical model of
the cell cycle, describing the dynamics of concentration of two peptides and their complex, which
transforms after some time lag into active maturation promoting factor (MPF), was formulated using
�xed delay equations [1, Ref : 38], where the cell division was manifested by periodic uctuations
of MPF. In studies of tumor growth the standard avascular model was modi�ed by incorporating a
time-delay factor into the net proliferation rate and numerical and asymptotic techniques were used
to show how the tumor growth dynamics is a�ected by including such delay terms [1, Ref : 39].
Cell populations are, in general, structured by their age, size, etc. The generic means for modelling

structured cell populations are provided by �rst-order hyperbolic PDEs (4). Cell populations, which
are made synchronous, have the fertility peak (delta function) at some age � and exhibit a step-like
growth. Neutral DDEs have been shown numerically to provide a better qualitative and quantitative
consistency with the step-like growth patterns [1, Ref : 13] than do ODEs or DDEs with constant
time-lag.
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Attention has been paid [1, Refs. 46; 112; 154–156] to the analysis of cell-population dynamics
using retarded PDEs of hyperbolic type:

@u(t; a)
@t

+
@u(t; a)

@a
= f(t; u(t; a); u(t − �; h(a))) (12)

with �¿ 0 and h(a)¡a, for a¿ 0. The model considers proliferation and maturation processes
simultaneously, where the kinetic=reaction terms are dependent on the cell population at a previous
time represented by a delay � and at a previous maturity level speci�ed by h(a). Numerical studies
proved to be instructive in getting some insight into the possible dynamics of (12), with a maturation
delay as a critical parameter. It was observed that many of the time-dependent modes of the retarded
PDE are directly associated with a limit-cycle behaviour in the pure birth-and-death cell population
balance equation z′ = f(t; z(t); z(t − �)).

4.8. A stochastic approach

The random perturbations which are present in the real world imply that deterministic equations are
often an idealization [1, Refs. 116; 134; 141]. For example, neurological control systems operate in a
noisy environment, and the e�ect of noise needs to be considered in the analysis of the experimental
traces of the state variables (such as, the electro-encephalogram, pupil area, displacement of the
�nger position in patients with Parkinson’s disease). To model the dynamics of delay systems under
random perturbations, stochastic delay di�erential equations (SDDEs) are used:

dy(t) = f(t; y(t); y(t − �)) dt + g(t; y(t)) dw(t): (13)

Such SDDEs can be driven by white noise (dw(t) = �(t) dt, where �(t) stands for a stationary
Gaussian white noise process) or coloured noise (dw(t) = �(t) dt, here �(t) is so-called Ornstein–
Uhlenbeck process) and the choices of driving processes depend on the real-life phenomenon being
modelled. There exist two frameworks, namely the Itô and Stratonovich calculus, to deal with (13).
If one argues that the SDDEs are serving as approximations to stochastic di�erence equations with
autocorrelated noise, the Itô calculus may provide the more useful approximation. The Stratonovich
framework may be more appropriate when the white noise can be considered as the limiting case
of a smooth real noise process.
A well-documented example of a biological system where noise is an important component is

the pupil light reex, which displays complicated dynamics [1, Ref : 109]. Noise is introduced into
the reex at the level of the brain-stem nuclei. The noise correlation time, the system response
time and the delay in signal transmission are all of the same order of magnitude, and indicative of
coloured noise. The spontaneously occurring aperiodic oscillations in the pupil area were explained
with the mathematical model: y′(t) = −�y(t) + c� n=(� n + yn(t − �)) + k, by assuming the e�ect
of an additive noise (k = �k + �(t)) or multiplicative coloured noise (c = �c + �(t)). The numerical
simulations provided the only possible means to establish a major role of the noise in the dynamic
behaviour. The numerical approximations to sample trajectories y(t) were computed using a com-
bination of an integral Euler method for the equation de�ning the Ornstein–Uhlenbeck process (�),
and a fourth-order RK-method with a linear interpolation formula for the delay terms. The e�ect
of additive white noise on the transitions between di�erent limit-cycle attractors of human postural
sway was studied in [1, Ref : 65] using a scalar SDDE. Further discussions about modelling with
SDDEs can be found in [1, Refs. 119; 133; 169].



192 G.A. Bocharov, F.A. Rihan / Journal of Computational and Applied Mathematics 125 (2000) 183–199

5. Numerical methods for delay equations

We shall embark on a brief review of numerical strategies for DDEs. First we remark that some
of those undertaking numerical studies of delay equations in biology devise an indirect approach,
rather than use purpose-built numerical codes for DDEs; they try to reduce the study to that of a set
of ODEs. Thus they eliminate lag-terms from delay di�erential equations by introducing additional
variables on one of the following bases:

(1) the methods of steps [4] allows one to represent a DDE on successive intervals [0; �]; [�; 2�]; : : : ;
[(N − 1)�; N�] by successive systems of ODEs with increasing dimension;

(2) a process represented by a delay can be approximated by introducing a number of intermediate
stages using an ODE system to mimic the transition through the stages [1, Refs. 70; 121] (for
other strategies see [1, Ref : 69]);

(3) the e�ect of the time-lag can be modelled by using “gearing up” variables [1, Ref : 52].

We note, however, that the long-term dynamics of DDEs and of approximating �nite-dimensional
ODEs can di�er substantially. There are occasions when (2) (given above) may have appeal, but a
familiarity with numerical methods for DDEs will often reap dividends.

5.1. Di�erence approximation

Numerical methods for ODEs provide approximate values ỹ(ti) to the solution y(ti) at a sequence
of points (t0¡t1¡t2¡t3 · · ·¡tN ) using estimates of the local truncation error or of the defect.
Supplementary approximations provide dense output that de�nes approximate values ỹ(t) (densely
de�ned) for t ∈ [t0; tN ]. Such ODE methods can be modi�ed, with varying degrees of success, to
provide approximate solutions for DDEs. To indicate the principal features, consider the initial
function problem for the system of DDEs with parameter p:

y′(t) = f (t; y(t); y(t − �); p); t¿t0; y(t) =  (t; p); t ∈ [t0 − �; t0]; (14)

in which �¿ 0 does not vary with t and the initial function  is speci�ed on the interval t ∈ [t0 −
�; t0]. A simplistic approach to solving system (14) numerically consists of replacing (14) by the
ODE: y′(t)= f (t; y(t); ỹ(t− �); p); for t¿tn, where we assume that ỹ(t) for t6tn is computed using
dense-output techniques. At the risk of over-simpli�cation, numerical methods for DDEs (derived
in this manner) amount, in essence, to a combination of two basic elements: a method �q for
approximation of delayed variables with order q in the spirit of a dense-output routine, and an
ODE-based pth order method 	p to advance the solution with a step-size hn (on the assumption
�¿hn). This said, a third feature of an adaptive algorithm concerns the control of step-size and
adaptation of the formulae or their implementation. Some features of delay equations can seriously
a�ect the reliability and performance of a naive numerical method based on a pair (	p; �q). In
general, the solution to (14) is not smooth and has jump discontinuities in its ith derivatives at
times �i = t0 + i�; i∈N+. The e�ect and propagation of the jump discontinuities in the derivatives
of the solution have to be addressed when adapting any ODE solver to the problem with delays
[1, Ref : 16]. Theoretical analysis of the convergence and asymptotic error expansion issues of the
adapted method (	p; �q) tells us that we require q¿p − 1 in order to retain (asymptotically) the
global convergence order and (q¿p) the error expansion form characteristic of the ODE method
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[1, Refs. 6; 28; 34]. The scenario outlined above can be modi�ed to provide numerical methods
for a wide range of deterministic retarded di�erential equations. Note that rigorous development of
e�ective numerical techniques for stochastic DDEs is a relatively unexplored area requiring further
attention from numerical analysts; see however [2].

5.2. DDE solvers

From a modeller’s viewpoint, two historical periods in the production of numerical codes for
delay equations can be distinguished. During the �rst period, a number of experimental codes were
developed by modellers or numerical analysts. Fourth-order RK methods and two-point Hermite-type
interpolation polynomials were used by Neves [1, Ref : 140], and algorithms based on fourth- and
seventh-order Runge–Kutta–Fehlberg methods together with Hermite interpolation polynomials were
presented by Oberle and Pesch [1, Ref : 146]. Thompson [1, Ref : 167] developed a code based on a
continuously embedded RK method of Sarafyan [1, Ref : 168]. An algorithm based on a predictor–
corrector mode of a one-step collocation method at k Gaussian points has been constructed by Bellen
and Zennaro [1, Ref : 20].
The second period can be characterized by the availability of more sophisticated DDE solvers.

Recently, numerical analysts have developed a number of professional adaptive solvers (based on
LMMs, RK or collocation schemes) producing numerical solutions for a wide range of requested
tolerances and various classes of problems with delays. The major problems that the designers of such
codes try to accommodate are: automatic location or tracking of the discontinuities in the solution or
its derivatives, e�cient handling of any “sti�ness” (if possible), dense output requirements, control
strategy for the local and global error underlying the step-size selection, the cost and consistency
of interpolation technique for evaluating delayed terms (to name but a few of them). The code
Archi [1, Ref : 149] is based on the successful Dormand & Prince �fth-order RK method for ODEs
due to Shampine and a �fth-order Hermite interpolant [1, Ref : 146]. In addition to Archi, which
is available from the internet, we mention DDESTRIDE (Baker et al. [1, Ref : 15]), DELSOL (Will�e
and Baker [1, Ref : 179]), DRKLAG6 (Corwin, Sarafyan and Thomson [1, Ref : 42]), SNDDELM (by
Jackiewicz and Lo [1, Ref : 97]) and the code of Enright and Hayashi [1, Ref : 62]. The Numerical
Algorithms Group (Oxford) supported, in part, the construction of the codes written by Paul (Archi)
and Will�e (DELSOL).

5.3. Sti�ness

Several authors have reported di�culties, which they identi�ed as due to “sti�ness”, in the nu-
merical modelling of biological processes using delay equations. An example of a variable sti�ness
problem appearing in modelling the acute immune response is given [1, Ref : 34]. In simulating
hepatitis B infection, the “sti�ness” emerges at the peak of acute infection, and is associated with
the increase in sizes of lymphocytes and antibody populations (by a factor of about 105) that accel-
erates the damping of virus and infected cells by the same scale. The BDF-based codes performed
nicely, whereas the Adams- and explicit RK based codes failed to produce a numerical solution after
the day indicated because of very small step-sizes required. The recent model of immune response
by Rundell et al. [1, Ref : 160] also generates apparently sti� computational problems as one can
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conclude by analyzing the values of parameters being used and they refer to the sti� solver ode15s
from the SIMULINK collection.
Sti�ness is a phenomenon identi�ed in the numerical solution of ODEs, and is variously de�ned.

It is often characterized in terms of the largest and smallest real parts of the zeros of the stability
function corresponding to a stable solution. The main symptom of “sti�ness” is that one requires a
highly stable numerical formula in order to use large step-sizes reliably [1, Ref : 28]. The same symp-
tom could be used to identify “sti�ness” in the delay case. Experimental solvers for sti� DDEs based
on LMMs were suggested by Kahaner and Sutherland (see discussion of SDRIV2 in [1, Ref : 139]),
Watanabe and Roth [1, Ref : 176], and those using an implicit RK methods were developed by In
’t Hout [1, Ref : 94], and Weiner and Strehmel [1, Ref : 178].
The application of delay equations to biomodelling is in many cases associated with studies

of dynamical phenomena like oscillations, Hopf bifurcations, chaotic behaviour [1, Ref : 81]. The
analysis of the periodic orbits in delay equations and their discretizations based on the RK methods
showed that the discretizations possess invariant curves when step-sizes are su�ciently small [1,
Ref : 95]. Further studies of spurious numerical solutions of �nite-di�erence approximations to the
delay equations, which can be generated at critical (bifurcation) values of model parameters are
needed.

6. Fitting models and parameter estimation

6.1. Objective functions and their continuity

Suppose that the general form of a delay model is given by (14). The task of parameter es-
timation for such mathematical models is one of minimizing a suitable objective function �(p)
depending on the unknown parameters p∈RL and the observed data {yj}Nj=1 that represent values
{y(tj; p)}Nj=1. This can additionally include estimating �, the position of the initial time point t0
and the parameters of the initial function  (·; p). Possible objective functions are, for example, the
least squares (LS) function �(p) =

∑N
j=1

∑M
i=1 [y

(i)(tj; p) − y
(i)
j ]

2, or the log-least squares function
�(p)=

∑N
j=1

∑M
i=1 [log((y

(i)
j )=(y(i)(tj; p)))]

2. The second choice provides metrics in RM
+ and has been

used for parameter estimation of immune responses [1, Refs. 33; 137]. The numerical technique for
�nding the best-�t parameter values for a given mathematical model and objective function involves
solving the model equations for the current values of the parameters to compute �(p) with high
precision. The parameter values are then adjusted (by a minimization routine, for example EO4UPF
in the NAG library, LMDIF from NETLIB or FMINS in MATLAB) so as to reduce the value of the ob-
jective function (see [1, Refs. 13; 14]). One obvious di�culty with such procedures is that solutions
of DDEs are not, in general, di�erentiable with respect to the delay [1, Refs. 11; 86; 108]. Disconti-
nuities in the solution of a DDE and its derivatives, at points {�i}, can come from the initial point
t0 and the initial function  (t; p), and may propagate into �(p) via the solution values {y(�i; p)} if
�i ∈{tj}. Consider for simplicity the scalar equation case. From the formula (and a similar one for
the second derivative)(

@�(�j; p)
@pl

)
±
= 2

N∑
j=1

[y(�j; p)− yj]
(
@y(�j; p)

@pl

)
±
; (15)
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Table 1
Best-�t estimates p̂, mean of perturbed parameters p̃ and their nonlinear biases to the model
(16), NLB = (p̂=p̃− 1)× 100%

Best-�t, standard deviation, nonlinear biases

�̂ � �̂1 � �̂2 �
5.45 0.038 0.443 0.014 0.864 0.019
�̃ NLB(�) �̃1 NLB(�1) �̃2 NLB(�2)
5.446 0.0066% 0.4426 0.0284% 0.8645 0.0772%

it follows that, unless yj = y(�j; p), jumps can arise in the �rst (second) partial derivatives of �(p)
with respect to pl, if the �rst (second) partial derivatives of y(t; p), with respect to pl, has a jump
at t = �j (one of the data-points). These jumps can also propagate into the second derivative of
�(p) if the �rst derivative of y(t; p) with respect to pl has a jump at one of the data-points t = �j,
even when yj = y(�j; p). Therefore, for correct numerical parameter estimation in DDEs attention
has to be given to the di�erentiability of the solution y(t; p) with respect to the parameters p, and
the existence and position of the jump discontinuities.

6.2. Analysis of the best �t: uniqueness, nonlinear bias

A fundamental di�erence between DDE and ODEs is that solutions corresponding to di�erent
initial function data can intersect. Of course, solutions that are computed with di�erent parameters
can intersect in both the ODE and DDE case. In the context of the parameter estimation problem,
this implies that for a given set of {tj}Nj=1 and an arbitrary function f in (14), there is no reason
to suppose that there exists a unique minimizer p̂ of �(p). A straightforward example is provided
by the Hutchinson equation (2): one can observe that for the same initial data a range of di�erent
values of the carrying capacity parameter K gives solutions that intersect. If the data correspond to
the points of intersection, K is not uniquely determined.
The parameter estimation problem for DDE models is an example of nonlinear regression. The

nonlinear regression di�ers, in general, from linear regression in that the LS parameter estimates can
be biased, nonnormally distributed, and have a variance exceeding the minimum variance bound.
These characteristics depends on the model, the data and the best �t estimates. It is important to
assess the e�ect of nonlinearity, i.e., the biases of parameter estimates. There is a convention that if
the bias is ¡ 1% then the e�ect of nonlinearity is not signi�cant and estimates of both parameters
and their deviations are con�dent. We give an example of such analysis of estimated parameters for
a simple DDE growth model for �ssion yeast [1, Ref. 13]

y′(t) = �1y(t − �); t¿0;

y(t) = (2:25y0�2=�1)E(t + 1:5); t ∈ [− �; 0); y(0) = y0;
(16)

where y0 stands for the initial number of cells, E(·) is a bell-shaped initial distribution function.
Estimated are the components of p = [�1; �2; �]. Fig. 1 shows the best-�t solution and the shape of
the LS function in the vicinity of the minima and Table 1 provides an insight in how biased are the
best-�t estimates of parameters.
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Fig. 1. (a) shows the best �t solution of time-lag model (16) with three parameters, �tted to the observed data. (b)
indicates local uniqueness of the best �t and the dependence of � on parameters �; �1 for given �2 ≡ �.

7. Sensitivity analysis: direct and adjoint methods

Sensitivity analysis (SA) of mathematical models is an important tool for assessing their properties.
The following types of sensitivity can be investigated: sensitivity of the solution y(t; p̂) to changes
in the parameter values p̂; sensitivity of the parameter estimates p̂ to variations in the observation
data {tj; yj}Nj=1; sensitivity of biologically meaningful functionals J (y) to variations in parameters
(see [1, Ref. 12]). The �rst two types of SA are examined by direct methods and rely upon the
computation of the sensitivity coe�cients si(t; p) = @y(t; p)=@pi using the variational system

A(y(t; p̂); p̂)si(t; p̂) =
@f
@pi

; t¿0; si(t; p̂) =
@ 
@pi

; t ∈ [− �; 0]: (17)

The operator A ≡ d=dt − [@f =@y]t − [@f =@y�]tD�, where [ · ]t denotes a matrix-function evaluated at
time t; D� is a backward shift operator. The overall sensitivity of the solution y(t; p̂) is given by
the matrix-function S(t; p) = @y(t; p)=@p evaluated at p = p̂, which characterizes the e�ect of small
variations in the ith datum yj on parameter estimates via the formula

@p̂
@yj

=

[
N∑
i=1

ST(ti; p̂)S(ti; p̂)

]−1
S(tj; p̂):

Numerical sensitivity analysis by the direct method requires solution of the main system (14) and
the variational system (17) of M × L equations taken jointly. This implies that for large-scale
multiparameter models, numerical methods that take into account the structure of whole set of DDEs
at the linear algebra level are needed.

7.1. Adjoint equations

The sensitivity of nonlinear functionals J (y) depending on the solution to the delay models can
also be examined using an approach based on adjoint equations; see Marchuk [1, Ref. 120]. Consider,
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as an example, the quadratic functional and its �rst-order variation caused by perturbations of the
basic parameter set p̂ (where ŷ ≡ y(t; p̂)) J (ŷ)=

∫ T
0 〈ŷ; ŷ〉 dt; �J (ŷ)=2

∑L
i=1

∫ T
0 〈ŷ; si(t; p̂)�pi〉 dt, where

si(t; p̂) is a solution to (17) on [0; T ]. The linear operator A in (17) acts on some Hilbert space H
with domain D(A). Given A, the adjoint operator A∗ can be introduced satisfying the Lagrange
identity 〈A(ŷ; p̂)s;w〉= 〈s;A∗(ŷ; p̂)w〉, where 〈·; ·〉 is an inner product in H; s∈D(A); w∈D(A∗).
Using the solution w(t) of the adjoint problem

A∗(ŷ; p̂)w(t) ≡ −dw(t)
dt
−
[
@f
@y

]T
t

w(t)−
[
@f
@ y�

]T
t+�

w(t + �) = y(t; p̂);

06t6T; w(t) = 0; t ∈ [T; T + �]; (18)

the variation of J (y) can be estimated via formula �J =
∑L

i=1 2
∫ T
0 〈w; (@f =@pi)�pi〉 dt.

Thus, instead of solving an M × L-dimensional system of equations within a direct approach, one
needs to solve, only once, the main and adjoint systems, each being of dimension M . The adjoint
technique was used [1, Ref. 121] to select the parameters mostly a�ecting the severity of inuenza
and hepatitis infections from the set of 50 (=L) parameters. The experience with DIFSUB adapted for
constant DDEs indicates that numerical sensitivity analysis using adjoint equations requires particular
attention to the following issues: (i) the adjoint problem inherits the jump discontinuities of the
forward problem, so the smoothness of the matrix-function A∗ decreases as t approaches 0; (ii)
the sti�ness properties of the main and adjoint problems are opposite and in general, both display
variable sti�ness behaviour; (iii) adaptive codes generate di�erent step-size sequences for the main
and adjoint problems and y(t) has to be re-evaluated on every integration step of the adjoint problem;
therefore, numerical schemes with dense output would give an advantage.

8. Optimal control problems using delay models

Although there are many problems in the biosciences that can be addressed within an optimal
control (OC) framework for systems of DDEs (harvesting, chemostat, treatment of diseases, phys-
iological control), the amount of real-life experience is quite small. The general formulation of an
OC problem for delay system is as follows: For a system with the state vector y(t; u) governed by
a DDE, �nd a control function u(t), de�ned on [ − �u; T ], that gives a minimum to the objective
functional J0(u), where

y′(t) = f (t; y(t); y(t − �y); u(t); u(t − �u)); 06t6T; (19)

J0(u) = �0(y(T )) +
∫ T

0
F0(t; y(t); y(t − �y); u(t); u(t − �u)) dt (20)

with the given initial function for the state vector. Additional equality or inequality constraints
can be imposed in terms of functionals Ji(u). The Pontryagin maximum principle and the Bellman
dynamic programming method are the frameworks being used to formulate computational approaches
to time-delayed OC problems (see [1, Refs. 17,104,166]).
Delay equations were used by Buldaev [1, Ref. 37] to �nd the optimal control regimes of un-

favourable infectious disease outcomes. The objective functional was expressed in terms of the virus
population size, either at a given �nal time t = T , or a cumulative amount over [0; T ]. Speci�c fea-
tures of the studies are: (i) delays appear only in state variables; (ii) linear scalar control functions
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appearing additively or multiplicatively in one equation (for the virus) were considered; and (iii)
unconstrained problems were treated. An algorithm based on nonclassical spike variations of the con-
trol function was developed, using a piecewise constant approximation of the control function on a
uniform mesh with the step-size being an integer fraction of the delay. The model and adjoint system
were solved by a fourth=�fth order RK method with Hermite interpolation for the delayed terms.
An optimal intravenous drug delivery in AIDS patients has been considered recently by Rundell

et al. [1, Ref. 159]. The objective was to �nd a control strategy that minimizes the total drug
administered, subject to the constraint that the patient recovers. The control function, appearing
nonlinearly in the equations, was obtained numerically by applying convex minimization techniques
based on linear matrix inequalities and the LMI toolbox from MATLAB was used to compute the
optimizer. The time-delay was approximated by a fourth-order Bessel �lter, whereas the nonlinearities
were addressed by transforming the nonlinear model to a linear-fractional representation.
We refer in passing to another example of a formulation of a control problem with delay model

inspired by recently proposed nonconventional approach (compared to standard pharmacokinetics
models) to the anti-HIV drug administration by Beretta et al. [1, Ref. 22]. A cohort of drug-loaded
red blood cells (RBC) with density function u(t; a) at time t and age a∈R+ is injected at time t=0
into a patient. The cells with age a¿a∗ (a∗ ¿ 120 days), called the senescent cells, are phagocytosed
by macrophages thus causing the drug to be absorbed (x4 stands for the average drug concentration
in macrophages). The drug has therapeutic e�ect as long as 0¡m6x4(t)¡M for t ∈ [t1; t2]. The
delay represents the digestion time, which can be described by a �xed or a distributed delay. The
initial age distribution of the RBC can be experimentally preassigned, i.e., u(0; a) = �(a), is a
control variable, and only a fraction � of the total cell number

∫ +∞
0 u(t; a) da are senescent cells.

The control function appears additively as a control function in the equation for RBC. The OC
problem is stated as: Choose the control function �(a) in the interval [0; a∗] and the parameter
� such that �t = t2 − t1 → max, subject to (i) x4(t)¡M for all t ¿ 0, (ii) the condition that
u0 =

∫ a∗

0 �(a) da=(1− �); u0 ∈ [n1; n2], be minimum. A qualitative analysis of the problem suggested
that a constant age distribution function should be a solution.
Further research in the numerical treatment of constrained nonlinear OC problems is needed to

provide biomodellers with user-friendly adaptive packages.
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Abstract

A class of forced �rst-order di�erential delay equations with piecewise-a�ne right-hand sides is introduced, as a pro-
totype model for the speed of a motor under control. A simple pure delay form is mainly considered. When forcing
is zero, an exact stable periodic solution is exhibited. For large amplitude periodic forcing, existence of stable solu-
tions, whose period is equal to that of the forcing function, is discussed, and these solutions are constructed for square
wave forcing. Traditional numerical methods are discussed briey, and a new approach based on piecewise-polynomial
structure is introduced. Simulations are then presented showing a wide range of dynamics for intermediate values of
forcing amplitude, when the natural period of the homogeneous equation and the period of the forcing function compete.
c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Di�erential delay equations; Bifurcation theory; Control theory

1. Introduction

This paper announces our work on di�erential delay equations of the type

u′(t) =−Mdec; c{f(t)− L(u; t)} ¡−Mdec; (1a)

u′(t) = c{f(t)− L(u; t)}; −Mdec6c{f(t)− L(u; t)} 6Macc; (1b)

u′(t) =Macc; Macc¡c{f(t)− L(u; t)}: (1c)

Here c; Mdec; Macc¿ 0 are constants, and L(·; t) is a linear functional (e.g., see Eqs. (3)–(5)) which
acts on the history u(s); s6t, of u. For reasons of space, we concentrate here on the special case
L(u; t) = u(t − �) when (1), suitably rescaled, may be written in the form

�u′(t) = sgn{fA;T (t)− u(t − 1)}min{1; |fA;T (t)− u(t − 1)|}; (2)

∗ Corresponding author.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
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and prescribed with suitably smooth initial data u0(t); t ∈ [ − 1; 0]. Here fA;T is periodic with
amplitude A and period T , and �¿ 0. Section 2 considers periodic solutions of (2) when either
A=0 or A is large; Section 3 discusses numerical techniques (including a method which we believe
is original), and Section 4 presents some numerical results, including interesting simulations for
intermediate A, where the analytical results of Section 2 do not apply. In this section, we explain
the model behind (1) and (2).
Eq. (1) has a control theory application where u represents, e.g., the speed of a motor which

is trying to adjust to a prescribed (possibly time dependent) target speed f. The motor attempts
this by acceleration=deceleration proportional to the di�erence of the target speed and an estimate of
its own current speed (regime (1b)). In physical systems, delays are inevitable in the measurement
process, so that the motor’s measured speed is related to the recent history of its true speed. This
justi�es the presence of the delay operator L.
Because forces are limited in mechanical systems, one expects maximum rates at which the motor

may speed up or slow down, so that if the di�erence of target and measured speeds becomes too
large, then the acceleration=deceleration saturates, and one has either regime (1a) or (1c).
Note that (1) is a simpli�ed system: we are not proposing it as an accurate model for any speci�c

mechanical situation. However, we believe that it is a good prototype equation for lots of systems
where there is delay in measurement and=or response, and some sort of saturation e�ect. Further,
we believe that there might be applications in other areas, e.g., the right-hand side of (1) resembles
the response of an electronic component known as the operational ampli�er (see [6, Section 5:3,
Fig. 5:7]), and we anticipate our theory having applications in modelling circuits which contain such
components.
Although the right-hand side of (1) is linear in each of the regimes (1a)–(1c), it is a nonlinear

equation taken as a whole, because of the nonsmooth swapping between regime (1b) (which we call
o� the constraint) and regimes (1a) or (1c) (which we call on the constraint), which depends on
the solution itself. (Note that although nonsmooth, the right-hand side is continuous in u, so that if
f is (piecewise) continuous, we can reasonably expect a (piecewise) C1 solution for u for t ¿ 0.)
To the best of our knowledge, only the theses of Allen (whose supervisor and co-worker is the

�rst author) [1,2], have previously considered delay equations with this type of nonlinearity. There
are analytical advantages to such piecewise-linearity: in Section 2 we are able to derive some exact
nontrivial solutions, provided we track the points where the solution swaps between regimes (1a)–
(1c). This is in marked contrast to other sorts of nonlinear delay equations, where, e.g., although one
might be able to exhibit a Hopf bifurcation, one will not usually be able to construct �nite-amplitude
oscillatory solutions.
In practical situations, engineers have a choice of components which would change the way

in which the motor measured its own speed (i.e., the delay operator L could be changed to
some extent), and the responsiveness c might also be altered. The choice of c is a key design
consideration – increasing c reduces the time scale on which the motor adapts to its target
speed, but increasing c too far leads to oscillatory instability, because of the presence of
delay.
It is convenient to normalise L so that constants are invariant, i.e., if u(t) = 1 for all t, then

L(u; t) = 1 for all t. Simple examples of delay operators then include

L(u; t) = u(t − �); �¿ 0; (the pure delay case) or more generally (3)
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L(u; t) =
n∑
i=1

�iu(t − �i) with
n∑
i=1

�i = 1; �i¿0; (4)

or distributed forms such as

L(u; t) =
∫ ∞

0
K(s)u(t − s) ds; where

∫ ∞

0
K(s) ds= 1: (5)

In the last case, it is well known (see e.g. [4, Section 1a]) that choosing K(s):=pn(s) exp(−s), where
pn is a polynomial of degree n, allows (1) to be expanded to a system of n+1 ordinary di�erential
equations. Apart from this case, di�erential delay equations such as (1) are in�nite dimensional,
and their general analysis has the technical complexity usually associated with partial di�erential
equations.
In this paper, we consider the forward problem of �xing the delay functional, and determining the

resulting dynamics. To simplify the analysis, we use only the pure delay form (3). (Some progress
can be made in e.g. case (4) with n = 2 and �1 = 0, see [2, Chapters 4 and 5].) If we also make
the symmetric choice Mdec =Macc (so that the maximum braking and acceleration are equal), then
(1) may be written

u′(t) = c sgn{f(t)− u(t − �)}min
{
Macc

c
; |f(t)− u(t − �)|

}
: (6)

This can be nondimensionalised by writing u(t) = Maccũ(t)=c, and t = �t̃, then ˜̃u(t̃) = ũ(�t̃); with
f suitably transformed, and with “tildes removed” we obtain (2), with � = 1=c�. (Thus, � becomes
small as either the original responsiveness or the delay becomes large.)
To further simplify matters here, we consider only periodic target functions f. Noting the sym-

metry u 7→ u+ k; f 7→ f+ k (k constant) of (2), we may assume without loss of generality that f
has mean zero.
In the following sections we will refer to these special families of f:
(1) unbiased square waves

f(t) =
{
+A; t ∈ [0; T=2)
−A; t ∈ [T=2; T ) and periodic extension; (7)

(2) and sine waves

f(t) = A sin
(
2�t
T

)
: (8)

Throughout we use A and T , respectively, to denote the amplitude and period of f. Thus �xing the
shape of f, (2) is a three parameter (�; A; T ) problem.
A key idea (not present in [2]) which we want to introduce, is the choice of piecewise-linear

forcing functions such as (7) or, e.g.,
(3) symmetric, unbiased triangular waves

f(t) =



−A+ 4At

T
; t ∈ [0; T=2)

+A− 4A(t − T=2)
T

; t ∈ [T=2; T )
and periodic extension: (9)

These make available exact explicit solutions, and so simplify calculations. Further, they permit the
use of a new numerical method, which we describe in Section 3.
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2. Analytical results

2.1. Homogeneous equation: period 4 solutions

First, we consider (2) with f ≡ 0, i.e. how does the system respond to a constant target function?
In this case, note that u ≡ 0 (corresponding to the system perfectly matching its target) is a solution.
The natural question is whether the zero solution is stable to small perturbations. The linearisation

is trivial: if initial data is small (so that |u0(t)|¡ 1 for t ∈ [− 1; 0)), then up to the time when |u|
�rst exceeds one (if this is to happen) u is o� the constraint and satis�es the linear equation

�u′(t) =−u(t − 1) exactly: (10)

Substituting u= Re{C exp(�+ i!)t}, it may be shown that all modes decay for
�¿ �∗:= 2=�: (11)

In fact, (11) is enough to imply that u ≡ 0 is asymptotically stable, because by taking u0 su�ciently
small we may guarantee that u stays o� the constraint, so that (10) holds for all t ¿ 0.
Our numerical experiments indicate that u ≡ 0 is globally asymptotically stable for (11), however,

a proof would be di�cult. Because eigenvalues have nonzero imaginary parts, it does not follow
that |u(t)|6sup |u0| for all t: hence it is possible, even when sup |u0|61, that |u| will exceed one
and “hit the constraint”, so that (10) no longer holds. When sup |u0|¿ 1, similar di�culties are
encountered.
When �= �∗, the linear equation (10) has a family of oscillatory solutions u= C sin((�=2)t + t0)

of period 4. For these to solve (2) we require |C|61, as otherwise the constraint would be hit.
When �¡ �∗, the mode of period 4 is unstable (i.e., its � is positive) and higher frequency modes

lose stability as � is decreased further. If this regime persisted, such modes would continue to grow
exponentially without bound. However, for some t∗; |u| must exceed one, so that at t = t∗ + 1, the
solution will hit the constraint. The solution cannot then blow up, because of the following result.

Lemma 1 (Coarse upper bound). Given initial data u0; there exists a t∗u0 such that

|u(t)|¡ 1 +
1
�

for t ¿ t∗: (12)

Proof. First note that u must either enter [ − 1; 1] and remain there, or must visit that interval
in�nitely often. To see this, suppose for a contradiction that ∃t† so that for ∀t ¿ t†; u(t) 6∈ [− 1; 1].
By continuity of u, either (i) u(t)¿+1 ∀t ¿ t†, or (ii) u(t)¡− 1 ∀t ¿ t†; assume (i) without loss
of generality. In this case, u′(t) =−1=� for t ¿ t† + 1, so after a further time (u(t† + 1)− 1)�; u(t)
will enter [− 1; 1], and we have a contradiction.
Secondly, note that if ∃t∗ such that u(t) ∈ [− 1; 1] ∀t ¿ t∗, then the result follows immediately.

Otherwise, ∃t∗ such that either (i) u(t∗)=+1; u(t∗+�)¿+1 or (ii) u(t∗)=−1; u(t∗+�)¡−1, for
�¿ 0 su�ciently small; assume (i) without loss of generality. At time t∗+1, the solution will hit the
constraint and u′(t) will become equal to −1=�. Therefore, u has a maximum at t ∈ (t∗; t∗+1); u′ is
bounded above by 1=� on this interval, so this maximum value is bounded strictly above by 1+1=�,
and the lemma is proved.
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Fig. 1. Exact period 4 solutions of (2) in the homogeneous case f ≡ 0, when �6 1
2 . See Eq. (13).

So for �¡ �∗, the solution is contained in (−1−1=�;+1+1=�), and visits the unconstrained regime
in�nitely often. Numerical simulations indicate that the global attractor is a solution of period 4, and
for �6 1

2 , it is given by the piecewise-polynomial construction

u(t) =




(
−1
�
+ 1

)
+
t1
�
; 0¡t1:= t − const:¡ 2− 2�;

(
+
1
�
− 1

)
+
t2
�
− t22
2�2
; 0¡t2:= t1 − (2− 2�)¡ 2�;

(
+
1
�
− 1

)
− t3
�
; 0¡t3:= t2 − 2�¡ 2− 2�;

(
−1
�
+ 1

)
− t4
�
+
t24
2�2
; 0¡t4:= t3 − (2− 2�)¡ 2�;

(13)

with periodic extension, which is shown in Fig. 1. Here ti parametrise consecutive intervals of time
on which the solution takes a di�erent polynomial form. The key to (13) is to note that if the
solution spends more than unit time (i.e., the rescaled delay) on the constraint, then the time at
which the solution comes o� the constraint is fully independent of the history prior to hitting the
constraint. Some initial data are attracted to (13) in �nite time, as a result of this loss of memory
e�ect.
For 1

2¡�¡�∗ ' 0:63661977, there is also a stable period 4 attractor, but its form is more
complicated, because time intervals of length more than one are spent o� the constraint. This solution
cannot be written as a piecewise-polynomial and must involve exponentials: we do not give details
here.
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Fig. 2. Large amplitude square wave forcing: periodic solutions, wholly on the constraint, with the same period as the
forcing.

2.2. Large amplitude forcing: periodic solutions

Now, we consider what happens to solutions of (2) when the amplitude A of the forcing function
f is large. Numerics indicate that in this case, solutions with period T (equal to that of the forcing
function) attract almost all initial data.
First, we consider square wave forcing (7). For su�ciently large A, we can derive piecewise-linear

solutions with period T , which are on the constraint with positive gradient 1=� when f¿ 0, and
which are on the constraint with negative gradient −1=� when f¡ 0 (see Fig. 2). (The ability to
swap between opposite constraints without going o� the constraint is a special feature due to the
forcing function being discontinuous.) Our numerical experiments indicate that solutions of this form
are globally asymptotically stable.
Note that the piecewise-linear form shown in Fig. 2 is periodic, because equal times are spent in

the positive and negative phases of the square wave (i.e. the square wave is unbiased). Further, if
the putative solution �ts between −(A−1) and +(A−1), it is always on the constraint (being always
more than one di�erent from the forcing function), and so indeed solves (2). Therefore, a su�cient
condition for existence of such solutions is for there to be a constant �u such that �u+ T=4�6A− 1,
and �u − T=4�¿ − (A − 1). ( �u gives the mean of the solution u (see Fig. 2).) This is possible
if

A¿1 +
T
4�
: (14)

If (14) holds with strict inequality, then there is an interval of permissible �u, and hence a whole
family of solutions of this type, for �xed A.
For period T ¿ 2, bound (14) is not necessary for solutions of this type (because it is actually

not necessary to keep the solution inside [− (A− 1); A− 1] to remain on the constraint). If T ¿ 2,
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a sharp bound

A¿1 +
|T − 4|
4�

; (15)

for existence of this type of solution may be derived.
For other shapes of f, it is possible to construct (asymptotically, as � → 0) solutions of period

T when there is large amplitude forcing, and these appear to be stable. See [2, Chapter 5], which
considers in particular sine wave forcing (8). When f is continuous, such solutions have small O(�)
intervals o� the constraint. Note that for � → 0 asymptotics, it is convenient to write u = v=�, and
consider (2) in the rescaled form

v′(t) = sgn{fÃ;T (t)− v(t − 1)}min
{
1;
1
�
|fÃ;T (t)− v(t − 1)|

}
; (16)

where Ã=�A. If �→ 0 with Ã �xed, then solutions v converge to a piecewise-linear “�=0” solution,
whose gradient is ±1. For continuous f and any one su�ciently large value of Ã, we usually �nd a
unique symmetric (i.e., invariant under t 7→ t+T=2, u 7→ −u), globally asymptotically stable solution
(in contrast to when f is a square wave, where we have shown that there is a whole interval of
solutions). The symmetry is forced by higher-order matching conditions across the O(�) transition
intervals. In Section 4 we exhibit these solutions numerically.
In [2, Chapter 4], it is also shown how the �xed-point method of Mawhin [5] may be used to

prove the existence of the solutions of (2), with period T equal to that of the forcing function.
However, this approach is nonconstructive and gives no information about the number or structure
of such solutions.

3. Numerical techniques

Allen [2, Chapter 3] gives an account of �nite-di�erence methods used to solve equations of type
(1). At the most basic level, these are like ODE solvers, except the history of the solution up to
that of the maximum delay must be stored. (In the case of a delay operator like (5), the history
must be truncated, although it is easier to solve the equivalent ODE system by a standard method.)
However, naive solvers for (1) lose an order of accuracy because of nonsmoothness at points

where the solution changes between regimes (1a), (1b) and (1c). These changeover points must be
treated with extra care: strategies involve either (i) tracking, in which one aims to place a mesh
point exactly on the changeover point, or (ii) re�nement, in which the mesh size is locally reduced
so that some error bound is satis�ed.
The loss of smoothness in our equation is in addition to the well-known problem which one

usually �nds in di�erential delay equations: the solution of e.g. (2) is generically nonsmooth at t=0
owing to the discrepancy between u′−(0) = u

′
0(0) and u

′
+(0); the latter is given by the right-hand

side, and involves the independent value u0(−1). This nonsmoothness propagates to t = 1; 2; 3; : : : ;
although it becomes an order weaker at each subsequent time. The e�ect of this discontinuity, and
methods for dealing with it, have been well documented by Baker and collaborators (see, e.g., [3]).
Our original contribution to the numerics is to note that if we take the pure delay equation (2)

with piecewise-polynomial forcing f and piecewise-polynomial initial data u0, then the solution u
is also piecewise-polynomial. To see this, note that in (2) one is either integrating a constant (if
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on the constraint) to give a linear in t part to the solution, or one is integrating the di�erence of
polynomial f and the history u(t − 1). If we assume that u is piecewise-polynomial at earlier times
(to start the inductive process, use piecewise-polynomial u0) then it follows that u(t) is polynomial,
being either linear or found by integrating the di�erence of two polynomials.
We have written a C++ solver for (2) based on this piecewise-polynomial approach (for details,

see [7]). The scheme does not introduce rounding error, because time is not discretised. Instead,
the code represents the solution (and forcing function, initial data) in terms of pieces, which each
consist of a vector of polynomial coe�cients and the length of the time interval for which they
apply. Integration, time-translation, etc., can then be achieved by exact (up to rounding error) op-
erations.
Note that it is necessary to �nd the knots which join di�erent polynomial pieces of the solution.

To do this, one must consider the location of knots in the history and in the forcing function. Further,
to know when one goes on or o� the constraint, we have written a scheme to �nd the �rst positive
zero of the polynomial equations f(t) − u(t − 1) ± 1 = 0. This last method is a possible source
of numerical error if the degree of the solution polynomial becomes too large. However, our code
calculates the exact solutions of Section 2 to 14 signi�cant �gures, which is almost at the limit of
double-precision arithmetic.
Unfortunately, our new method does not work if either the initial data or forcing function is not

piecewise-polynomial – e.g. we cannot use it to tackle problems with sine wave forcing (8), although
of course we can approximate the sine wave arbitrarily closely by a piecewise-polynomial.
Further, when we do have piecewise-polynomial forcing function and initial data, our scheme

cannot cope with all solutions of (2) as t → ∞. Although the solution is piecewise-polynomial,
sometimes we cannot bound its degree as t →∞. This is most easily seen for �¿ �∗, when given
some initial data, ∃t∗ so that the solution is o� the constraint for all t ¿ t∗. In this case, the degree
of solution polynomial pieces will tend to increase by one for each unit in time, as they are always
found by an integration of the history.
This last e�ect would also occur if our approach was used to solve smooth DDEs whose nonlin-

earity was (nonconstant) polynomial in u. The approach only works for (2), if a su�cient proportion
of time is spent on the constraint (where the solution is linear) so that for all t; u is on the con-
straint at t− n, for n ∈ N uniformly bounded above. If this is not the case, the order of the solution
polynomial can increase, and=or knot points can accumulate.

4. Simulations

In this section, we present the results of some simulations of (2) using the �nite di�erence and
exact polynomial schemes discussed in Section 3. The aim is not to give a comprehensive catalogue
of solution behaviour – rather we give examples of some interesting parameter regimes. We have
analytical constructions for some of the solutions shown, but for reasons of space, these will be left
to a later paper.
All the solutions shown were for initial data of the simple type u0 ≡ const: When the initial

data has not been shown on plots, we have considered it unimportant, because we found the same
large-time behaviour for all the initial data that we tried. Thus, the solutions which are displayed
without initial data may be considered attractors.
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Fig. 3. Simulation with f ≡ 0 and � = 3
4 ¿�∗, showing exponential decay to zero.

Fig. 4. Simulation with f ≡ 0, and � = 1
4 ¡�∗, showing (�nite time) attraction to the period 4 solution given by (13)

(see also Fig. 1). � denotes the state of the solution: 0 for o� the constraint, and ±1 for on the constraint with positive
or negative gradient, respectively.

First, Figs. 3 and 4 show the behaviour of the homogeneous equation where f ≡ 0, which was
considered in Section 2.1. Depending on whether � is greater or less than 2=�, solutions either decay
to zero or are attracted (possibly in �nite time, depending on initial data) to a period 4 solution,
which is given by (13) when �¡ 1

2 . (The function � plotted in Fig. 4 is a state variable, which
equals 0 when the solution is o� the constraint, and equals ±1 when the solution is on the constraint
with positive or negative gradient, respectively.)
Figs. 5–7 show solutions for “large” amplitude periodic forcing, which have the same period

as the forcing function. (This situation was considered analytically in Section 2.2.) Fig. 5 is for
square wave forcing, and shows four solutions with �nite-time convergence to di�erent members
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Fig. 5. Simulations with �= 1
4 and large amplitude A=10 square wave forcing f with period T=5. There is a one-parameter

family of period 5 piecewise-linear solutions of the type constructed in Section 2.2 (see also Fig. 2). Finite-time attraction
to four members of the solution family is shown.

Fig. 6. Simulations with � = 1
4 and large amplitude A = 10 sine wave forcing, with period T = 5. Three solutions are

shown converging to the unique, symmetric global attractor of period 5.

of the family constructed by Fig. 2. Fig. 6 is for sine wave forcing, and shows (in contrast to
the square wave case) that there is a unique attracting periodic solution, which has t 7→ t + T=2,
u 7→ −u symmetry. We have found in simulations that the attracting periodic solution is symmetric
and unique for other (large amplitude) continuous forcing functions.
Fig. 7 concerns the � → 0 limit of solutions u (with sine wave forcing) multiplied by �. As

claimed in Section 2.2, these converge to a piecewise-linear form, with gradient ±1.
However, in our view, the most important parameter is the amplitude A of the forcing function

f. For su�ciently large A, the global attractor appears to consist of solutions with period equal to
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Fig. 7. Magni�cation of periodic solutions u as �→ 0 with sine wave forcing, T =5, and �A �xed (equal to 1.25); v= �u
with �1 = 1

2 ; �2 =
1
4 ; �3 =

1
8 , and �4 =

1
16 is shown. Transition intervals o� the constraint are width O(�) so that v tends to

a piecewise-linear form as �→ 0.

Fig. 8. Simulation with � = 1
4 and square wave forcing of moderate amplitude A = 1:25, and period T = 5. There is a

unique symmetric global attractor, which spends the end of each up-=down-phase of the square wave o� the constraint.

that of f. However, for A = 0, the attractor has period 4. If the period T of f is not equal to 4,
then what form do the solutions take for intermediate values of A? Is the attractor periodic, and if
so, does its period change in a smooth or discontinuous way as A is decreased? Figs. 8–14 address
this question. We concentrate on the square wave-forcing case: Figs. 8–10 are for a long-wavelength
situation, with T =5; Figs. 11 and 12 are for a resonant case with T =1. Throughout, we �x �= 1

4 .
For �= 1

4 and square wave forcing with T =5, solutions of the type of Fig. 5 (i.e., wholly on the
constraint) cease to exist as A is decreased through 2. However, the attracting solution, shown in
Fig. 8, remains periodic with period 5; but, it is unique, symmetric, and spends some time o� the
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Fig. 9. Simulation with �= 1
4 and square wave forcing of small amplitude A=0:75 and period T =5. The solution appears

to be approximately periodic with period 90.

Fig. 10. Magni�cation of Fig. 9. The solution has features of period approximately 4:75, which drift in and out of phase
with the square wave forcing.

constraint. We are able to construct the solution of Fig. 8 analytically (details will follow in another
paper), and show (for these �, T ) that this form of solution cannot persist as A is decreased through
1. For A¡ 1, we have attracting solutions like that shown in Fig. 9. Depending on the exact value of
A, we observe a solution which seems either periodic with very high period, or quasi-periodic. The
solution (see Fig. 9) consists of regular oscillations which drift in and out of phase with the forcing
function; at particular phase di�erences, these oscillations change form. As A → 0, the solution
remains quasi-periodic, but the modulation of the oscillations diminishes, so that the known period
4 solution is approached.
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Fig. 11. Periodic solution with � = 1
4 and square wave forcing of amplitude A = 1:4 and period T = 1. The solution is

symmetric and has period 1; the solution o� the constraint is exponential, rather than polynomial, in t.

Fig. 12. Period 4 solution with � = 1
4 and square wave forcing of amplitude A= 1:32 and period T = 1.

Solutions where T is smaller can be more interesting, because of possible resonances between the
forcing function and the delay (which is normalised as unity in (2)). In Figs. 11–14, solutions with
T =1 are shown, but similar sorts of e�ects may be achieved with T =2, or with T close to either
of these values.
Fig. 11 shows an attracting, symmetric solution of period 1, when f has intermediate amplitude

A=1:4. The solution has a similar form to that of Fig. 8 – however, note that the parts of the solution
o� the constraint are exponential, rather than polynomial, in t. (To see this, note that u(t−1)=u(t),
so that o� the constraint �u′(t) = ±A − u(t).) Hence, this is a nontrivial solution with polynomial
forcing which cannot be found by the piecewise-polynomial scheme announced in Section 3.
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Fig. 13. Simulation with �= 1
4 and square wave forcing of amplitude A= 1:22 and period T = 1. The solution appears to

be (approximately) periodic with period 32.

Fig. 14. Period 4 solution with � = 1
4 , and sine wave forcing of amplitude A = 1:3 and period T = 1. Contrast with

Fig. 12.

As A is reduced, there is a bifurcation where the period of the attractor jumps to 4 (see Fig.
12). Rather than continue with period 4 as A → 0, there appears a sequence of period doubling
and period halving bifurcations. E.g., Fig. 13 shows a complicated (apparently stable) solution with
period 32. Other types of period 4 solution also seem possible (see Fig. 14), which is for sine wave
forcing, and whose solution has a quite di�erent form from that of Fig. 12.
Given the presence of period-doubling bifurcations, it is natural to ask if (2) can have a chaotic

attractor for suitable f. We do not have a conclusive answer to this question – distinguishing between
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large period and chaotic solutions requires larger integration times than we have attempted so far.
For square wave forcing, it might be possible to describe the dynamics of (2) with a family of
maps, for which chaos could either be proved or shown not to occur. This is an open question
which requires further work.
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Abstract

We discuss the properties and numerical treatment of various types of Volterra and Abel–Volterra integral and integro-
di�erential equations. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Volterra’s book Le�cons sur les �equations int�egrales et int�egro-di��erentielles appeared in 1913.
Since then, a considerable literature on the theory and on applications (which include elasticity,
semi-conductors, scattering theory, seismology, heat conduction, metallurgy, uid ow, chemical
reactions, population dynamics, etc.) — e.g., [52,55,57,58,76,77,95,108,111,117,118] — and on the
numerics — e.g., [1,25,30,41,49,92,96,109] — has appeared.
The obligation to provide a perspective on the subject in the year 2000 has settled on this author.

A paper such as this, in which we seek to convey basic theoretical and computational features, could
have been written from many di�erent viewpoints, including that of mathematical modelling, that
of robust numerical algorithms, or that of the mathematical analysis of numerical methods. Each
standpoint has its own relevance to the numerical simulation of real phenomena, and each relies on
rather di�erent foundations and methodologies. In particular, the mathematical theory of numerical
formulae relies on detailed and sometimes intricate analytical arguments to generate a formal theory
(cf. [49] and its extensive references and bibliographical notes) that has mathematical signi�cance
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in its own right but, at least in part, attempts to generate insight into the performance of real-life
algorithms.
Within the space available, we give an introduction to the numerical treatment of classical Volterra

equations. It is hoped that the author, while avoiding pedantry, is su�ciently careful to avoid math-
ematical pitfalls or ambiguities occasionally found in the literature that a reader may use the work
as a basis for further critical reading and research. The mathematical style may be considered to be
intermediate between that of the excellent introduction of Linz [96] (Math. Rev. 86m:65163) and
the majestic detail provided by Brunner and van der Houwen [49] (Math. Rev. 88g:65136), which
is currently out of print.

2. Basic theory

The classical forms of Volterra integral equation of the �rst and second kind and of Volterra
integro-di�erential equations are, respectively,∫ t

t0
K(t; s; y(s)) ds= g(t) (t ∈ [t0; T ]); (2.1a)

y(t) = g(t) +
∫ t

t0
K(t; s; y(s)) ds (t ∈ [t0; T ]); (2.1b)

y′(t) = g(t) +
∫ t

t0
K(t; s; y(s)) ds (t ∈ [t0; T )) with y(t0) = y0 (2.1c)

(given g(·) and K(·; ·; ·), �nd y(·)) where the interval [t0; T ] (interpreted as [t0;∞) if T is unbounded)
is prescribed, and where g(·) ∈ C[t0; T ] and

Hypothesis 1. (a) K(t; s; v) is continuous for t06s6t6T , g(·) ∈ C[t0; T ];
(b) K(t; s; v) satis�es a uniform Lipschitz condition in v for t06s6t6T .

As an alternative to (2.1c) we may encounter

y′(t) = F
(
t; y(t);

∫ t

t0
K(t; s; y(s)) ds

)
(t ∈ [t0; T ]) with y(t0) = y0 (2.1d)

(given F(·; ·; ·) and K(·; ·; ·), �nd y(·)) where, in addition to Hypothesis 1 itself, F(·; ·; ·) satis-
�es appropriate Lipschitz conditions. The functions involved here can be real or complex valued.
Higher-order integro-di�erential equations (say generalizing (2.1d)) also arise. Alternative assump-
tions to those in Hypothesis 1 allow us to consider equations of Abel type. Each of the Volterra
integral equations (2.1a)–(2.1d), gives a corresponding Abel (or Abel–Volterra) equation when

Hypothesis 2. (a) K(t; s; v) = (t − s)−�H (t; s; v) where 0¡�¡ 1 and H (t; s; v) is continuous for
t06s6t6T , g(·) ∈ C[t0; T ]; (b) H (t; s; v) satis�es a uniform Lipschitz condition in v for t06s6t6T .
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Thus, the Abel equation of the second kind has the form

y(t) = g(t) +
∫ t

t0
(t − s)−�H (t; s; y(s)) ds (t ∈ [t0; T )): (2.1e)

The condition 0¡�¡ 1 is customary when referring to Abel equations.

Remark 2.1. (a) In the theory, the uniformity of the Lipschitz conditions may be relaxed. How-
ever, to obtain the bene�ts of the numerical processes described later, one often requires continuity
properties stronger than those required in Hypotheses 1 and 2 (e.g., higher-order di�erentiability).
Moreover, one sometimes (e.g., in certain Runge–Kutta methods discussed later) requires a suitable
smooth extension of K(t; s; v) (or of H (t; s; v)) de�ned on an extended domain t06s6t+�6T +�
with �¿ 0:

Kext(t; s; v) =
{
K(t; s; v) if s6t;
Knew(t; s; v) if s¿ t (2.2)

or

Hext(t; s; v) =
{
H (t; s; v) if s6t;
Hnew(t; s; v) if s¿ t:

(2.3)

(b) If K(t; s; v) = k(t; s)v, Eqs. (2.1a)–(2.1c) are linear equations.
(c) An integral of the form

∫ t
t0
k(t − s)�(s) ds is called a convolution of k(·) with �(·) — taking

k(t) ≡ 1 is a special case. (Corresponding sums ∑n
j=0!n−j�j, and the matrix–vector counterparts∑n

j=0
n−j�j, are discrete convolutions.) If K(t; s; v) = k(t− s)v or K(t; s; v) = k(t− s)’(v) for some
continuous function k(·) and (usually Lipschitz–continuous) ’(·) the Volterra equations are (linear
or nonlinear) convolution equations. Under additional conditions, the Laplace transform provides a
tool for analysing linear convolution equations.

The ordinary di�erential equation (ODE) y′(t)=f(t; y(t)) (t¿t0) can be re-written as a Volterra
integral equation of the second kind:

y(t) =
∫ t

t0
f(s; y(s)) ds+ y(t0) (t¿t0): (2.4)

Furthermore, Eq. (2.1d) can be written as a system of equations, one of which is an ODE and the
other a Volterra integral equation:

y′(t) = F(t; y(t); z(t)); (2.5a)

z(t) =
∫ t

t0
K(t; s; y(s)) ds: (2.5b)

Alternatively, by integrating (2.5a) and expressing it as

y(t) = y(t0) +
∫ t

t0
F(s; y(s); z(s)) ds; (2.5c)

we obtain the system of Volterra integral equations (2.5b), (2.5c). The intimate relation between sys-
tems of Volterra equations of the second kind and Volterra integro-di�erential equations encourages
us (though sacri�cing some insight and detail) to concentrate upon the former.
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A starting point for any mathematical discussion is to ask what is known about the well-posedness
of the problems under consideration. (Rigorous concepts of well-posedness depend upon choices of
underlying function spaces. Sometimes, a solution is required to be positive.) If the Volterra equation
of the �rst kind is to be interpreted as implying equality everywhere, we require g(t0)=0 and, clearly,
a solution does not exist for all g(·). If g(t0) = 0 and we have su�cient di�erentiability, we can
deduce

K(t; t; y(t)) +
∫ t

t0
Kt(t; s; y(s)) ds= g′(t):

In particular, if K(t; s; v) = k(t; s)v and k(t; t) is nonvanishing, we have

y(t) +
∫ t

t0

kt(t; s)
k(t; t)

y(s) ds=
g′(t)
k(t; t)

(for t¿t0); (2.6)

a linear Volterra equation of the second kind. On the other hand, if k(t; t) vanishes, but g′′(t) and
ktt(t; s) exist and kt(t; t) is nonvanishing, we can obtain an equation of the second kind by a further
di�erentiation. Our remarks serve to demonstrate that the �rst-kind equation can su�er various degrees
of ill-posedness in the sense that if nonsmooth perturbations are made to g(·) a solution (other than
in a generalized sense) may fail to exist. Inexact data therefore raises problems. Theoretical results
on numerical procedures for �rst-kind equations usually assume a condition such as inf |k(t; t)|¿ 0,
or an analogous condition in the nonlinear case. Some numerical methods require one to supply the
value y(t0) (when (2.6) is valid, y(t0) = g′(t0)=k(t0; t0)).

Example 2.2. When
∫ t
t0
y(s) ds = g(t), the solution, if it exists, is y(t) = g′(t). For Abel equations

of the �rst kind, similar remarks are possible; e.g., if

1
�(1− �)

∫ t

t0
(t − s)−�y(s) ds= g(t) for � ∈ (0; 1) (2.7a)

(�= 1
2 has special interest) then the solution y(·), if it exists, is expressible

y(t) =
1

�(�)

∫ t

t0
(t − s)�−1g′(s) ds (2.7b)

and y(·) is now a fractional derivative (or a fractional integral) of g(·) (cf. [49, p.8; 76, p.3; 96,
p.73]). One can write (2:7) symbolically as J (1−�)y = g, and y = J �Dg (where J is an operator of
inde�nite integration and D is the operator of di�erentiation and DJ is the identity).

Remark 2.3. On the face of it, there could be a link between the solution y(·) of the equation of the
�rst kind (2.1a) and the solution y�(·) of the singularly perturbed equation �y�(t)=

∫ t
t0
K(t; s; y�(s)) ds−

g(t) of the second kind (cf. [91]), either as � ↗ 0 or � ↘ 0. However, such links can only be
established under special hypotheses. This said, one can develop discretization formulae that are
candidates for application to equations of the �rst kind by constructing them for the singularly
perturbed equation of the second kind above and, formally, setting � = 0, provided one appreciates
that whether or not these formulae are useful has to be investigated independently.
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The theory for linear equations of the second kind is simpler than that of equations of the �rst
kind. In particular, for the Volterra equation

y(t) = g(t) + �
∫ t

t0
k(t; s)y(s) ds (for t¿t0); (2.8a)

we have

y(t) = g(t) + �
∫ t

t0
r{�}(t; s)g(s) ds (for t¿t0); (2.8b)

where r{�}(·; ·) is the resolvent kernel for (2.8a). The Neumann series gives the expression r{�}(t; s)=∑∞
r=1 �

r−1kr(t; s) where kr(t; s) =
∫ t
t0
k(t; �)kr−1(�; s) d� (r = 2; 3; : : :); and k1(t; s) = k(t; s). One has

r{�}(t; �) = �
∫ t

t0
k(t; s)r{�}(s; �) ds+ k(t; �) (for t06�6t): (2.9)

Since r{�}(s; �)=0 if �¿s, the lower limit of integration in (2:9) can be replaced by �. Smoothness
properties of r{�}(t; s) follow from those of k(t; s), and the degree of smoothness of y(·) (which has
an impact on the suitability of various numerical techniques) follows from the properties of g(·)
and the resolvent. If k(t; s) is of Abel type, k(t; s) = (t − s)−�h(t; s), for � ∈ (0; 1), the resolvent is
expressible [49, p.16] as r{�}(t; s) = (t− s)−�p{�; �}(t; s) with continuous p{�; �}(·; ·). One deduces that
the solution of an Abel equation of the second kind has unbounded derivatives at t0 when g(t) is
smooth (asymptotic expansions as t → t0 can be found).
The Neumann series is related to an iteration that, for the more general nonlinear equation (2.1b),

reads

yk+1(t) = g(t) +
∫ t

t0
K(t; s; yk(s)) ds (k = 0; 1; 2; : : :); (2.10)

often with y0(t)=g(t). (The iteration may also be used to “re�ne” an approximation ỹ(t) by setting
y0(·) = ỹ(·) and computing the corresponding iterate y1(·).) Iteration (2.10) collapses to the Picard
iteration in the case of an integrated form of an ODE (2.4). It extends in an obvious manner to
systems of Volterra integral equations, and, thence, through its application to (2.5b), (2.5c) to the
integro-di�erential equation (2.1d).

Remark 2.4. For the linear equation y′(t) = a(t)y(t) +
∫ t
t0
k(t; s)y(s) ds+ g(t) (t¿t0) subject to the

initial condition y(t0) = y0, where a(·) is continuous, we can establish the existence of a resolvent
u(t; s) such that y(t) = u(t; t0)y0 +

∫ t
t0
u(t; s)g(s) ds; (@=@s)u(t; s)+ a(t)u(t; s) +

∫ t
s k(t; �)u(�; s) d� =

0; u(t; t) = 1.

We have introduced the resolvent kernels r{�}(t; s), and u(t; s), into our discussion because they
have a rôle in a discussion of stability of solutions (see [49, p.493–494; 118]), and in an error
analysis of certain approximate solutions — both studies involving aspects of perturbation theory.
Clearly, if g(·) in (2.8a) is perturbed to g(·)+�g(·) then, by (2.8b), y(·) su�ers a consequent change

�y(t) = �
∫ t

t0
r{�}(t; s)�g(s) ds+ �g(t): (2.11)
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With appropriate conditions, we have a similar result 2 for the nonlinear equation (2.1b). Suppose
that y(·) is the unique solution of (2.1b) and we have

u(t) = g(t) + �(t) +
∫ t

t0
K(t; s; u(s)) ds; (2.12a)

u(t) ≡ y(t) + �y(t) (2.12b)

(where we assume that �(t) ≡ �(u(·); t)). Then there exists a corresponding R(t; s; u(s)) such that

�y(t) = �(t) +
∫ t

t0
R(t; s; u(s))�(s) ds: (2.13)

Let us obtain one such result, under assumptions that are obvious. Subtract from (2.12a) the unper-
turbed equation (2.1b) and we obtain

�y(t) = �(t) +
∫ t

t0
{K(t; s; u(s))− K(t; s;y(s))} ds: (2.14)

Hence, with K“(t; s; u(s)) = K3(t; s; (1 − w(s))y(s) + w(s)u(s)) for some appropriate w(s) ∈ [0; 1],
where K3(t; s; v) = (@=@v)K3(t; s; v), we have

�y(t) = �(t) +
∫ t

t0
K“(t; s; u(s))�y(s) ds; (2.15)

which provides a result of the form (2.13) with R(t; s; u(s)) as the resolvent kernel satisfying
R(t; s; u(s)) = K“(t; s; u(s)) +

∫ t
t0
R(t; �; u(�))K“(�; s; u(s)) d�:

3. Some numerical methods

We review, selectively, numerical methods for Volterra integral and integro-di�erential equations,
concentrating on the classical forms. Discrete methods for the solution of Volterra integral and
integro-di�erential equations are based upon the development of a grid or mesh:

T:={t0¡t1¡t2¡ · · ·¡tn−1¡tn ¡ · · ·}; hn:=tn+1 − tn: (3.1)

Remark 3.1. (a) The width (or diameter) of a grid T is h(T):=sup {hn : tn ∈ T}. T is called
uniform if hn ≡ h for all n, and quasi-uniform if there exists a �nite � such that sup hn6� inf hn.
If tN :=maxntn = T ¡∞ then T is a �nite grid that provides a partition of the bounded interval
[t0; T ]. Such a partition is called (i) graded with grading exponent � if tn − t0 = (n=N )� [49, p.349
et seq.], or (ii) geometric [43] if tn− t0 =�N−n{T − t0} for some � ∈ (0; 1). (b) Later, in connection
with Runge–Kutta (RK) or collocation processes, we shall introduce a set of indexed abscissae
{#i}mi=1 and the points tn; i= tn+#ihn. In the case 06#1¡#2 ¡ · · ·¡ #m61 these points de�ne an

2 Various similar formulae appear in the literature [11,24,94], sometimes under the heading of variation of constants
formulae for integro-di�erential equations obtained by di�erentiating the integral equation and with restrictions on the
form of perturbation. In this paper, we are trying to capture the spirit of the approach and we shall not need detailed
information about R(t; s; u(s)) in (2.13), other than knowledge of its continuity properties, which are obvious in the linear
case.
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ordered set of abscissae T#(#):={t06t0 +#1h0¡t0 +#2h0 ¡ · · ·¡ t0 +#mh06t16t1 +#1h1¡t1 +
#2h1¡ · · ·¡t1 + #mh16t2¡ · · ·}. We shall usually need to note whether #1 = 0, #m = 1.

We now consider some primitive quadrature methods. A simple family of methods for classical
Volterra equations can be built from the quadrature rule

∫ tj+1

tj
�(s) ds ≈ hj{(1− �)�(tj) + ��(tj+1)} (3.2a)

(where � ∈ [0; 1]), which yield, in particular, the Euler rule (�=0), the backward Euler rule (�=1),
and the trapezium rule (�= 1

2). From the primitive rule (3.2a) one obtains the basic components for
use with Volterra integral and integro-di�erential equations. In particular, one obtains by repeated
application of the basic rules the approximations

∫ tn

t0
�(s) ds ≈

n−1∑
j=0

hj{(1− �)�(tj) + ��(tj+1)}: (3.2b)

If we proceed formally, we can discretize (2.1b) using (for n= 0; 1; 2; : : :)

ỹ(tn+1) = g(tn+1) +
n∑

j=0

hj{(1− �)K(tn+1; tj; ỹ(tj)) + �K(tn+1; tj+1; ỹ(tj+1))}: (3.3)

We need to establish that Eqs. (3:3) do have a solution and that it provides a good approximation
to y(·). However, the basic idea underlying a wide class of numerical methods is already present
since Eqs. (3:3) have the form

ỹ(tn+1) = g(tn+1) +
n+1∑
j=0


n+1; jK(tn+1; tj; ỹ(tj)); (3.4)

which are discrete Volterra equations that arise from a family of quadrature rules using weights
{
n;j}nj=0 (n= 1; 2; 3; : : :) and abscissae {tj}⊂T.

Example 3.2. For the test equation y(t) − �
∫ t
t0
y(s) ds = g(t), the �-rule with uniform step hr = h

yields a recurrence that simpli�es to

ỹ(tn+1)− ỹ(tn)
h

− �{�ỹ(tn+1) + (1− �)ỹ(tn)}= g(tn+1)− g(tn)
h

(3.5)

(which is solvable if ��h 6= 1) that simulates the corresponding analytical result y′(t)−�y(t)=g′(t).
Those familiar with the numerics of ODEs can, in this example, readily infer properties from (3.5).

The �-rules have relatively low order, and one may turn to alternatives. The set of weights that
arise on taking h0 = h1 = h′; h2 = h3 = h′′; h4 = h5 = h′′′; : : : and combining Simpson’s rule (repeated
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as necessary) with the trapezium rule is indicated in the following tableau:

(3.6)

Consider the rather special case of a uniform mesh (hr ≡ h): the corresponding quadrature weights
{
n;j} for j6n is said to have a repetition factor r if there is a least integer r such that, for
n¿n0; 
n+r; j = 
n;j for r06j6n − r1 where n0; r0; r1 are �xed. Where there is no exact repetition,
the weights are said to have asymptotic repetition factor r′ provided there exists a least integer r′

such that, where r0; r1 are �xed, limn→∞ supr06j6n−r1 |
n+r′ ; j−
n;j|=0. With h′= h′′= h′′′= · · ·= h,
the weights in (3.6) have repetition factor unity.
The discretization in (3.6) may be thought of as based on a repeated application of Simpson’s

rule to approximate the “history” and an application of the trapezium rule or another Simpson’s rule
for the “local” or “incremental” term. This viewpoint is lost if, instead, we generate the weights 
n;j

for odd values of n by applying the trapezium rule to the �rst sub-interval (where needed) rather
than the last. Retain a uniform step h and we now have weights

(3.7)

with a repetition factor 2. Although one can establish convergence results of the same order, for
both cases, the stability properties of weights (3.7) have led to them being rejected (see [110] for
more insight) as unsuitable for numerical computation in the solution of arbitrary Volterra integral
equations of the second kind; the scheme su�ers the same defect as Simpson’s rule for solving ODEs
(under certain assumptions, it is weakly unstable).
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As the last remark indicates, certain ‘plausible’ weights (that yield convergence) may be rejected
for practical computation in the numerical solution of Volterra equations of the second kind. For
equations of the �rst kind (2.1a), the situation is more delicate: Whilst the formal analogue of (3.4)
reads

n+1∑
r=0


n+1; jK(tn+1; tj; ỹ(tj)) = g(tn+1) (n= 0; 1; 2; : : :) (3.8)

(cf. Remark 2.3) one has to be more circumspect in the choice of quadrature rules to obtain a
satisfactory (or even convergent) scheme for (2.1a).

Example 3.3. Consider, for the case
∫ t
t0
y(s) ds=g(t) (where g(t0)=0 and g′(t) exists for t ∈ [t0;∞)),

the application of a �-rule with a uniform step hr ≡ h:

(1− �)hỹ(t0) + hỹ(t1) + · · ·+ hỹ(tn−1) + �hỹ(tn) = g(tn) (n= 1; 2; 3; : : :):

For � ∈ (0; 1], we deduce that (for n= 0; 1; 2; : : :)
ỹ(tn+1) = �ỹ(tn) +

g(tn+1)− g(tn)
�h

where � :=
�− 1
�

; (3.9)

which is an unstable recurrence if |�|¿ 1, namely if � ∈ (0; 12 ). Unless �=1 the value ỹ(t0) ≈ g′(t0)
in these equations has to be supplied independently. Clearly, if �=1 (the backward or implicit Euler
rule) then we deduce ỹ(tn+1) = {g(tn+1) − g(tn)}=h which is a local approximation to g′(tn+1) that
clearly converges to the correct value as h→ 0. For � ∈ (0; 1),

ỹ(tn+1) =
n∑

r=0

�n−r g(tr+1)− g(tr)
�h

+ �n+1ỹ(t0): (3.10)

A di�culty with (3.10) is that it seeks to approximate g′(tn+1) in terms of g(t0); g(t1); g(t2); : : : ; g(tn+1),
and if |�|¿ 1 it gives increasing weight to g(t0) as n increases. In contrast, the value g′(tn+1) =
lim�→0 {g(tn+1 + �)− g(tn+1)}=� depends only upon limiting behaviour of g(·) in the neighbourhood
of tn+1. Given g(t), one can (without changing the derivative g′(tn+1)) add an arbitrary multiple of
any smooth function (t) that has support (t0; tn+1), thereby changing the computed approximation
(3.10) by an arbitrary amount. If �=0, the coe�cient matrix in our equations is formally singular,
and to be useful the equations have to be re-interpreted:
hỹ(t1) = g(t2)− hỹ(t0); hỹ(t1) + hỹ(t2) = g(t3)− hỹ(t0); hỹ(t1) + hỹ(t2) + hỹ(t3) = g(t4)− hỹ(t0); : : :
(where ỹ(t0) is obtained independently).
We now �nd ỹ(tn) = {g(tn+1) − g(tn)}=h which converges to g′(t?) as h → 0 and n → ∞ with
tn = t? ∈ (t0;∞) �xed.

One can generalize the composite Euler and trapezium rules in order to treat Abel equations;
corresponding to (3.2b) one has, in particular, formulae∫ tn

t0
(tn − s)−��(s) ds ≈

n−1∑
j=0

{∫ tj+1

tj
(tn − s)−� ds

}
�(tj); (3.11a)

∫ tn

t0
(tn − s)−��(s) ds ≈

n−1∑
j=0

{∫ tj+1

tj
(tn − s)−� ds

}
�(tj+1); (3.11b)
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∫ tn

t0
(tn − s)−��(s) ds

≈
n−1∑
j=0

{∫ tj+1

tj
(tn − s)−� tj+1 − s

hj
ds �(tj) +

∫ tj+1

tj
(tn − s)−� s− tj

hj
ds �(tj+1)

}
(3.11c)

and the integrals that occur here as weights multiplying values �(tj) and �(tj+1) can be written down
very simply, given T. Bounds on the error in such approximations are readily obtained in terms
of the error in piecewise-constant or piecewise-linear interpolation to �(·). With a uniform grid T,
the above approximations yield (on summation) convolution sums approximating the convolution
integrals

∫ tn
t0
(tn − s)−��(s) ds.

Remark 3.4. When solving Volterra integro-di�erential equations we can combine methods for
ODEs and integral equations. Thus, if �′; �′′ ∈ [0; 1] we might write, discretizing (2.5a), (2.5b),

ỹ(tn+1) = ỹ(tn) + hn{(1− �′)F(tn; ỹ(tn); z̃(tn)) + �′F(tn+1; ỹ(tn+1); z̃(tn+1))};

z̃(tk):=
k−1∑
r=0

hr{(1− �′′)K(tk ; tr ; ỹ(tr)) + �′′K(tk ; tr+1; ỹ(tr+1))}; k ∈ {1; 2; 3; : : : ; (n+ 1)}:
(3.12)

(We intend to indicate some exibility of approach which might not be transparent if one viewed the
integro-di�erential equation as a system of two integral equations: one may reasonably ask whether
there is a purpose to selecting �′ 6= �′′.) If the integral term is, instead, of Abel type, there is a rôle
for approximations (3:11) in the term for z̃(tr).

4. Relationship to ODE methods

The integrated form of the initial-value problem for the equation y′(t) = f(t; y(t)) (for t¿t0) is
(2.4), and it is not surprising to �nd that (although Volterra equations have more complex character)
there is a close connection between methods for the ODE and for classical Volterra integral equations
of the second kind. We enumerate some features:

(1) For certain types of kernel K(t; s; v) (in particular,
∑N

j=1 Tj(t)Sj(s; v), or (t−s)nexp{−�(t−s)}v)
we �nd that (2.1b) and (2.1c), (2.1d) can be reduced to a system of ODEs (see [20] for an
exploitation of such a result);

(2) An embedding relationship has a rôle in the theory of numerical methods. Consider G(t; s) such
that (one may compare with Eqs. (8:7)):

@
@t

G(t; s) = K(t; s; G(t; t)) (t06s6t); (4.1a)

G(t0; s) = g(s) (s ∈ [t0; T ]): (4.1b)

Then the solution of (2.1b) satis�es y(t) = G(t; t). We refer to [114,123].
(3) In principle, every ODE method (multistep, cyclic multistep, RK method, hybrid method, gen-

eral linear method) generates a corresponding integral equation method for (2.1b), or (2.1d).
By (2.4), every integral equation method for (2.1b) generates a (possibly novel) ODE method.
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Remark 4.1. Jones and McKee [88] used a family of predictor–corrector methods of variable order
and variable step-size to devise a method for nonlinear second kind Volterra integral equations
with smooth kernels. Their strategy for changing the step size followed closely one employed for
ODEs. (b) Bownds and Applebaum [21] have contributed a code based on separable kernels. (c)
Shampine [116] addressed problems associated with the special nature of the ODE approach to
Volterra equations.

Variable step ODE methods provide approximations to integrals over intervals [t0; tn] in the form
of sums, similar to (3.2b) (which originates with the �-method). In particular, with a uniform mesh,
the linear multistep method with �rst and second characteristic polynomials �(�):=�0�k + �1�k−1 +
· · · + �k ; �(�):=�0�k + �1�k−1 + · · · + �k (�0 6= 0) generates, with appropriate starting values, an
approximation (termed a {�; �}-reducible quadrature) of the form∫ tn

t0
�(s) ds ≈ h

n0∑
j=0

wn;j�(tj)

︸ ︷︷ ︸
starting terms

+ h
n∑

j=n0+1

!n−j�(tj)

︸ ︷︷ ︸
convolution sum

(tn ≡ t0 + nh) (4.2)

for n¿n0. An example arises if we take a uniform mesh in (3.2b). Formally,
∞∑
j=0

!j�j =
�k�(�−1)
�k�(�−1)

=
�0 + �1�+ · · ·+ �k�k

�0 + �1�+ · · ·+ �k�k
(�0 6= 0) (4.3)

is the generating function (related to the Z-transform) for the sequence of weights {!‘}∞‘=0. To
ensure uniform bounds on the weights we require �(·) to be simple von Neumann (i.e., �(·) must
have all its zeros on the closed unit disk centred on the origin, any on its boundary being simple).
Adapting (4.2) to the discretization of nonlinear Volterra convolution integrals we obtain∫ tn

t0
k(nh− s)’(y(s)) ds︸ ︷︷ ︸
continuous convolution

≈ h
n0∑
j=0

sn; j’(ỹ(jh)) + h
n∑

j=n0+1

wn−j’(ỹ(jh))

︸ ︷︷ ︸
discrete convolution

; (4.4)

where sn; j := k((n − j)h)wn;j; wn−j := k((n − j)h)!n−j. The discrete convolution property in (4.4)
facilitates the use of FFT techniques (cf. [3,4,81,97,101]) in solving Volterra convolution integral and
integro-di�erential equations. Gregory rules of a �xed order correspond to Adams-Moulton methods.
The BDF formulae rules generate rules (4.2) with asymptotic repetition factor unity.

Remark 4.2. Suitable linear multistep formulae generate fractional integration rules for use with a
uniform mesh in discretizing Abel equations:

1
�(1− �)

∫ tn

t0
(tn − s)−��(s) ds ≈ h1−�

n0∑
j=0

w{�}
n; j �(tj) + h1−�

n∑
j=n0+1

!{�}
n−j�(tj) (tn ≡ t0 + nh): (4.5)

We refer to [3,4,81,97,101]. It is noteworthy that the starting weights can be chosen so that (4.5)
is exact for selected nonpolynomial terms (e.g., �(s) = (s − t0)�i , with �i ∈ R and where y(t) ∼
a0 + a1(t − t0)�1 + a2(t − t0)�2 + a3(t − t0)�3 + · · ·, as t → t0, with �1¡�2¡�3¡ · · ·¡�m).
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5. RK processes

We now consider RK methods with nonuniform meshes for Volterra equations of the second kind.
At the risk of o�ending the purist, we develop these from a heuristic viewpoint. The early work
was due to Pouzet [114] and exploited RK parameters arising for ODEs; Bel’tyukov [14] introduced
schemes with additional parameters. For the rigorous foundations of RK-type methods in terms of
order conditions and from a modern perspective, see [12,42]; for extensions to Abel equations see
[100]; for integro-di�erential equations see [99].
The literature contains examples of RK formulae for ODEs, generated by the RK triple (#;A; b)

where #= [#1; #2; : : : ; #m]
T ∈ Rm; A= [ai; j] ∈ Rm×m; b = [b1; b2; : : : ; bm]

T, commonly represented as

an RK (or Butcher) tableau
# A
bT
. Examples of RK tableaux are

0 0
1
2

1
4
1
4

1 1
6
2
3
1
6

(1) 1
6
2
3
1
6

;

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

(1) 1
2

1
2

;

1
3

5
12 − 1

12

1 3
4

1
4

(1) 3
4

1
4

;

0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

(1) 1
6

2
3

1
6

(5.1)

(a) Trapezium (b) Gauss family (c) Radau IIA family (d) Lobatto IIA family
& Simpson (collocation RK) (collocation RK) (collocation RK)

(the parenthetical “(1)” denoting #m+1 = 1, that has been inserted here, is usually omitted).

Remark 5.1. (i) The choice of # can be indicated by a subscript, as in #[NCm]; #(Gaussm);
#(Radaum]; #[Lobattom] (the m quadrature points for closed Newton–Cotes formulae, open Gauss–Legendre
formulae, Radau right-hand formulae, and closed Lobatto formulae, such as appear in (5.1)(a)–(d),
respectively) to denote the abscissae. Note that (a) and (d) in (5.1) have the same #. (ii) The RK
parameters are explicit (or, more accurately, “formally explicit”, since some reordering is possible) if
ai; j=0 for j¿i, and semi-implicit if ai; i 6= 0 for some i and ai; j=0 for j¿ i. Other features to note are
whether #i ∈ [0; 1] for all i; whether {#i}m1 are distinct; whether 06#1¡#2¡ · · ·¡#m ¡#m61;
whether b(#i) = [ai;1; ai;2; : : : ; ai;m]; whether, if #m = 1; b = [am;1; am;2; : : : ; am;m]. (iii) The ‘stability’
and ‘convergence’ properties of the RK method when applied to an ODE have a bearing on our
methods.

The abscissae #i and the points tn ∈T together de�ne

T#(#):={tn; i = tn + #ihn}; (5.2)

the set of points anticipated in Remark 3.1. We shall wish to discretize the integrals
∫ tn; i
t0

K(tn; i; s;

y(s)) ds, and more generally
∫ tn+�hn
t0

K(tn + �hn; s; y(s)) ds, in (2:1). Now any RK triple de�nes a
family of quadrature rules

∫ #i

0
�(s) ds ≈

m∑
j=1

ai; j�(#j): (5.3a)
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This family, if we set #m+1 = 1; am+1; j = bj, includes∫ 1

0
�(s) ds ≈

m∑
j=1

bj�(#j): (5.3b)

In addition, it is possible to provide a vector b(�)= [b1(�); b2(�); : : : ; bm(�)]
T, de�ned for � ∈ [0; 1],

that yields quadrature∫ �

0
�(s) ds ≈

m∑
j=1

bj(�)�(#j) for all � ∈ [0; 1]; (5.3c)

where b(1) ≡ b. The parameters (#; A; b(�)) de�ne a continuous RK process. For those tableaux
labelled “collocation-RK” in (5.1) (which are linked to piecewise-polynomial collocation processes)
the polynomials bj(·) can be obtained by inde�nite integration of the Lagrangean form of the poly-
nomial interpolating �(·) at #1; : : : ; #m and we �nd that ai; j = bj(�i) for i; j = 1; 2; : : : ; m.

Remark 5.2. By an a�ne transformation, Eq. (5.3b) gives, as an alternative to (5.3a),∫ #i

0
�(s) ds ≈

m∑
j=1

#ibj�(#i#j) (5.4)

that is useful when �(·) is smooth on [0; #i] but not on all of [0; 1].

We observe that∫ tn; i

t0
�(s) ds=

n−1∑
j=0

∫ tj+1

tj
�(s) ds+

∫ tn; i

tn
�(s) ds (5.5a)

for continuous �(·), and the extended use of RK parameters yields
∫ tn; i

t0
�(s) ds ≈

n−1∑
j=0

hj

m∑
k=1

bk�(tj; k) + hn

m∑
k=1

ai; k�(tn; k) (5.5b)

and, for � ∈ [0; 1],
∫ tn+�hn

t0
�(s) ds ≈

n−1∑
j=0

hj

m∑
k=1

bk�(tj; k) + hn

m∑
k=1

bk(�)�(tn; k): (5.5c)

If ai; j 6= bj(#i), (5.5c) does not reduce to (5.5b) on setting � to #i. Formally, the RK integration
formulae (5.5b) allow one to discretize a Volterra integral or integro-di�erential equation with an
“extended RK method ”. Thus, we may seek approximations ỹ n; i ≈ y(tn; i) to the solution y(·) of
(2.1b), on T#(#), via the equations

ỹ n; i = g(tn; i) +
n−1∑
j=0

hj

m∑
k=1

bkK(tn; i; tj; k ; ỹ j; k)

︸ ︷︷ ︸
history term (‘lag’ or ‘tail’ term)

+ hn

m∑
k=1

ai; jK(tn; i; tn; k ; ỹ n; k)︸ ︷︷ ︸
‘incremental term’

(5.6a)
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(i = 1; 2; : : : ; m; m+ 1) in which the equation with i = m+ 1 provides

ỹ(tn+1) = g(tn+1) +
n∑

j=0

hj

m∑
k=1

bkK(tn+1; tj; k ; ỹ j; k): (5.6b)

Example 5.3. Compare the use of the left-most RK tableau in (5.1) with quadrature based on the
weights in (3.6), taking steps h1 = 2h′, h2 = 2h′′, h3 = 2h′′′; : : : .

The formulae ỹ n; i ≈ y(tn; i) have to be interpreted appropriately if one has an RK triple with
#i = #k for i 6= k but (5:6) are essentially the extended RK formulae obtained in [114] using an
RK triple (#; A; b). Where the formulae involve K(tn; i; tn; j; ỹ n; j) with tn; j ¿ tn; i, we are required to
de�ne a smooth extension (2.2) of K(t; s; v) for values of s¿ t. Though this is not transparent from
the above derivation, the order of convergence on T (de�ned in Section 7) is inherited from the
ODE RK process provided K(t; s; y(s)) (or Kext(t; s; y(s)) in (2.2), if it is required) is su�ciently
smooth. Unless the RK formula is explicit (Remark 5.1), we have to solve for a block of unknown
values {ỹ n; i : i = 1; 2; : : : ; m}, simultaneously. There is a unique solution of the equations given an
appropriate Lipschitz condition (Remark 2.1) and a su�ciently small width of T. An appropriate
choice of nonlinear equation solver depends on various factors including the step size hn; some
questions remain open.
We can modify the above approach slightly and obtain an approximation ỹ(·) de�ned on [t0; T ],

if we use continuous RK parameters (�; A; b(�)) and write

ỹ(tn + �hn) = g(tn + �hn) +
n−1∑
j=0

hj

m∑
k=1

bkK(tn + �hn; tj; k ; ỹ j; k)

+hn

m∑
k=1

bk(�)K(tn + �hn; tn; k ; ỹ n; k); (5.7)

which, having obtained {ỹ n; i}, yields a densely de�ned function ỹ(·).
Evaluating the term

∑n−1
j=0 hj

∑m
k=1 bkK(tn + �hn; tj; k ỹ j; k) in (5:6) or (5.7) involves a considerable

computational expense, which prompts a modi�cation (a mixed quadrature-RK method) based upon
the use of quadrature formulae of the type arising in (3.4). The discretized equations now read

ỹ n; i = g(tn; i) +
n∑

j=0


n;jK(tn; i; tj; ỹ(tj))

︸ ︷︷ ︸
quadrature history term

+ hn

m∑
k=1

ai; kK(tn; i; tn; k ; ỹ n; k)︸ ︷︷ ︸
‘incremental term’

; (5.8a)

from which we obtain

ỹ(tn+1) = g(tn+1) +
n∑

j=0


n;jK(tn+1; tj; ỹ(tj)) + hn

m∑
k=1

bkK(tn+1; tn; k ; ỹ n; k) (5.8b)

with a corresponding densely de�ned extension

ỹ(tn+�) = g(tn+�) +
n∑

j=0


n;jK(tn+�; tj; ỹ(tj)) + hn

m∑
k=1

bk(�)K(tn+�; tn; k ; ỹ n; k)
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for � ∈ (0; 1]. The incremental terms together de�ne a one-step method with an increment func-
tion similar to that for an ODE. It will be clear that the history term and the increment function
both contribute to the overall discretization error on T. For variations on these methods, see [86].
Wolkenfelt [121] also discusses, inter alia, multilag variations of the mixed RK methods.

Remark 5.4. (a) Note that if one has constructed a dense-output approximation ỹ(t) for t ∈ [t0; tn]
then it is possible to compute the history terms g(t)+

∫ tn
t0
K(t; s; ỹ(s)) ds by adaptive quadrature. (b) In

terms of controlling accuracy, a major problem to be faced is that the accuracy in approximating y(·)
by ỹ(·) ‘in the past’ may prove inadequate to allow a good approximation to g(t)+

∫ t
t0
K(t; s; y(s)) ds

‘in the future’. (c) The structure of the extended and mixed (Pouzet) RK formulae discussed above
makes them suitable for the application of FFT techniques in the case of convolution integral or
integro-di�erential equations and a uniform mesh. (d) One may use embedded RK formulae and
quadrature correction terms to try to control the discretization error. (e) The RK discretizations
discussed here do not apply to Abel type equations, see [80] for a discussion of RK-type parame-
ters for Abel equations. (f) We restricted attention to the classical (Pouzet) RK parameters. Some
mathematical ingenuity has been invested into the derivation of Bel’tyukov RK-type formulae (these
are generalizations [14,49, p.175] of the RK triples that were adapted by Pouzet from the ODE
context).

For Volterra integro-di�erential equations, the extended use of (#;A; b) for (2.5a),(2.5b), gives
an approximating set of equations

ỹ(tn; i) = ỹ(tn) + hn

m∑
j=1

ai; jF(tn; j; ỹ(tn; j); z̃(tn; j)); (5.9a)

z̃(tn; r) =
n−1∑
j=0

hj

m∑
k=1

bkK(tn; r ; tj; k ; ỹ(tj; k)) + hn

m∑
k=1

ai; jK(tn; r ; tn; k ; ỹ(tn; k)); i; r ∈ {1; 2; : : : ; m} (5.9b)

with ỹ(tn+1) =ỹ(t n;m+1) there is a related mixed quadrature-RK formula.

6. Collocation and related methods

Collocation and Galerkin methods in the literature are, frequently though not exclusively, based
upon polynomial spline or piecewise-polynomial densely de�ned approximations ỹ(t). In electronic
databases for tracing the literature, perhaps a quarter of the citations on numerical methods for
Volterra equations refer to collocation methods. This statistic may, however, be misleading, because
the collocation methods described are often discretized to produce block-by-block methods that are
intimately related to RK methods.
Given T in (3.1) we assume that the restriction of ỹ(·) on [t0; t1] and subsequently, for n=1; 2; : : : ;

each subinterval (tn; tn+1] is a polynomial of degree qn (n = 0; 1; 2; : : :). For simplicity we suppose
qn=q for all n. Clearly, the restriction of ỹ(·) on (tn; tn+1] has associated limits ỹ(tn+) and derivatives
ỹ′(tn+), ỹ

′′(tn+); : : : ; at each point tn; the continuity class of ỹ(·) for t¿t0 is determined by the
requirement that left- and right-hand limits agree. To simplify, it is assumed that the order of the
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derivatives that exist (and are continuous) at tn is independent of n, say �n=� (�=−1 implies lack
of continuity at points tn), and

ỹ(tn+) = ỹ(tn−); ỹ′(tn+) = ỹ′(tn−); : : : ; ỹ (�)(tn+) = ỹ (�)(tn−): (6.1)

The approximation 3 is then termed a polynomial spline of degree m and of continuity class � with
knots TN ≡ {tn}N1 ⊂T. The linear space of such functions, denoted S�

m(TN ) has dimension d=
N (m− �) + � + 1.
Any approximation to the solution of (2.1b), ŷ(t) ≈ y(t), gives rise to a corresponding defect

�(ŷ(·); t) de�ned as

�(ŷ(·); t):=ŷ(t)− {g(t) +
∫ t

t0
K(t; s; ŷ(s)) ds} (t ∈ [t0; T )): (6.2)

Clearly, if Eq. (2.1b) has a unique solution, then ŷ(·) = y(·) if and only if �(ŷ(·); t) ≡ 0, and this
suggests that one should seek an approximation that gives rise to a small defect. Analogous comments
apply to (2.1d) and, provided that one interprets “smallness” of the defect in an appropriate sense,
to some �rst-kind equations (2.1a). In collocation methods one seeks approximations of a particular
type such that the defect vanishes at a set of points known as the collocation points. For Galerkin
methods, one instead asks that the moments of the defect, taken with a prescribed set of functions,
should vanish. “Re�nement” (of the collocation or the Galerkin approximation) by iteration based
on (2.10) can be useful.
We now return to the determination, through collocation-type techniques, of an approximation

ỹ(·) ∈ S�
m(TN ). An arbitrary element of S�

m(TN ) is determined uniquely by d parameters where d
is the dimension of the space S�

m(TN ). Given T#(#), we may therefore expect to be able to chose
ỹ(·) in order to satisfy the �+1 continuity conditions (6.1) at each point tn (n=1; 2; : : : ; N −1) and
an additional Nm collocation conditions of the type

�(ỹ(·); tn; r) = 0; n= 0; 1; : : : ; N − 1; r ∈ {1; 2; : : : ; m}; (6.3)

in which we ensure the defect vanishes at selected collocation points tn; r = tn + #rhn, here assumed
to be distinct. From (6.2) we have, for t ∈ [tn; tn+1],

�(ỹ(·); t) = ỹ(t)−

g(t) +

n−1∑
j=0

∫ tj+1

tj
K(t; s; ỹ(s)) ds+

∫ t

tn
K(t; s; ỹ(s)) ds


 ; (6.4)

where, in each interval (tj; tj+1], ỹ(·) is a polynomial (of degree q, say).
We consider polynomial spline collocation with ỹ(·) ∈ S−1

m−1(TN ), following the technique of
Blom and Brunner [19]. Given 06#1¡#2¡ · · ·¡#m61, and the grid T, ỹ(·) is constructed to
be a polynomial of degree q=m−1 in every interval [tn; tn+1]. Then ỹ(·) is such that (for � ∈ (0; 1))

ỹ(tn + �hn) =
m∑
i=1

m∏
‘ 6=i
‘=1

(� − #‘)
(#i − #‘)

ỹ(tn; i) where tn; i = tn + #ihn: (6.5)

In general, ỹ(·) 6∈ C[t0; T ] except when #1 = 0 and #m = 1.

3 We have piecewise constant approximations if m=1; �=−1; piecewise linear continuous approximations if m=1; �=0;
classical cubic splines if m= 3; � = 1.
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Taking the set {tn; r} as collocation points we have the exact collocation equations of the form

ỹ(tn; r) = g(tn; r) +
n−1∑
j=0

hj

∫ 1

0
K


tn; r ; tj + �hj;

∑
i

∏
‘ 6=i

(� − #‘)
(#i − #‘)

ỹ(tj; i)


 d�

+hn

∫ #r

0
K


tn; r ; tn + �hn;

∑
i

∏
‘ 6=i

(� − #‘)
(#i − #‘)

ỹ(tn; i)


 d�: (6.6)

For n = 0; 1; 2; : : : ; in turn, we �x n and run through the values of r in (6.6), to obtain su�cient
equations to determine (if Hypothesis 1 holds and hn is su�ciently small) the values {ỹ(tn; r)}.
An unfortunate obstacle to implementation of the exact collocation scheme is the need to compute

the integrals occurring in (6.6). We may therefore consider discretized collocation equations, in
which the integrals are replaced by interpolatory quadrature and the formulae become more tractable.
The presentation in [19] is based on the use of M -point quadrature, in the form

∫ 1

0
�(s) ds ≈

M∑
k=1

bk�(#k) and
∫ #r

0
�(s) ds ≈

M∑
k=1

#rbk�(#r#k) (6.7a)

with M = m− 1 (if #m ¡ 1) or with M = m (if #m = 1), where

bk =
∫ 1

0

M∏
‘ 6=k
‘=1

(s− #‘)
(#k − #‘)

ds (k = 1; 2; : : : ; M) (6.7b)

(cf. Remark 5.2). Thus our discretized equations read

ỹ(tn; r) = g(tn; r) +
n−1∑
j=0

hj

M∑
k=1

bkK(tn; r ; tj; k ; ỹ(tj; k))

+ hn#r

M∑
k=1

bkK


tn; r ; tn + #k#rhn;

m∑
i=1

∏
‘ 6=i

(#k#r − #‘)
(#i − #‘)

ỹ(tn; i)


 ; (6.8)

ỹ(tn + shn) =
m∑
i=1

m∏
‘ 6=i
‘=1

(s− #‘)
(#i − #‘)

ỹ(tn; i): (6.9)

One may further re�ne the approximations ỹ(·) by computing a discretized iterated collocation
approximation, which can possess improved continuity and convergence properties. The abscissae
#(Gaussm), #(Radaum], #[Lobattom] referred to earlier are candidates for use. De�ning a new set of abscis-
sae by supplementation of #(Gaussm) with the points {0; 1}, or of #(Radaum] with {0}, has also been
suggested. The formulae above may be regarded as a generalization of the RK methods discussed
previously.
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Remark 6.1. (a) Hermann Brunner has authored or co-authored numerous papers in the extensive
literature on collocation, including the recent report [43]. (b) For collocation methods for a wide class
of integro-di�erential equations, see, for example, [36]. (c) Brunner [27] investigated the convergence
rate of the numerical solution, by polynomial spline collocation, of the Abel integral equation y(t)=
g(t) +

∫ t
0 (t − s)−�h(t; s)y(s) ds, t ∈ I := [0; T ], T ¡∞, 0¡�¡ 1, assuming g and h to be smooth.

Brunner showed that, independent of the degree of the polynomials, the convergence rate with
respect to a quasi-uniform mesh is only N�−1, where N denotes the number of subintervals on I .
The optimal rate of convergence N−m, where m − 1 is the degree of the polynomials, is attainable
using the special graded mesh tn=(n=N )rT , r=m=(1−�), n=0; 1; : : : ; N (and similar results are valid
for the approximate solution of the nonlinear equation y(t)=g(t)+

∫ t
0 (t−s)−�H (t; s; y(s)) ds). (d) For

a recent paper on collocation for Abel equations (which opens with a succinct review of previous
results and of some practical di�culties), see [87]. (e) Brunner [26] introduced nonpolynomial spline
functions in a discretized collocation method to obtain high-order approximations to the solutions
of integral and integro-di�erential equations having Abel-type kernels. (f) For a paper that closes
a number of long-standing gaps in our understanding of collocation for equations of the �rst kind,
see [92].

7. Numerical analysis

Mathematical numerical analysis encompasses, inter alia, a study of convergence, order of conver-
gence, and superconvergence of approximations, and their stability properties. There is a considerable
literature in this area. A rigorous study must commence with the issue of existence and uniqueness
of the true solution and of the approximate solution (or, in the case of nonuniqueness, clari�cation
of which solution or approximation is being discussed).
The term convergence has to be interpreted in context. It can apply, with given assumptions (which

may include speci�cation of # and restrictions on T — requiring it to be uniform or quasi-uniform,
or a graded partition of [t0; T ] – see Remark 3.1) to, e.g., convergence on an interval or on mesh
points:

sup
t∈[t0 ;T ]

|y(t)− ỹ(t)| → 0 as h(T)→ 0 with T ∈ T ; (7.1a)

sup
t∈T

|y(t)− ỹ(t)| → 0 as h(T)→ 0 with T ∈ T : (7.1b)

Here T ∈ T denotes that relevant restrictions on T are satis�ed, and h(T):=suptr∈[t0 ;T ]{tr− tr−1} is
the width (or diameter) of T. As for order of convergence, we may have, �rst (order of convergence
of the densely de�ned approximation on the whole interval [t0; T ])

sup
t∈[t0 ;T ]

|y(t)− ỹ(t)|= O({h(T)}�) with T ∈ T ; (7.1c)

second (order of convergence on the points {tn} and the points {tn; r})
sup

t∈T#(#′)
|y(t)− ỹ(t)|= O({h(T)}%) with T ∈ T ; (7.1d)
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third (order of convergence on the points {tn} of T)
sup
t∈T

|y(t)− ỹ(t)|= O({h(T)}%′) with T ∈ T : (7.1e)

If the value of � in (7.1c) is optimal, and %¿�, or if %′ ¿% where % is optimal or %′ ¿�, we
speak of superconvergence on T#(#′) or on T, respectively. Superconvergence results arise, in
particular, in the context of RK methods (they should be familiar for RK methods for ODEs) and
of collocation.

Remark 7.1. Statement (7.1c) is simply short hand for the claim that there exist h? ¿ 0 and a
constant M� (that is �nite, and independent of h(T) and of T ∈ T ) such that

sup
t∈[t0 ;T ]

|y(t)− ỹ(t)|6M�{h(T)}� when h(T)6h?: (7.2)

It does not follow from (7.2) that a reduction in the size of h(T) will reduce supt∈[t0 ;T ]|y(t)− ỹ(t)|;
nor can we infer that supt∈[t0 ;T ] |y(t)− ỹ(t)| is proportional to h(T). However, statements of orders
of convergence can often be strengthened — so that, with a uniform mesh of width h, one may
have, e.g.,

y(t)− ỹ h(t) = h�e�(h; t) + O(h�?

); ỹ h(t) ≡ ỹ(t) (7.3)

with |e�(h; t)| uniformly bounded for 0¡h6h?, t ∈ [t0; T ], where �? ¿�. The vanishing of
the nonnull function e�(h; t) on a set of points Sh⊂ [t0; T ] (0¡h6h?) implies superconvergence
on {Sh}.
Occasionally, one sees estimates of the convergence rate at the point t of the form

�h′ ; �h′ ; �?h′
computed (t):=log�

∣∣∣∣y�?h′(t)− y�h′(t)
y�?h′(t)− yh′(t)

∣∣∣∣ where �?��¡ 1:

Such estimates may not have been reconciled with the theory. However, if, in (7.3), e�(h; t) 6= 0 is
independent of h (e�(h; t) ≡ e�(t), say), then y(t)− ỹ h(t) is, for su�ciently small h, monotonically
decreasing as h → 0 and asymptotically proportional to h� (here, |y(t) − ỹ h(t)|=h� → |e�(t)| for
some bounded nonnull e�(t), where t ∈ [t0; T ], as h→ 0).

Whilst controlling the accuracy of numerical computation is, in fact, a complicated matter, the
mathematical community �nds delight in the precision of mathematical theorems and “concise” results
(e.g., ‘superconvergence occurs at the collocation points’ or ‘algebraic stability implies C-stability’
— see below) have a particular appeal. Such theories are both elegant and rewarding and they can
give con�dence in the underlying algorithms, but real-life computational conditions and practical
adaptive algorithms do not always conform to the theoretical conditions assumed and it is worthwhile
reviewing, from time to time, the exact practical signi�cance of the theory. As an example, in
his paper on collocation for integro-di�erential equations with nonsmooth solutions, Brunner [29]
remarked that even though the use of suitably graded meshes yields optimal convergence rates, such
meshes have their limitations (e.g., they may demand a very small initial step size, and carry a risk
of contamination by rounding error).
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8. Some approaches to convergence analysis

We shall indicate some of the tools used in establishing convergence and orders of convergence.
We commence with a Gronwall-type inequality, that follows from a result quoted in [49, p.41]:

Lemma 8.1. For �¿ 0 and z‘ ¿ 0 (‘ = 0; 1; 2; : : :); suppose that

|�n|6�
n−1∑
‘=0

z‘|�‘|+ |�n| (for n= 0; 1; : : :); (8.1)

then |�n|6|�n|+ �
∑n−1

r=0 {zr
∏n−1

q=r+1(1 + �zq)}|�r| for n= 0; 1; 2; : : : .

An example will indicate an application of (8.1). Assume that T is given (with a sequence of
positive steps {hn} and h(T) = sup hr), and consider a set of approximating formulae (3.4), which
we assume have a unique solution {ỹ(t0); ỹ(t1); ỹ(t2); : : :}. We �nd that the true solution of (2.1b)
gives

y(tn+1) = g(tn+1) +
n+1∑
j=0


n+1; jK(tn+1; tj; y(tj)) + �n; (8.2)

where {�n} are the local truncation errors. If we subtract the corresponding equations (3.4) and
write en:=ỹ(tn)− y(tn) we have

en+1 =
n+1∑
j=0


n+1; j{K(tn+1; tj; ỹ(tj))− K(tn+1; tj; y(tj))} − �n (8.3)

and hence, by Hypothesis 1,

|en+1|6
n+1∑
j=0


n+1; jL|ej|+ |�n|: (8.4)

Now an examination of the weights in (3.6) reveals a property

|
n;j|6W{hj−1 + hj} for some �nite absolute constant W; (8.5)

when j=0; 1; 2; : : : ; n that holds for more general weights, and we therefore take (8.5) as an assump-
tion in the case of quadrature methods for Volterra equations. From Lemma 8.1 above, applying
(8.1) with z‘ = h‘ + h‘+1, assuming Wh(T)6 1

4 , we obtain without e�ort, on setting �= 2LW ,

|en|6 sup
r∈{0;1;:::; n}

|�r|{1 + 2�(T − t0)exp{2�(T − t0)}} for tn ∈ [t0; T ]: (8.6)

This establishes that the order of convergence of quadrature approximations ỹ(t) to y(t), for t ∈T,
is determined by the local truncation errors. (Actually, this result can be re�ned to take account of
starting procedures.)

Remark 8.2. For quadrature generated by cyclic multistep formulae and for RK formulae, conver-
gence can be established by similar techniques though results on the order of accuracy tend to be
pessimistic and a more re�ned analysis is required. For Abel equations of the second kind (2.1e)
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the weights analogous to 
n;j behave like (n− j)−�h1−�, and McKee [107] developed an appropriate
Gronwall-type lemma for this case (see also [49, pp. 42–44]).

8.1. One-step methods

The discussion of one-step methods on a uniform mesh T by Hairer et al. [80] applies to various
methods of RK type, and merits attention. To indicate something of their viewpoint, we re-write
(2.1b) in the form

y(t) = Gn(t) +
∫ t

tn
K(t; s; y(s)) ds (8.7a)

for t¿tn, where Gn(t) = g(t) +
∫ tn
t0
K(t; s; y(s)) ds, so that

Gk(t) = Gk−1(t) +
∫ tk

tk−1

K(t; s; y(s)) ds (k = 1; 2; 3; : : :) (8.7b)

with G0(t) = g(t). A discrete analogue of (8.7a) is provided by

ỹ(tn+1) = G̃n(tn+1) + hn�(tn+1; G̃(·); hn): (8.8a)

Here (cf. the theory of one-step methods for ODEs) �(·; ·; ·) is an increment function (whose
evaluation involves internal stage values) and {G̃k(·)} are approximations to {Gk(·)}. One assumes
that the increment functions inherit, from the properties of K(·; ·; ·), a uniform Lipschitz condition
with respect to its second argument (uniform with regard to the index and the step size).
For the development of this approach to a wide class of RK methods and various approximations

to the history term, consult [80]. One should not forget that some 4 RK methods require a smooth
extension such as (2.2) to achieve their potential in terms of accuracy.
For extended (Pouzet-)RK methods, G̃n+1(·) is itself computed via the incremental function:

G̃k(t) = G̃k−1(t) + hk�(t; G̃k−1(·); hk) (8.8b)

in analogy with (8.7a), and moreover ỹ(tn+1) = G̃n+1(tn+1). In this case, the link with an embedding
approach (cf. (4.1a)) is apparent.

8.2. Resolvents and variation of parameters in the analysis of collocation

There have been numerous results [49] on convergence and superconvergence properties of
collocation-type methods. Some results [24] were achieved by relying on a (nonlinear) variation
of constants formula (2.13) due to Brauer (the reader should also consult [11] which corrects errors
in [15] where, in turn, a slip in [22] was noted) to relate the true and approximate solution. Our
purpose here is to draw attention to the rôle of a suitable formula of type (2.13), without entering
into the detail which has to be investigated to place the theory on a rigorous foundation.

4 An extension of the values K(t; s; v) for s¿ t is not required in the Pouzet-type RK formulae if ai; j=0 when #j ¿#i

and #‘ ∈ [0; 1] for all ‘.
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We appeal to (2.13) (with minimal assumptions concerning the nature of R(t; s; u(s))) to compare
the solution ỹ(·) of the collocation equations with the solution y(·) of (2.1b). We let �(ỹ(·); t) in
(6.4) denote the defect, which vanishes at the points {tn; i}mi=1 for n= 0; 1; 2; : : : ; N − 1, and we have

ỹ(t)− y(t) = �(ỹ(·); t) +
∫ t

t0
R(t; s; ỹ(s))�(ỹ(·); s) ds (8.9)

and, in particular,

ỹ(tn)− y(tn) = �(ỹ(·); tn) +
n−1∑
j=0

∫ tj+1

tj
R(tn; s; ỹ(s))�(ỹ(·); s) ds: (8.10)

Using interpolatory quadrature with abscissae tj; k (the collocation points in the jth subinterval, or
even a subset of these abscissae) and weights hjwk we deduce that∫ tj+1

tj
R(tn; s; ỹ(s))�(ỹ(·); s) = hj

∑
k

wkR(tn; tj; k ; ỹ(tj; k))�(ỹ(·); tj; k) + En;j; (8.11)

where En;j denotes the error in the quadrature, and the sum in (8.11) vanishes because the defect is
zero at the collocation points. Thus,

ỹ(tn)− y(tn) = �(ỹ(·); tn) +
n−1∑
j=0

En;j:

To obtain high order of convergence on T under suitable smoothness conditions (the integrand in
(8.11) should be shown to be smooth on [tj; tj+1]) one should therefore ensure (i) that �(ỹ(·); t)
vanishes on T (the points {tn} should be included in the collocation points), and (ii) that the points
tj; k (or a subset thereof) give interpolatory quadrature with an error of high order (Gaussian-type
quadrature, e.g., taking # as [#(Gaussm); 1], #(Radaum], or #[Lobattom]). For a complete analysis for linear
equations see [49], cf. [23,51].

9. Stability

The stability theory for numerical methods for Volterra equations is still incomplete though con-
siderable advances have been made. Stability is concerned with the e�ect on a solution (here de�ned
over [t0;∞)) of perturbations in the problem, and di�ering de�nitions of stability arise when one
considers di�erent types of admissible perturbations. Let us therefore consider

y(t) = g(t) +
∫ t

t0
K(t; s; y(s)) ds (t ∈ [t0;∞)): (9.1a)

With a choice of a class G of admissible perturbations de�ned on [t0;∞), consider the introduction
of a perturbation �g(·) ∈ G to give

y(t) + �y(t) = g(t) + �g(t) +
∫ t

t0
K(t; s; y(s) + �y(s)) ds (t ∈ [t0;∞)): (9.1b)

Possible choices of G are

G:={�g(t) ∈ BC[t0;∞)}; i:e:; �g(t) ∈ C[t0;∞); sup
t¿t0
|�g(t)|¡∞; (9.2a)
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G:={�g(t) ∈ BC0[t0;∞)}; i:e:; �g(t) ∈ BC[t0;∞); lim
t→∞ �g(t) = 0; (9.2b)

G:={�g(t) ∈L1[t0;∞)}; i:e:;
∫ ∞

t0
|�g(s)| ds¡∞: (9.2c)

The notion of the stability of the solution y(·) of (9.1a) is related to the e�ect �y(·) that results
from making the perturbation �g(·), e.g. The solution y(t) is globally stable with respect to pertur-
bations �g(·) ∈ G in the case that supt∈[t0 ;∞)|�y(t)| is bounded whenever �g(·) ∈ G; it is globally
asymptotically stable if it is stable and in addition �y(t)→ 0 as t →∞ whenever �g(·) ∈ G.
Concepts of the stability of the numerical solution ỹ(t) follows analogous lines. These reect

whether ỹ(·) is densely de�ned on [t0;∞) or is regarded as a mesh function de�ned on T (or on
T#(#) — for de�niteness assume the former) and whether we take G as in (9:2) or instead choose
a corresponding G̃ comprising mesh functions, such as

G̃:={{�g(t0); �g(t1); �g(t2); : : :} ∈ ‘∞}; i:e:; suptn∈T|�g(t)|¡∞; (9.3a)

G̃ := {{�g(t0); �g(t1); �g(t2); · · ·} ∈ ‘0∞};
i:e:; sup

tn∈T

|�g(tn)|¡∞; and lim
tn→∞ �g(tn) = 0; (9.3b)

G̃:={{�g(t0); �g(t1); �g(t2); : : :} ∈ ‘1}; i:e:;
∞∑
n=0

|�g(tn)|¡∞: (9.3c)

We shall denote the choice by su�ces (G(9:2a) through G̃(9:3c)). Note the duplication in the sense
that, e.g., �g ∈ G(9:2a) implies that �g ∈ G̃(9:3a) (but not vice versa). As an example of de�nitions of
numerical stability we have

Suppose ỹ(·) satis�es (3:4); and

ỹ(tn+1) + �ỹ(tn+1) =
n+1∑
r=0


n+1; jK(tn+1; tj; ỹ(tj) + �ỹ(tj)) + g(tn+1) + �g(tn): (9.4)

The solution ỹ(t) (t ∈T) of (3.8) is globally stable with respect to perturbations �g(·) ∈ G̃ in the
case that suptn∈T|�ỹ(tn)| is bounded whenever �g(·) ∈ G̃; it is globally asymptotically stable if it is
stable and in addition �ỹ(tn)→ 0 as tn →∞ with tn ∈T whenever �g(·) ∈ G̃; it is exponentially
stable if it is asymptotically stable and there exist M; z¿ 0 (corresponding to �g(·) ∈ G̃) such that
�ỹ(tn)6M exp{−z(tn − t0)} for tn ∈T.

With favourable assumptions (though not invariably), investigation of stability of a solution of
a nonlinear equation can be reduced to that of the solutions of a corresponding linear equation
(stability in the �rst approximation). Alternative approaches invoke Lyapunov theory or ad hoc
qualitative arguments. The stability of any solution y(t) of

y(t) = �
∫ t

t0
k(t; s)y(s) ds+ g(t) (9.5)

can be settled by investigation of

�y(t) = �
∫ t

t0
r{�}(t; s)�g(s) ds+ �g(t) (for t¿t0); (9.6)
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where r{�}(·; ·) is the resolvent kernel. One has only to determine the boundedness and asymptotic
behaviour of �y(·) given the condition �g(·) ∈ G and conditions on r{�}(t; s) that can be deduced
from assumed conditions on k(t; s). E.g., boundedness of �y(t) for all t¿t0 follows from the property
supt¿t0 |�g(t)|¡∞ if the resolvent condition supt¿t0

∫ t
t0
|r{�}(t; s)| ds¡∞ is satis�ed, and one has

stability under this condition if �g(·) ∈ G(9:2a).

Remark 9.1. In the integro-di�erential equation in Remark 2.4, the e�ect �y(t) (t ¿ t0) of perturbing
the initial value y(t0) to y(t0)+�y(t0) and of perturbing g(·) by a uniformly bounded function �g(·)
to give g(·) + �g(·) can be investigated in terms of the function u(·; ·) discussed in that remark.

For discretized equations one has a similar result to (9.6). Consider, for example, discrete Volterra
equations of the form

ỹ n+1 = �
n+1∑
i=0

an+1; jỹ j + gn+1 (n= 0; 1; : : :) (9.7)

with ỹ 0 = g0, that correspond when an; j = 
n;jk(tn; tj), to the application of the scheme in (3.4) to
(9.5). Then (9.7) provides an in�nite system of equations with a lower triangular coe�cient matrix
for which the solution (a) exists if �an;n−1 6= 0 for all n and (b) can then be expressed, if required,
as

ỹ n+1 = gn+1 + �
n+1∑
j=0

b{�}
n+1; jgj (n= 0; 1; : : :): (9.8)

Thus, �ỹ n+1 = �gn+1 + �
∑n+1

j=0 b
{�}
n+1; j�gj and conditions for the stability of (9.7) with �g ∈ G̃(9:3a)

can be expressed in terms of the condition supn
∑n+1

j=0 |b{�}
n+1; j|¡∞. (For RK and block-by-block

formulae one may use vectors and submatrices in an analogous discussion.) In previous literature,
this underlying approach is frequently concealed from view, because special structure of (9.7) is
exploited to reduce Eqs. (9.7) to a �nite-term recurrence relation or to one in which other structures
can be exploited.
For equations of the second kind, numerical stability analysis focussed initially on methods with

a uniform grid T applied to the equation

y(t)− �
∫ t

t0
y(s) ds= g(t); (9.9)

which (Example 3.2) reduces to an ODE if g′(·) exists. The corresponding stability results were
therefore related to those for (possibly novel) ODE methods for y′(t) = �y(t) + g′(t), but of course
a perturbation �g(·) in the integral equation corresponds to a change in the ODE of �g′(·) in g′(·)
and of �g(t0) in the initial value. However, without assuming di�erentiability we can still introduce
a continuous perturbation �g(·) in (9.9) and use the resolvent to write

�y(t) = �g(t) + �
∫ t

t0
exp{�(t − s)}�g(s) ds: (9.10)

Note that (i) when R (�)60 then �y(·) is bounded when �g(·) ∈ G(9:2a) (giving stability) and (ii)
when R (�)¡ 0 then �y(t) → 0 as t → ∞ when �g(·) ∈ G(9:2b) (giving asymptotic stability). For



C.T.H. Baker / Journal of Computational and Applied Mathematics 125 (2000) 217–249 241

the corresponding discrete equations based on an application of a {�; �}-reducible quadrature (4.2)
to (9.9) we �nd that perturbations satisfy

�ỹ n − �h
n∑

j=n0+1

!n−j�ỹ j = �n (n= n0 + 1; n0 + 2; : : :); (9.11)

where �n:=�g(nh) + h
∑n0

j=0 wn;j�ỹ j and where the boundedness of {wn;j} implies the boundedness
of {�n} when �g(·) ∈ G̃(9:3a). Then, if �h!0 6= 1,

�ỹ n = �n + �h
n∑

j=n0+1

${�h}
n−j �j (n= n0 + 1; n0 + 2; : : :); (9.12)

where (1 + �h{${�h}
0 +${�h}

1 �+${�h}
2 �2 + · · ·})(1− �h{!0 +!1�+!2�2 + · · ·}) = 1, and hence, by

virtue of (4.3),

1 + �h{${�h}
0 + ${�h}

1 �+ ${�h}
2 �2 + · · ·}= �k�(�−1)

�k�(�−1)− �h�k�(�−1)
: (9.13)

Using partial fractions and expanding, it follows that if the polynomial �(�) − ��(�) is Schur 5

then the coe�cients {${�}
n } satisfy

∑∞
n=0 |${�}

n |¡∞, and we deduce stability for perturbations
�g(·)∈G̃(9:3a). If {�; �} is A-stable, this property holds whenever R (�)¡ 0 for all h. Note, however,
that when �g ∈ G̃(9:3b), we �nd |�n| 9 0 and we do not deduce asymptotic stability without further
restriction of the admissible �g; this minor di�culty disappears later when we introduce a suitable
L1-kernel k(·) into the equation.

Remark 9.2. (a) Some of the techniques used for (9.9) can be modi�ed for separable kernels,
polynomial convolution kernels (e.g., k(t) = � + � t, for which (9.14) below reduces to y′′(t) =
�y′(t) + �y(t) + g′′(t)), etc. (b) For integro-di�erential equations, y′(t) = �y(t) + �

∫ t
t0
y(s) ds+ g(t)

plays a similar rôle to (9.9). (c) Stability and stability regions for test equations are discussed in,
for example, [8,7,10,50].

A natural question to ask is whether results for (9.9) provide any insight into results for more gen-
eral equations; we indicate one approach to answering this question by considering the discretization
of the linear convolution equation

y(t)− �
∫ t

t0
k(t − s)y(s) ds= g(t) with � ∈ C; (9.14)

Let us keep in mind the substitutions an=hk(nh)!n; ỹ j=ỹ(jh), gn=g(nh), and consider the discrete
convolution equations

ỹ n+1 = �
n+1∑
j=0

an+1−jỹ j + gn+1 (n= 0; 1; : : :): (9.15)

5 All its zeros lie inside the unit circle centered on the origin, or, equivalently, zk�(z−1) − �hzk�(z−1) = 0 implies
|z|¿1.
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If a(�) denotes the formal power series
∑∞

j=0 aj�j, and if b{�}(�) denotes the formal power series∑∞
j=0 b

{�}
j �j where (1− �a (�))(1 + �b{�}(�)) = 1 then

ỹ n+1 = gn+1 + �
n+1∑
j=0

b
{�}
n+1−jgn+1 (n= 0; 1; : : :): (9.16)

If, further,
∞∑
j=0

|aj|¡∞ and 1 6= �
∞∑
j=0

aj�j whenever |�|61; (9.17)

then
∑∞

j=0 |b{�}
j |¡∞ and hence the solution of (9.15) is stable for perturbations �gn in G̃(9:3a) or

in G̃(9:3b) and is asymptotically stable for perturbations �gn in G̃(9:3b) or, indeed, in G̃(9:3c). Un-
der assumptions on the ‘starting weights’ sn+1; j the analysis can be extended to discuss equations,
cf. (4.2), of the form

ỹ n+1 = �




n0∑
j=0

sn+1; jỹ j +
n+1∑

j=n0+1

an+1−jỹ j


+ gn+1 (n¿n0): (9.18)

Normally sn; j = wn;jk((n− j)h), and an; j = !n−jk((n− j)h); hence if k(·) ∈ C[0;∞) ∩ L1[0;∞) (so
that k(t)→ 0 as t →∞) and if the weights !‘ are uniformly bounded and

∞∑
‘=0

|k(‘h)|¡∞; (9.19)

we �nd sn; j = 0;
∑∞

‘=0 |a‘|¡∞. Condition (9.19) is a minor annoyance but should not be over-
looked; it holds under our previous assumptions when k(·) is monotonic decreasing or is monotonic
decreasing for su�ciently large arguments or when h is su�ciently small (say h6h?(k(·))).
In our discussion of (9.9) we relied upon the simple nature of the kernel. Whilst (9.17) and (9.19)

allow one to compute approximate stability regions for special k(·), what we seek now is a class
of integral equations for which stability is readily analysed and classes of methods that simulate
the stability properties of the true solution. A theory can be constructed if we consider positive
quadrature and completely monotone or positive de�nite functions.

Remark 9.3. (a) A convolution quadrature is called positive (i) if and only if
∑∑

!i−jzi �zj¿0 for
all �nite sequences of complex-valued z‘. (ii) A quadrature is positive if it is a reducible quadrature
generated by an A-stable LMF (�; �). (b) A function  : [0;∞) → C is positive de�nite if (i) on
de�ning �(t) =  (t), t¿0, �(t) =− (−t), t60, we have ∑i

∑
j �(ti − tj)zizj¿0 for all t‘ and all

�nite sequences of complex valued z‘, or (ii) equivalently, by a result of Bochner, if (a Laplace
transform condition) R {∫∞

0  (s) exp(−zs)ds}¿0 if R (z)¿ 0. (c) A function  that is completely
monotone (that is,  (·) ∈ C∞[0;∞) and (−1)jk (j)(t)¿ 0 for j = 0; 1; 2; : : :) is positive de�nite.
(d) When the convolution quadrature with weights !‘ is positive and k(·) is a positive-de�nite
function, the sequence {a‘} (with a‘=hk(‘h)!‘) is a positive de�nite sequence and the analogue of
Bochner’s Laplace transform result (in e�ect, a Z-transform condition) holds: R {∑∞

n=0 an�n}¿0 for
|�|61.
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Consider the linear equation (9.14) for which a resolvent convolution kernel r{�}(·) ∈ C[0;∞)
provides the solution y(t) = g(t) + �

∫ t
t0
r{�}(t − s)g(s) ds. If

Hypothesis 3. k(·) ∈ C[0;∞) ∩L1[0;∞), and R (�)¡ 0, and either
(i) k(·) is completely monotone, or, more generally,
(ii) k(·) is positive de�nite,

then we have
∫∞
0 |r{�}(s) ds|¡∞ and hence all solutions of (9.14) are stable for perturbations �g(·)

in G(9:2a) (or a fortiori for perturbations �g(·) in G(9:2b)), and asymptotically stable for perturbations
�g(·) in G(9:2b) (or a fortiori for perturbations �g(·) in G(9:2c)). The preceding remarks inspire the
de�nition of a C-stable RK or quadrature method as one that, when applied to (9.14) with R (�)¡ 0
and a bounded continuous positive-de�nite kernel k(·) yields for all �xed h approximations {ỹn}
such that ỹ n → 0 whenever g(tn) → 0 as n → ∞. In fact, when using the concept of C-stability,
we have to impose condition (9.19) or a similar condition, thereby restricting slightly the class of
functions k(·). Expressed in our terms, the method is C-stable if, given Hypothesis 3 along with
(9.19) (or along with an analogous assumption in the case of RK methods) the mesh-functions ỹ(t)
(t ∈ T) are asymptotically stable for all h with respect to perturbations in G̃(9:3b). It was Lubich
who showed (inter alia) that A-stable {�; �}-reducible quadrature formulae applied to (9.14) are
C-stable, using assumption (9.19) (see [102]), in particular, therefore, under the assumption that
k(·) is completely monotone. Given (9.19), {a‘}∞0 is a positive de�nite ‘1 sequence, which (with
our previous remarks) is su�cient to establish the claim.

Remark 9.4. (a) The work of Nevanlinna (cf. [112,113]) stimulated a strand of research in the
stability analysis for numerical methods for Volterra equations. (b) Hairer and Lubich [78] showed
that, provided one employs the correct extension of the positive-de�nite function k(·) to negative
arguments, algebraically stable extended Pouzet–R–K methods are C-stable under an assumption
analogous to (9.19). An order barrier was given. (c) The stability of collocation methods has been
discussed in [17,18,65] etc. (d) Nonlinear equations were discussed in [72], where an approach of
Corduneanu in [56] is exploited and analogous results are obtained. The discussion in [73] deals
with a class of nonlinear convolution equations and refers to use that can be made of strong and
strict positivity.

10. Concluding remarks

The term “Volterra equations” encompasses a variety of “nonanticipative” functional equations that
generalize the classical equations we have studied here. It has been necessary to limit our discussion
and to omit a number of growth areas, and we have concentrated on classical Volterra equations. This
leaves some noteworthy omissions, including integro-di�erential equations with discretely distributed
delays, such as

y′(t) = �y(t)

{
A−

∫ t

t0
K(t; s; y(s)) ds−

N∑
i=1

Biy(t − �i(t))

}
;
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where �i(t)¿0 (i=1; 2; : : : ; N ) and partial integro-di�erential equations (see e.g., [106,117] and their
references).
Equations with in�nite memory that have the form

y(t) = (t) +
∫ t

−∞
K(t; s; y(s)) ds (t ∈ [t0; T ]); (10.1a)

y(t) =  (t) (−∞¡t6t0); (10.1b)

reduce, formally, to (2.1b) if, in the classical case, we set

g(t) : =(t) +
∫ t0

−∞
K(t; s;  (s)) ds: (10.2)

This begs the question of the accurate evaluation of (10.2) which can be computationally expen-
sive. One can also consider equations with a lower limit of integration �(t) and an upper limit of
integration �(t) (where �(t)6�(t)¡t),

y(t) = (t) +
∫ �(t)

�(t)
K(t; s; y(s)) ds (t ∈ [t0; T ]); (10.3)

y(t) =  (t)
(
inf
t′¿t0

�(t′)6t6t0

)
; (10.4)

if we de�ne K(t; s; u) := 0 for s 6∈ [�(t); �(t)]. However, in order to treat “nonclassical” limits of
integration, we must admit that K(t; s; v) may su�er a jump discontinuity when s = �(t) or �(t). It
is clear that the form of �(t) has an impact upon the type of initial condition required to determine
a unique solution. Whereas the analytical theories can to some extent uni�ed, numerical practice
should reect the presence of discontinuities and it seems better to treat the original nonclassical
equations directly. A number of papers in the literature do attempt that. Further variants include
equations

y(t) = g(t) +
∫ �(t)

�(t)
K(t; s; y(t); y(s); y(a(t)); y(b(s))) ds (t¿t0) (10.5)

with �(t)6�(t)6t and with a(s)6t, and b(s)6t for s ∈ [�(t); �(t)].
As regards future work, there remain interesting theoretical questions about the numerical simu-

lation of qualitative properties (e.g., the e�ect of di�erent types of memory, the onset of periodicity
through bifurcation, and [115] blow-up in solutions); there exist opportunities for the application
of mathematical arguments to the design and validation of robust and e�cient adaptive codes that
are suited to numerical simulation of real-life models (particularly Volterra equations arising in the
biosciences).
We conclude with some references to the literature. The material herein should provide an adequate

base for the interested reader to pursue the above topics. The book of Brunner and van der Houwen
[49] has an excellent bibliography to the date of its completion in 1985. Since the output referred to
there is repeated here when we wish to draw particular attention to it, our choice of Refs. [1–123]
may be regarded as reecting idiosyncrasies of the author.
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Abstract

This paper is devoted to the stability analysis of both the true solutions and the numerical approximations for nonlinear
systems of neutral delay di�erential equations (NDDEs) of the form y′(t) = F(t; y(t); G(t; y(t − �(t)); y′(t − �(t)))): This
work extends the results recently obtained by the authors Bellen et al. (BIT 39 (1999) 1–24) for the linear case. This is
accomplished by considering a suitable reformulation of the given system, which transforms it into a nonlinear di�erential
system coupled with an algebraic functional recursion. Numerical processes preserving the qualitative properties of the
solutions are also investigated. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Neutral delay di�erential equations; Numerical stability; RK-methods for delay equations

1. Introduction

Delay di�erential equations (DDE) are assuming an increasingly important role in many applied
disciplines. One of the reasons is that progress has been made in the mathematical understanding and
theory of DDEs. Further, a multitude of di�erent interesting problems lead to DDEs in di�erent �elds
like biology, economy, circuit theory, control theory and electrodynamics (see, e.g., [5,7,10,14]).
The mathematical theory necessary for the e�cient solution and understanding of key issues like
convergence and stability has been advanced especially in the last few years. A comprehensive
introduction to the subject of DDEs and numerical solvers is given in a review paper by Baker et
al. [1] and in a book chapter by Zennaro [19].
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Our work was in part motivated by the solution of circuit theory time domain problems which lead
to DDEs. Two important examples are the method of characteristics transmission line models [5]
and the partial element equivalent circuit (PEEC) three-dimensional electromagnetic circuit model
[14]. Recently, implementations of the PEEC approach have shown to be promising for the time
domain analysis of electromagnetic interactions of packaged electronics [13]. The key feature of
these problems is the fact that they involve delayed sources which are of the form y(t − �) and
y′(t − �).
In this paper we investigate neutral delay di�erential equations (NDDEs) of the form

y′(t) = F(t; y(t); G(t; y(t − �(t)); y′(t − �(t)))); t¿t0;

y(t) = g(t); t6t0;
(1)

where F and G are complex continuous vector functions, g(t) is a C1-continuous complex-valued
function and �(t) is a continuous delay function such that

(H1) �(t)¿�0¿ 0 and �(t) = t − �(t) is increasing ∀t¿t0:

We �rst examine su�cient conditions for the contractivity and for the asymptotic stability of the true
solutions of (1), which represents the model for the system to be studied. From a computational point
of view, we are also interested in the qualitative behaviour of the numerical solution of the NDDE.
For this, in the second part of the paper, we investigate both the contractivity and the asymptotic
stability of the numerical solution furnished by RK-methods.
Con�ned to the linear case, several researchers have studied the asymptotic behaviour of the true

solutions (see, e.g., [12]) as well as the numerical solutions (see, e.g., [6,9,11] and, quite recently,
[3]). Relevant to the considered nonlinear test problem (1), instead, only very few results dealing
with the qualitative behaviour of both the true and the numerical solutions have been published.
Among them, we address the reader to the recent paper by Torelli and Vermiglio [17], where,
however, both the model and the used approach are di�erent with respect to those proposed here.
Our approach is based on the contractivity properties of the solutions of (1) and we extend the

contractivity requirements to the numerical solutions. For the case of (nonneutral) nonlinear delay
di�erential equations, this kind of methodology has been �rst introduced by Torelli [15,16] and then
developed by Bellen and Zennaro [4], Bellen [2] and Zennaro [18,20].

2. The standard approach

The most standard approach considered in the literature consists in integrating (1) step-by-step. To
this aim we need to determine the breaking points of the solution y(t), which are points associated
with discontinuities in the derivatives of y(t), due to the presence of the functional argument �(t).
By hypothesis (H1) on the delay function, we label these points as

�0 = t0¡�1¡ · · ·¡�n ¡�n+1¡ · · · ;
�n+1 being the unique solution of �(�) = �n. Then we de�ne the intervals I0:=[t0 − �(t0); �0] and
In = [�n−1; �n], for n¿1. The analysis of the behaviour of the solutions can be done across the
intervals In, by relating the solution in In with the one in In−1.
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The classical way of numerically solving system (1) consists in making use of numerical methods
for ODEs to integrate the system

y′(t) = F(t; y(t); G(t; �(�(t)); �(�(t)))); t ∈ In;

where �(s) and �(s) are approximations of y(s) and y′(s); respectively, obtained by the numerical
method itself in the previous interval In−1.

3. A suitable reformulation of the problem

In this work we propose a suitable reformulation of the problem which, apparently, does not
require to approximate the derivative of the numerical solution. In order to do this, we rewrite
problem (1) as follows:

y′(t) = F(t; y(t); �(t)); t¿t0;

y(t) = g(t); t6t0;
(2)

where

�(t) =

{
G(t; g(�(t)); g′(�(t))); if t06t ¡�1;

G(t; y(�(t)); F(�(t); y(�(t)); �(�(t)))) if t¿�1:
(3)

Observe that �(t) is not continuous from the left at the breaking points �k . In this approach the neu-
tral system is transformed into an ordinary di�erential system plus an algebraic functional recursion.
Consequently, new numerical schemes for the approximation of the solution are suggested.
Without loss of generality, we assume that

F(t; 0; 0) ≡ G(t; 0; 0) ≡ 0;
so that the system

y′(t) = F(t; y(t); G(t; y(�(t)); y′(�(t)))); t¿t0;

y(t) = 0; t6t0;

has the trivial solution y(t) ≡ 0. Our stability analysis is based on the contractivity properties of the
solutions of the ordinary di�erential equation (ODE)

y′(t) = F(t; y(t); �(t)); t¿t0;

y(t0) = y0; (4)

with respect to the forcing term �(t). Preliminarly, we make some standard assumptions. Given an
inner product 〈·; ·〉 in Cm and the corresponding norm || · ||, we assume that F : [t0;+∞)×Cm×Cm →
Cm is continuous with respect to t and uniformly Lipschitz continuous with respect to the second
and third variables, that is there exist two continuous functions Y (t) and W (t) such that

Y (t)¿ sup
x;y1 6=y2

R [〈F(t; y1; x)− F(t; y2; x); y1 − y2〉]
||y1 − y2||2 ; (5)

W (t)¿ sup
y; x1 6=x2

||F(t; y; x)− F(t; y; x)||
||w1 − w2|| : (6)
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In the sequel it will be convenient to consider the function

H (t; x; z) = G(t; x; F(�(t); x; z)): (7)

Similar to what was done for F , we assume for H a continuous dependence with respect to t and
a uniform Lipschitz continuity with respect to x and z, that is there exist two continuous functions
X (t) and Z(t) such that

X (t)¿ sup
z;x1 6=x2

||H (t; x1; z)− H (t; x2; z)||
||x1 − x2|| ; (8)

Z(t)¿ sup
x;z1 6=z2

||H (t; x; z1)− H (t; x; z2)||
||z1 − z2|| : (9)

Then recall the following result (see, for example [20]).

Lemma 1. Consider system (4) where the components of the forcing term �(t) are assumed to be
continuous functions. Moreover; chosen a suitable inner product 〈·; ·〉 such that (5) and (6) hold;
assume that

Y (t)60; t¿t0;

and for a bounded function r(t)¿0;

W (t) =−r(t)Y (t); t¿t0:

Then; for all t¿t0; the inequality

||y(t)||6E(t0; t)||y(t0)||+ (1− E(t0; t)) sup
t06s6t

(r(s) ||�(s)||) (10)

holds; where

E(t1; t2) = exp
(∫ t2

t1
Y (s) ds

)
61; ∀t2¿t1:

By using the foregoing result, it is not di�cult to modify the proofs of Theorems 3:1 and 3:2
in [3] in order to extend the contractivity and asymptotic stability results from the linear to the
nonlinear case (1) considered here. In the sequel, we shall assume the function �(t) continuous in
the closed interval [�n−1; �n]; n¿1, by considering

�(�n) = lim
t→�−n

�(t);

which exists. Therefore, there exists max�n−16s6�n ||�(s)|| for every n¿1. The following theorem
concerns the contractivity properties of the solutions of (2) and (3). For technical reasons we shall
assume r(t)¿ 0. In fact, we shall consider the ratio r(t)=r(�(t)).

Theorem 2. Assume that functions (5); (6); (8) and (9) ful�l the inequalities Y (t)60; r(t)¿ 0
and

r(t)
(
X (t) +

Z(t)
r(�(t))

)
61; ∀t¿t0: (11)
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Then the solution y(t) of (1) is such that

||y(t)||6max{||g(t0)||; �}; (12)

where

� = sup
t06s6�1

||r(s)G(s; g(�(s)); g′(�(s)))|| (13)

for every initial function g(t) and for every delay �(t) satisfying the assumption (H1).

Proof. We proceed by developing a step-by-step analysis of system (2)–(3) over the intervals {In}.
Thus consider the interval In = [�n−1; �n] (n¿1). By Lemma 1, for every t ∈ In, we have

||y(t)||6E(�n−1; t)||y(�n−1)||+ (1− E(�n−1; t)) sup
�n−16s6t

(r(s)||�(s)||); (14)

where E(�n−1; t) = exp(
∫ t
�n−1

Y (s) ds)61. Since the right-hand side of (14) is a convex combination,
we immediately have

||y(t)||6max
{
||y(�n−1)||; sup

�n−16s6t
(r(s) ||�(s)||)

}
: (15)

Furthermore, by (3) and (7), it holds that

||�(t)||=
{ ||G(t; g(�(t)); g′(�(t)))||; n= 1;

||H (t; y(�(t)); �(�(t)))||; n¿2:
(16)

Therefore, for n¿2, since H (t; 0; 0) ≡ 0, we have
||�(t)|| = ||H (t; y(�(t)); �(�(t)))|| − ||H (t; 0; 0)||

= ||H (t; y(�(t)); �(�(t)))|| − ||H (t; 0; �(�(t)))|| + ||H (t; 0; �(�(t)))|| − ||H (t; 0; 0)||
6X (t)||y(�(t))||+ Z(t)||�(�(t))|| (17)

and, hence, assumption (11) implies

||r(t)�(t)||6 (1− �(t))||y(�(t))||+ �(t)||r(�(t))�(�(t))||
6max{||y(�(t))||; ||r(�(t))�(�(t))||}; (18)

where �(t) = (r(t)=r(�(t)))Z(t)61. Now, for any vector function v(s) and any integer l¿0, set

|||v|||l = sup
s∈Il
||v(s)||:

Therefore, routine calculations and (13) yield

|||r �|||1 = �; (19)

|||r �|||n6max{|||y|||n−1; |||r �|||n−1}; n¿2: (20)

Now, for all n¿1 de�ne �n =max{|||y|||n; |||r �|||n}, so that (15) and (20) imply
|||y|||n6max{|||y|||n−1; |||r �|||n−1}; n¿1 (21)
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and �n6�n−1 for n¿2. Therefore,

|||y|||n6�1 ∀n¿2:
Finally, consider the case n= 1, for which (15), (16) and (13) yield

|||y|||16max{||g(t0)||; �}:
Since �1 = max{|||y|||1; |||r �|||1}, the last inequality provides

�16max{||g(t0)||; �}
and then (12) is proved.

Remark 3. When G does not depend on y′(�(t)), conditions (11) and (12) reduce to

r(t)X (t)61; ∀t¿t0;

and

||y(t)||6max
{
||g(t0)||; sup

t06s6�1
||r(s)G(s; g(�(s)))||

}
:

Remark 4. In the fully linear nonautonomous case, that is

y′(t) = L(t)y(t) +M (t)y(�(t)) + N (t)y′(�(t)); t¿t0;

y(t) = g(t); t6t0;
(22)

we can choose Y (t)= �[L(t)], �[·] being the logarithmic norm, W (t)= 1, r(t)=−1=�[L(t)], X (t)=
||M (t) + N (t)L(�(t))|| and Z(t) = ||N (t)||. As a consequence, for the contractivity we require that
�[L(t)]¡ 0 and

||M (t) + N (t)L(�(t))||
−�[L(t)] 61− �[L(�(t))]

�[L(t)]
||N (t)||; ∀t¿t0:

By slightly strengthening assumption (11), we can state a �rst result on the asymptotic stability
of the solutions.

Theorem 5. Assume that functions (5); (6); (8) and (9) ful�l the inequalities r(t)¿ 0,

Y (t)6Y0¡ 0; ∀ t¿t0; (23)

and

�(t)6�̃¡ 1; ∀ t¿t0;

X (t) r(t)6k(1− �(t)); ∀t¿t0; k ¡ 1; (24)

where �(t) = Z(t) r(t)=r(�(t)). Then we have limt→∞y(t) = 0 for every initial function g(t) and for
every delay �(t) satisfying assumption (H1) and
(H2) limt→+∞ �(t) = +∞.
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Proof. Observe that, by (23), the function r(t) = −(W (t)=Y (t)) is continuous. In analogy to the
previous theorem, we proceed by developing a step-by-step analysis over the intervals {In}. By
(10), for every t ∈ In, we get

||y(�n)||6E(�n−1; �n) ||y(�n−1)||+ (1− E(�n−1; �n)) sup
�n−16s6�n

(r(s) ||�(s)||)

6 cn |||y|||n + (1− cn) |||r �|||n; (25)

where cn=exp(
∫ �n
�n−1

Y (s) ds) and, by (H1), cn ¡ 1∀n. Furthermore, for the interval In+1, (10) yields

|||y|||n+16max{||y(�n)||; |||r �|||n+1}: (26)

In turn, by (25), inequality (26) provides

|||y|||n+16max{cn |||y|||n + (1− cn) |||r �|||n; |||r �|||n+1}: (27)

Now consider (3) and (7). By assumption (24), we have

|||r �|||n+16 max
�n6s6�n+1

(�(s) |||r �|||n + k (1− �(s)) |||y|||n)
= �n+1 |||r �|||n + k (1− �n+1) |||y|||n; n¿2; (28)

where �n+1 = �(sn+1), with sn+1 ∈ [�n; �n+1] suitable point. For the sake of conciseness, we omit the
rest of the proof, which is completely analogous to that given in Theorem 3:2 of Bellen et al. [3]
for the linear case, and is based on a suitable analysis of relations (27) and (28). We remark that
hypothesis (H2) is necessary. In fact, if it did not hold, there would exist only a �nite number of
breaking points �n and we could not conclude with asymptotic stability.

The following corollary is obtained by assuming that the delay function is bounded from above.

Corollary 6. Assume the hypotheses of Theorem 5 and that

(H3) �(t)6�M ; ∀t¿t0 (fading memory assumption):

Then the solution y(t) has an exponential asymptotic decay.

The proof is analogous to that given in [3], relevant to the linear case.

Remark 7. When G does not depend on y′(�(t)), (24) yield the condition X (t) r(t)6k¡1.

4. The numerical scheme

Given a general ODE with forcing term �(t) of the form

y′(t) = f(t; y(t); �(t)) (29)



258 A. Bellen et al. / Journal of Computational and Applied Mathematics 125 (2000) 251–263

with initial condition y(t0) = y0 and a mesh � = {t0¡t1¡ · · ·¡tn ¡ tn+1¡ · · ·}, let us consider
the s-stage RK-method

Y i
n+1 = yn + hn+1

s∑
j=1

aij K
j
n+1; i = 1; : : : ; s;

Ki
n+1 = f(tin+1; Y

i
n+1; �(t

i
n+1));

yn+1 = yn + hn+1

s∑
i=1

wi Ki
n+1;

: (30)

where tjn+1 = tn + cjhn+1, ci =
∑s

j=1 aij; i = 1; : : : ; s, and hn+1 = tn+1 − tn.
A continuous extension of the s-stage RK-method (30) may be obtained by considering the fol-

lowing interpolation:

�(tn + �hn+1) = yn + hn+1

s∑
i=1

wi(�)Ki
n+1; 06�61; (31)

where wi(�), i = 1; : : : ; s, are polynomials of given degree d such that wi(0) = 0 and wi(1) = wi.
Henceforth, we shall assume that ci ∈ [0; 1] ∀ i. In fact, if ci ¿ 1 for some i; there could be some
problems with the considered method of steps, due to the possibility that �(�(tin)) could be not
available from previous computations. A special instance, which will be referred to in the next
sections, consists of linear interpolation. In this case we have wi(�) = �wi and hence

�(tn + �hn+1) = (1− �)yn + � yn+1; 06�61: (32)

Now we propose a procedure for solving the test problem (1), which acts recursively on the intervals
Ij = [�j−1; �j], where the true solution y(t) is regular. The procedure, also called method of steps,
is summarized by the following scheme. On each interval Ij, j¿1, use a continuous RK-method on
the mesh �j = {tj;0 ≡ �j−1¡tj;1¡ · · ·¡tj;Nj ≡ �j} in Ij to solve the nonlinear system

y′(t) = F(t; y(t); ��(t));

y(�j−1) = �(�j−1);
(33)

where �(t) is the continuous approximation already computed by the numerical method in the pre-
vious intervals and the function ��(t) is given by one of the following schemes.
First scheme: direct evaluation (DE):

��(t) =

{
G(t; g(�(t)); g′(�(t))); t ∈ [t0; �1];
H (t; �(�(t)); ��(�(t))); t ∈ [�j−1; �j]; j¿2:

(34)

Second scheme: piecewise polynomial approximation (PA):

��(t) =




G(t; g(�(t)); g′(�(t))); t ∈ [t0; �1];
H
(
t; �(�(t));Qd

j−1( ��(·))(�(t))
)
; t ∈ [�j−1; �j]; j¿2;

Qd
l : C([�l−1; �l];Cm) → �d

l ([�l−1; �l];Cm);

where d is the degree of the approximating polynomial and Qd
l denotes a linear projector from the

space of continuous vector functions C([�l−1; �l];Cm) into the space of piecewise vector polynomials
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�d
l ([�l−1; �l];Cm). To be more precise, Qd

l provides a vector polynomial �� of degree d on every
subinterval [tl; k ; tl; k+1] de�ned by the mesh �l.
In the same way as in [3], we can prove the following result on the order of the proposed

numerical schemes for the solution of (2) and (3).

Theorem 8. For the solution of the NDDE (1), consider the DE-scheme, or the PA-scheme, with
piecewise polynomial approximation of order p. Assume that the functions F and G are su�ciently
smooth. Moreover, suppose to use a continuous RK-method of uniform global order p for the
numerical solution of (33) on each interval In. Then the numerical solution has uniform global
order p.

5. Stability properties of the DE- and PA-scheme

In this section we analyze the contractivity and asymptotic stability properties of the DE- and
PA-scheme proposed in Section 4.
Being the proposed numerical schemes based on the recursive solution of ordinary di�erential

systems such as (33), we are interested in determining RK-methods which are contractive with
respect to the test equation

y′(t) = F(t; y(t); �(t));

y(tn) = yn:
(35)

To this purpose, we recall the following de�nition from [4].

De�nition 9. A continuous RK-method is said to be BNf-stable if the continuous numerical solution
�(t) of (35) satis�es

max
06�61

||�(tn + �h)||6max
{
||yn||; max

16j6s
||r(tn + cj h)�(tn + cj h)||

}
(36)

for any stepsize h¿ 0, r(t) being the function considered in Lemma 1.

It has been proved [4] that Backward Euler (p = 1) and 2-stage Lobatto III-C with linear inter-
polation (p= 2) are BNf-stable. These methods are given by the following Butcher tableaux:

1 1
1

0 1
2 − 1

2

1 1
2

1
2

1
2

1
2

:

As in Section 3, we shall assume the function ��(t) continuous in the closed interval [�n−1; �n], n¿1,
by considering

��(�n) = lim
t→�−n

��(t);

which exists. The �rst result we are able to prove concerns the DE-scheme.
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Theorem 10. Consider the DE-scheme for the numerical solution of (1); and assume to use a
BNf-stable continuous RK-method for the solution of (33). If the hypotheses of Theorem 2 hold;
then for any mesh � the numerical solution � satis�es the contractivity property

||�(t)||6max{||g(t0)||; �}; ∀t¿t0:

Proof. The proof is analogous to the one for the stability of the true solutions and presents several
similarities to the proof of Theorem 5:1 in [3]. In fact, it is based on the property established by
De�nition 9 for the RK-method and on the assumption that we compute the function �� “exactly”
(that is “recursively” from the previous steps). The �rst assumption allows to state an inequality for
the numerical solution �(t) analogous to (21) on each interval In, that is

|||�|||n6max{|||�|||n−1; |||r ��|||n−1}: (37)

In fact, denoting the mesh relevant to the interval In by

tn;0 ≡ �n−1¡tn;1¡ · · ·¡tn;Nn ≡ �n (38)

and the corresponding stepsizes by hn;k = tn; k − tn; k−1; k¿1, (36) yields

max
06�61

||�(tn;0 + �hn;1)||6max{||�(tn;0)||; |||r ��|||n}:
By induction on the points tn; k ; k = 1; : : : ; Nn − 1, we easily get

max
06�61

||�(tn; k + �hn;k+1)||6max{||�(tn;0)||; |||r ��|||n}:

By de�nition of ��, assumption (11) provides the inequalities

|||r ��|||16� and |||r ��|||n6max{|||�|||n−1; |||r ��|||n−1}; n¿2; and hence (37):

From here on, the proof of contractivity is completely analogous to the one given in Theorem 2.

The second result concerns instead the PA-scheme, where piecewise constant or piecewise linear
interpolation is used for approximating the function ��. If t ∈ [�n−1; �n], there exists k such that
�(t) ∈ [tn−1; k ; tn−1; k+1]⊆ [�n−2; �n−1] and therefore

Q0n−1 ( ��(·)) (�(t)) = ��(tn−1; k);

Q1n−1 ( ��(·)) (�(t)) =
tn−1; k+1 − �(t)

hn−1; k+1
��(tn−1; k) +

�(t)− tn−1; k
hn−1; k+1

��(tn−1; k+1):

Theorem 11. Consider the PA-scheme with constant or linear interpolant for the numerical solu-
tion of (1) and assume to use a BNf-stable continuous RK-method for the solution of (33). If
the hypotheses of Theorem 2 hold; then for every mesh � the numerical solution � satis�es the
contractivity property

||�(t)||6max{||g(t0)||; �}; ∀t¿t0:

Proof. The proof proceeds as for the DE-case (Theorem 10), where the bound for ||| ��|||n remains
the same because the piecewise constant or linear interpolation of �� is still bounded by the maximum
value of || ��||. Therefore, also in this case we can assert inequality (37) and then proceed as in the
previous case.
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Now we pass to consider the asymptotic stability of the numerical schemes.

Lemma 12 (Zennaro [20]). Let the continuous RK-method (30)–(31) be BNf-stable and such that
ci ∈ [0; 1] ∀i. Then; for any mesh �; under the condition Y (t)6Y0¡ 0; the numerical solution {y‘}
of (35) satis�es

||y‘+1||6 ‘+1||y‘||+ (1−  ‘+1) max
16i6s

||r(t‘ + cih‘+1)�(t‘ + cih‘+1)||;

where 06 ‘+16�(h‘+1); �(h) being the error growth function of the RK-method; which depends
on Y0.

Hairer and Zennaro [8] proved that the error growth function �(h) is an asymptotically negative
super-exponential function, that is

�(0) = 1;

�(h)¡ 1; ∀h ¿ 0;

�(h′)�(h′′)6�(h′ + h′′); ∀h′; h′′¿0;
lim
h→∞

�(h)¡ 1:

(39)

Theorem 13. Consider the DE-scheme for the numerical solution of (1); and assume to use a
BNf-stable continuous RK-method for the solution of (33); such that ci ∈ [0; 1] ∀i. If the hypothe-
ses of Theorem 5 hold; then; for any mesh �; the numerical solution � asymptotically vanishes.
Furthermore; if condition (H3) holds; the decay of � is exponential.

Proof. With the previously introduced notation (38), as a consequence of the assumptions and by
means of Lemma 12, we get

||�(tn;1)||6 n;1||�(tn;0)||+ (1−  n;1) max
06�61

||r(tn;0 + �hn;1) ��(tn;0 + �hn;1)||;

where

 l; k6||�(hl;k)||; l= 1; 2; : : : ; k = 1; : : : ; Nl:

With standard manipulations, by (38), we arrive at

||�(�n)||6 (1−	n) max
06�61

||r(�n−1 + �Hn) ��(�n−1 + �Hn)||+	n||�(�n−1)||
6	n|||�|||n + (1−	n)|||r ��|||n; (40)

where Hn =
∑Nn

i=1 hn; i = �n − �n−1 and 	n =
∏Nn

k=1  n;k . By Lemma 12, we get

	n6�(hn;1)�(hn;2) · · ·�(hn;Nn)6�(Hn)6�(�0)¡ 1;

since Hn = �n − �n−1¿�0 and �(h) is nonincreasing. We remark that formula (40) plays, in the
numerical case, the role of (25). The method being BNf-stable, for the interval In+1 we get

|||�|||n+16max{||�(�n)||; |||r ��|||n+1}: (41)
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Hence, by applying estimate (40), inequality (41) yields

|||�|||n+16max{	n|||�|||n + (1−	n)|||r ��|||n; |||r ��|||n+1}: (42)

By assumption (24) and by de�nition of DE-scheme, similar to (28) we have

|||r ��|||n+16 ��n+1|||r ��|||n + k(1− ��n+1)|||�|||n; (43)

where ��n+1 = �( �sn+1) with �sn+1 ∈ [�n; �n+1] suitable point. Formulae (41)–(43) play, in the numerical
case, the role of formulae (26)–(28). Now, by virtue of this correspondence, the proof of the theorem
proceeds in perfect analogy to that of Theorem 5 and Corollary 6.

Similarly, relevant to the PA-scheme, we obtain the following result.

Theorem 14. Consider the PA-scheme with constant or linear interpolant for the numerical solution
of (1) and assume to use a BNf-stable continuous RK-method for the solution of (33). If the
hypotheses of Theorem 5 hold; then; for every mesh �; the numerical solution � asymptotically
vanishes. Furthermore; if condition (H3) holds; the decay of � is exponential.

We conclude the paper by giving an algorithmic description of both the classical method (see
Section 2) and the new method (based on the PA-scheme) for integrating (1).
Scheme 1 (classical method).
(i) In the �rst interval I1 = [t0; �1]:

(1) Compute

��(tn; i) = G(tn; i; g(�(tn; i)); g′(�(tn; i))); i = 1; : : : ; s:

(2) Evaluate the stages of the RK-method

Ki = F(tn; i; Yi; ��(tn; i)); i = 1; : : : ; s:

(3) Construct the polynomial approximations �(t) of y(t) and �(t) (possibly �′(t)) of y′(t).
(ii) In the subsequent intervals Ij = [�j−1; �j]; j¿2:

(1) Compute the values

��(tn; i) = G(tn; i; �(�(tn; i)); �(�(tn; i))); i = 1; : : : ; s:

(2) As in (i)(2).
(3) As in (i)(3).
Scheme 2 (novel method (PA)).

(i) In the �rst interval I1 = [t0; �1]:
(1) Compute

��(tn; i) = G(tn; i; g(�(tn; i)); g′(�(tn; i))); i = 1; : : : ; s:

(2) Evaluate the stages of the RK-method

Ki = F(tn; i; Yi; ��(tn; i)); i = 1; : : : ; s;

and then the continuous numerical approximation of the solution �(t).
(3) Interpolate �(t) over the time points {tn; i} to obtain a polynomial approximation ��(t).
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(ii) In the subsequent intervals Ij = [�j−1; �j]; j¿2:
(1) Compute the values

��(tn; i) = H (tn; i; �(�(tn; i)); ��(�(tn; i))); i = 1; : : : ; s:

(2) As in (i)(2).
(3) As in (i)(3).
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Abstract

Numerical methods for the bifurcation analysis of delay di�erential equations (DDEs) have only recently received much
attention, partially because the theory of DDEs (smoothness, boundedness, stability of solutions) is more complicated and
less established than the corresponding theory of ordinary di�erential equations. As a consequence, no established software
packages exist at present for the bifurcation analysis of DDEs. We outline existing numerical methods for the computation
and stability analysis of steady-state solutions and periodic solutions of systems of DDEs with several constant delays.
c© 2000 Elsevier Science B.V. All rights reserved.
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1. Delay di�erential equations

In this paper, we consider delay di�erential equations with multiple �xed discrete delays,

ẋ(t) = f(x(t); x(t − �1); : : : ; x(t − �m); �); (1)

where x(t) ∈ Rn, f : Rn×(m+1) × R → Rn, � ∈ R, �j ¿ 0; j = 1; : : : ; m. Other types of DDEs exist
and appear in applications. If, e.g., the right-hand side of (1) further depends on the derivative of
x(t) in the past,

ẋ(t) = f(x(t); x(t − �1); : : : ; x(t − �m); ẋ(t − �1); : : : ; ẋ(t − �m); �); (2)

the corresponding DDE is of neutral type. Delays can also be distributed (bounded or unbounded)
or varying (time and=or state dependent). All these types of DDEs exhibit quite di�erent theoretical
properties, many of which are still under investigation. Here we restrict ourselves to DDEs of
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type (1) and briey mention some extra (and unsolved) di�culties occurring in the numerical analysis
of (2).
A solution x(t) of (1) and (2) on t ∈ [0;∞) is uniquely de�ned by specifying as initial condition

a function segment, x(�) = x0(�); −�6�60, where � = maxi �i, x0 ∈ C. Here C = C([ − �; 0];Rn)
is the space of continuous function segments mapping the delay interval into Rn. Even if f and x0
are in�nitely smooth, a discontinuity in the �rst derivative of x(t) generally appears at t = 0 which
is propagated through time. The solution operator of (1), however, smoothes the initial data and
discontinuities appear in higher derivatives as time increases, which is not the case for (2).
Numerical methods for time integration of (1) are indicated by C.T.H. Baker [26]. Here, we

outline numerical methods for the bifurcation analysis of steady-state solutions and periodic solutions
of (1). Since a DDE can be approximated by a system of ordinary di�erential equations (ODEs),
this allows to use standard numerical methods for ODEs. However, an accurate approximation leads
to a high-dimensional system of ODEs and thus to a very expensive method. In this paper we only
present methods that are speci�cally developed for DDEs, which are both more e�cient and more
reliable.

2. Steady-state solutions

A steady-state solution (equilibrium) of (1) does not depend on the delays. Hence, (1) and the
system of ODEs, obtained from (1) by putting all delays to zero, have the same steady-state solutions,
x∗ ∈ Rn, which can be computed as zeros of the n-dimensional nonlinear system f(x∗; x∗; : : : ; x∗; �)
= 0.
However, the stability conditions are di�erent. The stability of a steady-state solution x∗ of (1) is

determined by the roots of the characteristic equation. If we de�ne the n×n-dimensional characteristic
matrix � as

�(x∗; �) = �I − A0(x∗)−
m∑
j=1

Aj(x∗) e−�j�; (3)

with Aj the partial derivative of f with respect to its (j + 1)th argument evaluated at x∗, then the
characteristic equation reads

P(�) = det(�(x∗; �)) = 0: (4)

The steady-state solution x∗ is asymptotically stable provided that all the roots � ∈ C of (4) have
strict negative real part [14, p. 23]. Note that, in general, (4) has in�nitely many roots.
If the right-hand side of the DDE depends on a physical parameter (like � in (1)) then a branch

of steady-state solutions (x∗(�)) can be computed as a function of the parameter using a continuation
procedure. The stability of the steady-state can change whenever roots of (4) cross the imaginary
axis. The corresponding bifurcation point is (generically) a turning point when a real root crosses
through zero and a Hopf bifurcation when a complex pair of roots crosses the imaginary axis. In
the latter case a branch of periodic solutions arises from the bifurcation point.
To determine the stability of x∗, a distinction can be made between two types of algorithms.

The �rst type computes the number of unstable roots of Eq. (4), that is the number of roots �
with Re(�)¿ 0, without computing the roots themselves. The second type locates and computes the
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�nite number of roots of (4) with real part greater than some negative constant, Re(�)¿−�. Once
detected, bifurcation points can be followed in two-parameter space using an appropriate determining
system (see [20]).

2.1. Counting unstable roots

Since P(�) is an analytic function, the theorem on the logarithmic residue [4] holds. If P(�) is
not zero on a closed contour G⊂C in the right-half plane, then the number of zeros of P(�) in the
interior of G, counted according to their multiplicities, is

NG =
1
2�i

∫
G

P′(z)
P(z)

dz: (5)

In [16], (5) is approximated using numerical quadrature. Geometric interpretation of (5) leads to the
argument principle which is used in [20],

NG =
1
2��GargP(z); (6)

where �G argP(z) is the total increase of argP(z) as z moves once around the contour G in the
positive direction. The method suggested in [12] is based on a restatement of the argument principle
which says that NG equals the number of times the curve J = P(G) (the mapping of G under
z → P(z)) encircles the origin.
In the papers mentioned above, di�erent choices of the contour G are used. Two problems arise:

roots in the right-half plane outside of G go unnoticed and (5) and (6) are ill-conditioned when
P(�) has a root near G. The �rst problem is tackled in [16] using a Gershgorin-type bound to
determine a region in the positive half plane, inside which all zeros (if any) of (4) must lie. In [20]
the contour is user chosen. In [12] G consists of the semicircle � = R exp(i�); � ∈ [ − �=2; �=2],
and the segment [ − iR; iR] with R � 0. If an upper bound for R can be derived such that for
R¿Rcrit, Re(P(iR))¡ 0, it is su�cient to consider the segment [− iRcrit; iRcrit]. The second problem
can somewhat be alleviated using adaptivity in the stepsize of the numerical quadrature or in the
determination of (6).
Recently, extensions of (5) have been used to compute not only the number but also the location of

the roots inside a region in the complex plane (see [17] and the references therein). All the methods
mentioned in this subsection su�er from the problem that they are computationally expensive for
large n due to the computation of the n× n determinant in (4).

2.2. Locating and computing roots

Eq. (4) can be seen as a nonstandard, nonlinear eigenvalue problem with an in�nite number of
solutions of which only the rightmost solutions are of interest to determine the stability. Several
algorithms are available for the e�cient computation of selected eigenvalues of possibly very large
matrices. Therefore, one transforms (4) to a standard eigenvalue problem. For this, we have to
consider (1) in its proper state space, C.
Two di�erent operators acting on C are related to (1) and have eigenvalues which correspond to

the solutions of (4). First, consider the time integration operator S(t0) of the linearized equation of
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(1), i.e. S(t0)y0=yt0 where y0, yt0 are solution segments of a solution y(t) of the variational equation

ẏ(t) = A0(x∗)y(t) +
m∑
i=1

Ai(x∗)y(t − �i): (7)

S(t0) is compact whenever t0¿�. Second, consider the in�nitesimal generator A de�ned as

A�= lim
t0→0+

S(t0)�− �
t0

; � ∈ D(A);

whose domain is dense in C. The eigenvalues of A coincide with the solutions of (4), while the
eigenvalues of S(t0) are of the form exp(�t0), with � a solution of (4), plus possibly zero [14].
Once an eigenvalue � of S(t0) is found, the corresponding root of the characteristic equation can
be extracted using Re(�) = log(|�|)=t0 and Im(�) = arcsin(Re(�)=|�|)=t0 mod �=t0. The full imaginary
part can further be extracted from the corresponding eigenvector of S(t0).
We now indicate how both A and S(t0) can be discretized into large matrices J and M (t0)

whose eigenvalues can be computed using established numerical algorithms like subspace iteration
and Arnoldi’s method (to compute dominant eigenvalues), if necessary combined with shift-invert
or Cayley transformations (to compute rightmost eigenvalues) [24,21].
Let �={−�= t0¡t1¡ · · ·¡tL−1¡tL=0} denote a mesh on [−�; 0], N=n×(L+1). We denote

the discrete initial condition by � ∈ RN and introduce two new operators. Let Interp : RN → C
interpolate the discrete representation � on � such that the resulting function segment is in C, while
Discret : C → RN discretizes a function segment by taking its value on the mesh points of �. Then
M (t0) = Discret(S(t0)Interp(·)) ∈ RN×N .
The construction of M (t0) can now be achieved as follows: the jth column of M (t0) (M (t0)ej

with ej the jth unit vector) equals Discret(S(t0)Interp(ej)) which can be computed using one time
integration. Hence the construction of M (t0) requires N time integrations, which is expensive for
large N . In this situation it can be more e�cient to approximate the eigenvalues of M (t0) without
its full construction (see [6] for details).
An approximation for J is given by

J ≈ M (h)− I
h

; (8)

where 0¡h� 1 denotes one time step of a given time integration scheme. In this case, the sparse
matrix M (h) can easily be written down explicitly. The eigenvalues of J approximate the eigenvalues
of A only by O(h), even if the integration scheme is O(hk+1) because of the forward di�erence
formula (8). More details about this second approach and a second-order alternative can be found
in [10,11].
In [18] a third and quite di�erent numerical approach is described. Using the end point values

of the solution to a functional equation occurring in the Lyapunov theory of delay equations, a
scalar function v(d) is constructed which has a pole at every d = Re(�) with � a root of (4).
The determination of Re(�) is then reduced to �nding the poles of v(d). This method is, however,
restricted to systems with commensurate delays.
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Fig. 1. Roots of the characteristic equation in a region of the complex plane for the delay equation ẋ(t)= 6x(t)+ x(t− 1)
(left), respectively, the neutral equation ẋ(t) = 6x(t) + x(t − 1) + 1

2 ẋ(t − 1) (right).

2.3. Neutral equations

The time integration operator S(t0) of the linear neutral DDE,

ẏ(t) = A0y(t) +
m∑
i=1

Aiy(t − �i) +
m∑
i=1

Biẏ(t − �i); (9)

is no longer compact (even if t0¿�). The spectrum of S(t0) consists of both a point spectrum
and an essential spectrum. The point spectrum of S(t0) asymptotes to the essential spectrum and
the real parts of the corresponding roots of the characteristic equation of (9) do not asymptote to
−∞. As a consequence, the stability-determining roots can have a very large imaginary part, see
Fig. 1. Moreover, the radius of the essential spectrum can change discontinuously as a function of
the delays [1,15,22]. Hence, the bifurcation analysis of neutral equations leads to many new and
unsolved di�culties.

3. Periodic solutions

For notational convenience we restrict ourselves to equations with one delay,

ẋ(t) = f(x(t); x(t − �); �); (10)

but generalisation to multiple delays is straightforward. A periodic solution of (10) can be found as
the solution of the following two-point boundary value problem (BVP)

ẋ(t) = f(x(t); x(t − �); �); t ∈ [− �; T ];
x0 = xT ;

s(x0; xT ) = 0;
(11)

where T is the (unknown) period and s :C × C → R is a suitable phase condition to remove trans-
lational invariance. The periodic BVP (11) is an in�nite-dimensional problem (a function segment
x0 ∈ C has to be determined), while it is a �nite-dimensional problem in the case of ODEs.
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Due to its periodicity, a periodic solution x(t) is smooth for all t. The stability of a solution of
(11) is determined by the spectrum of the linearized monodromy operator, S(T; 0) = @xT (x0)=@x0,
where xT (x0) is the result of integrating (10) over time T starting from initial condition x0. Provided
T¿�, the operator S(T; 0) is compact and thus its spectrum, �(S(T; 0)), consists of a point spectrum
with zero as its only cluster point [14, p. 191]. Any � 6= 0 in �(S(T; 0)) is called a characteristic
(Floquet) multiplier. Furthermore, � = 1 is always an eigenvalue of S(T; 0) and it is referred to as
the trivial Floquet multiplier.
In general, there are two approaches to compute periodic solutions of (11), i.e., shooting [13,19]

and collocation [3,2,5] methods.

3.1. Shooting methods

System (11) can be rewritten in terms of the unknowns x0 ∈ C and T ∈ R,
r(x0; T ) := xT (x0)− x0 = 0;
s(x0; T ) = 0:

(12)

This nonlinear system can be solved iteratively using a Newton iteration,[
@xT =@x0 − I @xT =@T
@s=@x0 @s=@T

]∣∣∣∣
(x(k)0 ;T

(k))

[
�x(k)0
�T (k)

]
=−

[
r
s

]∣∣∣∣
(x(k)0 ;T

(k))

; (13)

x(k+1)0 = x(k)0 + �x(k)0 ; T (k+1) = T (k) + �T (k):

At convergence, the Fr�echet derivative @xT (x0)=@x0 equals the linearized monodromy operator S(T; 0).
After discretization, (13) is approximated by[

M − I g
cT d

] [
��
�T

]
=−

[
r̃
s̃

]
; (14)

where

M =Discret

(
@xT (Interp(�))

@x0

∣∣∣∣
(�;T )=(�(k) ; T (k))

Interp(·)
)
∈ RN×N ; (15)

and similar formulas hold for g ∈ RN , c ∈ RN , d ∈ R, r̃ ∈ RN and s̃ ∈ R.
M is a high-dimensional dense matrix which requires at least N time integrations to construct (see

Section 2.2 and [19] for details). This makes ‘full’ Newton [13] prohibitively expensive for large
N . At convergence M is a discrete approximation of S(T; 0) and we call it the monodromy matrix.
The Newton–Picard approach [19] reduces the computational costs of the ‘full’ Newton iteration

(14) by exploiting the fact that most multipliers lie close to zero. Suppose �1; : : : ; �p are the p most
dominant eigenvalues of M such that

|�1|¿|�2|¿ · · ·¿|�p|¿�¿ |�p+1|¿ · · ·¿|�N | (16)

with p�N and �¡ 1. Suppose the columns of Vp ∈ RN×p form an orthonormal basis for the
low-dimensional eigenspace U corresponding to �1; : : : ; �p. The number p is determined during the
computation of Vp using subspace iteration [19]. Suppose further that the columns of Vq ∈ RN×q,
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q = N − p, form an orthonormal basis for U⊥, the orthogonal complement of U in RN . The
high-dimensional basis Vq is only used to derive the necessary formulas, it is not constructed in the
actual implementation. The Newton correction �� ∈ RN has a unique decomposition

��= Vp��̂p + Vq��̂q; ��̂p ∈ Rp; ��̂q ∈ Rq: (17)

Projecting the �rst N equations of (14) on the two subspaces U and U⊥ and substituting ��̂p and
��̂q for �� using (17) results in


V Tq (M − I)Vq V Tq MVp V Tq g

V TpMVq V Tp (M − I)Vp V Tp g
cTVq cTVp d




��̂q��̂p
�T


=−


V

T
q r̃
V Tp r̃
s̃


 : (18)

Because U is an invariant subspace of M , we have V Tq MVp = 0q×p. At the periodic solution g
corresponds to the discretized eigenfunction of the trivial Floquet multiplier. The corresponding
eigenvalue of M is approximately 1 and if � is not too close to 1, the corresponding eigenvector
belongs to U . Hence, the term V Tq g is very small at convergence and can be neglected near the
periodic solution.
System (18) is now partially decoupled: one can �rst solve the large, q× q system
V Tq (M − I)Vq��̂q =−V Tq r̃; (19)

iteratively with a Picard scheme (requiring one matrix–vector product with M per iteration) and,
using its solution ��̂q, solve the small p× p system[

V Tp (M − I)Vp V Tp g
cTVp d

] [
��̂p
�T

]
=−

[
V Tp r̃
s̃

]
−
[
V TpM
cT

]
Vq��̂q (20)

using a direct method. For (19) and (20), the matrix M is not constructed explicitly; instead, matrix–
vector products with M are computed through time integration. More details can be found in [19,8].

3.2. Collocation methods

In this section we consider collocation methods based on piecewise polynomials [5]. Collocation
based on truncated Fourier series [3,2] is quite similar.
We approximate the solution pro�le by a piecewise polynomial u(t) on [0; 1] which is represented

on each interval of a mesh � = {0 = t0¡t1¡ · · ·¡tL = 1} as a polynomial of degree m,

u(t) =
m∑
j=0

u(ti+ j
m
)Pi; j(t); t ∈ [ti; ti+1]; i = 0; : : : ; L− 1; (21)

where Pi; j(t) are the Lagrange polynomial basis functions, ti+j=m = ti + jhi=m; hi = ti+1 − ti; i =
0; : : : ; L−1; j=1; : : : ; m. The approximation u(t) is completely determined in terms of the coe�cients
ui+j=m = u(ti+j=m); i = 0; : : : ; L− 1; j = 0; : : : ; m− 1 and uL = u(tL).
Let X = {ci; j= ti+ cjhi; i=0; 1; : : : ; L− 1; j=1; : : : ; m} be a given set of collocation points based

on the collocation parameters 06c1¡c2¡ · · ·¡cm61. Then the idea of a collocation method is
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Fig. 2. Pro�le of the solution of the two-dimensional delay di�erential equation described in [23]. Mesh points (×) chosen
by an adaptive mesh selection procedure.

to construct a (nonlinear) system of equations such that its solution u(t) satis�es the time-rescaled
original system of equations on the set X ,

u̇(ci; j) =

{
Tf(u(ci; j); u(ci; j − �=T ); �) when ci; j − �=T¿0;
Tf(u(ci; j); u(ci; j − �=T + 1); �) when ci; j − �=T ¡ 0:

(22)

In (22) we used the periodicity condition to eliminate u(t) for t ¡ 0 and we assumed T ¿�. Using
c = ci; j; c̃ = (c − �=T )mod 1; tk6c̃¡ tk+1, (22) has the following structure:

m∑
j=0

ui+j=mP′
i; j(c) = Tf


 m∑
j=0

ui+j=mPi; j(c);
m∑
j=0

uk+j=mPk; j(c̃); �


 ; (23)

where P′(·) is the derivative of P(·). The unknowns ui+j=m and T are computed by solving the lin-
earization of (23) together with u0 =uL; s(u; T )=0 iteratively. Instead of the collocation polynomial
in the past (to evaluate u(c̃)), special interpolating polynomials can be used which recover super-
convergence results at mesh points. For di�cult pro�les adaptive mesh selection can be of interest,
see Fig. 2. More details can be found in [5].

3.3. Stability and continuation

Once a periodic solution is found, its stability can be obtained by computing a discrete approxi-
mation M of the monodromy operator S(T; 0) and its dominant eigenvalues (approximations to the
stability determining Floquet multipliers). This is automatically done in shooting, whether imple-
mented as a full Newton iteration or via the Newton–Picard approach. For the collocation methods,
an approximation of S(T; 0) can be constructed along the lines of Section 2.2 using the variational
equation around the obtained periodic solution [2].
If (10) depends on a physical parameter �, branches of periodic solutions can be traced as a func-

tion of the parameter in a continuation procedure [3,2,19], see Fig. 3. Bifurcations occur whenever
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Fig. 3. Three branches of periodic solutions of the delay di�erential equation ẋ(t)=−�x(t−1)(1+x2(t−1))=(1+x4(t−1))
[3,19]. The �rst branch emanates from a Hopf bifurcation (o), turns and undergoes a transcritical bifurcation. The inter-
secting branch undergoes a turning point, a symmetry-breaking pitchfork bifurcation and a torus bifurcation (x).

Floquet multipliers move into or out of the unit circle. Generically this is a turning point when a
real multiplier crosses through 1, a period-doubling point when a real multiplier crosses through −1
and a torus bifurcation when a complex pair of multipliers cross the unit circle. Continuation can
be started from a Hopf point or a (stable) solution pro�le obtained using simulation.

3.4. Neutral equations

No smoothing occurs when integrating neutral DDEs. If the neutral terms are linearly involved and
the corresponding essential spectrum is stable, then smoothness of periodic solutions was proven in
[14]. In [8] some branches of periodic solutions of a scalar one-delay neutral equation were computed
using the method of Section 3.1. To use the spectral decomposition (16), it is required that the
essential spectrum is well inside the unit circle. These numerical results indicate the sensitivity of
the essential spectrum to both the delay and the period. For the same example it was proven that
periodic solutions with discontinuous �rst derivative exist when the above-mentioned conditions are
violated [7].

4. Conclusions

In this paper we outlined numerical methods for the computation and stability analysis of steady-
state solutions and periodic solutions of systems of DDEs with several constant delays. These methods
can be used in a continuation procedure to follow branches of solutions, to determine their stability
and to locate bifurcation points. The methods could be adapted for DDEs with more general types
of delays. The main problem here is that the theory is not fully developed for all types of delays.
Equations with bounded distributed and state-dependent delays behave quite similar to equations
of type (1) but larger di�erences occur when going to unbounded delays or neutral equations. For
DDEs of neutral type, we briey discussed some open problems and new di�culties.
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While a number of software packages have been developed for time integration of DDEs, no
software packages exist for the bifurcation analysis of DDEs. At present some (private) codes for
stability analysis of steady states or for the computation and stability analysis of periodic solutions
exist, but they are not yet available in a user friendly form. A Matlab package which implements
some of the methods described in Sections 2.2 and 3.2 is in preparation by the authors [25]. The
package XPP [9] contains an implementation of the method described in Section 2.1 for the stability
analysis of steady-state solutions.

Acknowledgements

This research presents results of the research project OT=98=16, funded by the Research Council
K.U. Leuven and of the research project IUAP P4=02 funded by the programme on Interuniversity
Poles of Attraction, initiated by the Belgian State, Prime Minister’s O�ce for Science, Technology
and Culture. K. Engelborghs is a research assistant of the Fund for Scienti�c Research – Flanders
(Belgium).

References

[1] C.E. Avellar, J.K. Hale, On the zeros of exponential polynomials, J. Math. Anal. Appl. 73 (1980) 434–452.
[2] A.M. Castelfranco, H.W. Stech, Periodic solutions in a model of recurrent neural feedback, SIAM J. Appl. Math.

47 (3) (1987) 573–588.
[3] E.J. Doedel, P.P.C. Leung, A numerical technique for bifurcation problems in delay di�erential equations, Congr.

Num. 34 (1982) 225–237 (Proceedings of the 11th Manitoba Conference on Num. Math. Comput., University of
Manitoba, Winnipeg, Canada).

[4] L.E. El’sgol’ts, H.W. Norkin, Introduction to the theory and application of di�erential equations with deviating
arguments, Mathematics in Science and Engineering, Vol. 105, Academic Press, New York, 1973.

[5] K. Engelborghs, T. Luzyanina, K.J. in ’t Hout, D. Roose, Collocation methods for the computation of periodic
solutions of delay di�erential equations, Technical Report TW295, Department of Computer Science, K.U. Leuven,
1999.

[6] K. Engelborghs, D. Roose, Numerical computation of stability and detection of Hopf bifurcations of steady-state
solutions of delay di�erential equations, Adv. Comput. Math. 10 (3–4) (1999) 271–289.

[7] K. Engelborghs, D. Roose, Smoothness loss of periodic solutions of a neutral functional di�erential equation: on a
bifurcation of the essential spectrum, Dynamics Stability Systems 14 (3) (1999) 255–273.

[8] K. Engelborghs, D. Roose, T. Luzyanina, Bifurcation analysis of periodic solutions of neutral functional di�erential
equations: a case study, Int. J. Bifurc. Chaos 8 (10) (1998) 1889–1905.

[9] B. Ermentrout, XPPAUT3.91 — The di�erential equations tool, University of Pittsburgh, Pittsburgh, 1998,
(http:==www.pitt.edu=∼phase=).

[10] N.J. Ford, V. Wulf, Embedding of the numerical solution of a dde into the numerical solution of a system of odes,
Technical Report, Manchester Centre for Computational Mathematics, University of Manchester, 1998.

[11] V. Wulf, N.J. Ford, Numerical Hopf bifurcation for a class of delay di�erential equations, J. Comput. Appl. Math.
115 (1–2) (2000) 601–616.

[12] S.A. Gourley, M.V. Bartuccelli, Parameter domains for instability of uniform states in systems with many delays, J.
Math. Biol. 35 (1997) 843–867.

[13] K.P. Hadeler, E�ective computation of periodic orbits and bifurcation diagrams in delay equations, Numer. Math.
34 (1980) 457–467.

[14] J.K. Hale, in: Theory of Functional Di�erential Equations, Applied Mathematical Sciences, Vol. 3, Springer, Berlin,
1977.



K. Engelborghs et al. / Journal of Computational and Applied Mathematics 125 (2000) 265–275 275

[15] J.K. Hale, S.M. Verduyn Lunel, in: Introduction to Functional Di�erential Equations, Applied Mathematical Sciences,
Vol. 99, Springer, Berlin, 1993.

[16] B.D. Hassard, A code for Hopf bifurcation analysis of autonomous delay-di�erential systems, in: W.F. Langford, F.V.
Atkinson, A.B. Mingarelli (Eds.), Oscillations, Bifurcations and Chaos, Canadian Mathematical Society Conference
Proceedings, Vol. 8, Amer. Math. Soc., Providence, RI, 1987, pp. 447–463.

[17] P. Kravanja, M. Van Barel, A. Haegemans, Computing the zeros of analytic functions, Lecture Notes in Mathematics,
Vol. 1727, Springer, Berlin, 2000.

[18] J. Louisell, in: L. Dugard, E.I. Verriest (Eds.), Numerics of the stability exponent and eigenvalue abscissas of
a matrix delay system, Stability and Control of Time-Delay Systems, Lecture Notes in Control and Information
Sciences, Vol. 228, Springer, Berlin, 1997.

[19] T. Luzyanina, K. Engelborghs, K. Lust, D. Roose, Computation, continuation and bifurcation analysis of periodic
solutions of delay di�erential equations, Int. J. Bifurc. Chaos 7 (11) (1997) 2547–2560.

[20] T. Luzyanina, D. Roose, Numerical stability analysis and computation of Hopf bifurcation points for delay di�erential
equations, J. Comput. Appl. Math. 72 (1996) 379–392.

[21] K. Meerbergen, D. Roose, Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric
eigenvalue problems, IMA J. Numer. Anal. 16 (1996) 297–346.

[22] W. Michiels, K. Engelborghs, D. Roose, Sensitivity to delays in neutral equations, Technical Report TW286,
Department of Computer Science, K.U. Leuven, Belgium, 1998.

[23] R.E. Plant, A FitzHugh di�erential-di�erence equation modeling recurrent neural feedback, SIAM J. Appl. Math. 40
(1) (1981) 150–162.

[24] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, 1992.
[25] K. Engelborghs, DDE-BIFTOOL: a Matlab package for bifurcation analysis of delay di�erential equations, Technical

Report TW 305, K.U. Leuven, Belgium, May 2000.
[26] C.T.H. Baker, Retarded di�erential equations, J. Comput. Appl. Math. 125 (2000) 309–335.



Journal of Computational and Applied Mathematics 125 (2000) 277–285
www.elsevier.nl/locate/cam

How do numerical methods perform for delay di�erential
equations undergoing a Hopf bifurcation?

Neville J. Ford ∗, Volker Wulf
Department of Mathematics, Chester College, Parkgate Road, Chester CH1 4BJ, UK

Received 23 July 1999; received in revised form 6 January 2000

Abstract

In this paper we consider the numerical solution of delay di�erential equations (DDEs) undergoing a Hopf bifurcation.
Some authors use special methods to calculate bifurcating periodic solutions. We investigate what will happen when
simple standard numerical methods (based on ODE methods) are used to obtain an approximate solution to the DDE.
We want to establish whether the method will predict the true behaviour of the solution. We present three distinctive and
complementary approaches to the analysis which together provide us with the result that #-methods applied to a DDE will
retain Hopf bifurcations and preserve their type, for su�ciently small h¿ 0. c© 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

A major concern of numerical analysts is the development of reliable algorithms to solve di�er-
ential equations. The aim is to provide algorithms that consistently provide good-quality solutions
to a wide class of equations. We want to be able to predict when the algorithms will perform well,
and when they will fail.
If a di�erential equation has to be solved only over a short (�nite) time interval, amongst the main

issues are convergence of the numerical solution and the order of the method. On the other hand, if
long-term behaviour of solutions (over in�nite time intervals) is of more interest, then the errors may
grow, and it may be impossible to prove that the numerical solution is close to the true solution. In
this event, the desire to preserve qualitative behaviour may be more important. One might seek to
show that both the exact solution to the problem and the numerical solution tend to zero as t →∞,
that both exhibit the same stability properties for particular solutions, or that both exhibit periodic
or even chaotic solutions. Unfortunately, convergence of a method over �nite intervals does not

∗ Corresponding author. Tel.: +44-1244-392-748; fax: +44-1244-392-820.
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Fig. 1. Roots of the characteristic equation moving into the right half of the complex plane as the parameter � changes.
The shaded region in the left picture is the stability region of the zero solution of the delay logistic equation (here for
all � ∈ C). The arrow depicts the path of � ∈ [1; 2] and the right picture shows the corresponding path of some of the
roots as they move into the right half plane.

guarantee persistence of long-term characteristics of solutions in the numerical approximation. The
analysis of asymptotic stability of equilibrium solutions is a very well-established concern of the
numerical analyst; the analysis of periodic solutions is less well understood and has been considered
by several authors recently (see, for example, [13] and [18, Chapter 6 and references therein]).
In this paper we investigate the long term properties of numerical approximations to the solutions

of the scalar delay di�erential equation

y′(t) = f(y(t); y(t − �); �); t¿0; y(t) = �(t); −�6t60; (1)

where �¿ 0 is a constant time lag and � is a real parameter and we assume that y(t) ≡ 0
is an equilibrium solution for all �, i.e. f(0; 0; �) = 0. A usual starting point for the analysis of
long-term behaviour of solutions is to consider the values of � for which the zero solution of (1) is
asymptotically stable. This may be determined by looking at the roots of the characteristic equation

d(�; �) = � − �(�)− �(�)e−��; (2)

where

�(�) =
@

@y(t)
f(0; 0; �); �(�) =

@
@y(t − �) f(0; 0; �): (3)

If all the roots of (2) have negative real parts, then the zero solution of (1) is asymptotically stable.
Obviously as the parameter � varies some of the roots of (2) might leave the left half of the complex
plane and y(t) ≡ 0 becomes unstable. For example, consider the delay logistic equation

y′(t) =−�y(t − 1)(1 + y(t)); (4)

with characteristic equation

0 = � + �e−�: (5)

It can be shown that for all � ∈ (0; �=2) all roots � of (5) have negative real parts and consequently
y(t) ≡ 0 is asymptotically stable (see, e.g., [11]). As � moves beyond �=2 a pair of complex
conjugate roots leaves the left half-plane (see Fig. 1). For � = �=2 a pair of complex conjugate
roots of (5) lies on the imaginary axis. The zero solution of the linear equation is stable but not
asymptotically stable for this value of �, but now the stability of the zero solution of (4) cannot
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be determined from looking at roots of (5) but one needs to take into account the nonlinear parts
of Eq. (4); the linear stability theory breaks down here. For �¿ �=2 the zero solution is unstable
but it can be shown that neighbouring solutions remain bounded and become eventually periodic as
t → ∞. In fact, what happens is that in Eq. (4) a Hopf bifurcation occurs as � passes through
�=2. This is a genuinely nonlinear feature of (4). Hopf bifurcations are not found in linear problems
(nor, indeed, in scalar ordinary di�erential equations). Further details can be found, for example, in
[2,11].
Hopf bifurcations in equations of type (1) are quite well understood. On the other hand, the

behaviour of standard numerical approximation methods (based on numerical methods for ordinary
di�erential equations) applied to such equations has had little attention so far. The purpose of this
paper is to provide some insight into what happens when numerical methods are applied to a problem
that has a Hopf bifurcation: does the bifurcation persist in the approximation and can the numerical
solution be relied upon in a neighbourhood of the bifurcation point?
We say Eq. (1) undergoes a Hopf bifurcation at the parameter value �∗ if the following conditions

are met (see [2, Chapter X]):

H1: f is a Ck-smooth mapping from R3 into R and f(0; 0; �) = 0 for all � ∈ R.
H2: d(�; �∗) has a pair of simple complex conjugate roots �1;2 =± i!0, !0¿ 0 and all other roots

of (2) have negative real parts bounded away from zero.
H3: Re(�′1(�∗)) 6= 0, where �1(�) is the branch of roots of (2) with �1(�∗) = i!0.
If the above conditions hold then for all � in a one-sided neighbourhood of �∗ there exists an
invariant periodic orbit surrounding the origin. The periodic orbit is attractive (repelling) if the zero
solution is asymptotically stable (unstable) for �=�∗. Since at �∗ the zero solution is a nonhyperbolic
equilibrium its stability is determined by the nonlinear terms of (1). This leads to the de�nition of
a stability coe�cient (based upon the nonlinear terms) whose sign determines the stability of the
periodic orbit. For a more in-depth discussion on Hopf bifurcations we refer to the relevant chapters
in [2,12,15].
If one knew in advance that an equation had a periodic solution then there are special methods

presented in the literature for �nding a numerical approximation to the solution. (See, for example,
the papers [3,4,17].) In practical applications this may not be realistic. One often applies a numerical
method and �nds an approximate solution without �rst investigating the dynamical behaviour of the
exact solution. We adopt our approach here because we are interested in establishing how reliable
are simple numerical schemes in this situation. The question we set out to investigate is: how does
a variation of the parameter � a�ect the numerical approximation of system (1) and does the Hopf
bifurcation “persist” in some way? In other words, will a straightforward application of a simple
numerical method display the true behaviour of the solution close to a Hopf bifurcation?
As an illustration we consider the #-methods applied to (1) with stepsize h= �=m, m ∈ N given

by

yn+1 = yn + h{(1− #)f(yn; yn−m; �) + #f(yn+1; yn+1−m)}; n¿1;

yn=�(nh); −m6n60; (6)

where # ∈ [0; 1]. This is the natural extension of the #-methods for ODEs to the DDE case. We
restrict the stepsize to integer fractions of the delay in order to avoid the need to interpolate lagged
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values. We want to establish whether the numerical scheme exhibits a Hopf bifurcation, and if so, at
what value of the parameter the bifurcation arises. Finally we want to consider whether the nature of
the bifurcation (subcritical or supercritical) is preserved in the approximation. This type of approach
has been considered by [14] and in our previous work ([6,5] etc.).
In the remainder of the paper we present three di�erent approaches to the above problem.

(1) First, we consider how far the existing (linear) stability analysis can help. In Section 2 we use
the boundary locus technique, which is familiar from the linear stability analysis of numerical
methods, and illustrate how we can identify parameter points at which a Hopf bifurcation could
take place.

(2) Second (see Section 3), we undertake a direct bifurcation analysis of the di�erence equation
(6) with �xed h and varying �. This leads to the task of checking Neimark–Sacker bifurcation
conditions in Eq. (6). We illustrate how this can be done and conclude that, while the results
we have obtained in this way are entirely satisfactory, the approach leads to complicated algebra
which means that it is hard to obtain good general results. This motivates our introduction of
an alternative approach.

(3) A third approach (in Section 4) tries to avoid this algebraic complexity by using a projection
method. We “project” the DDE onto a system of ODEs and are able to make use of known re-
sults on the preservation of Hopf bifurcations in ODEs in the context of numerical approximation
of DDEs.

Finally, we indicate how the results we have obtained for simple numerical methods can be gen-
eralised to apply to much wider classes of method. It turns out that our calculations, although
con�ned to the simplest prototype numerical schemes, provide the evidence needed to ensure that
Hopf bifurcations are preserved in other numerical schemes.

2. Approach 1: application of the boundary locus method

In this section we seek to obtain information based on the existing linear stability theory. We
will apply the boundary locus method (see [1,16]) to plot the boundaries of the regions (in the
parameter space) for which the equilibrium solution is asymptotically stable. It is known that Hopf
bifurcations arise on the boundary of the stability region at those points where two characteristic
values simultaneously leave the left half plane. The boundary locus of (1) is the set

@D= {(�; �) : ∃� ∈ R; i�− �− �e−i�� = 0}; (7)

where � and � are in the parameter space of the equation. If we are interested in a system that
depends only on one parameter �, one usually assumes � ∈ C. For instance for the delay logistic
equation we have �(�) =−� and �(�) = 0 and

@D(4) = {� ∈ C : �=−i�ei�;−∞¡�¡∞}: (8)

For delay equations the boundary locus @D subdivides the parameter plane into open sets. For all
parameter values in one open set the number of roots of the characteristic equation with positive
real part is constant. In particular where this number is zero the parameters lie in the region of
asymptotic stability of the equation (see Fig. 1). Similarly, a boundary locus can be de�ned for the
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Fig. 2. The boundary loci for Euler forward (left) and Euler backward (right) with the stability region for the true delay
equation superimposed.

discretization (6).

@Dm= {(�; �) : ∃� ∈ [− �; �]; z = ei�;
zm+1 − zm − h(1− #)(�zm + �)− h#(�zm+1 + �z) = 0}: (9)

For each m; @Dm partitions the parameter space into open sets so that the number of roots of modulus
greater than one of the characteristic polynomial corresponding to (6) is constant in each open set.
The region of asymptotic stability of the problem is therefore the union of the open sets where the
number of such roots is zero.
Every point on the boundary locus corresponds to a parameter value at which there is a root of

the characteristic equation exactly on the imaginary axis (in the case of the DDE) or on the unit
circle (in the case of the discrete scheme). For a Hopf bifurcation, we require two such roots to arise
for the same parameter value, and this can be observed as a parameter value where the boundary
locus curve crosses itself (see Fig. 2).
In [6] we showed that for certain numerical methods the two curves approximate each other for

all equations where the linearization yields a pure delay equation. As a consequence we were able
to prove that if a Hopf bifurcation in the DDE occurs for some parameter value �∗ then there exists
a nearby parameter value �m where a Hopf bifurcation occurs in the numerical approximation. For
strongly stable linear multistep methods we have �m = �∗ + O(hp), where p is the order of the
method.
The approach is as follows: we assume that the original equation has a Hopf bifurcation for a

particular parameter value �∗. In this case, the boundary locus for the DDE crosses itself on the
x-axis at �∗. We establish that the boundary locus for the numerical scheme also crosses itself at �m
close to �∗, that the point of intersection lies on the real axis, and that adjacent to the value �m on
the real axis is an interval of stability and an interval of instability for the numerical scheme.
For a linear problem the boundary locus is su�cient to determine the stability behaviour of solu-

tions of the equation at particular parameter values. However, for nonlinear problems, the boundary
locus provides us with the parameter values at which the linearised equation loses its stability.
What happens to the nonlinear problem at this point requires analysis of the nonlinear parts of
equation.



282 N.J. Ford, V. Wulf / Journal of Computational and Applied Mathematics 125 (2000) 277–285

Remark 1. One could extend the analysis in a natural way to consider other classes of nonlinear
delay di�erential equation.

Remark 2. The authors have provided a similar analysis for the application of Runge–Kutta methods
to delay di�erential equations (see [8]).

3. Approach 2: a Neimark–Sacker bifurcation analysis

In this section we consider how one would perform a direct bifurcation analysis of di�erence
equation (6). This will enable us to determine how the nonlinearity of the problem a�ects its
behaviour at a Hopf bifurcation. For further details of the de�nitions and background, we refer the
reader to [2,11,12,15].
For each m ∈ N we can de�ne a map Fm : Rm+1 × R→ Rm+1 by

Y n+1 = Fm(Y n; �); (10)

where Y n+1i = Y ni−1, i = 1; : : : ; m and Y
n+1
0 is de�ned as the solution of

Y n+10 = Y n0 + h{(1− #)f(Y n0 ; Y nm; �) + #f(Y n+10 ; Y nm−1; �)}: (11)

With h = �=m we have Y ni = yn−i, where {yn} is the solution of (6) and is therefore equivalent to
iterating (10). For #= 0 (Explicit Euler) the authors showed in [7] the following:

Theorem 3. Assume that the di�erential equation (1) undergoes a supercritical (subcritical) Hopf
bifurcation at the parameter value �∗; then for su�ciently small step sizes the map (10) undergoes
a supercritical (subcritical) Neimark–Sacker bifurcation at a parameter value �h = �∗ + O(h).

A Neimark–Sacker bifurcation or Hopf bifurcation for maps is characterized by the following:
given a parameter dependent map on Rn, n¿2,

x 7→ A(�)x + G(x; �) (12)

with

N1: G is a Ck-smooth mapping, k¿2, from Rn × R into Rn, G(0; �) = 0, Gx(0; �) = 0, � ∈ R.
N2: A(�∗) has a complex conjugate pair of eigenvalues 1;2 =e±i�0 , while all other eigenvalues have

modulus strictly less than one.
N3: r′(�∗) 6= 0, where r(�) is the modulus of the branch of eigenvalues with r(�∗) = 1, i.e. r(�) =

|1;2(�)|.
Under the above hypotheses the map (12) has an invariant closed curve of radius O(

√
(|�∗ − �|))

surrounding the origin for all � in a one-sided neighbourhood of �∗. The closed curve is attracting
(repelling) if zero is an asymptotically stable (unstable) �xed point of (12) at � = �∗. Since at
� = �∗ zero is a nonhyperbolic �xed point the nonlinear part G(·; �∗) determines the attractivity of
the bifurcating invariant curve (see, e.g., [15]). Theorem 3 shows that for m large enough each map
(10) undergoes a Neimark–Sacker bifurcation with �∗ = �h.
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Fig. 3. Plots of stability coe�cient against step size for # = 0(+); 12 (×) and 1(◦) applied to the delay logistic equation
(see [19,9]).

Remark 4. Theorem 3 applies only to the Euler forward method. The main di�culty in extending
the result to more general methods lies in determining the stability of the bifurcating closed curves.
This requires us to determine the sign of quite complicated expressions involving the nonlinear part
G. For the Euler forward method, Fm is explicitly given but for # 6= 0 say, Fm, and therefore G, is
known only implicitly making the analysis even more complicated.

We have shown (see [5]) that the approach can be extended for speci�c methods applied to
particular problems, although the calculations remain complicated. In the examples we have calculated
explicitly, the sign of the stability coe�cient is preserved for su�ciently small h¿ 0 (Fig. 3).
The computational complexity of these calculations leads us to consider whether improved insight

can be obtained through a more innovative approach.

4. Approach 3: the use of a projection method

The numerical solution of a scalar DDE yields a discrete system of the same general form as
arises in the numerical solution of a system of ordinary di�erential equations. We aim to use this
property and known analysis for ODEs under discretisation to derive results that were di�cult to
derive directly for the DDE.
We start with map (10) for the Euler Forward method which has the form

Y n+10 = Y n0 + hf(Y
n
0 ; Y

n
m; �);

Y n+11 = Y n0 ;

...

Y n+1m = Y nm−1:

(13)
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We seek a system of ODEs for which the same system (13) is the Euler forward discretization. One
easily �nds that the system

Y ′
0 = f(Y0; Ym);

Y ′
1 = h−1(Y0 − Y1);
...

Y ′
m = h−1(Ym−1 − Ym);

(14)

discretized with stepsize h yields exactly (13). As we have shown in [20] the system (14) undergoes
a Hopf bifurcation of the same type as the DDE (1) at some parameter value �m = �∗ + O(h). We
can now use known results on the persistence of Hopf bifurcations in ODEs under approximations
to obtain the result that (13) undergoes a Neimark–Sacker bifurcation at �h = �m + O(h) (see, e.g.,
[10]). We therefore have recon�rmed Theorem 3 using known results from ODE theory and without
recourse to complicated calculations.
We seek to generalise this result to more realistic methods, and employ a broadly similar approach.

Unfortunately it turns out that, even for #-methods apart from Euler forward, it is not possible to
derive an exactly equivalent system of ODEs and therefore one must consider the DDE method as
a perturbation of the corresponding ODE method. The method we have used proceeds as follows:

(1) We wish to establish the sign of the stability coe�cient of the approximate scheme and our
existing analysis (in this section and in the previous one) has shown that the sign of the stability
coe�cient (for small enough h¿ 0) is correct for the Euler forward method.

(2) We write some other numerical scheme as a perturbation of the Euler forward scheme and we
consider the stability coe�cient of the perturbed scheme.

(3) We show (see [7] for the analysis) that, for all #-methods, and for certain other numerical
methods, the sign of the stability coe�cient (as h→ 0) is unchanged.

(4) We conclude that the numerical approximation will display a Hopf bifurcation of corresponding
type to the one found in the original DDE.
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Abstract

In this paper, the e�cient implementation of numerical software for solving delay di�erential equations is addressed.
Several strategies that have been developed over the past 25 years for improving the e�ciency of delay di�erential equation
solvers are described. Of particular interest is a new method of automatically constructing the network dependency graph
used in tracking derivative discontinuities. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The past 10 years have seen a substantial increase in both the research into and the use of delay
di�erential equations (DDEs), such as

y′(t) = f(t; y(t); y(t − �(t))); where �(t)¿0: (1)

The increased use of DDEs in mathematical modelling has been fuelled by the availability of e�cient
and robust software for solving such types of problem.
In this paper, some aspects of the design of e�cient numerical software for solving DDEs are

discussed. In particular, several methods of automatically obtaining useful information about a DDE
are described and then used to improve the e�ciency with which DDE is solved.
DDE (1) may be solved numerically by combining an “interpolation” method (for evaluating

delayed solution values) with an ordinary di�erential equation (ODE) integration method (for solv-
ing the resulting “ODE”). However, there are certain features of DDEs, such as the propagation
of derivative discontinuities [4,6] and the possibility of vanishing delays [1], that make such an
over-simpli�cation unhelpful when writing e�cient and robust software, unless measures are taken
to address them.

1 Funded by the U.K. Engineering & Physical Science Research Council.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00474-X
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2. Evaluating delayed solution values

In order to evaluate delayed solution values, it is necessary to construct a suitable continuous
solution for each accepted step and store this solution for later use. Whilst there are several possible
continuous extensions for Runge–Kutta methods (see [2, p. 186]), the most exible are those one-step
natural continuous extensions [7] that are also Hermite interpolants: They can be used to provide
defect error control [3], to evaluate delayed derivative values for NDDEs, and to construct “smooth”
graphical output (where appropriate).

2.1. Storage of the past solution

A key feature of any DDE solver is the ability to evaluate delayed solution values e�ciently. This
feature is related to, although not necessarily the same as, the ability to provide a dense output of
the solution. Consider the DDE y′(t) = y(t − �(t)). If the delay function �(t) is bounded, then the
oldest solution information may eventually be safely overwritten. However, if �(t) is unbounded,
then it is necessary to keep as much of the past solution as possible. This is because once a delayed
solution value that is not available is required, the DDE cannot be solved any further. Given that the
storage available for the past solution is limited, this can best be achieved by using a cyclic storage
structure — once a cyclic storage structure is “full”, the oldest solution information is overwritten.
This means that some DDEs may be solved over much larger ranges of integration than would
otherwise be possible.

2.2. Dense output

One of the requirements of any good DDE solver is the ability to produce a dense output (contin-
uous extension) of the solution. Using a cyclic storage structure for storing the past solution means
that it is possible that, even after successfully solving a DDE, not all of the solution is available for
dense output. However, if the dense output points are known before the DDE is solved, then they
can be output as soon as the appropriate continuous solution becomes available. This means that
graphical output can be provided, and parameter �tting problems can be solved, over much larger
ranges of integration.

2.3. Retrieving delayed solution values

E�cient implementation of the routine that calculates delayed solution values is essential, otherwise
the time taken to solve simple DDEs may be dominated by “housekeeping”. When a delayed solution
value is required, it is necessary to locate the correct previously stored solution — if a �xed stepsize
is used then the location of the stored solution can be easily computed, otherwise it is necessary to
search the solution history. For a DDE with more than one delay function, if only one pointer is
used to search the solution history, considerable time can be spent searching backwards and forwards
between calculating di�erent delayed solution values [5, p. 200]. For a DDE with more than three
delay functions, such as

y′(t) = y(t − 1)− y2(t − 7) + y(t − 3) + y(t − 5); (2)



C.A.H. Paul / Journal of Computational and Applied Mathematics 125 (2000) 287–295 289

Table 1
Archi [5] timings for solving Eq. (2) over the range [0; 10] using a �xed stepsize

Four pointers One pointer
Stepsize Worst ordering Best ordering Worst ordering Best ordering

0.001 0.89 s 0.89 s 89.79 s 74.89 s
0.0005 1.78 s 1.78 s 356.48 s 297.35 s
0.00025 3.50 s 3.50 s 1442.13 s 1185.42 s

there is also the problem of the most e�cient order for evaluating the delayed solution values — a
question that should not really have to concern the user. The best ordering of the delayed arguments
for the above example is

y′(t) = y(t − 1) + y(t − 3) + y(t − 5)− y2(t − 7);
because then the delayed solution values are evaluated in strictly increasing order. The answer to both
problems is simply to have separate pointers for each delay function; then the ordering of delayed
arguments is irrelevant and the time spent searching for the solution information is minimised (see
Table 1).

3. Derivative discontinuities

In order to treat derivative discontinuities (from now on referred to as discontinuities) e�ciently
and e�ectively, it is necessary to know how they arise and how they are propagated. It is also useful
to understand what impact discontinuities have on the numerical solution of DDEs. There are two
ways of improving the e�ciency of a DDE solver in the presence of discontinuities, defect control
[3] and discontinuity tracking [6]. How discontinuities are treated determines how some parts of the
user-interface should be speci�ed.

3.1. Origin and propagation of derivative discontinuities

Consider the scalar DDE

y′(t) = y(t − �(t)) (t¿t0); y(t) =	(t) (t ¡ t0); y(t0) = y0: (3)

Discontinuities can originate in the initial function 	(t), from the initial point t0 when 	(k)(t0−)6=
y(k)(t0+) for some integer k¿0, and from discontinuities in the DDE itself and the delay functions.
Suppose that t0 =0, �(t)=1 and 	(t0−)=y0 but that 	′(t0−)6=y′(t0+), then there is a discontinuity
in y′(t) at t=0. This discontinuity is propagated by the lag function �(t)= t−�(t) so that y′′(1−)=
	′(0−)6=y′(0+) = y′′(1+).
Note that when a discontinuity is propagated in a DDE it is also smoothed, that is to say, it

occurs in a higher derivative. For a general lag function �(t), a discontinuity in y(r)(t) typically
propagates into y(r+1)(t). However if �k is an odd-multiple zero of �(t) = �i, where �i is some
previous discontinuity, then �k occurs in a much higher derivative [4, p. 847].
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3.2. Impact of derivative discontinuities

A fundamental assumption made when deriving integration methods is that the solution is su�-
ciently smooth (over each step). If the solution is not su�ciently smooth, a high-order integration
method collapses to lower order and consequently, the reliability of the local error estimator will be
a�ected. When this happens, the extra computational cost involved in using a high-order method can
be wasted because a cheaper, lower order method could have been used to achieve the same order
with better error control. Thus when a DDE is not su�ciently smooth, unless appropriate measures
are taken, the e�ciency of a high-order integration method can be severely compromised.

3.3. Defect control of derivative discontinuities

One way in which discontinuities can be detected and located is by using the defect �(t) [3]; in
the case of Eq. (1),

�(t) = f(t; y(t); y(t − �(t)))− y′(t):

An advantage of defect control (over discontinuity tracking) is that no extra information about the
DDE is required in order to locate discontinuities. However, in practice, an estimate of the maximum
size of |�(t)| on each step is used, and this estimate is based on asymptotic arguments that are no
longer valid if a low-order discontinuity occurs in the step.
“Signi�cant discontinuities” 2 are detected by monitoring the sequence of rejected steps and their

associated defects. Once detected, it is usually necessary to locate the position of the discontinuity
more precisely. However, because defect control is concerned with the accuracy of the solution and
not its order, it is not generally necessary to locate the discontinuity precisely.
Having detected a discontinuity in the interval (tn; tn+h), a bisection method can be used to locate

it within a smaller interval (r; s) ∈ (tn; tn + h), where the defect over the interval (r; s) is acceptably
small. (In general, the exact location of a discontinuity cannot be found because there is no precise
event function, and thus high-order event location methods cannot be used.) Each bisection iteration
requires a defect evaluation, so that repeated derivative evaluations may be required. However, in
systems of DDEs only one solution component can have the “most signi�cant” discontinuity at any
one point. Thus, evaluating all the derivative components can be very ine�cient. This problem may
be overcome by specifying the derivatives so that they can be evaluated separately. (However, this
approach may severely a�ect the e�ciency of the numerical integration method.) Consider the DDE

y′
1(t) = y1(t)y2(t − 1); y′

2(t) = y2(t
2)− y3(y1(t)); y′

3(t) = y2(t − 3): (4)

2 A “signi�cant discontinuity” is any discontinuity that gives rise to such a large defect (estimate) that a step is rejected.
Thus, not all low-order discontinuities are “signi�cant” and, in fact, the treatment of discontinuities relies on a discontinuity
becoming “less signi�cant” as the size of the step in which it occurs decreases.
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The corresponding FORTRAN 90 code could be written as

REAL FUNCTION DERIVATIVE(COMPONENT,T)
USE DELAY SOLVER
INTEGER, INTENT(IN) :: COMPONENT
REAL, INTENT(IN) :: T
SELECT CASE (COMPONENT)
CASE(1)
DERIVATIVE=DELAY(1,T)∗DELAY(2,T-1)

CASE(2)
DERIVATIVE=DELAY(2,T∗T)-DELAY(3,DELAY(1,T))

CASE(3)
DERIVATIVE=DELAY(2,T-3)

END SELECT
END FUNCTION DERIVATIVE

where the module DELAY SOLVER contains a function DELAY(i,t) that evaluates the ith solution
component at the argument t.

3.4. Tracking derivative discontinuities

Discontinuity tracking maintains the order of a numerical solution by including low-order disconti-
nuities in the meshpoints. It is much more intimately connected with the structure of the DDE being
solved than defect control. Software that tracks discontinuities �a la Will�e and Baker [6] requires the
user to specify the lag functions and derivative functions separately, as well as specifying the initial
discontinuities and the network dependency graph (Section 3.4.3).

3.4.1. The derivative discontinuity tracking equations
Reconsider Eq. (3) and assume that 	(t0−)6=y(t0+). The discontinuity in y(t) at t = t0 is propa-

gated to the point t = �1 when the lag function crosses the position of the discontinuity, that is to
say

(�(�1+)− t0)× (�(�1−)− t0)¡ 0: (5)

Condition (5) is “almost equivalent” to requiring �(�1) = t0, except that this does not exclude
even-multiplicity zeros, whereas only odd-multiplicity zeros satisfy the “switching” condition (5).
However, since multiple zeros are numerically ill-conditioned [4], in practice they are given no
special treatment.
The discontinuity at t = �1 may itself be propagated to a point t = �2, where �(�2) = �1. It is

also possible, depending on the lag function, that the discontinuity at t= t0 is again propagated to a
point t=�2, where �2¿�1 can be arbitrarily large. Thus, y(t) cannot be guaranteed to be ultimately
smooth.
Thus, discontinuity tracking in a scalar DDE involves the evaluation of the lag functions and a

record of the (initial) discontinuities and how they have been propagated. The need to evaluate the
lag functions means that they must be speci�ed separately from the DDE (Section 3.4.3).
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3.4.2. Tracking derivative discontinuities in systems of DDEs
In a system of DDEs discontinuity tracking can be complicated by discontinuities being propagated

between solution components. This fact gives rise to the concept of strong and weak coupling and
network dependency graphs (NDGs) [6]. Strong coupling describes the propagation of discontinuities
between di�erent solution components by an ODE term, that is to say �(t) ≡ 0. Weak coupling
describes the propagation of discontinuities within the same solution component and between di�erent
solution components by a DDE term, that is to say �(t) 6≡ 0. Given a system of DDEs, the NDG is
key to tracking the propagation of discontinuities. For the system of DDEs (4), the NDG is

Thus, tracking discontinuities requires the following extra information about the DDE to be
speci�ed: (i) the initial discontinuities and (ii) the network dependency graph. Whilst the initial
discontinuities cannot be automatically determined, it is possible to construct the NDG automati-
cally.

3.4.3. Constructing the network dependency graph
Reconsider the DDE system (4). Unlike using defect control for treating discontinuities (Section

3.3), the lag functions have to be speci�ed separately from the derivative functions. Thus, the DDE
could be speci�ed using FORTRAN 90 as

REAL FUNCTION DERIVATIVE(COMPONENT,T)
USE DELAY SOLVER
INTEGER, INTENT(IN) :: COMPONENT
REAL, INTENT(IN) :: T
SELECT CASE (COMPONENT)
CASE(1)
DERIVATIVE=DELAY(1,1)∗DELAY(2,2)

CASE(2)
DERIVATIVE=DELAY(2,3)-DELAY(3,4)

CASE(3)
DERIVATIVE=DELAY(2,5)

END SELECT
END FUNCTION DERIVATIVE

where the function DELAY(i, j) evaluates the ith solution component using the jth lag function. The
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corresponding lag functions would then be given as

REAL FUNCTION LAG(COMPONENT,T)
USE DELAY SOLVER
INTEGER, INTENT(IN) :: COMPONENT
REAL, INTENT(IN) :: T
SELECT CASE (COMPONENT)
CASE(1)
LAG=T

CASE(2)
LAG=T-1

CASE(3)
LAG=T∗T

CASE(4)
LAG=DELAY(1,1)

CASE(5)
LAG=T-3

END SELECT
END FUNCTION LAG

By evaluating each of the lag functions in turn and monitoring calls to the DELAY function, it is
possible to determine which lag functions are state-independent (do not depend on the solution) and
which are state-dependent (and on which solution components and other lag functions they depend).
This information is necessary for constructing the NDG, as well as being useful when tracking
discontinuities because there are additional di�culties associated with discontinuities propagated by
state-dependent lag functions.
Next, by evaluating each derivative component in turn and monitoring calls to the DELAY function,

it is possible to determine the links in the NDG and which lag functions are associated with each
link. For state-dependent lag functions there is also the question of the propagation of discontinuities
in the lag functions, which gives rise to additional links in the NDG. This then completes the
construction of the NDG.

3.4.4. E�cient tracking of derivative discontinuities
The implementation of discontinuity tracking is even more complicated than already suggested.

Having speci�ed the initial discontinuities and constructed the NDG, it is necessary to calculate
(“predict”) where discontinuities will be propagated to before attempting to solve the DDE over an
interval in which a discontinuity occurs. This can be achieved e�ciently by determining whether an
interval contains a discontinuity just before attempting to solve over it.
Testing the switching condition

(�(tn + h)− �i)× (�(tn)− �i)¡ 0

on each step [tn; tn+h] might appear to be su�cient for detecting if the discontinuity �i is propagated
into the interval [tn; tn + h]. However, if the lag function �(t) propagates the discontinuity �i into
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the interval an even number of times, then the propagated discontinuities will not be detected (see
below).

Once detected, the location of the discontinuity must be found more precisely by solving the
equation �(t) = �i. However, the convergence test is usually of the form |�(t)− �i|¡�|�i|�, where
�¿ 1 and � is the unit-roundo�. For some DDEs, for example, y′(t) = y(t2)y

(
t − 1

10

)
with t0 = 0,

this gives rise to numerous spurious discontinuities [5, p. 86]. A strategy for reducing the impact
of this problem is to require discontinuities in the same solution component and derivative to be at
least a distance �� � apart before they are considered to be distinct.
Having located a discontinuity at the point t = �k , it still remains to advance the solution up to

t = �k . For DDEs in which y(t) is discontinuous at the point t = t0, it is particularly important to
evaluate delayed solution values correctly [5, p. 87]: If �(t) → t0+ as t → �k−, then y(�(�k−))
should be evaluated as y(t0+) and not y(t0−). The correct evaluation of delayed solution values
can be achieved by monitoring whether the current interval is [tn; �k) or [�k; tn+1] and by know-
ing whether �(tn)¡t0 or �(tn)¿t0. (For continuous solutions this problem does not arise because
|y(t0 + �)− y(t0 − �)|=O(�).)
Discontinuity tracking maintains the order of the solution by including discontinuities in the mesh-

points, whilst attempting to avoid unnecessarily small and ine�cient stepsizes. However for discon-
tinuities propagated by state-dependent lag functions, very small stepsizes may still arise because the
discontinuities may “move” slightly as the solution advances [5, p. 150]. This problem has still to
be adequately addressed by codes that track discontinuities.
Tracking discontinuities can be computationally expensive, and it becomes more expensive as the

number of discontinuities that need to be tracked increases [5, p. 177]. However, it is not necessary
to track every discontinuity: The smoothing of discontinuities when they are propagated means that
they eventually occur in a su�ciently high derivative that they can be ignored. Also, although it is
necessary to track every low-order discontinuity (for a general lag function), if the user can specify
a bound on the size of the delays then the oldest discontinuities can eventually be safely ignored.

4. Conclusion

The analytical theory underlying the numerical solution of DDEs has advanced considerably over
the past decade. However, the number of available DDE solvers has remained somewhat limited and
has thus delayed the widespread use of DDEs by non-mathematicians. Whilst there are a number of
theoretical areas in the numerical solution of DDEs, convergence, stability, bifurcations, oscillations,
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etc., this paper has aimed at shedding light on some of the practical issues in writing an e�cient
and robust code for solving DDEs. Having identi�ed some of the obvious and less obvious design
problems, the next generation of DDE solvers should hopefully be more e�cient and easier to use.

References

[1] C.T.H. Baker, C.A.H. Paul, Parallel continuous Runge–Kutta methods and vanishing lag delay di�erential equations,
Adv. Comput. Math. 1 (1993) 367–394.

[2] C.T.H. Baker, C.A.H. Paul, D.R. Will�e, Issues in the numerical solution of evolutionary delay di�erential equations,
Adv. Comput. Math. 3 (1995) 171–196.

[3] W.H. Enright, H. Hayashi, A delay di�erential equation solver based on a continuous Runge–Kutta method with
defect control, Numer. Algorithms 16 (1997) 349–364.

[4] M.A. Feldstein, K.W. Neves, High-order methods for state-dependent delay di�erential equations with non-smooth
solutions, SIAM J. Numer. Anal. 21 (1984) 844–863.

[5] C.A.H. Paul, Runge–Kutta methods for functional di�erential equations, Ph.D. Thesis, Department of Mathematics,
University of Manchester, 1992.

[6] D.R. Will�e, C.T.H. Baker, The tracking of derivative discontinuities in systems of delay di�erential equations, Appl.
Numer. Math. 9 (1992) 209–222.

[7] M. Zennaro, Natural continuous extensions of Runge–Kutta methods, Math. Comp. 46 (1986) 119–133.



Journal of Computational and Applied Mathematics 125 (2000) 297–307
www.elsevier.nl/locate/cam

Introduction to the numerical analysis of stochastic delay
di�erential equations

Evelyn Buckwar 1
Department of Mathematics, The Victoria University of Manchester, Manchester M13 9PL, UK

Received 29 July 1999; received in revised form 17 February 2000

Abstract

We consider the problem of the numerical solution of stochastic delay di�erential equations of Itô form

dX (t) = f(X (t); X (t − �))dt + g(X (t); X (t − �))dW (t); t ∈ [0; T ]

and X (t) =	(t) for t ∈ [−�; 0]; with given f; g, Wiener noise W and given �¿ 0, with a prescribed initial function 	.
We indicate the nature of the equations of interest and give a convergence proof for explicit single-step methods. Some
illustrative numerical examples using a strong Euler–Maruyama scheme are provided. c© 2000 Elsevier Science B.V. All
rights reserved.

1. Introduction

We are concerned here with the evolutionary problem for Itô stochastic delay di�erential equations
or SDDEs. SDDEs generalise both deterministic delay di�erential equations (DDEs) and stochastic
ordinary di�erential equations (SODEs). One might therefore expect the numerical analysis of DDEs
and the numerical analysis of SODEs to have some bearing upon the problems that concern us here.
We refer to [14] for an overview of the issues in the numerical treatment of DDEs. For a reprise
of the basic issues in the numerical treatment of SODEs, see [4]; for more extensive treatments
see [8,11]. In this article we will be interested in obtaining approximations to strong solutions of
an SDDE. One reason to be interested in this kind of approximation is to examine the dependence
of the solution on the initial function or on parameters that are contained in the de�nition of the
SDDE. The article is based on [2].

1 Supported by TMR Grant No. ERBFMBICT983282.

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
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We shall use a brief discussion of some model problems to introduce SDDEs to the reader.

• (Cell population growth) Consider a large (in order to justify continuous as opposed to discrete
growth models) population N (t) of cells at time t evolving with a proportionate rate �0¿ 0
of ‘instantaneous’ and a proportionate rate �1 of ‘delayed’ cell growth. By ‘instantaneous’ cell
growth, we mean that the rate of growth is dependent on the current cell population, and by
‘delayed’ cell growth, we mean that the rate of growth is dependent on some previous cell
population. If the number �¿ 0 denotes the average cell-division time, the following equation
provides a model

N ′(t) = �0N (t) + �1N (t − �); t¿0; N (t) =	(t); t ∈ [− �; 0]:
Now assume that these biological systems operate in a noisy environment whose overall noise
rate is distributed like white noise � dW (t). Then we will have a population X (t), now a random
process, whose growth is described by the SDDE

dX (t) = (�0X (t) + �1X (t − �))dt + � dW (t); t ¿ 0;

with X (t)=	(t) for −�6t ¡ 0. This is a constant delay equation with additive noise (the delay
is only in the drift term).
• (Population growth again) Assume now that in the above equation we want to model noisy be-
haviour in the system itself, e.g. the intrinsic variability of the cell proliferation or other individual
di�erences and the interaction between individuals. This leads to the multiplicative noise term,
as in

dX (t) = (�0X (t) + �1X (t − �)) dt + �X (t) dW (t); t ¿ 0;

with X (t) =	(t) for −�6t ¡ 0.
• (More examples) For some additional examples we can refer to examples in neural control
mechanisms: neurological diseases [3], pupil light reex [9] and human postural sway [6].

2. General formulation

Let (
;A; P) be a complete probability space with a �ltration (At) satisfying the usual conditions,
i.e. the �ltration (At)t¿0 is right-continuous, and each At ; t¿0, contains all P-null sets in A. In
this article we will prove convergence of a numerical method in the mean-square-sense, i.e. we say
that X ∈L2 =L2(
;A; P) if E(|X |2)¡∞ and we de�ne the norm ||X ||2 = (E(|X |2))1=2: We refer
to [13] for the background on probability theory and to [1,7] for properties of a Wiener process and
stochastic di�erential equations.
Let 0= t0¡T ¡∞. Let W (t) be a one-dimensional Brownian motion given on the �ltered prob-

ability space (
;A; P).We consider the scalar autonomous stochastic delay di�erential equation (SDDE)

dX (t) =

drift coe�cient︷ ︸︸ ︷
f(X (t); X (t − �)) dt +

di�usion coe�cient︷ ︸︸ ︷
g(X (t); X (t − �)) dW (t);

t ∈ [0; T ]
X (t) = 	(t); t ∈ [− �; 0]

(1)

with one �xed delay, where 	(t) is an At0 -measurable C([− �; 0];R)-valued random variable such
that E||	||2¡∞ (C([ − �; 0];R) is the Banach space of all continuous paths from [ − �; 0] → R
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equipped with the supremum norm). The functions f :R×R→ R and g :R×R→ R are assumed
to be continuous. Eq. (1) can be formulated rigorously as

X (t) = X (0) +
∫ t

0
f(X (s); X (s− �)) ds+

∫ t

0
g(X (s); X (s− �)) dW (s) (2)

for t ∈ [0; T ] and with X (t) = 	(t), for t ∈ [ − �; 0]. The second integral in (2) is a stochastic
integral, which is to be interpreted in the Itô sense. If g does not depend on X the equation has
additive noise, otherwise the equation has multiplicative noise. We refer to [10,12] for the following
de�nition and a proof of Theorem 2.

De�nition 1. An R-valued stochastic process X (t) : [ − �; T ] × 
→R is called a strong solution
of (1), if it is a measurable, sample-continuous process such that X |[0; T ] is (At)06t6T -adapted
and X satis�es (1) or (2), almost surely, and satis�es the initial condition X (t) = 	(t) (t ∈
[ − �; 0])). A solution X (t) is said to be path-wise unique if any other solution X̂ (t) is stochas-
tically indistinguishable from it, that is P(X (t) = X̂ (t) for all −�6t6T ) = 1.

Theorem 2. Assume that there exist positive constants Lf; i; i = 1; 2 and Kf; such that both the
functions f and g satisfy a uniform Lipschitz condition and a linear growth bound of the following
form: For all �1; �2; �1; �2; �; � ∈ R and t ∈ [0; T ]

|f(�1; �1)− f(�2; �2)|6Lf;1|�1 − �2|+ Lf;2|�1 − �2|;
|f(�; �)|26Kf(1 + |�|2 + |�|2)

and likewise for g with constants Lg; i; i=1; 2; and Kg. Then there exists a path-wise unique strong
solution to Eq. (1).

3. Numerical analysis for an autonomous SDDE

De�ne a mesh with a uniform step h on the interval [0; T ] and h=T=N; tn= n · h; n=0; : : : ; N . We
assume that there is an integer number N� such that the delay can be expressed in terms of the stepsize
as �=N� ·h. We consider strong approximations X̃ n of the solution to (1), using a stochastic explicit
single-step method with an increment function � incorporating increments �Wn+1:=W(n+1)h−Wnh of
the driving Wiener process. For all indices n− N�60 de�ne X̃ n−N� :=	(tn − �), otherwise

X̃ n+1 = X̃ n + �(h; X̃ n; X̃ n−N� ;�Wn+1); n= 0; : : : ; N − 1: (3)

Notation 1. We denote by X (tn+1) the value of the exact solution of Eq. (1) at the meshpoint tn+1
and by X̃ n+1 the value of the approximate solution using (3) and by X̃ (tn+1) the value obtained after
just one step of (3), i.e., X̃ (tn+1) = X (tn) + �(h; X (tn); X (tn − �);�Wn+1).

With this notation we can give the following de�nitions.

De�nition 3. The local error of the above approximation {X̃ (tn)} is the sequence of random vari-
ables �n+1 = X (tn+1)− X̃ (tn+1); n= 0; : : : ; N − 1. The global error of the above approximation {X̃ n}
is the sequence of random variables �n:=X (tn)− X̃ n; n= 1; : : : ; N .
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Note that �n is Atn-measurable since both X (tn) and X̃ n are Atn-measurable random variables.

De�nition 4. Method (3) is consistent with order p1 in the mean and with order p2 in the
mean-square sense if the following estimates hold with p2¿ 1

2 and p1¿p2 +
1
2 :

max
06n6N−1

|E(�n+1)|6Chp1 as h→ 0; (4)

max
06n6N−1

(E|�n+1|2)1=26Chp2 as h→ 0; (5)

where the (generic) constant C does not depend on h, but may depend on T and the initial data.

We also will assume the following properties of the increment function �: assume there exist
positive constants C1; C2 such that for all �; �′; �; �′ ∈ R

|E(�(h; �; �;�Wn+1)− �(h; �′; �′;�Wn+1))|6C1h(|�− �′|+ |�− �′|); (6)

E(|�(h; �; �;�Wn+1)− �(h; �′; �′;�Wn+1)|2)6C2h(|�− �′|2 + |�− �′|2): (7)

We now state the main theorem of this article.

Theorem 5. We assume that the conditions of Theorem 2 are ful�lled and that the increment
function � in (3) satis�es estimates (6) and (7). Suppose the method de�ned by (3) is consistent
with order p1 in the mean and order p2 in the mean-square sense; so that (4) and (5) hold (where
the constant C does not depend on h). Then; approximation (3) for Eq. (1) is convergent in L2

(as h→ 0 with �=h ∈ N) with order p= p2 − 1
2 . That is; convergence is in the mean-square sense

and

max
16n6N

(E|�n|2)1=26Chp as h→ 0; where p= p2 − 1
2 : (8)

Proof. Since we have exact initial values we set �n = 0 for n = −N�; : : : ; 0. Now beginning with
�n+1=X (tn+1)−X̃ n+1, using Notation 1, adding and subtracting X (tn) and �(h; X (tn); X (tn−�);�Wn+1)
and rearranging we obtain �n+16�n + �n+1 + un, where

un :=�(h; X (tn); X (tn − �);�Wn+1)− �(h; X̃ n; X̃ n−N� ;�Wn+1):

Squaring both sides, employing the conditional mean with respect to the �-algebra At0 , and taking
absolute values, we obtain

E(�2n+1|At0)6E(�2n|At0) + E(|�n+1|2|At0)︸ ︷︷ ︸
1)

+E(|un|2|At0)︸ ︷︷ ︸
2)

+ 2|E(�n+1 · un|At0)|︸ ︷︷ ︸
3)

+ 2|E(�n+1 · �n|At0)|︸ ︷︷ ︸
4)

+ 2|E(�n · un|At0)|︸ ︷︷ ︸
5)

(9)

which holds almost surely. We will now estimate the separate terms in (9) individually and in
sequence; all the estimates hold almost surely. We will frequently use the H�older inequality, the
inequality 2ab6a2 + b2 and properties of conditional expectation.
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• For the term labelled 1) in (9) we have, due to the assumed consistency in the mean-square
sense of the method,

E(|�n+1|2|At0) = E(E(|�n+1|2|Atn)|At0)6c1h
2p2 :

• For the term labelled 2) in (9) we have, due to property (7) of the increment function,

E(|un|2|At0)6c2hE(|�n|2|At0) + c2hE(|�n−N� |2|At0):

• For the term labelled 3) in (9) we obtain, by employing the consistency condition and property
(7) of the increment function �,

2|E(�n+1 · un|At0)|6 2(E(|�n+1|2|At0))
1=2(E(|un|2|At0))

1=2

6E(E(|�n+1|2|Atn)|At0) + E(|un|2|At0)

6 c3h2p2 + hc6E(�2n|At0) + hc6E(�
2
n−N� |At0):

• For the term labelled 4) we have, due to the consistency condition,

2|E(�n+1 · �n|At0)|6 2E(|E(�n+1|Atn)| · |�n||At0)

6 2(E|E(�n+1|Atn)|2)1=2 · (E(|�n|2|At0))
1=2

6 2(E(c5hp1)2)1=2 · (E(|�n|2|At0))
1=2

= 2(E(c25h
2p1−1))1=2 · (hE(|�n|2|At0))

1=2

6 c25h
2p1−1 + hE(|�n|2|At0):

• For the term labelled 5) in (9) we have, using property (6) of the increment function �,

2|E(�n · un|At0)|6 2E(|E(un|Atn)||�n||At0)

6 c6hE(|�n|2|At0) + 2c6hE(|�n||�n−N� ||At0)

6 c6hE(|�n|2|At0) + c6h2(E(|�n|2|At0))
1=2 · (E(|�n−N� |2|At0))

1=2

6 c6hE(|�n|2|At0) + c6hE(|�n|2|At0) + c6hE(|�n−N� |2|At0)

6 c6hE(|�n|2|At0) + c6hE(|�n−N� |2|At0):

Combining these results, we obtain, with 2p262p1 − 1,
E(�2n+1|At0)6(1 + c7h)E(�

2
n|At0) + c7h

2p2 + c8hE(|�n−N� |2|At0):

Now we will proceed by using an induction argument over consecutive intervals of length � up to
the end of the interval [0; T ].
Step 1: tn ∈ [0; �], i.e., n= 1; : : : ; N� and �n−N� = 0.

E(�2n+1|At0)6 (1 + c7h)E(�2n|At0) + c7h
2p2

6 c7h2p2
n∑
k=0

(1 + c6h)k = c7h2p2
(1 + c6h)n+1 − 1
(1 + c6h)− 1

6 c9h2p2−1((ec6h)n+1 − 1)6c9h2p2−1(ec6T − 1):
Step 2: tn ∈ [k�; (k + 1)�] and we make the assumption E(|�n−N� |2|At0)6c10h

2p2−1.

E(�2n+1|At0)6 (1 + c7h)E(�2n|At0) + c7h
2p2 + c8hE(|�n−N� |2|At0)

6 (1 + c7h)E(�2n|At0) + c7h
2p2 + hc10h2p2−1



302 E. Buckwar / Journal of Computational and Applied Mathematics 125 (2000) 297–307

= (1 + c7h)E(�2n|At0) + c11h
2p2

6 c12h2p2−1(ec6T − 1);
by the same arguments as above. This implies, almost surely,

(E(�2n+1|At0))
1=26c9hp2−1=2;

which proves the theorem.

Remark 6. Assumption (6) reduces to the condition of Lipschitz-continuity for the increment func-
tion � in the deterministic setting, i.e., without noise. This is a standard assumption for convergence
in the theory of numerical analysis for deterministic ordinary di�erential equations, as it implies the
zero-stability of the numerical method.

4. The Euler–Maruyama scheme

As a start we have considered strong Euler–Maruyama approximations with a �xed stepsize on
the interval [0; T ], i.e., h = T=N; tn = n · h; n = 0; : : : ; N . In addition we have assumed that there is
an integer number N� such that the delay can be expressed in terms of the stepsize as �= N�h.
For Eq. (1) the increment function �EM of the Euler–Maruyama scheme has the following form

in the method (3):

�EM(h; X̃ n; X̃ n−N� ;�Wn+1) = hf(X̃ n; X̃ n−N�) + g(X̃ n; X̃ n−N�)�Wn+1 (10)

for 06n6N −1 and with �Wn+1:=W(n+1)h−Wnh, denoting independent N (0; h)-distributed Gaussian
random variables.

Theorem 7. If the functions f and g in Eq. (1) satisfy the conditions of Theorem 2; then the
Euler–Maruyama approximation is consistent with order p1 = 2 in the mean and order p2 = 1 in
the mean square.

We gave a complete proof in [2], based on the consistency analysis given in [11] for SODEs and
using a theorem from Mao [10, Lemma 5:5:2], which provides the necessary moment inequalities
for the solution of (1).

Lemma 8. If the functions f and g in Eq. (1) satisfy the conditions of Theorem 2; then the
increment function �EM of the Euler–Maruyama scheme (given by (10)) satis�es estimates (6)
and (7) for all �; �′; �; �′ ∈ R.

|E(�EM(h; �; �;�Wn+1)− �EM(h; �′; �′;�Wn+1))|

=|E(hf(�; �) + g(�; �)�Wn+1 − hf(�′; �′)− g(�′; �′)�Wn+1)|

6h|f(�; �)− f(�′; �′)|+ |g(�; �)− g(�′; �′)||E(�Wn+1)|

6h(L1|�− �′|+ L2|�− �′|)
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Table 1

Time step 0.25 0.125 0.0625 0.03125

I � 0.0184 0.00404 0.000973 0.000244
II � 0.1088654 0.04912833 0.02437045 0.01213507

E(|�EM(h; �; �;�Wn+1)− �EM(h; �′; �′;�Wn+1)|2)
=E(|hf(�; �) + g(�; �)�Wn+1 − hf(�′; �′)− g(�′; �′)�Wn+1|2)
6h2|f(�; �)− f(�′; �′)|2 + |g(�; �)− g(�′; �′)|2E|�Wn+1|2

6h2(L21|�− �′|2 + L22|�− �′|2) + h(L23|�− �′|2 + L24|�− �′|2);
from which the estimates follow.

Remark 9. Theorem 7 and the last lemma imply that for the Euler–Maruyama method Theo-
rem 5 is valid, with order of convergence p = 1

2 in the mean-square-sense. If Eq. (1) has addi-
tive noise, then the Euler–Maruyama approximation is consistent with order p1 = 2 in the mean
and order p2 = 3

2 in the mean square, which implies an order of convergence p = 1 in the
mean-square-sense.

5. Numerical experiments

We have used the equation

dX (t) = {aX (t) + bX (t − 1)} dt + {�1 + �2X (t) + �3X (t − 1)} dW (t)
as a test equation for our method. In the case of additive noise (�2 = �3 = 0) we have calculated an
explicit solution on the �rst interval [0; �] by the method of steps (see, e.g., [5]), using 	(t)= 1+ t
for t ∈ [− 1; 0] as an initial function. The solution on t ∈ [0; 1] is given by

X (t) = eat
(
1 +

b
a2

)
− b
a
t − b

a2
+ �eat

∫ t

0
e−as dW (s):

We have then used this solution as a starting function to compute an ‘explicit solution’ on the second
interval [�; 2�] with a standard SODE-method and a small stepsize. In the case of multiplicative noise
we have computed an ‘explicit solution’ on a very �ne grid (2048 steps) with the Euler–Maruyama
scheme.
One of our tests concerned the illustration of the theoretical order of convergence. In this case

the mean-square error E|X (T ) − X̃ N |2 at the �nal time T = 2� was estimated in the following
way. A set of 20 blocks each containing 100 outcomes (!i;j; 16i620; 16j6100), were sim-
ulated and for each block the estimator �i = 1

100

∑100
j=1 |X (T; !i; j) − X̃ N (!i;j)|2 was formed. In

Table 1 � denotes the mean of this estimator, which was itself estimated in the usual way:
�= 1

20

∑20
i=1 �i.
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Fig. 1. Upper left: �i =0; i=1; : : : ; 3, upper right: �1 = 0:5; �i =0; i 6= 1, lower left: �2 = 0:5; �i =0; i 6= 2, lower right:
�3 = 0:5; �i = 0; i 6= 3.

We have used the set of coe�cients I a=−2; b= 0:1; �1 = 1 and II a=−2; b= 0:1; �2 = 1 (the
other coe�cients in the di�usion term are set to 0). The �gures display max16n6N E|X (T )− X̃ N |2,
which according to (8) in Theorem 5 is bounded by c2h2p, and they are compatible with the results
given in Remark 9, i.e. p=1 in (I), the example with additive noise, and 2p= 1

2 in (II), an example
with multiplicative noise.
One may consider Eq. (1) as a deterministic delay equation perturbed by white noise. In this

context Figs. 1 and 2 show the inuence of the parameters �i on the solution of the deterministic
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Fig. 2. Upper left: �i = 0; i = 1; : : : ; 3, upper right: �1 = 1; �i = 0; i 6= 1, lower left: �2 = 1; �i = 0; i 6= 2, lower right:
�3 = 1; �i = 0; i 6= 3.

test equation x′(t) = ax(t) + bx(t − �). In the �rst four pictures a = −2; b = 1, in the second four
pictures a= 0; b= 1:45.
As a last experiment we varied the stepsize in order to observe some stability behaviour of the

Euler–Maruyama method. Using the coe�cients a=−16; b=1 and two stepsizes: h= 1
16 (left �gure)

and h= 1
32 (right �gure), we observe the same stability behaviour as for the deterministic equation,

i.e., a change from unstable to stable, when varying the coe�cients of the di�usion term. In the
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pictures we have �1 =0:5 (�i=0; i 6= 1); �2 =0:5 (�i=0; i 6= 2); �3 =0:5 (�i=0; i 6= 3), respectively.

6. Conclusions

This article provides an introduction to the numerical analysis of stochastic delay di�erential
equations. When one seeks to advance the study further, one sees open a number of unanswered
questions, involving (for example)
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• the design of numerical methods for more general kinds of memory (e.g., time or state dependent
time lags);
• the stability and dynamical properties of the numerical methods;
• the design of numerical methods for more general problems (e.g., stochastic integrodi�erential
equations).
We hope that such issues will be addressed in sequels to this report.
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Abstract

Retarded di�erential equations (RDEs) are di�erential equations having retarded arguments. They arise in many realistic
models of problems in science, engineering, and medicine, where there is a time lag or after-e�ect. Numerical techniques
for such problems may be regarded as extensions of dense-output methods for ordinary di�erential equations (ODEs), but
scalar RDEs are inherently in�nite dimensional with a richer structure than their ODE counterparts. We give background
material, develop a theoretical foundation for the basic numerics, and give some results not previously published. c© 2000
Elsevier Science B.V. All rights reserved.

Keywords: Retarded di�erential equations; Delay and neutral delay di�erential equations; Continuity and stability;
Numerics; Mesh and densely de�ned approximations; Convergence; Order of convergence; Numerical stability

1. Introduction

Many real-life problems that have, in the past, sometimes been modelled by initial-value problems
for di�erential equations actually involve a signi�cant memory e�ect that can be represented in
a more re�ned model, using a di�erential equation incorporating retarded or delayed arguments
(arguments that ‘lag behind’ the current value). The last few decades have seen an expanding
interest in problems variously classi�ed as delay di�erential equations (DDEs), retarded di�erential
equations (RDEs), retarded functional di�erential equations (RFDEs), or neutral delay di�erential
equations (NDDEs). (Stochastic DDEs, whose basic numerics are addressed in [6], also arise.)
Amongst the application areas are the biosciences, economics, materials science, medicine, public

health, and robotics; in a number of these there is an underlying problem in control theory. Regarding
the independent variable (t, say) as representing “time” in an evolutionary problem, the signi�cance
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of any “time-lag” is in a sense determined by its size relative to the underlying “time-scales”. Pa-
rameter estimation [3,4,9,11] in prospective models can assist in assessing the need to incorporate
time-lags. To the extent that numerical analysts should be inuenced by applications (see, for exam-
ple, [5]) and by the theoretical background, the starting point for a study of numerical methods lies
with mathematical modelling and in dynamical systems de�ned by Volterra (that is, nonanticipative)
equations. The advent of robust general numerical routines for DDEs and NDDEs then changes the
opportunities for mathematical modelling (through numerical simulation) using equations for which
closed-form solutions do not exist.
Our main task is to convey the essence of the subject to the reader by means of a rigorous

presentation that foregoes any attempt at a complete discussion (this would require a book rather
than a paper), and the structure of this paper is as follows. Following this introduction, we provide
some background theory (i) concerning the functional equations and (ii) concerning the background
numerical analysis. We then discuss (emphasizing relatively simple formulae to advance the develop-
ment, but indicating extensions) the major theoretical issues: existence of an approximate solution,
convergence to the true solution, and numerical stability; the aim, always, is to adopt a mathemat-
ically sound viewpoint whilst noting the limitations of the discussion. We conclude with a mention
of some further important issues. Though the material is to a large extent available in the literature,
our personal viewpoint pervades the presentation — and we were unable to resist the temptation to
include new material.
To illustrate problems of the type that interest us, we may consider

y′(t) = f(t; y(t); y(�(t))); t¿t0 where �(t)6t; (1.1a)

y(t) =  (t); t ∈ [tmin; t0] where tmin := inf
t¿t0

�(t) (1.1b)

(tmin denotes a generic value, dependent on the problem) with one retarded or ‘lagging’ argument �(t).
In general, the equations of interest present an initial function problem rather than an initial-value
problem familiar in ordinary di�erential equations (ODEs): the solution y(t) of (1:1) is de�ned by
 (t) on an initial interval depending on the initial point t0. Thus, y(t) = y( ; t0; t).
Eq. (1.1a) is an example of a DDE. By way of illustration, one may take �(t)= t− �? where the

lag �? ¿ 0 is �xed and tmin = t0 − �?. That this form of lag is common in the modelling literature
may owe more to the di�culty of treating more general equations analytically than to the realism
of the model. In any event, (1.1a) may itself be generalized. Systems with multiple delays e.g.,
y′(t)=G(t; y(t); y(�1(t)); y(�2(t)); : : : ; y(�m(t))), t¿t0; y(t)∈RN , (�i(t)6t; i=1; 2; : : : ; m) also occur.
We may also consider a system of neutral di�erential equations, or NDDEs, say (y, F vector-valued)

y′(t) = F(t; y(t); y(�(t)); y′(�(t))); t¿t0 (1.2a)

with �(t); �(t)6t; if t0min = inf t¿t0 �(t) and t1min = inf t¿t0 �(t) then the initial conditions are that

y(t) =  0(t); t ∈ [t0min; t0] and y′(t) =  1(t); t ∈ [t1min; t0]: (1.2b)

We may set tmin :=min{t0min; t1min}. We term �(t); �(t) the delayed arguments, and �(t) := t−�(t)¿0,
�(t) := t − �(t)¿0 the corresponding lags. An NDDE (1.2a) is characterized by the dependence of
y′(t) on y′(�(t)), as an argument of F . Frequently, but not always,  1(t) =  ′

0(t). We concentrate
for simplicity on DDEs and NDDEs. The theory of NDDEs is rather less straightforward than that
of DDEs, and it is commonplace to impose su�cient, rather than necessary, conditions on F for
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existence and uniqueness. We observe, in passing, that an alternative standard type of NDDE is
represented by

{y(t)− (t; y(�(t)))}′ = �(t; y(t); y(�(t))); (1.3)

which with suitable assumptions is in “Hale’s form”. The theory of (1.3) seems to be better developed
than that for (1.2a), and its numerical treatment can merit separate investigation.
A classi�cation of the types of delayed argument is important in the modelling, the analysis,

and the numerics. We refer to �(t) = t − �(t) in (1.2a), and by analogy to �(t) = t − �(t), to
distinguish (i) fading or persistent memory, respectively, �(t) → ∞ as t → ∞ or �(t) 9 ∞ as
t → ∞; (ii) bounded lag if sup �(t)¡∞; (iii) constant and state-dependent lag if, respectively,
�(t)= t−�?, with �? �xed, or �(t) ≡ �(t; y(t)) := t−�(t; y(t)). Finally, we have (iv) a vanishing lag
if �(t?)= t?. (Analogously, (i) �(t)→∞ or �(t) 9 ∞ as t →∞; (ii) sup �(t)¡∞, (iii) �(t) ≡ �?,
(iv) �(t?) = t?.)

Remark 1.1. Where left- and right-hand derivatives of the solution y(·) do not agree, in an RDE
such as that in (1:1) or (1:2), y′(t) is interpreted as the right-hand derivative. The right- and left-hand
derivatives of a function �(·), are (provided the required limit exists), respectively

�′
+(t) = lim�→0

�(t + |�|)− �(t)
|�| and �′

−(t) = lim�→0

�(t)− �(t − |�|)
|�| : (1.4)

2. Background theory

We touch on some theoretical issues, asking the reader to consult the literature 2 (see, e.g., citations
[16; 78; 83; 102; 104; 125; 151; 153; 200] in [30] and [59]) for more detail. We give some very simple
DDEs to illustrate interesting features. Our �rst example is the scalar, linear, DDE

y′(t) = �?y(t) + �?y(t − �?); t¿t0 with y(t) =  ?(t); t ∈ [t0 − �?; t0]: (2.1a)

By a simple change of variable, one can (if appropriate) normalize the lag �? to unity and obtain
the equation

u′(t) = �u(t) + �u(t − 1); t¿t0; with u(t) =  (t); t ∈ [t0 − 1; t0]; (2.1b)

where u(t) :=y(�?t),  (t) =  ?(�?t), � = �?�?, � = �?�?. On the other hand, the further substi-
tution v(t) = exp(−�t)u(t) then gives, with �̂ := � exp(−�), the equation v′(t) = �̂v(t − 1) (t¿t0),
a “pure delay equation”. This can be solved, in principle, by repeated integration: we have v(t) =
�̂
∫ t−1
t0+(n−1) v(s) ds+ v(t0 + n), with t ∈ [t0 + n; t0 + (n+ 1)], for n= 0; 1; 2; : : : .
Our second example is the popular delayed logistic equation

y′(t) = �?y(t){1− y(t − �?)}; �? ¿ 0 (2.2)

2 We are constrained in this presentation by pressures on space, and this limits the comprehensiveness of our references
(the references [1–77] that are listed here carry additional citations), and limits our discussion (our main aim is to convey,
without over-simpli�cation, a rigorous underlying approach to theory and practice). For future reading, we refer to a
forthcoming book in [26].
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Fig. 1. Some solutions of u′(t) = �u(t){1 − u(t − 1)} in (2:3): (a) for � = 0:75; 1:5 and 3:0, and a �xed  (·); (b) for
�= 1:5;  (t) = 0:5 and  (t) = 1:5 (t ∈ [− 1; 0]).

with an initial function de�ned on [t0 − �?; t0], or (normalizing �? to unity):

u′(t) = �u(t){1− u(t − 1)} (t¿t0); (2.3a)

u(t) =  (t); t ∈ [t0 − 1; t0]; �= �?�? ∈ R: (2.3b)

For �¿ 0, a positive initial function  (t)¿ 0 gives a positive solution u(t) (t¿t0) and with
w(t) := ln u(t) one has the DDE w′(t) = �{1 − exp(w(t − 1))}, another “pure delay equation”.
Numerical solutions of (2:3) are plotted in Fig. 1. The realism of the model is open to question
but it has some typical features: (a) The equation has a positive equilibrium solution u(t) = 1 for
all �, but the qualitative behaviour of solutions of the scalar equation depends upon � and chaotic
behaviour can arise. For large �, a solution can remain small for a substantial interval in t before
increasing to a large value and then decaying again (cf. the case � = 3 which has high peaks, in
Fig. 1(a)). The work [37] yields asymptotic expressions (valid as � becomes large) for maxima
and minima and ultimate periodicity. (b) Solutions corresponding to di�erent initial functions can
assume the same value at a point t= t? though they are not identical; see Fig. 1(b). For ODEs where
the solution is uniquely determined by initial data at an arbitrary initial point this cannot happen.
A further example is the pantograph equation y′(t) = y(t) (t¿t0¿0); y(t) =  (t), t ∈ [t0; t0],
 ∈ (0; 1). If t0=0 this is an initial-value problem (cf. [29] for an extension). In certain limiting cases
(when �?=0 or =0), equations mentioned above reduce to ODEs, e.g., y′(t)=�?y(t){1−y(t)},
the logistic ODE. If we set = 0 in the pantograph equation we obtain y′(t) = y(0) which displays
a persistent memory (y(0) is never “forgotten”).

Remark 2.1. Eq. (2.3a) arises from x′(t) = �x(t){1− K−1x(t − �?)}, on a change of variables. Sir
Robert May, FRS (at the time of writing, the Chief Scienti�c Adviser to HM Government) proposed,
in 1973, study of a related system (with �; �; �; !; �? ¿ 0, K ¿ 0) y′

1(t) = �y1(t){1 − K−1y1(t −
�?)} − �y1(t)y2(t); y′

2(t) =−!y2(t) + �y1(t)y2(t). Other similar systems arise.

Theorem 2.2 (Existence; cf. [57]). With �¿ 0; t0 ∈ [tmin; tmax]; there is a unique solution of (1:2a)
on [tmin; tmax] if; whenever u; U ∈ C1[tmin; tmax] and v; V ∈ C[tmin; tmax]; (i) F(t; u(t); u(�(t)); u′(�(t))) is
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continuous on [tmin; tmax] and; further; (ii) ||F(t; u(t); u(�(t)); v(�(t)))−F(t; U (t); U (�(t)); V (�(t)))||
6 L1(sups∈[tmin ;t]|u(s) − U (s)| + sups∈[tmin ;t−�] |v(s) − V (s)|) + L2 sups∈[t−�; t] |v(s) − V (s)| holds for
t ∈ [t0; tmax] with L1;2¿0 and L2¡ 1.

One of the important characteristics of an RDE is the sensitivity of a particular solution to
changes in the problem. This may be sensitivity to changes in the parameters [11] in the equation
(“structural stability”), or sensitivity to changes in the initial conditions, or to persistently acting
disturbances, and each gives rise to a de�nition of stability. To give de�nitions we shall refer to
a solution of the NDDE problem (1:2) (then the DDE problem (1:1) is a special case), and we
consider the perturbed problem

y′(t) + �y′(t)

=F(t; y(t) + �y(t); y(�(t)) + �y(�(t)); y′(�(t)) + �y′(�(t))) + �F(t) (t¿t0); (2.4a)

y(t) + �y(t) =  0(t) + � 0(t); y′(t) + �y′(t) =  1(t) + � 1(t) (t6t0); (2.4b)

conditions (2.4b) being valid on the appropriate initial intervals. We can measure the overall size
of the input perturbations by, for example,

�= sup
t¿t0
||�F(t)||+max

{
sup
t6t0
||� 0(t)||; sup

t6t0
||� 1(t)||

}
; (2.5)

where || · || is a vector norm. It may be appropriate to restrict the classes of perturbations (the
admissible perturbations); for example, we may require �F(t)→ 0 as t →∞ or �F(·) ∈L[t0;∞),
or (if tmin is −∞) � (t) → 0 as t → −∞. For nonneutral equations,  1(·) is absent and � 1(·)
vanishes. Stability concerns the boundedness of �y(·) on [0;∞), and the limiting behaviour of �y(t)
as t→∞, when the problem is perturbed; note that a solution of a nonlinear problem may be
unbounded but stable. In consequence, to attempt (without further comment) to de�ne stability of
a solution of a linear homogeneous equation in terms of boundedness of its solutions y(·) can lead
to misunderstanding of the nonlinear case. The unquali�ed term stability often refers to stability
with respect to perturbed initial conditions in which we require that �F(·) vanishes, so the only
perturbations are in  0(·),  1(·). We now give formal de�nitions of selected concepts.

De�nition 2.3 (Stability). (a) Given t0 and a class of admissible perturbations satisfying (2.5), a
solution y(·) of the neutral equation (1:2) is (i) stable, if for each �¿ 0 there exists �∗=�∗(�; t0)¿ 0
such that ||�y(t)||¡�; when t¿t0 whenever �¡�∗; (ii) asymptotically stable, if it is stable and
there exists �† = �†(t0) such that �y(t)→ 0 as t →∞ whenever �¡�†.

There are many complementary theoretical tools for analysing stability; stability theory for bounded
lags may not extend to unbounded lags and theory for DDEs does not always extend to NDDEs.

Remark 2.4. (a) For linear equations (2:1), some results are well known. Thus, the use of Laplace
transforms and an investigation of the zeros of the quasi-polynomial that serves as a stability function
allows one to establish that all solutions of the DDE (2.1a) are stable with respect to perturbed
initial conditions when the point (�; �) := (�?�?; �?�?) lies in the stability region � which is the
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Fig. 2. Representation of the boundary @�1∪@�2 of the unbounded exact stability region � in the (�; �)-plane: (a) as given
in (2:6), showing that � contains the wedge W of points (�; �) such that |�|¡− � and �? ¿ 0; � = � is an asymptote
to @�2; (b) showing for comparison the corresponding boundary (2.10) for the NDDE (2.9) in the case �=−0:9, −0:6,
0:6, 0:9; the stability regions again include W (for |�|¡ 1).

region of the (�; �)-plane that includes the half-line �¡ 0, � = 0 and whose boundary

@�= @�1 ∪ @�2 is formed by the loci (2.6a)

@�1 := {� =−�}; (2.6b)

@�2 := {(�= ! cot!; � =−! cosec!); 0¡!¡ �}: (2.6c)

In particular, therefore, we obtain a stability condition

|�?|6− �? (2.7)

that is independent of �? ¿ 0 from the observation �⊃W := {(�; �) such that |�|¡ − �}. For
complex-valued �?; �?, an analogue of (2.7) is that solutions are stable if |�?|¡−R �?; Guglielmi
[41, p. 409] indicates the region �† of complex parameters (�?�?; �?�?) for which all solutions of
(2.1a) are stable.
(b) The above results extend after some precautions to certain NDDEs such as

y′(t) = �?y(t) + �?y(t − �?) + �?y′(t − �?) (�?; �?; �? ∈ C) with |�?|¡ 1: (2.8)

For the linear neutral delay di�erential equation, (2.8) a su�cient condition for stability is |�? ��? −
��?|+ |�?�? − �?|¡− 2R �?; if �?; �?; �? ∈ R, it su�ces that |�?|¡− �? and |�?|¡ 1. The lag
can be normalized to unity if we consider

y′(t) = �y(t) + �y(t − 1) + �y′(t − 1) (� := �?�?; � := �?�?; �= �?) (2.9)

Boundaries of the stability region are presented graphically (after some re-labelling) in [60, p. 117].
We here note that the locus corresponding to @�2 in (2.6c), for � not necessarily 0, is the set of
parameterized points

{(�; �): �= ! cot!− �! cosec(!); � =−! cosec(!) + �! cot (!)}; (2.10)

and sample loci are drawn in Fig. 2(b) for �=−0:9;−0:6; 0:6, and 0:9.
(c) For systems of ODEs, the test equation y′(t) = �y(t) with � ∈ C (rather than with � ∈ R)

can be motivated by consideration of the equations y′
i(t) =

∑
ai; jyj(t), or, in compact notation,
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y′(t) = Ay(t), where the real matrix A = [ai; j] is supposed to be similar to the diagonal matrix
diag(�1; �2; : : : ; �m) with complex {�‘}. The corresponding test equation (2.8) with complex co-
e�cients should probably be considered less signi�cant than in the complex-coe�cient ODE case,
because (i) it will be a rare occasion for three matrices L = [�i; j]; M = [�i; j]; N = [�i; j] to be
simultaneously diagonalizable — i.e., under the same similarity transform — and (ii) the system of
NDDEs that one would prefer to consider has the form

y′
i(t) =

∑
j

�i; jyj(t) +
∑
j

�i; jyj(t − �i; j) +
∑
j

�i; jy′
j(t − �i; j) (2.11)

where the positive values {�i; j; �i; j} are generally all di�erent (and may be t– or state–dependent).

If we turn to nonlinear equations, the solution y(t) ≡ 1 of (2:3) is readily shown to have di�erent
stability properties from those of the solution y(t) ≡ 0 and this illustrates the general observation
that stability properties attach to a particular solution y(t) ≡ y( ; t0; t) of a nonlinear equation.
Let us observe also that there are conditions in the literature under which stability with respect to
certain types of persistent perturbations may be deduced from asymptotic stability with respect to
initial perturbations.
Emphasis on test equations, such as (2:1) has limited interest unless one can relate the results to

more general equations. In this respect, Baker and Tang [12] established results on stability with
respect to initial perturbations, that include the following as a special case, and they investigated
analogues for some numerical approximations.

Theorem 2.5. De�ne ||u(·)||[t−k�?; t] := sup�∈[t−k�?;t] |u(�)|. Suppose �(t) ≡ t−�(t; u(t))6t (t¿t0) and
|�(t; v)− �?| → 0 uniformly as t →∞; v→ 0; and; for some �nite k¿1; |f(t; u(t); u(�(t; u(t))))−
{�?u(t) + �?u(t − �?)}|= o(||u(·)||[t−k�?; t]) uniformly as ||u(·)||[t−k�?; t] → 0; t →∞. Then; the zero
solution of (1:1) is asymptotically stable if the zero solution of (2:1a) is asymptotically stable (and
unstable if the zero solution of (1:1) is unstable).

We turn to some further key features that are of interest in the context of numerical analysis
for RDEs. These include (i) propagated discontinuities in the solution or its derivatives, or large
derivative values; (ii) delay terms that can stabilize or can destabilize solutions of the problem; (iii)
onset of periodicity or chaotic behaviour as a parameter in the de�ning equations is varied. We can
illustrate these by reference to scalar equations, such as (2:3).
Firstly, consider the question of smoothness. Suppose that the initial function  (t) ∈ C1[t0−�?; t0]

in (2.2) is such that its (left-hand) derivative  ′
?(t0) is not equal to �? ?(t0){1− ?(t0−�?)}. Then

(since y(·) and  ?(·) coincide on [t0 − �?; t0]), it follows that the right-hand derivative y′
+(t0) does

not agree with the left-hand derivative y′
−(t0). In this case, we say that the derivative of y has a jump

at t0. We deduce, from (2.2), that y′′(t) has a similar jump at t0 + �?, y
′′′(t) has a jump at t0 +2�?,

and so on. Here, the solution becomes smoother as t increases. There exists a well-developed theory
of tracking of the points where derivatives of the solution have jump discontinuities, see [69,75] and
other citations in [10]. The reader may consider a modi�cation of (2.2),

y′(t) = �?y(t){1− y(t)− �?y′(t − �?)} (t¿0) (2.12)

which is an NDDE, as an example where smoothing does not take place. Note that the type of
approximation that purports to relate (2:2)–(2:12) is most suspect!
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Secondly, we address stability. Consider the equilibrium y(t) ≡ 1 for the ODE y′(t)=�?y(t){1−
y(t)} which, by ‘stability in the �rst approximation’, is stable with respect to initial perturbations
if �? ¿ 0. However, y(t) ≡ 1 is a stable solution of y′(t) = �?y(t){1 − y(t − �?)} under the
introduction of (small) perturbations �(t) for t ∈ [ − �?; 0] if (by a re�ned version of ‘stability in
the �rst approximation’) corresponding solutions of �′(t) = −�?�(t − �?){1 + �(t)} are bounded.
A stability condition now is that �?�? ∈ (0; 12�) (y(t) ≡ 1 is unstable for �?�? ¿ 1

2�). Note the
continuous dependence on �? as �? ↘ 0.
Finally, consider, in association with bifurcation theory (see [30, p. 301]), the qualitative behaviour

of the solutions of the delayed logistic equation as �?�? varies. The solutions of (2.2) with �?�? ¿ 0
and a positive  (t) (t ∈ [ − �?; 0]) are positive, converge monotonically to 1 if 06�?�?6e−1,
converge to 1 in an oscillatory fashion if e−16�?�? ¡ �=2, and display oscillatory behaviour for
�?�?¿�=2 (a Hopf bifurcation point — it is not a coincidence that the locus @�2 in Fig. 2(a)
crosses � = 0 where � = −�=2). The numerical analysis of Hopf bifurcation is addressed in the
literature (cf. [32,38], where di�ering perspectives are presented, and [34,35,64,65,76] along with
the citations given therein). This area merits the reader’s further consideration: Bifurcation, the onset
of periodicity, and the behaviour of periodic solutions, are of practical interest.

3. Background numerical analysis

Numerical computation is designed to give quantitative insight (and, thereby, qualitative insight)
into the solution of various mathematical models. As in the numerical solution of ODEs, there are
two inter-related types of question that concern us: the one relates to the design of algorithms,
and the other relates to what can be established rigorously about their properties and performance.
This requirement of rigour imposes assumptions that in general reduce the degree of realism but
nevertheless (one hopes) allows some practical insight to be gained. Additional valuable citations
will be found in [3,10,26,43,77].
The choice of numerical techniques for the treatment of RDEs (DDEs and NDDEs) relies heav-

ily on the construction of densely-de�ned continuous extensions. (Similar constructions produce
dense-output in the numerics of ODEs.) The method of de�ning the continuous extension can, in
addition to the properties of the other components of our methods, a�ect both the accuracy and the
stability of the numerical method [10,26,77]. We concentrate upon the scalar version of (1.2a), for
de�niteness, so that

y′(t) = F(t; y(t); y(�(t)); y′(�(t))) for t¿t0; (3.1)

(with y(t) =  0(t), y′(t) =  1(t), t6t0). The restriction to DDEs, and the extension to systems, will
be obvious.
Using the initial conditions ỹ(t) =  0(t), ỹ′ (t) =  1(t) for t6t0, our numerical solution proceeds,

usually with adaptive step sizes {hn}, with a mesh

T := {t0¡t1¡t2¡ · · ·¡tn−1¡tn ¡ · · ·}; hn := tn+1 − tn; (3.2)
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by obtaining ỹ(t); ỹ′ (t) for t¿t0. The width of T is maxn hn. One advances, from tn to tn+1 at the
nth stage, in ‘evolutionary’ mode. The choice of T is clearly important and should take account
of the nature of the solution. (Some of the published analysis treats the uniform step-size case,
hn≡ h.) Where one seeks the solution on [t0; tmax], we suppose that tmax is the only possible point of
accumulation of {t‘}. In practice, the steps hn are chosen on the basis of one or more of the following:
(a) knowledge (to within a given tolerance) of the points where the solution or a “signi�cant”
derivative has a jump discontinuity (or is relatively large), (b) estimates of the local truncation
error, (c) estimates of the defect (see [36,45]; and citation [46] of [10]). Determination of the
points referred to in (a) can be attempted using tracking theory or by using indicators from estimates
obtained under (b) or (c). For some problems, the solution becomes smoother as t increases, and the
problem of discontinuities is transient; for certain NDDEs, and certain DDEs with unbounded lag,
the problem of lack of smoothness persists. Where discontinuities cause a problem, the author’s view
is that modest-order one-step methods, such as those based on Runge–Kutta (RK) processes with RK
abscissae in [0; 1], and local approximation techniques for providing a densely de�ned approximation,
together with control of the step sizes, have great appeal (they are self-starting and can more readily
avoid derivative discontinuities). Some RK methods are equivalent to a form of collocation. RK
methods with abscissae outside [0; 1], linear multistep methods, and nonlocal extensions, can have
rôles in the particular case of problems with smooth (or ultimately smooth) solutions.

3.1. The construction of some approximating formulae

For state-dependent �(t) ≡ �(t; y(t)); �(t) ≡ �(t; y(t)) we write

�̃(t) = �̂(t; ỹ(t)) ≡ min(t; �(t; ỹ(t))); (3.3a)

�̃(t) = �̂(t; ỹ(t)) ≡ min(t; �(t; ỹ(t))): (3.3b)

Write tn+shn as tn+s; as the calculation proceeds, one retains information to generate approximations
ỹ(tn+s) (and ỹ′ (tn+s)), s ∈ (0; 1), when required.
We orientate the reader by considering the �-method applied, with �xed � ∈ [0; 1], to (3.1); later,

we consider RK methods. With ỹ k := ỹ(tk) ≈ y(tk), F̃k :=F(tk ; ỹ(tk); ỹ(�̃(tk)); ỹ′ (�̃(tk))), suppose
we have computed and stored

ỹ 0; F̃0; ỹ 1; F̃1; ỹ 2; F̃2; · · · ỹ n; F̃n (3.4)

(see Remark 3.2 for a generalization) and require to advance from tn to tn+1. The �-formula for ỹ n+1
reads

ỹ n+1 := ỹ n + (1− �)hnF̃n + �hnF(tn+1; ỹ n+1; ỹ(�̃(tn+1)); ỹ′ (�̃(tn+1))): (3.5)

Of course, ỹ′
k = ỹ′ (tk) := F̃k approximates y′(tk). The �-formula is implicit if � 6= 0 in which case

one needs the delayed function value ỹ(�̃(tn+1)) or ỹ′ (�̃(tn+1)). Taking �= 1
2 de�nes the trapezium

rule

ỹ n+1 := ỹ n +
1
2hnF̃n + 1

2hnF(tn+1; ỹ n+1; ỹ(�̃(tn+1)); ỹ′ (�̃(tn+1))): (3.6)
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In the special case where �(t) = t − �?, �(t) = t − �? and h can be (and is) �xed so that
�?=h=M ∈ N and �?=h=M ′ ∈ N, the natural complete de�nition is

ỹ n+1 := ỹ n +
1
2hnF̃n + 1

2hnF(tn+1; ỹ n+1; ỹ n+1−M ; F̃n+1−M ′); (3.7a)

ỹ′
n+1 ≡ F̃n+1 :=F(tn+1; ỹ n+1; ỹ n+1−M ; F̃n+1−M ′): (3.7b)

In general, however, �̃(tn+1) or �̃(tn+1) 6∈ T. One then needs approximation formulae that extend
the solution de�ned on the mesh T, to compute ỹ(�̃(t)) at �̃(t) = t� + sh� for s = s(T; t), and to
compute ỹ′ (�̃(t)) with �̃(t) = t�′ + qh�′ for q = q(T; t) (s; q ∈ (0; 1)). Generic relationships of the
type

’(tk+s) = A(s)’(tk) + B(s)’(tk+1) + hk{C(s)’′(tk) + D(s)’′(tk+1)}+ O(h%k
k );

’′(tk+s) =
1
hk
{A′(s)’(tk) + B′(s)’(tk+1)}+ C ′(s)’′(tk) + D′(s)’′(tk+1) + O(h%′k

k )

(where %k ; %′k depend on the smoothness of ’ on [tk ; tk+1]) generate such approximations on omitting
the Landau order terms. We obtain piecewise-constant, piecewise-linear, piecewise-quadratic and
piecewise-cubic approximations interpolating ’(t) at {tk} if, respectively, A(s) = 1; B(s) = C(s) =
D(s) = 0; A(s) = 1− s; B(s) = s, C(s) = D(s) = 0;

A(s) = 1; B(s) = 0; C(s) = (s− 1
2s
2); D(s) = 1

2s
2 (3.8)

and (the piecewise cubic case)

A(s) = {1 + 2s}(1− s)2; B(s) = 1− A(s);

C(s) = s(1− s)2; D(s) = s− C(s): (3.9)

As a simple low-order method, we might employ the Euler formula (� = 0 in the �-method) with
piecewise-linear interpolation for both ỹ(tk+s) and ỹ′ (tk+s). In this manner, we obtain

ỹ(tn+1) := ỹ n + hnF̃n; (3.10a)

ỹ(tk+s) := ỹ k + hn{(1− s)F̃k + (1− s)F̃k+1}
= (1− s)ỹ k + sỹ k+1 (k6n; s ∈ [0; 1]); (3.10b)

ỹ′ (tk+s) := (1− s)F̃k + sF̃k+1 (k6n; s ∈ [0; 1]): (3.10c)

An alternative to the expression in (3.10c) is, of course, the derivative obtained from (3.10b), namely

{ỹ k+1 − ỹ k}=h; s ∈ [0; 1): (3.10d)

A method based on (3.10d) will, in general, have di�erent properties from one based on (3.10c).
For each choice of {A(s); B(s); C(s); D(s)}, we obtain extensions of the form ỹ(tk+s) =A(s)ỹ k +

B(s)ỹ k+1 + hk{C(s)ỹ′
k + D(s)ỹ′

k+1} (and similarly for ỹ′ (tk+s)) if we set ’(t‘) to ỹ ‘, and ’′(t‘) to
F̃‘. By (3.5), ỹ k+1 can be eliminated and (since A(s)+B(s)=1) we deduce, given �, approximations
of the type

ỹ(tk + shk) ≡ ỹ(tk+s) = ỹ k + hk{b1(s)F̃k + b2(s)F̃k+1}; (3.11a)

ỹ′ (tk + shk) ≡ ỹ′ (tk+s) = c1(s)F̃k + c2(s)F̃k+1: (3.11b)



C.T.H. Baker / Journal of Computational and Applied Mathematics 125 (2000) 309–335 319

All choices above give local approximations on [tk ; tk+1] using computed values of ỹ(·) and ỹ′ (·) at
arguments in [tk ; tk+1]. For convenience, we suppose we take one type of approximation consistently
for all k.
If we combine (3.9) and (3.6), we �nd b1(s)=s− 1

2s
2, b2(s)= 1

2s
2. The same result arises on using

(3.8). If we di�erentiate (3.9) and use (3.6), we �nd c1(s) = 1 − s, c2(s) = s. Here, c‘(s) = b ′
‘ (s),

but this is not (cf. (3.10b)–(3.10c)) essential in general. The trapezium rule gives, with the chosen
extensions,

ỹ(tn+s) := ỹ n + hn{(s− 1
2s
2)F̃n + 1

2s
2F(tn+1; ỹ n+1; ỹ(�̃(tn+1)); ỹ′ (�̃(tn+1)))}; (3.12a)

ỹ′ (tk+s) := (1− s)F̃k + sF̃k+1 (k = 0; 1; : : : ; n): (3.12b)

Note that we have ỹ(t‘) = ỹ ‘, ỹ′ (t‘) = F̃‘, for ‘ ∈ {k; k + 1}. Approximation theory yields (inter
alia) the following results related to (3:12).

Lemma 3.1. If; for r ∈{0; 1; 2}; y(·)∈C2−r[tk ; tk+1] is Lipschitz continuous (in particular if y(·) ∈
C3−r[tk ; tk+1]) and if

y(tk+s) = y(tk) + hk{(s− 1
2s
2)y′(tk) + 1

2s
2y′(tk+1)}+ �hk (y; s); (3.13a)

y′(tk+s) = (1− s)y′(tk) + sy′(tk+1) + �“
hk (y; s); (3.13b)

then sups∈[0;1] |�hk (y; s)|= O(h3−r
k ); sups∈[0;1] |�“

hk (y; s)|= O(h2−r
k ).

Our discussion illustrates the general approach to adapting an ODE solver to treat a DDE or NDDE
using auxiliary approximations to compute solution or derivative values at retarded arguments and
there exists a wide choice for the latter. We progress from the �-methods to consider RK methods.
The ODE literature contains examples of continuous RK formulae that incorporate an inbuilt method
for generating dense output. Such a formula is generated by the continuous RK triple (#;A; b(s))
featured, with an example, in the tableau in (3.14):

# A

s bT(s);
for example;

0 0

1 1
2

1
2

s s− 1
2s
2 1
2s
2

; s¿0: (3.14)

We have A= [ai; j] ∈ Rm×m, b(s) = [b1(s); b2(s); : : : ; bm(s)]
T and #= [#1; #2; : : : ; #m]

T ∈ Rm. The RK
parameters are “formally explicit” if ai; j =0 for j¿i and will be called “local” if #i ∈ [0; 1] for all
i. An RK triple allows one to obtain a formula for the numerical solution of a DDE.
For an NDDE one requires a further vector of weights cT(s), conveniently but not necessarily

taken as the derivative of bT(s) (cf. (3:11), but note (3.10b), (3.10c)). Such parameters de�ne a
RK-quadruple (#;A; b(s); c(s)) corresponding to an augmented tableau:

# A

s bT(s)

cT(s);

for example;

0 0

1 1
2

1
2

s s− 1
2s
2 1
2s
2

1− s s

; s¿0: (3.15)



320 C.T.H. Baker / Journal of Computational and Applied Mathematics 125 (2000) 309–335

We write tn; i := tn+#ihn, ỹ n; i := ỹ(tn; i) (also, as above, tn+s=tn+shn for s ∈ [0; 1]), and the continuous
RK discretization of (3.1) is given by

ỹ(tn+s) := ỹ n + hn

m∑
j=1

bj(s)F̃n; j; (3.16a)

ỹ′ (tn+s) :=
m∑

j=1

cj(s)F̃n; j; (3.16b)

ỹ n; i = ỹ n + hn

m∑
j=1

ai; jF̃n; j; F̃n; j = F(tn; j; ỹ n; j; ỹ(�̃(tn; j)); ỹ′ (�̃(tn; j))): (3.16c)

Eqs. (3.16c) together constitute equations to be solved for {F̃n; i}mi=1 for substitution in (3.16a),
(3.16b). For compatibility, we evaluate past values using

ỹ(�̃(tn; j)) = ỹ kn; j + hkn; j

m∑
‘=1

b‘(sn; j)F̃kn; j ;‘ (�̃(tn; j) = tkn; j + sn; jhkn; j); (3.16d)

ỹ′ (�̃(tn; j)) =
m∑

‘=1

c‘(qn; j)F̃k′n; j ;‘ (�̃(tn; j) = tk′n; j + qn; jhk′n; j): (3.16e)

Alongside the general form in (3.15), we gave an illustration (the trapezium rule). That tableau
produces a continuous RK method equivalent to Eqs. (3.12a)–(3.12b). A Dormand & Prince RK
tableau and an extension due to Shampine are employed in the code Archi [71].
There may be complications in the use of (3:16). Eqs. (3.16a), (3.16b) may become implicit if

�(t)¡hn for some t ∈ [tn; tn+1] (e.g., for vanishing lag), even if the RK parameters are formally
explicit. If � (or �) is state-dependent (�̃(tn; j) signi�es �̂(tn; j; ỹ(tn; j))), (3:16) are implicit and must
be solved iteratively.

Remark 3.2. For RK methods, one may store ỹ 0; {F̃0; j}mj=1; ỹ 1; {F̃1; j}mj=1; ỹ 2; {F̃2; j}mj=1; · · · ; ỹ n;

{F̃n; j}mj=1; : : : : If the equations are solved iteratively, one records ỹ [r]
n and F̃

[r]
n; j where F̃

[r]
n; j :=F(tn; j;

ỹ [r]
n; j ; ỹ(�̃

[r](tn; j)); ỹ′ (�̃
[r]
(tn; j))) (or alternatively ỹ [r+1]

n and F̃
[r]
n; j), with �̃[r](tn; k) = �̂(t; ỹ [r](tn; k)), and

�̃
[r]
(tn; k) = �̂(t; ỹ [r](tn; k)) (r ≡ rn).

4. Approximate solutions — existence, uniqueness, convergence

Consider a sequence T ={T[0];T[1];T[2]; : : :} of meshes (3.2) whose widths {h[0]max¿h[1]max¿h[2]max; : : :}
tend to zero. The approximation ỹ(t), if it exists, denotes ỹ(T[m]; t) for some T[m] ∈ T with width
h[m]max ≡ hmax(T[m]).
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De�nition 4.1. Given ỹ(t) ≡ ỹ(T[m]; t), the error on the grid points and the global error, are,
respectively,

e[m]([t0; tmax]) := sup{|y(tn)− ỹ(tn)| for tn ∈T[m] ∩ [t0; tmax]};
e [m]([t0; tmax]) := sup{|y(t)− ỹ(t)| for t ∈ [t0; tmax]}:

For �xed tmax¡∞, the approximations ỹ(·) are (i) convergent on grid-points in [t0; tmax] if
limm→∞ e[m]([t0; tmax]) = 0, (ii) convergent of order � on grid-points in [t0; tmax] if e[m]([t0; tmax]) =
O((h[m]max)

�) as m → ∞, and (iii) convergent of order % on the interval [t0; tmax] if e [m]([t0; tmax]) =
O((h[m]max)

%) as m→∞.

Clearly, %6�; there are cases where %¡�. Further, there are cases where the order of convergence
depends upon the sequence of meshes {T[m]}. (Consider the method de�ned by (3.6) together with
the low-order extension ỹ(tn+s) := ỹ(tn) for s ∈ (0; 1). Apply it to y′(t) = y(t − 1) with ti = t0 + ih
and uniform step h: compare the case T[m] ∈ T if h=1=m (m ∈ N), where no extension is needed,
and the case T[m] ∈ T if h = 1=(

√
2m); m ∈ N.) One caveat is in order: theories that apply for

small discretization parameters (“as h→ 0”) may not give the desired insight in real life (e.g., if h
is large relative to the time-scale of the problem). The concept of sti� order in the study of ODEs
(where practical step sizes do not produce asymptotically correct convergence behaviour) reects
this observation.
We illustrate some more general results by reference to method (3:12) for (3.1). Recall that

tn+s = tn + shn, for s ∈ (0; 1]. We use (if the solution y(·) and the approximation ỹ(·) exist and are
unambiguously de�ned) the notation

Fn+s = F(tn+s; y(tn+s); y(�(tn+s)); y′(�(tn+s))); (4.1a)

F̃n+s = F(tn+s; ỹ(tn+s); ỹ(�̃(tn+s); ỹ′ (�̃(tn+s)))): (4.1b)

Henceforth, we presume the existence of a unique true solution y(t) ≡ y( ; t0; t) but discuss exis-
tence of ỹ(·). We detect a di�culty on considering (2.12) with an initial function  ?(t)=1;  ′

?(t)=0
and solution y(t) = 1. Taking a uniform mesh with hn = h and setting � :=�?h, (3:12) gives, with
ỹ(0) = 1, a quadratic equation for ỹ(h) of which one solution is ỹ 1 = 1 corresponding to which
ỹ(t) = 1; ỹ′ (t) = 0 for t6h. By consistently taking the “appropriate” root, we have as one solution
ỹ(t)=1; ỹ′ (t)=0 for t6nh. At the nth stage the equation for ỹ n+1 is then

1
2�ỹ2n+1+(1−�)ỹ n+1−1=0.

(The path from ỹ n to ỹ n+1 is in general multi-valued though the existence of a real sequence
{ỹ ‘}∞‘¿0 on every path is not guaranteed.) The preceding quadratic equation has as its solutions
ỹ±

n+1 = {�− 1± |1 +�|}={2�}, namely the value 1 (the true solution) and the value −1=� (which
becomes in�nite as h → 0). This example suggests that an implicit formula, such as (3:12), if
applied to a nonlinear NDDE, may give rise to a multi-valued approximation ỹ(t) of which only
some branches are de�ned for all t¿t0 and also satisfy limh→0 supt∈[t0 ;tmax]|ỹ(t)− y(t)|= 0.
Suppose ỹ(t) exists for t ∈ [tmin; tn]. Now, ỹ n+1 = ỹ(tn+1), if it exists, satis�es ỹ n+1 = ’n(ỹ n+1)

where (with notation (3:3))

’n(x) := ỹ n +
1
2hnF̃n + 1

2hnF(tn+1; x; ỹ(�̂(tn+1; x)); ỹ′ (�̂(tn+1; x))): (4.2)

The function ’n(·) satis�es a global Lipschitz condition with constant 1
2hnL if, with �(x) :=

F(tn+1; x; ỹ(�̂(tn+1; x)), ỹ′ (�̂(tn+1; x))), we have |�(x′)− �(x′′)|6L|x′ − x′′| uniformly for all x′; x′′.
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A line of enquiry is to discover reasonable conditions that determine a suitable L; we can then use
the following lemma which may be found in a student text.

Lemma 4.2 (Fixed-point iteration). Consider the general �xed-point iteration xk+1=�(xk). Suppose
(given �¿ 0) that �(·) continuous on [x?− �; x?+ �] and |�(x′)−�(x′′)|6�|x′−x′′| for all x′; x′′ ∈
[x? − �; x? + �] where 06�¡ 1 and let x0 ∈ [x? − �; x? + �] be such that |x0 − �(x0)|6(1− �)�.
Then limr→∞ xr exists and is the only �xed point of �(·) lying in [x? − �; x? + �].

If the global Lipschitz condition holds, we can apply this result to the iteration xr+1=’n(xr), with
arbitrary x0 and � as large as necessary, by ensuring (say) that hnL¡ 1, so there exists a unique
value ỹ(tn+1) for all hn su�ciently small, and a unique ỹ(t) exists for t ∈ [tmin; tn+1]. We have (when
h[m]max is su�ciently small) the basis of a proof, by induction, of the existence of a unique ỹ(t) for
all t ∈ [tmin; tmax]. To bound the error, compare (3:12) with

y(tn+s) = y(tn) + hn{(s− 1
2s
2)Fn + 1

2s
2Fn+1}+ �hn(y; s); (4.3a)

y′(tk+s) = (1− s)Fk + sFk+1 + �“
hk (y; s) (k = 0; 1; : : : ; n); (4.3b)

use (cf. Eq. (3:13)) theoretical bounds on {�hn(y; s); �
“
hk (y; s)}, apply Lipschitz conditions and use

inequalities familiar in the numerics of ODEs.

4.1. Theory based on local Lipschitz conditions

Global conditions are not always realistic and we will request local Lipschitz conditions (this
material appears to be a novel extension of previously published results). We sacri�ce generality by
imposing conditions on the neutral term: in particular, we suppose � to be state-independent and
consider

y′(t) = F(t; y(t); y(�(t; y(t))); y′(�(t))) for t¿t0: (4.4)

Thus, scalar state-dependent DDEs and state-independent NDDEs are covered by our discus-
sion. (The rather intricate details that we supply allow the reader to construct the extension to
state-dependent �(t; y(t)) if Lipschitz conditions apply globally.)
Our main task is to use conditions on the discretization error to establish, for h[m]max su�ciently

small, the existence of ỹ(t); ỹ′ (t) in a region in which local Lipschitz conditions apply. We focus
on formulae (3:12), and use the notation �hk (y; s), �

“
hk (y; s) in Lemma 3.1 and

�n(y) := sup
‘∈{0;1;:::;(n−1)}

|�h‘(y)|; �h‘(y) = sup
s∈[0;1]

|�h‘(y; s)|; (4.5a)

�“
n(y) := sup

‘∈{0;1;:::;(n−1)}
|�“

h‘(y)|; �“
h‘(y) = sup

s∈[0;1]
|�“

h‘(y; s)| (4.5b)

and, for a given ! ∈ (0;∞),
�!
h‘(y) := |�h‘(y)|+ h‘!|�“

‘(y)|: (4.5c)

To impose local conditions for u; w we de�ne the neighbourhoods

D(�; �1; s) := {(s; u; w); |u− y(s)|6�(s); |w − y′(s)|6�1(s)} (4.6)
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for s∈ [t0; tmax] (�(·); �1(·) continuous and strictly positive on [t0; tmax]). We ask (i) that
supt∈[tmin ;tmax] |y(t)|6M , supt∈[tmin ;tmax] |y′(t)|6M , (ii) that y′(·) should be Lipschitz-continuous on
[tmin; tmax] with Lipschitz constant M ; (iii) (uniform boundedness of F) that

|F(t; u(t); u(�(t; u(t))); w(�(t)))|6M (4.7)

for t ∈ [t0; tmax] when |u(t) − y(t)|6�(t) and |w(�) − y′(�)|6�1(�) for � ∈ [t0; t], t06t6tmax. We
require (iv) Lipschitz conditions |�(�; u)−�(�; U )|6��|u−U |, |F(�; U; v; w)−F(�; u; v; w)|6�2|U−
u|, |F(�; u; V; w)− F(�; u; v; w)|6�3|V − v|, |F(�; u; v;W )− F(�; u; v; w)|6�4|W − w|. We ask that
�4¡ 1 (cf. Theorem 2:2; with the condition L2¡ 1). The conditions hold for u; U ∈ [y(�) −
�(�); y(�) + �(�)], v; V ∈ [y(��)− ��; y(��) + ��] (�� = �(s�)), and w;W ∈ [y′(��)− ��; y′(��) + ��],
with �� = �1(��), whenever ��; ��6�, and � ∈ [t0; tmax]. We ask (if necessary by a rede�nition) that
when t ∈ [tn; tn+1],

�1(t)¿� sup
�∈[t0 ; tn+1]

�(�) + �?; where �? ¿ 0; (4.8)

where � = !�?, with �? = �2 + �3 + M�3��, ! = (1 − �4)−1. In relation to T, we also ask for
continuity of y′′(t) on each interval [tk ; tk+1] and that h[m]max�¡ 1, h[m]maxL¡ 1, where L= �2 + �3��M .
Setting �̂ := �3 + �(1 + �4) and �n = {hn�“

hn(y) + �hn(y; 1)} we require that, for n= 0; 1; : : : ;

2 exp{2�(tn − t0)}
n∑

‘=0

�!
h‘6�(t) when t ∈ [tn; tn+1]; (4.9a)

(
1− 1

2
hnL
){

(1 + �̂hn)exp{2�(tn − t0)}
n−1∑
k=0

�hk (y) + |�n|
}
6�(tn+1) (4.9b)

and

! sup
t‘6tmax

|�“
h‘(y)|6�?: (4.9c)

Conditions (4:9) are satis�ed on taking h[m]max su�ciently small, since �!
h‘(y)=O(h‘hmax), and

∑
k �

!
hk={∑k hk}O(h[m]max). To simplify, we assume h[m]max is smaller than a “minimum possible lag”:

0¡max
‘

h‘ ¡ inf
t∈[t0 ; tmax]

min
(

inf
|u−y(t)|6�(t)

(t − �(t; u)); t − �(t)
)
: (4.10)

Then, �̃(t‘+1)6t‘, �̃(t‘+1)6t‘ for ‘ ∈ N. (If �(t) = t − �(t), �(t) = t − �(t) with � :=min{inf t�(t);
inf t�(t)}¿ 0 it su�ces to take h[m]max¡�.)

Theorem 4.3. If all the preceding assumptions hold, there is a unique approximate solution ỹ(t)
de�ned on [t0; tmax] and satisfying |y(t) − ỹ(t)|6�(t). Furthermore, sup[t0 ;tmax] |y(t) − ỹ(t)| → 0 as
h[m]max → 0 (that is; as m→∞).

4.1.1. The proof of Theorem 4.3
We shall indicate a proof of the above, via some lemmas. When brevity requires, we write

e(t) = y(t)− ỹ(t) and e1(t) = y′(t)− ỹ′ (t); (4.11a)

if de�ned. For r ∈ N, Ir will denote the set

Ir := [tmin; tr] ∪ {tr+1}: (4.11b)
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Lemma 4.4. Suppose, for some r ∈N; that there exists a unique ỹ(t) that satis�es |y(t)−ỹ(t)|6�(t)
for t ∈ Ir ; and |y′(t) − ỹ′ (t)|6�1(t) for t ∈ [tmin; tr]. Then (a) ỹ(t); ỹ′ (t) exist on [tmin; tr+1]; and
|ỹ′ (t)|6M for t ∈ [tmin; tr+1]. (b) With � = !�? de�ned above, and ‘ = 0; 1; : : : ; r,

sup
t∈[t0 ; t‘+1]

|y′(t)− ỹ′ (t)|6� sup
t∈[t0 ; t‘+1]

|y(t)− ỹ(t)|+ !|�“
‘+1(y)| (4.12)

and, uniformly for ‘ ∈ {0; 1; : : : ; r},

sup
t∈[t0 ; t‘+1]

|y(t)− ỹ(t)|62 exp{2�(t‘ − t0)}
‘∑

k=0

�!
h‘(y) = O(h[m]max): (4.13)

Finally, |y(t)− ỹ(t)|6�(t), and |y′(t)− ỹ′ (t)|6�1(t) for t ∈ [t0; tr+1].

Proof. We outline a proof of the above, but �rst note that a similar result (the value of � is
changed) holds even if � is state-dependent. By assumption, the trapezium-rule approximation ỹ(t)
is unambiguously de�ned for t ∈ [t0; tr] and at tr+1, so F̃‘ is de�ned for ‘=0; 1; : : : ; (r+1) and hence
there exists a unique twice-di�erentiable approximation ỹ(t) on [tmin; tr+1] satisfying |y(t)−ỹ(t)|6�(t)
on [t0; tr]∪ {tr+1}, and ỹ′ (t‘) = F̃‘ ≡ F(t‘; ỹ(t‘); ỹ(�̂(t‘; ỹ(t‘))); ỹ′ (�(t‘))) if ‘6r +1 (cf. (3:3)). By
(3.12b) with (4.7), |ỹ′ (t)|6M (t ∈ [t0; tr+1]) and (a) follows.
Now y′(t‘) = F‘ ≡ F(t‘; y(t‘); y(�(t‘; y(t‘))); y′(�(t‘))), and ỹ′ (t‘) = F̃‘ as above, and |e1(t‘)| =
|F‘ − F̃‘|. If we use |y(�(t‘; y(t‘))) − ỹ(�̂(t‘; ỹ(t‘)))|6|y(�(t‘; y(t‘))) − y(�̂(t‘; ỹ(t‘)))| +
|y(�̂(t‘; ỹ(t‘)))− ỹ(�̂(t‘; ỹ(t‘)))|6M |�(t‘; y(t‘))− �(t‘; ỹ(t‘))|+ |e(�̂(t‘; ỹ(t‘))| we �nd

|e1(t‘)|6�2|e(t‘)|+ �3

{
sup

t∈[t0 ; t‘−1]
|e(t)|+ ��M |e(t‘)|

}
+ �4 sup

t∈[t0 ; t‘−1]
|e1(t)|: (4.14)

If s ∈ [0; 1], then |e1(t‘+s)|6(1− s)|e1(t‘)|+ s|e1(t‘+1)|+ |�“
‘(y; s)|6maxj∈{‘;‘+1} |e1(tj)|+ |�“

h‘(y; s)|.
Thus, with ‘ ∈ {0; 1; : : : ; r}, I‘ ≡ [t0; t‘] ∪ {t‘+1}, �? = �2 + �3 + �3��M , 0¡�4¡ 1,

|e1(t‘+s)|6�? sup
t∈I‘

|e(t)|+ �4 sup
t∈[t0 ; t‘]

|e1(t)|+ |�“
h‘(y; s)|: (4.15)

From (4.15) we deduce supt∈[t0 ;t‘+1] |e1(t)|6�4 supt∈[t0 ;t‘+1] |e1(t)| + �? supt∈I‘
|e(t)| + |�“

‘+1(y)|6
�4 supt∈[t0 ;t‘+1] |e1(t)|+ �? supt∈[t0 ;t‘+1] |e(t)|+ |�“

‘+1(y)|, and so (4.12) follows.
For ‘ = 0; 1; : : : ; r, |y(t‘+s) − ỹ(t‘+s)|6|y(t‘) − ỹ(t‘)| + h‘{(s − 1

2s
2)|e1(t‘)| + 1

2s
2|e1(t‘+1)|} +

|�h‘(y)|6 |y(t‘) − ỹ(t‘)| + �h‘{(s − 1
2s
2) supt∈[t0 ;t‘] |e(t)| + 1

2s
2 supt∈[t0 ;t‘+1] |e(t)|} + |�!

h‘(y)|. We de-
duce that (1− 1

2�h‘) supt∈[t‘ ;t‘+1] |e(t)|6(1 + 1
2�h‘) supt∈[t0 ;t‘] |e(t)|+ �!

h‘(y); and, if �h‘ ¡ 1,

sup
t∈[t0 ; t‘+1]

|e(t)|6(1 + 2�h‘) sup
t∈[t0 ; t‘]

|e(t)|+ 2�!
h‘(y); (4.16)

where, by de�nition, �!
h‘(y) = |�h‘(y)| + !h‘|�“

‘(y)| = O(h‘h[m]max). By induction, since 1 + 2�?h‘6
exp(2�?h‘), result (4.13) follows. The remainder of the lemma follows by reference to (4.9a),
(4.9c).

Consider, with notation (3:3) the Lipschitz-continuity of the functions

’n(x) := ỹ n +
1
2hnF̃n + 1

2hnF(tn+1; x; ỹ(�̂(tn+1; x)); ỹ′ (�̂(tn+1))): (4.17)
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Lemma 4.5. Suppose |y(t)− ỹ(t)|6�(t) for t ∈ In−1; and |y′(t)− ỹ′ (t)|6�1(t) for t ∈ [tmin; tn−1].
Then there exists a �nite L such that |’n(x′)−’n(x′′)|6 1

2hnL|x′− x′′|; whenever x′; x′′ ∈ [y(tn+1)−
�(tn+1); y(tn+1) + �(tn+1)]; tn+1 ∈ [t1; tmax].

Proof. We indicate a proof, taking advantage of the state-independence of �, and invoking (4.10).
By Lemma 4.4 |e(t)|6�(t), |e1(t)|6�1(t), and |ỹ′ (t)|6M , t ∈ [tmin; tn]. Now, |ỹ(�̂(tn+1; x′)) −
ỹ(�̂(tn+1; x′′))|6|x′− x′′|�� sup�6tn |ỹ′ (�)| giving the bound ��M |x′− x′′| for this quantity. By the re-
peated use of the triangle inequality, we have the stated result for ’n(·) in (4.17), with L=�2+�3��M .
We outline a proof of Theorem 4.3. We consider the stage at which we compute ỹ(t) on [tn; tn+1]

and wish to validate the conditions of Lemma 4.4 with r = n, assuming that they (and hence
the conclusions of the Lemma) hold with r = n − 1. To achieve our objective we have to estab-
lish the existence of ỹ(tn+1) such that |y(t) − ỹ(t)|6�(t) for t ∈In, and we apply Lemma 4.2 to
xk+1 = ’n(xk). For theoretical purposes, take x? = x0 = y(tn+1) (which exists by assumption). Now
|e(t)|6�(t), |e1(t)|6�1(t) (t6tn), �(tn+1; y(tn+1)), �(tn+1)6tn; if we set En :=F(tn+1; y(tn+1); ỹ(�(tn+1,
y(tn+1))); ỹ′ (�(tn+1))))− F(tn+1; y(tn+1), y(�(tn+1; y(tn+1))); y′(�(tn+1))) then

|En|6
{
�3 sup

t∈[t0 ; tn]
|y(t)− ỹ(t)|+ �4 sup

t∈[t0 ; tn]
|y′(t)− ỹ′ (t)|

}
; (4.18)

Lemma 4.4 allows us to bound (4.18) in terms of supt∈[t0 ;tn] |y(t) − ỹ(t)|; we have |En|6{�3 +
��4} supt∈[t0 ;tn] |e(t)|+ !�4|�“

n(y)|. The value ’n(y(tn+1)) is

ỹ n +
1
2hnF̃n + 1

2hnF(tn+1; y(tn+1); ỹ(�̂(tn+1; y(tn+1))); ỹ′ (�̂(tn+1; y(tn+1))))

=y(tn) + 1
2hn{Fn + Fn+1} − e(tn) + 1

2hn{F̃n − Fn + En} (4.19)

=y(tn) +
∫ tn+1

tn
y′(s) ds+ �hn(y; 1)− e(tn) + 1

2hn{F̃n − Fn + En}:

=y(tn+1) + En+1 (4.20)

with En+1 = �hn(y; 1) − e(tn) + 1
2hn{F̃n − Fn + En}. We have, with �n = {hn�“

hn(y) + �hn(y; 1)} and
�̂ := �3 + �(1 + �4),

|En+1|6 |e(tn)|+ 1
2hn{�3 + �(1 + �4)} sup

t∈[t0 ; tn]
|e(t)|+ { 12hn(1 + �4)|�“

n(y)|+ |�hn(y; 1)|}; (4.21)

6(1 + 1
2 �̂hn) sup

t∈[t0 ; tn]
|e(t)|+ { 12hn(1 + �4)�“

hn(y) + |�hn(y; 1)|}

6(1 + �̂hn) exp{2�(tn−1 − t0)}
n−1∑
k=0

�!
hk (y) + |�n|; (4.22)

= O(h[m]max): (4.23)

Now |y(tn+1)−’n(y(tn+1))|= |En+1|. In Lemma 4.2, concerning �xed-point iterations, set x? = x0 =
y(tn+1) and �= 1

2hnL (where hn ¡ 1=L and where L is given by Lemma 4.5), and we determine that
there is a unique value ỹ n+1 with ỹ n+1 = ’n(ỹ n+1) and satisfying

|ỹ n+1 − y(tn+1)|6�(tn+1) in the case |En+1|6{1− 1
2hnL}−1�(tn+1): (4.24)



326 C.T.H. Baker / Journal of Computational and Applied Mathematics 125 (2000) 309–335

We then have |ỹ(tn+s)−y(tn+s)|6�(tn+s) if, in particular, Eq. (4.9b) holds and, by (4.8), (4.9c) and
(4.12), |ỹ′ (tn+s)− y(tn+s)|6�1(tn+s), s ∈ [0; 1].

Theorem 4.3 now follows by induction, since the assumptions in Lemma 4.4(c) follow from our
discussion. We note that our results provide a rate of convergence for the error on the mesh-points
(De�nition 4.1), supn |y(tn+1)− ỹ(tn+1)|= O(h[m]2max ), in terms of the global error supt |y(t)− ỹ(t)|=
O(h[m]max). Note that it is useful to have asymptotically correct expansions of the error, in addition
to orders of convergence, but convergence can be provable with relaxed assumptions, using Lemma
3.1, with r ∈ {1; 2}, or a suitable extension.

5. Numerical stability

Stability (with or without qualifying adjectives or acronyms — e.g., “absolute stability”, “relative
stability”, “sti� stability”, “A-stability”), and its opposite instability, are amongst the most over-used
(perhaps misused) terms in the literature on evolutionary problems. Numerical stability, applied to
a class of discretization methods, can refer to zero stability as in “stability plus consistency implies
convergence”. In strong stability, dominant terms in the error in ỹ(t) satisfy an equation naturally
associated with perturbations in the original problem. In contrast, Simpson’s rule for y′(t) = �y(t)
with constant step h is “unstable” as it has a spurious “growth parameter” that gives rise to a
contribution of the form −(1 − 1

3�h + O(h2))n in ỹ(tn); this clearly has no association with the
original problem (and can grow in magnitude for negative �). For selected �; �, it can readily be
shown that this analysis extends to Simpson’s rule for y′(t) = �y(t) + �y(t − �?) where h = 1=N ,
N ∈ N; this does not concern us further.
The preponderance of work on numerical stability has related to numerical solutions of DDEs

rather than NDDEs. We will provide a de�nition of stability that parallels De�nition 2.3. Concerning
initial perturbations one addresses the case where the initial functions are perturbed to  0(t)+� 0(t)
and  1(t) + � 1(t). To simplify, we consider the trapezium rule formulated as in (3.12a)–(3.12b)
and leave the reader to generalize. For persistent (or steady acting) perturbations �0;1(t) we use the
notation

F̃ k :=F(tk ; ỹ k + �ỹ k ; ỹ(�̃(tk)) + �ỹ(�̃(tk)); ỹ′ (�̃(tk)) + �ỹ′ (�̃(tk)))

and consider

ỹ(tn+s) + �ỹ(tn+s) = ỹ n + �ỹ n + hn{(s− 1
2s
2)F̃ n +

1
2s
2F̃ n+1}+ �0(tn+s); (5.1a)

ỹ′ (tk + shk) = (1− s)F̃ k + sF̃ k+1 + �1(tn+s): (5.1b)

Given a vector norm || · ||, we can measure the input perturbations by

�̃= sup
t¿t0

max{||�0(t)||; ||�1(t)||}+max
{
sup
t6t0
||� 0(t)||; sup

t6t0
||� 1(t)||

}
: (5.2)

For nonneutral DDEs, �1 is absent (in general, �1 could be eliminated by incorporation into a
revised de�nition of �0). If one wishes to cover numerical perturbations, one does not require the
derivative of �0 to equal �1 (an unsuitable requirement if ỹ′ (·) 6= ỹ′ (·) in the de�ning extensions),
nor even continuity of �0(·); �1(·). However, one can by suitable choices attempt to simulate the
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Table 1
Some of the stability terms in previous literature

Test equation Conditions Type of Reduces to the
(subject to conditions:) (hn ≡ h �xed) stability ODE concept

y′(t) = �?y(t) + �?y(t − �?) �?=h ∈ N P-stability A-stability
|�?|¡− R (�?) cf. (2.7) arbitrary h GP-stability

y′(t) = �?(t)y(t) + �?(t)y(t − �?) �?=h ∈ N PN-stability AN-stability
|�?(t)|¡− R (�?(t)) arbitrary h GPN-stability

A system �?=h ∈ N RN-stability BN-stability
y′(t) = f(t; y(t); y(t − �?)) arbitrary h GRN-stability
subject to (5.3) See (5.4).

perturbations �F(t) in De�nition 2.3 The accompanying Table 1 presents some of the terms that
appear in the literature. The natural de�nitions of numerical stability are analogues of De�nition 2.3,
and concern boundedness of �ỹ(·) on [0;∞), and behaviour of �ỹ(t) as t →∞.

De�nition 5.1 (Numerical stability). (a) For given admissible perturbations, a solution ỹ(·) of (3:12)
is termed (i) stable, if for each �¿ 0 there exists �̃

∗
= �̃

∗
(�; t0)¿ 0 such that ||�y(t)||¡� when

t¿t0 for any �̃¡ �̃
∗
; (ii) asymptotically stable, if it is stable and, given t0, there exists �̃

†
= �̃

†
(t0)

such that �ỹ(t)→ 0 as t →∞ when �̃¡ �̃
†
; (iii) uniformly asymptotically stable, if the number �̃

†

in de�nition (ii) is independent of t0; (iv) �-exponentially stable, if it is asymptotically stable and,
given t0, there exist �nite K=K(t0) and �̃

‡
= �̃

‡
(t0) such that �ỹ(t)6K exp{−�(t− t0)} (with �¿0)

for t¿t0 when �̃¡ �̃
‡
. (b) The stability is “stability with respect to perturbed initial conditions”

if we require that �F(·) vanishes, so that the only perturbations are in  0(·),  1(·).

The condition |�?(t)|¡ −R (�?(t)) is su�cient to ensure asymptotic stability (with respect to
perturbed initial perturbations) of every solution of y′(t) = �?(t)y(t) + �?(t)y(t − �?) for every
�? ¿ 0. Recalling the concept of contractivity when studying ODEs, we note that nonuniqueness
of solutions passing through a point (cf. Fig. 1(b)) makes the de�nition of contractivity for ODEs
inappropriate for DDEs. The condition imposed on f in y′(t) = f(t; y(t); y(t − �?)) for RN- and
GRN-stability is (compare with |�?(t)|¡−R (�?(t)), used above)

sup
y;x1 6=x2

||f(t; y; x1)− f(t; y; x2)||
||x1 − x2|| 6− sup

x;y1 6=y2

R 〈(f(t; y1; x)− f(t; y2; x); y1 − y2)〉
||y1 − y2||2 ; (5.3)

where 〈·; ·〉 is a vector inner product and ||u|| := 〈u; u〉1=2. This ensures that
||y( ; t)− y( + � ; t)||6 sup

t6t0
||� (t)|| (5.4)

and RN- and GRN-stable methods preserve property (5.4) under discretization, with the respective
constraints on h; clearly, ỹ(·) is then stable with respect to initial perturbations.
Some theoretical tools for analysing stability are Z-transform theory (in the case of constant-coe�-

cient constant-lag DDEs), boundary-locus techniques, linearized stability, the fundamental matrix,



328 C.T.H. Baker / Journal of Computational and Applied Mathematics 125 (2000) 309–335

comparison theorems, Lyapunov functions and functionals (the work [62] echos the analytical theory
in an attractive manner), and Halanay inequalities. It cannot be overemphasized that such tools
complement each other in providing insight. The stability properties attach to a particular solution
ỹ(t) ≡ ỹ(T;  ; t0; t), and as in the analytic case a solution of a nonlinear problem may be unbounded
but stable. It is often assumed, without loss of generality, that the null function is a solution so that
stability can be de�ned in terms of stability of the null solution (one considers the e�ect of “small
nonnull initial functions”).
For linear equations all solutions corresponding to a given T simultaneously have the same

stability properties. We indicate some features by considering the case of the test equation

y′(t) = �?y(t) + �?y(t − �?) + �?y′(t − �?) with �? = Nh; �? = N ′h (5.5)

(where N; N ′ ∈ N). The general �-method yields
(1− ��?h)ỹ n+1 = (1 + (1− �)�?h)ỹ n + ��?hỹ n+1−N

+(1− �)�?hỹ n−N + ��?hỹ′
n+1−N ′ + (1− �)�?hỹ′

n−N ′ ; (5.6a)

ỹ′
n+1 = �?ỹ n+1 + �?ỹ n+1−N + �?ỹ′

n+1−N ′ (5.6b)

and in the present case we avoid the need for interpolation for past values and past derivative values.
With �= 1

2 we obtain an example of (3:7).
We can now derive (if ��?h 6= 1) a vector recurrence between the vectors �k =[ỹ k ; ỹ′

k]
T (k ∈ N)

of the form

�n+1 + A1�n + AN�n−N + AN ′�n−N ′ = 0: (5.7)

Here, A‘ ≡ A‘(�?; �?; �?; h), for ‘= 1; 2; : : : ;max(N; N ′). A slightly di�erent recurrence is obtained
if the derivative values ỹ′

‘ are obtained using numerical di�erentiation

(1− ��h)ỹ n+1 = (1 + (1− �)�h)ỹ n + ��hỹ n+1−N + (1− �)�hỹ n−N

+ ��hỹ′
n+1−N ′ + (1− �)�hỹ′

n−N ′ ; (5.8a)

ỹ′
n+1−N = {ỹn+1−N − ỹ n−N}=h: (5.8b)

If desired, a vector recurrence such as (5.7) can be re-expressed, using a block companion matrix,
as a two-term autonomous vector recurrence of the form ’n+1 =M’n with an ampli�cation matrix
M ≡M(�?; �?; �?; h) of order 2×max{N; N ′} — e.g., if N ′ ¿N :


�n+1

�n
...

�n−N ′+1




︸ ︷︷ ︸
’n+1

=



−A1 −A2 · · · −AN · · · −AN ′

0 I · · · 0 · · · 0
...
0 0 · · · · · · I 0




︸ ︷︷ ︸
ampli�cation matrix M

×




�n

�n−1
...

�n−N ′




︸ ︷︷ ︸
’n

: (5.9)

Solutions of the latter recurrence are (uniformly) stable with respect to initial perturbations if
�(M)61 and any eigenvalues of modulus unity are semi-simple; uniformly asymptotically sta-
ble with respect to initial perturbations if �(M)¡ 1 (and �-exponentially stable if �(M)61 −
�h, �¿ 0). Stability with respect to uniformly bounded persistent perturbations is assured when
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�(M)¡ 1. Note that since the dimensionality of M varies with h, stability for h= h′ and for h′′

need not be quantitatively comparable properties. The eigenvalues of M are, of course, the zeros
of the characteristic polynomial

P(z) := det{zN∗+1I + zN
∗
A1 + zN

∗−NAN + zN
∗−N ′

AN ′};
P(z) ≡ P(�; �; �; h; z); N ∗ =max{N; N ′}:

(5.10)

Regions of stability can be computed using the boundary-locus technique. To illustrate, such a region
can be associated with the parameters of the test equation (2.1a) if we �x �?=0 in the above, and
the region of stability S(h) can then be de�ned 3 as

S(h) := (�= �?�?; � = �?�?) ∈ R× R (5.11a)

such that

P(z) = 0 implies |z|¡ 1 or |z|= 1 and z is semi-simple; (5.11b)

with a corresponding de�nition of S?(h) when �, � ∈ C. Guglielmi [41] o�ered the following
de�nitions in terms of the exact stability regions � and �† referred to in Remark 2.4:

De�nition 5.2. A numerical method is called (i) �(0)-stable if, for �= 0,

S(�?=N )⊇� whenever 16N ∈ N; (5.12)

(ii) �-stable if, for �= 0, S(�?=N )⊇�† whenever 16N ∈ N.

Guglielmi [41] showed that the trapezium rule is �(0)-stable but not �-stable. We may contrast
the rather strict requirements of �- or �(0)-stability with the observation that, even for the Eu-
ler rule, given arbitrary �xed (�; �)∈� there exists a corresponding M = M (�; �) ∈ N such that
(�; �)∈S(�?=N ) for all N¿M (here, �= 0).

Remark 5.3. (a) Regions of stability can be computed using the boundary-locus technique, in which
one seeks the loci on which P(·) has a zero of modulus unity. Such a region can be obtained in
(�; �)-plane for each parameter � of the test equation (2.1a) or of (2.8) or (5.5). Further, one can
use this approach for the cases where �?=h or �?=h are noninteger, so that interpolation is required
for the lagging value, and its e�ect on stability observed. The bounded stability regions in Fig. 3
correspond to the use of the Euler method. From Fig. 3(a) it may be observed that for h=1=(m+&)
with modest m ∈ N, & ∈ (0; 1), the stability region for the test equation

y′(t) = �y(t) + �y(t − 1) (5.13)

depends in a pronounced manner on &. The e�ect is much less pronounced for implicit formulae
such as the trapezium rule.
(b) In Fig. 3(b) the stability regions are those for the Euler method applied with h = 1

25 to the
test equation

y′(t) = �y(t) + �y(t − 1) + �y′(t − 1): (5.14)

3 A zero z of P(·) de�ned by (5.10) is semi-simple if P′(z) 6= 0 (i.e., if it is simple) or if its geometric and algebraic
multiplicities, as an eigenvalue of M are the same.
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Fig. 3. Boundaries of stability regions for the explicit Euler method: (a) applied to the DDE (2.1a) with step size h
(h = 1

25 and h = 1
50 — unbroken lines, h = 3

72 ;
3
69 and

3
153 ;

3
156 — broken lines), in the (�; �)-plane; (b) applied to the

NDDE (2.8) with step h = 1
25 , in (�; �; �)-space with � ∈ (−60; 0), � ∈ (−60; 60) and (vertical axis) � ∈ (−1; 1). See

Remark 5.3.

The “lozenge” shown emphasized for �=0 in Fig. 3(b) corresponds to the case shown in Fig. 3(a)
with h = 1

25 . As � varies from −1 to +1 in Fig. 3(b) the stability region in the (�; �)-plane �rst
expands (until � = 0) and then contracts, and as it does so it moves from proximity to � = −�
towards proximity to � = �. The exact stability regions were indicated in Fig. 2(b), and it seems
that it has to be concluded that the Euler formulae given above seem unsuitable for NDDEs. This
and similar observations are being pursued elsewhere.

In an elegant paper, Guglielmi and Hairer [42] develop the relationship between stability analysis
and order stars.
Clearly, some interesting results can be obtained with the approaches indicated above but it is

already clear that di�culties will be encountered if (i) step-sizes hn are non-constant, and (ii) the
lags �?; �? are replaced by time- or state-dependent values. In general, the two-term recurrence
’n+1 =M’n+1 introduced above has to be replaced by a local recurrence  n;n+1 =Mn n;n+1 where
the dimension of the vectors  n;n+1;  n;n and the order of Mn changes with n, and the stability
analysis is less straightforward.
A rather di�erent approach relies upon a generalization of an inequality of Halanay (see [44,

pp. 377–378 et seq.]) in the study of stability of DDEs, to which we restrict ourselves, though
extensions are possible. The basic result of Halanay states that if p(t) is a positive scalar-valued
function satisfying p′(t)6−Ap(t)+B sups∈−�?6s6t p(t) for t¿t0, where A¿B¿ 0 then there exist
positive k; � such that p(t)6k exp{−�(t − t0)}. In applications, this result may be used to establish
exponential stability. A useful extension is to the case where �(t) → ∞ as t → ∞ and (with
A¿B¿ 0)

p′(t)6− Ap(t) + B sup
s∈[�(t); t]

p(s) for t¿t0 (5.15)

whereupon we have (a result helpful in establishing asymptotic stability, but not exponential stability)
p(t) → 0 as t → ∞. We note a further extension [13] to a nonlinear inequality of Halanay type.
For the analysis of numerical stability, one can seek discrete analogues of the Halanay inequalities
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indicated above, in which a right-hand derivative is replaced by a di�erence �p(t). The approach
is suggested by comparison of y′(t) = �y(t) + �y(t − �(t)) with the trapezium rule applied with
arbitrary step h, which yields expressions of the form �ỹ n=

1
2�hỹ n+1 +

1
2�hỹ n+

1
2�h{n+1; ‘n ỹ ‘n+1; n +

∗n+1; ‘n ỹ ‘n+1; n+1}+ 1
2�h{n;‘n ỹ ‘n; n+∗n;‘n ỹ

∗
‘n; n+1} where �ỹ n= ỹ n+1− ỹ n and where ‘n+1; n and ‘n;n →∞

as n→∞.

6. Further issues and concluding remarks

Here, we shall address some problems that are in our view ongoing and therefore merit further
attention, and greater space than we can a�ord here.
We turn �rst to sti�ness in retarded equations, on which further study is required. The concept of

sti�ness in numerical analysis is, whilst the terminology is widely used in ODEs, open to varying
(frequently controversial) mathematical interpretations [1]. For systems of ODEs, some would de�ne
sti�ness in terms of the occurrence of di�erent time-scales. Since a scalar DDE is in�nite dimensional
and in some sense incorporates a countable set of time-scales (the solution of many delayed equations
can be expressed in the form of an in�nite sum of exponential terms with di�ering time-scales)
generalization of this idea seems unfruitful. Sti�ness is sometimes related to the situation where
explicit methods do not work, or where stability rather than accuracy constrains the step size. A
particular solution y(t) of a given DDE or NDDE will be regarded by this author as sti� in the
neighbourhood of a point t? when (i) y(t) is smooth in the neighbourhood of t?, but (ii) accurate
numerical simulation of the behaviour of y(·) can only be achieved by constraining the step size
or the choice of method so that local errors are not ampli�ed. In colloquial terms, (ii) relates to
stability, but stability is de�ned formally in terms of behaviour of perturbations as t → ∞ rather
than in the shorter term as implied here. One naturally turns to experience with ODEs on detection
of sti�ness and for treatment using numerical methods based upon highly stable implicit formulae.
However, some care has to be exercised here, because including delay terms modi�es the behaviour
of the solution and the numerical solution. For example, a solution of the equation y′(t) = �y(t)
with �� 0 is generally regarded as sti�, but solutions of y′(t)= �y(t)− 2�y(t− 1) (with ��0) are
not even stable. The design of methods for detecting sti�ness, and methods that switch in or out of
sti� mode, therefore merit further examination.
We introduce a class of problem not discussed above, constrained DDEs, or delay di�erential

algebraic equations (DDAEs) of the form (say)

u′(t) = f(t; u(t); v(t); u(�1(t)); v(�1(t)); : : : ; u(�q(t)); v(�q(t)));

0 = g(t; u(t); v(t); u(�1(t)); v(�1(t)); : : : ; u(�q(t)); v(�q(t)));
(6.1)

that is, a system of DDEs coupled with constraints. Such systems are modi�cations, incorporat-
ing delayed arguments, of di�erential algebraic equations — hence, the description DDAEs. The
constraints need not be algebraic constraints, and problems with inequality rather than equality con-
straints also arise. For the numerics of DDAEs, see [2] and its citations, and [46,63]; for neutral
DDAEs see [58]. One di�culty is that DDAEs can be equivalent to neutral di�erential equations
with deviating arguments in which some arguments are advanced (“�(t)¿t, �(t)¿t”) rather than
delayed. If one excludes this possibility, it appears that concerns should focus on the numerics of
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the related NDDEs, the problem of overcoming apparent “sti�ness” (depending on the local index
of the solution) and the question of error control in the presence of poorly behaved derivatives.
Closely allied to DDAEs are singular perturbation problems, such as

u′�(t) = f(t; u�(t); v�(t));

�v′�(t) = g(t; u�(t); v�(t); u�(�1(t)); v�(�1(t)); : : : ; u�(�q(t)); v�(�q(t)))
(6.2)

or, a simpler example, �u′�(t)=f(t; u�(t); u�(t−�?)). For a preview of some results on the numerics see
[3]. Finally, we concentrated on DDEs and NDDEs, but one can discuss Volterra integro-di�erential
equations with delays.
We conclude with a reference to a di�erent viewpoint, recently introduced in [23] in their analysis

of a linear system of DDEs with a �xed lag �?. The basis of the work [23] is the observation that
the problem

y′(t) = f(t; y(t); y(t − �?)); t ∈ [− �;∞); (6.3a)

y(t) =  (t); t ∈ [t0 − �?; t0] (6.3b)

may be solved — in particular if

 ′(t0) = f(t0;  (t0);  (t0 − �?)); (6.3c)

by constructing the solution of the PDE

@
@t

u(t; s) =
@
@s

u(t; s); t¿t0; s ∈ [t0 − �?; t0]; (6.4a)

@
@s

u(t; t0) = f(t; u(t; t0); u(T; t0 − �?)); (6.4b)

u(t0; s) =  (s); s ∈ [t0 − �?; t0]; (6.4c)

on setting y(t + s) = u(t; s). Bellen and Maset relate this to an abstract Cauchy problem that can
be treated numerically, and consider stability and convergence for linear systems (y′(t) =My(t) +
Ny(t − �?)); the approach has further potential.
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1. Introduction

Viscoelastic materials, such as polymers, under external loading exhibit features typical of both
elastic solids (instantaneous elastic deformation) and viscous uids (creep, or ow, over long times).
In the classical theory of linear viscoelasticity the stress tensor, � := {�ij}ni; j=1, in a viscoelastic

body 
⊂Rn is related to the current strain tensor, ” := {”ij}ni; j=1, and the strain history through a
hereditary integral (see [4]). Typically one has either of the constitutive relationships

�(t) = E(0)D”(t)−
∫ t

0
Es(t − s)D”(s) ds; (1)

�(t) = E(t)D”(0) +
∫ t

0
E(t − s)D”s(s) ds: (2)

Here t is the time variable, with t = 0 a datum prior to which it is assumed that ” = 0, the sub-
script denotes partial di�erentiation, and D is a fourth-order tensor of elastic coe�cients. The stress
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relaxation function, E(t), is non-negative and monotone decreasing and we invariably assume that
it has the form

E(t) = E0 +
N∑
i=1

Eie−�it (3)

for E0¿0; Ei ¿ 0 and �i ¿ 0 for each i. This form is typical when the viscoelasticity is modelled
by springs and dashpots after the manner of Maxwell, Kelvin and Voigt (see for example, [5]), but
other forms have also been used (see the review by Johnson in [8]).
When the viscoelastic body occupies an open domain 
⊂Rn and is acted upon by a system of

body forces, f := (fi)ni=1, one obtains an initial value problem for the displacement, u := (ui)ni=1, by
merging either of (1) or (2) with Newton’s second law: for i = 1; : : : ; n

%u′′i (t)− �ij; j = fi in (0; T )× 
;
u = 0 on (0; T )× @
;
u(x; 0) = u0(x) in 
;

u′(x; 0) = u1(x) in 
:

(4)

Here, % is the mass density of the body; the primes denote time di�erentiation; the �ij are components
of the stress tensor, �, with �ij; j := @�ij=@xj; the summation convention is in force; T is some positive
�nal time; and, more general boundary conditions are possible (see [22]). The equations are closed
with the linear strain–displacement map,

”ij(u) :=
1
2

(
@ui
@xj

+
@uj
@xi

)
:

Using this in (4) along with either of the constitutive laws results in a partial di�erential equation
with memory: a partial di�erential Volterra equation.
For example, substituting for the strain in (1), and using the result in the �rst of (4) yields (with

summation implied), for each i = 1; : : : ; n

%u′′i (t)−
@
@xj

[
E(0)Dijkl

2

(
@uk(t)
@xl

+
@ul(t)
@xk

)]

+
@
@xj

∫ t

0

Es(t − s)Dijkl
2

(
@uk(s)
@xl

+
@ul(s)
@xk

)
ds= fi:

These are the usual elastodynamic equations but augmented with a Volterra integral. With appropri-
ately de�ned partial di�erential operators A and B we can write this in the more compact form

%u′′(t) + Au(t) = f (t) +
∫ t

0
B(t − s)u(s) ds; (5)

which we refer to as a hyperbolic Volterra equation. Note that A and B are closely related to the
linear elasticity operator, and that here, and below, we are using (1).
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Frequently, engineers assume that the deformation is quasistatic, wherein %u′′(t) ≈ 0, and so
arrive at the elliptic Volterra equation

Au(t) = f (t) +
∫ t

0
B(t − s)u(s) ds: (6)

This, essentially, is a Volterra equation of the second kind for the displacement u, and we will return
to it below.
In, for example, [1] Cohen et al. suggest that viscoelastic stress is also an important factor inu-

encing di�usion processes in polymers. To model this they suggest introducing a viscoelastic stress
dependence into the classical Fick’s law and arrive at the parabolic Volterra equation

u′(t) + Au(t) = f(t) +
∫ t

0
B(t − s)u(s) ds: (7)

Here u is the concentration and A and B are now Laplacian-type di�usion operators. (Actually the
theory developed by Cohen et al. in [1] incorporates a crucially important nonlinearity.)
The numerical analysis of the pure-time versions of these problems using classical methods (e.g.

�nite di�erence, quadrature, collocation) is extensive and we have attempted a brief survey in [17].
The space–time problems have also received some attention with (7) apparently dominating. Thom�ee
et al. are major contributors to this area (see for example [24]) where spatial discretization is e�ected
with the �nite element method but, usually, the temporal discretization is based on classical methods.
In this paper we discuss temporal �nite element discretizations of (6) and (7) for pure-time and

space–time problems, and demonstrate how duality and the Galerkin framework can be exploited to
provide a posteriori error estimates suitable for adaptive error control. Our work is related to, and
motivated by, the techniques of Eriksson et al. described in, for example, [2].
In Section 2 below we consider the pure-time versions of (6) and (7), and we describe the �nite

element approximation and a posteriori error estimation technique. We also discuss the related issue
of data-stability estimates. In Section 3 we outline our results so far for (6), in the space–time
context, and then �nish in Section 4 by describing our aims to extend this work.

2. Pure-time problems

2.1. Second kind Volterra equations

The simplest pure-time problem related to these partial di�erential Volterra (PDV) equations is
the scalar Volterra equation of the second kind associated with (6). We consider this problem as:
�nd u ∈ Lp(0; T ) such that

u(t) = f(t) +
∫ t

0
�(t − s)u(s) ds (8)

for given data T; f ∈ Lp(0; T ); � ∈ L1(0; T ) and some p ∈ (1;∞]. Consider Lp(0; T ) as the dual
of Lq(0; T ) (so that p−1 + q−1 = 1 for p¿ 1), and let (·; ·) denote the L2(0; T ) inner product. The
“variational” form of (8) is: �nd u ∈ Lp(0; T ) such that

(u; v) = (f; v) + (�u; v) ∀v ∈ Lq(0; T ); (9)
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where we de�ne

�u(t) :=
∫ t

0
�(t − s)u(s) ds

for convenience and brevity.
Discretizing (0; T ) into 0 = t0¡t1¡ · · ·¡ti ¡ · · ·¡tN = T , and de�ning the time steps, ki :=

ti − ti−1, and subintervals, Ji := [ti−1; ti], we now let V k ⊂L∞(0; T ) denote the space of piece-
wise constant functions with respect to this partition (mesh). The piecewise constant �nite element
approximation to (9) is then: �nd U ∈ V k such that

(U; v) = (f; v) + (�U; v) ∀v ∈ V k: (10)

Here of course U is the piecewise constant approximation to u. Choosing v to be the characteristic
function of each Ji in turn, then yields a time stepping scheme for U similar to that produced by a
standard quadrature approximation. We refer to [16] for full details.
To derive an a posteriori error estimate for the Galerkin error e := u − U we �rst subtract (10)

from (9) and obtain the Galerkin orthogonality relationship

(e − �e; v) = 0 ∀v ∈ V k: (11)

The next step is to introduce a dual backward problem: �nd � ∈ Lq(0; T ) such that
�(t) = g(t) + �∗�(t):

Here g ∈ Lq(0; T ) is arbitrary and �∗ is dual to � in that for all v ∈ Lp(0; T )

(v; �∗�) :=
∫ T

0

∫ T

t
�(s− t)�(s)v(t) ds dt = (�v; �)

by interchanging the order of integration. This dual problem can also be given by a variational
formulation

(v; �) = (v; g) + (v; �∗�) ∀v ∈ Lp(0; T )
and choosing v= e ∈ Lp(0; T ) in this we get

(e; g) = (e; �)− (e; �∗�) = (e − �e; �):
Introducing an interpolant, �� ∈ V k , to � and assuming the estimate

‖� − ��‖Lq(0; T )6C�‖�‖Lq(0; T ); (12)

(for C� a positive constant) we can use Galerkin orthogonality to write

(e; g) = (R(U ); � − ��); (13)

where R(U ) := e−�e ≡ f−U+�U is the residual, and is computable. Assuming now the existence
of a stability factor S(T ) such that

‖�‖Lq(0; T )6S(T )‖g‖Lq(0; T ); (14)

we have by H�older’s inequality,

|(e; g)|= |(R(U ); � − ��)|6C�S(T )‖R(U )‖Lp(0; T )‖g‖Lq(0; T ):
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The a posteriori error estimate now follows by duality since for p¿ 1,

‖u− U‖Lp(0; T ) := sup
{
|(e; g)|
‖g‖Lq(0; T )

: g ∈ Lq(0; T ) \ {0}
}

giving

‖u− U‖Lp(0; T )6C�S(T )‖R(U )‖Lp(0; T ) for p¿ 1: (15)

Notice that (12) actually imparts no useful information, and so setting �� := 0 we can take C� = 1
in the above equation. Below we illustrate a di�erent approach.
This estimate is computable in terms of the data f and �, the �nite element solution U , and the

stability factor S(T ). Full details of this result (for p= 1 also) are given in [16]. Also given there
are an a priori error estimate and an upper bound on the residual.
Clearly, it is important to have a high-quality estimate for the stability factor S(T ). In general,

one would have to either approximate this numerically or use the (usually) non-optimal result from
Gronwall’s lemma. However, for the viscoelasticity problem as described earlier it is possible to
derive a sharp estimate for S(T ) by exploiting the fading memory of the problem. In particular,
for viscoelastic solids, under physically reasonable assumptions, it can be proven that S(T ) = O(1)
independently of T . Full details of this are in [21].
A major problem with (15) is that the time steps {ki} do not explicitly appear, and this means

that we cannot use the estimate to provide an adaptive time step controller. To incorporate the time
steps into an a posteriori error estimate we replace the non-optimal interpolation-error estimate, (12),
with the sharper

‖�−1(� − ��)‖Lq(0; T )6c�‖�′‖Lq(0; T );
where �|Ji := ki, for each i, is the piecewise constant time step function. In place of (13) we can
now write

|(e; g)|= |(�R(U ); �−1(� − ��))|:
Now, in [18] we demonstrate (for convolution equations) that if (14) holds then so too does,

‖�′‖Lq(0; T )6S(T )‖g′‖Lq(0; T ) ∀g ∈
◦
W 1
q (0; T ):

Here we recall that the Sobolev space
◦
W 1
q (0; T ) contains all functions with �rst derivative in Lq(0; T )

which vanish at t = 0 and t = T . Thus,

|(e; g)|6c�S(T )‖�R(U )‖Lp(0; T )‖g′‖Lq(0; T )
and the residual is now weighted by the time steps. The price we pay for this is that the argument
used above to estimate ‖u − U‖Lp(0; T ) no longer holds because g′ and not g appears on the right.
So, to “remove” g′ we must estimate u− U in a weaker norm.
Specializing to the case p =∞ and q = 1 we �rst recall the negative Sobolev space W−1

∞ (0; T )
with norm

‖w‖W−1
∞ (0; T ) := sup

{
|(w; v)|
‖v′‖L1(0; T )

: v ∈ ◦
W 1
1 (0; T )\{0}

}
:
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Using this weaker norm we then have another a posteriori error estimate,

‖u− U‖W−1
∞ (0; T )6c�S(T )‖�R(U )‖L∞(0; T ):

The presence of the time steps on the right now allows for adaptive time step control. For example,
if we require that ‖u−U‖W−1

∞ (0; T )6TOL, where TOL¿ 0 is a user-speci�ed tolerance level, then it
is su�cient to iteratively choose each time step so as to satisfy,

‖kiR(U )‖L∞(ti−1 ; ti)
6

TOL
c�S(T )

:

More details on this, and some numerical experiments are given in [18].

2.2. An ODE with memory

It was necessary to introduce the negative norm above because one cannot expect to bound the
derivative of the solution to the dual problem, �′, in terms of g alone. Loosely speaking, this is
because the original problem, (8), contains no time derivative. On the other hand, the problem: �nd
u ∈ W 1

p(0; T ) such that,

u′(t) + �(t)u(t) = f(t) + �u(t) in (0; T )

with U (0) = u0 and �¿ 0 in (0; T ) given, does contain a time derivative and one can avoid all
mention of negative norms when deriving error estimates.
This problem was studied in [15] as a pure-time prototype for the non-Fickian di�usion equation

(7). In essentially the same way as described above (with a distributional interpretation of the time
derivative), we can formulate a piecewise constant �nite element approximation to this problem. The
resulting time stepping algorithm is then

Ui − Ui−1 + Ui
∫ ti

ti−1

�(t) dt =
∫ ti

ti−1

f(t) dt +
∫ ti

ti−1

�U (t) dt;

where Ui is the constant approximation to u on (ti−1; ti) and U0 = u0. A similar duality argument to
that illustrated in the previous subsection leads to the a posteriori error estimate

‖u− U‖L∞(0; ti)
6Cs max

16j6i
{kj‖R(U )‖L∞(ti−1 ; ti)

+ |Uj − Uj−1|};
where Cs is a stability constant, and the residual is now de�ned by

R(U (t)) :=f(t)− �(t)U (t) + �U (t)
in each subinterval. Full details of this result, along with an a priori error estimate, numerical
experiments, quadrature error estimates, and an alternative solution algorithm using a continuous
piecewise linear approximation, are given in [15].
We turn now briey to space–time problems.

3. Space–time problems

Although it is instructive to study these pure-time prototypes, adaptive solution algorithms for the
viscoelasticity problems described earlier must be based on a posteriori error estimates for space–
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time discretizations. Our work in this direction has so far been con�ned to the quasistatic problem
represented by (6) and we give only a short description of our results here.
For this problem we have a space–time �nite element method based upon a continuous piecewise

linear approximation in the space variables, and a discontinuous piecewise constant, or linear, ap-
proximation in the time variable. Using U to denote the approximation to u we give in [22] (see
also the more detailed [19,20]) the following a posteriori error estimate:

‖u −U‖L∞(0; T ; H)6S(T )(E
(U) + EJ(U) + EV (U)); (16)

where H ⊂H 1(
) is the natural Hilbert energy–space for the problem. In this estimate, E
, EJ and
EV are residuals which are computable in terms of the data and the �nite element solution U , and
S(t) is the stability factor introduced before in (14).
The term E
 contains the spatial discretization error and can be used to guide adaptive space

mesh re�nement. It is essentially identical to the residual derived for linear elasticity by Johnson
and Hansbo in [10]. Some numerical experiments demonstrating such adaptive spatial error control
using this estimate are given in the report [23], which also contains details of how the algorithm
can be written in terms of internal variables, as used by Johnson and Tessler in, for example, [11].
The paper [22] also contains an a priori error estimate, discrete data-stability estimates and up-
per bounds on the residuals (where appropriate – see below). The stability factor is again given
in [21].
The residual EJ is either unstable as h → 0 (i.e. useless) or – when written in a di�erent form

– prohibitively expensive to implement. We are currently working on a remedy for this involving
weaker norms, as described above for the second kind Volterra equation.
It is the term EV that causes a novel di�culty in this estimate. The spatial residuals in E
 are

constructed by integrating the discrete solution by parts over each element to arrive at a distributional
divergence of the discrete stress. This divergence comprises two parts: the smooth function inside
the element (which is zero in our case of piecewise linear approximation), and the stress jumps
across inter-element boundaries. The di�culty arises because the stress is history dependent. This
means that we have to integrate by parts over not just the elements in the current mesh, but also
over all elements in all previous meshes. The internal edges that appeared in previous meshes but
are no longer present in the current mesh (e.g. due to dere�nement) are therefore “left behind” when
forming the standard residual f +∇ · �h (which constitutes E
), and so we consign the stress jumps
across these edges to the term EV . In the particular case where only nested re�nements in the space
mesh are permitted, no edges are left behind in this way and we have EV ≡ 0.
To deal with mesh dere�nement would appear to require fairly complex data structures in the

computer code in order to track all these resulting previous edges. Also, it is not likely that EV
will act in any way other than to degrade the quality of the estimate since it contains historical
contributions to the current stress. These can then only act to reinforce one another in the estimate
when in fact the residual could be much smaller due to cancellation. Our feeling at the moment
is that a representation of the algorithm in terms of internal variables could go some way toward
removing the EV residual, since then all hereditary information is automatically represented on the
current mesh. The price of this is that the error estimates will then be restricted to viscoelasticity
problems for which Prony series relaxation functions (as in (3)) are appropriate. This does not seem
to be an unreasonable restriction.
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4. Future work

Clearly there is enormous scope for further development of this work, and we close with just a
few of the more obvious suggestions.

• Incorporate the time step into (16) by measuring the error in a suitable negative norm.
• Extend the work of Eriksson and Johnson in, for example, [3] on parabolic problems to
include (7).
• Extend the discontinuous Galerkin approximation described above to the dynamic problem (5)
building on the work of Hulbert and Hughes in [6,7], and Johnson in [9].
• Incorporate physically important nonlinear e�ects such as the reduced time model discussed by
Knauss and Emri in, for example, [12,13]. Some early numerical computations based on this type
of constitutive nonlinearity are given in [14].
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Abstract

After a short survey over the e�orts in the direction of solving the Schr�odinger equation by using piecewise approx-
imations of the potential function, the paper focuses on the piecewise perturbation methods in their CP implementation.
The presentation includes a short list of problems for which CP versions are available, a sketch of the derivation of the
CPM formulae, a description of various ways to construct or identify a certain version and also the main results of the
error analysis. One of the most relevant results of the latter is that the energy dependence of the error is bounded, a fact
which places these methods on a special position among the numerical methods for di�erential equations. A numerical
illustration is also included in which a CPM based code for the regular Sturm–Liouville problem is compared with some
other, well-established codes. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The piecewise perturbation methods are a class of numerical methods specially devised for the
solution of the Schr�odinger equation. The CP methods form a subclass whose algorithms are both
easy to construct and very convenient for applications.
Given the one-dimensional Schr�odinger equation,

y′′ = (V (x)− E)y; a6x6b; (1.1)

where the potential V (x) is a well-behaved function and the energy E is a free parameter, one
can formulate either an initial-value (IV) or a boundary-value (BV) problem. The latter typically
takes the form of a Sturm–Liouville (SL) problem in which the eigenvalues and the associated
eigenfunctions are required.
Analytic solutions of this equation, either for the IV or for the SL problem, are known only for a

restricted number of expressions for the function V (x), let such functions be denoted by �V (x), and
for many years the physicists used to select that �V (x) which is the closest to the given V (x) and
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to accept that the analytical solution of the equation with the chosen �V (x) is satisfactory for their
investigations.
It was also obvious that a closer approximation may be achieved if the replacement of V (x)

by �V (x) is made piecewise, i.e., if the interval Ia;b = [a; b] is �rst conveniently partitioned, r0 =
a; r1; r2; : : : ; rkmax = b, and a suitable �V (x) is introduced on each elementary interval Ik = [rk−1; rk]. If
so is done, the solution on the whole Ia;b requires an extra algebraic manipulation of the piecewise
analytic solutions, but such a task can be accomplished e�ciently only by a computer. This is why
the �rst systematic investigations along these lines are relatively recent [3–5,17]. In [3,5,17] the
piecewise �V (x) was a constant, the average value of V (x) over Ik , while in [4] it was a straight-line
segment which is tangent to V (x). In the �rst case, the two linear independent solutions are given
by trignometric or hyperbolic functions while in the second by the Airy functions. However, the
error analysis of the two versions [6] has shown that both of them produce second-order methods,
although the latter corresponds to a potentially better approximation.
Two directions of investigation were adopted: The �rst consists on assuming a piecewise polyno-

mial form for �V (x) and asking for the best �t of the polynomial coe�cients on each Ik . The most
important result is due to Pruess [12] and it says in essence that the best �t is by developing V (x)
over shifted Legendre polynomials. If, over each Ik , �V (x) is chosen as an N th degree polynomial
obtained in this way, then the error is O(h2N+2), see also [11,14]. However, seen from the perspective
of a practical application, the use of polynomials of a degree higher than one is problematic in so
much the accurate computation of the two linear independent solutions is di�cult.
The other direction takes for �V (x) only the potentials for which the two independent solutions

have known, analytic forms which can be calculated e�ciently. To further improve the accuracy,
the corrections from the perturbation �V (x) = V (x)− �V (x) are added on each Ik , see Chapter 3 of
[7]. In this way a general family of piecewise perturbation methods (PPM) is delimited.
The success of the latter approach depends, on course, on the correctness and e�ciency when

calculating the perturbation corrections. As shown in [7], if on each Ik , �V (x) is taken as a constant and
�V (x) is a polynomial, then the perturbation corrections have simple analytic forms. The numerical
methods obtained on this basis are referred to as forming the CPM (short for constant (based)
perturbation method) family. Each member of the family is identi�ed by the degree N of the
polynomial �V (x) and by the number of perturbation corrections Q retained in the algorithm.
Clearly, the version CPM[N;Q] with a conveniently chosen value for Q will furnish the same
accuracy as a method based just on a piecewise N th degree polynomial for �V (x). However, as said,
while the algorithm of the former is at hand, writing an algorithm for the latter is not simple at all.
The simplest version, in which V (x) is approximated piecewise by a constant but no correction is
introduced, is identi�ed either as CPM[0; 0] or directly as CPM(0).
CPM versions were also formulated for the case when the independent variable x, V (x) and E

are complex (see [10]) and for solving systems of coupled Schr�odinger equations [7]. An extension
of the latter in complex is now in �nal tests. A highly accurate version for Eq. (1.1) was obtained
recently in [8] and a computer program based on it for the solution of the regular Sturm–Liouville
problem is published in [9].
Among the salient advantages of the CP algorithms we mention: (i) the accuracy is uniform with

respect to E, a feature unparalleled by any other numerical method; (ii) there is an easy control of
the error; (iii) the step widths are unusually big and the computation is fast; (iv) the form of the
algorithm allows a direct evaluation of the Pr�ufer phase and of the derivative of the solution with
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respect to E. When a SL problem is solved these data make the search of the eigenvalues very
e�cient. Finally, (v), the algorithms are of a form which allows using parallel computation.
It is also important to mention that the CP represents only one possible way of implementing a

PPM. One could well take a piecewise line for �V (x) and thus an LP implementation would result.
Some work in this direction is also mentioned in [7] but up to now there is no general rule for
constructing the corrections. Moreover, there are hints that the very construction of the successive
corrections is problematic, if not just impossible, for the most challenging case of the systems of
coupled equations. Another case of interest refers to the situation when V (x) contains a centrifugal
term, l(l + 1)=x2. The potential is then singular at the origin and, on a short interval around the
origin, a specially tuned implementation should be used, with �V (x) = l(l + 1)=x2 for the reference
potential. In principle, the generation of the formulae for the corrections is possible for this case. As
from the practical point of view, the expressions of the �rst- and second-order corrections can be
generated without di�culty but more performant packages are perhaps needed for the higher-order
corrections.
Seen from this perspective the existing PPM-based programs may seem rather poor and rigid in

so much each of them uses only one and the same preset version on all steps. Flexible programs,
i.e., programs instructed to automatically select the most convenient version on each Ik , can be
written. A substantial enhancement in e�ciency is expected from such exible programs and this is
of particular interest for the solution of large systems of coupled equations.

2. The CPM algorithm

We focus on the initial-value problem for the Schr�odinger equation (2.1) with y(a)=y0, y′(a)=y′
0.

The currrent interval Ik of the partition is denoted generically by I = [X; X + h].
On I the solution is advanced by the so-called propagation matrix algorithm[

y(X + h)

y′(X + h)

]
=

[
u(h) v(h)

u′(h) v′(h)

] [
y(X )

y′(X )

]
: (2.1)

Functions u(�) and v(�), where �= x−X , called propagators, are the solutions of the local problem
y′′(�) = (V (X + �)− E)y(�); � ∈ [0; h] (2.2)

with the initial values y(0)=1, y′(0)=0 for u and y(0)=0, y′(0)=1 for v. The one-step propagation
matrix is

P(�) =

[
u(�) v(�)

u′(�) v′(�)

]
(2.3)

and its inverse reads

P−1(�) =

[
v′(�) −v(�)
−u′(�) u(�)

]
; (2.4)

because Det[P(�)] = 1. It follows that the knowledge of u(h), v(h), u′(h) and v′(h) is su�cient to
advance the solutions in both directions.
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To construct the propagators v(�) and u(�) the pertubation approach is used. Let

�V =
1
h

∫ h

0
V (X + �) d�; �V (�) = V (X + �)− �V : (2.5)

The original potential then reads V (X + �) = �V +�V (�), where �V is a constant.
The procedure consists in taking �V as the reference potential and �V (�) as a perturbation.
As explained in [7], each of u(�) and v(�), denoted generically by p(�), is written as a perturbation

series:

p(�) = p0(�) + p1(�) + p2(�) + p3(�) + · · · ; (2.6)

where the zeroth-order term p0(�) is the solution of p′′
0 = ( �V −E)p0, with p0(0) = 1, p′

0(0) = 0 for
u0 and p0(0) = 0, p′

0(0) = 1 for v0. The correction pq, q= 1; 2; : : : ; obeys the equation

p′′
q = ( �V − E)pq +�V (�)pq−1; pq(0) = p′

q(0) = 0: (2.7)

With Z(�)=( �V −E)�2 and functions �(Z); �0(Z); �1(Z); : : : ; de�ned in Appendix A, the zeroth-order
propagators are

u0(�) = �(Z(�)); v0(�) = ��0(Z(�)) (2.8)

and the following iteration procedure exists to construct the corrections.
Correction pq−1 is assumed as known and of such a form that the product �V (�)pq−1 reads

�V (�)pq−1(�) = Q(�)�(Z(�)) +
∞∑
m=0

Rm(�)�2m+1�m(Z(�)): (2.9)

Then pq(�) and p′
q(�) are of the form

pq(�) =
∞∑
m=0

Cm(�)�2m+1�m(Z(�)); (2.10)

p′
q(�) = C0(�)�(Z(�)) +

∞∑
m=0

(Cm(�) + �Cm+1(�))�2m+1�m(Z(�)); (2.11)

where C0(�); C1(�); : : : are given by quadrature (see again [7]):

C0(�) =
1
2

∫ �

0
Q(�1) d�1; (2.12)

Cm(�) =
1
2
�−m

∫ �

0
�m−11 [Rm−1(�1)− C ′′

m−1(�1)] d�1; m= 1; 2; : : : : (2.13)

To calculate successive corrections for u, the starting functions in �V (�)p0(�) are Q(�)=�V (�),
R0(�) = R1(�) = · · ·= 0, while for v they are Q(�) = 0, R0(�) = �V (�), R1(�) = R2(�) = · · ·= 0:
The practical inconvenience is that successive quadratures starting from an arbitrary �V (�) are

di�cult to manipulate. For this reason, there is an intermediate stage in the procedure in which
V (X + �) is approximated by a polynomial in �. More exactly, it is assumed that V (X + �) can be
written as a series over shifted Legendre polynomials P∗

n (�=h) in the following way:

V (X + �) =
∑
n=0

VnhnP∗
n (�=h): (2.14)
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The expressions of several P∗
n () polynomials,  ∈ [0; 1], are as follows (see [1]):

P∗
0 () = 1; P∗

1 () =−1 + 2;
P∗
2 () = 1− 6+ 62; P∗

3 () =−1 + 12− 302 + 203:
The original V (X + �) is then approximated by the truncated series

V (N )(X + �) =
N∑
n=0

VnhnP∗
n (�=h): (2.15)

As a matter of fact, the option for the shifted Legendre polynomials relies on the fact that such V (N )

represents the best approximation to V in L2(X; X + h) by a polynomial of degree 6N ; the choice
is consistent to that in [12].
Then the equation

y(N )
′′
= (V (N )(X + �)− E)y(N ); � ∈ [0; h] (2.16)

is the one whose propagators are actually constructed via CPM. With

�V = V0; �V (�) = �V (N )(�) =
N∑
n=1

VnhnP∗
n (�=h); (2.17)

integrals (2.12) and (2.13) can be solved analytically. Each Cm(�) is a polynomial and the series
(2.10) and (2.11) are �nite.
Each value for N and for the maximal number of perturbation corrections Q would result in a

version identi�ed as CPM[N;Q]. The versions described in [7] take either N =Q=0 or N =2 as a
default value and Q = 1; 2. These versions are there denoted as CPM(Q), Q = 0; 1; 2, respectively.
The existence of powerful packages for analytic computation enabled to recently obtaining expres-

sions of u(h); hu′(h); v(h)=h and v′(h) with more terms. In Appendix B we collect the expressions
obtained in [8] by MATHEMATICA. The number of terms is large enough to be transparent for a
pertinent error analysis and also to generate an algorithm of order 12 when Z(h) = (V0 − E)h2 → 0
and of order 10 when −Z(h)→ +∞.

3. Error analysis of CPM[N;Q]

As explained above, CPM[N;Q] consists of two stages to be performed at each step. The �rst
consists of approximating V (X + �) by V (N )(X + �). This approximation gives rise to the errors

�(N )k =max{|y(xk)− y(N )(xk)|; |y′(xk)− y(N )′(xk)|}; k = 1; 2; : : : ; kmax: (3.1)

The second stage consists of solving (16) by the perturbation technique with Q corrections included.
The associated errors are

�� [N;Q]k =max{|y(N )(xk)− �y(xk)|; |y(N )′(xk)− �y′(xk)|}; k = 1; 2; : : : ; kmax; (3.2)

where �y(xk) and �y
′(xk) are the numerical values obtained by propagating the solution along the step

intervals by using CPM[N;Q]. The error of the whole procedure, that is,

�[N;Q]k =max{|y(xk)− �y(xk)|; |y′(xk)− �y′(xk)|}; k = 1; 2; : : : ; kmax; (3.3)
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is bounded by the sum of both errors, namely

�[N;Q]k 6 �� [N;Q]k + �(N )k : (3.4)

As shown in [8], for each CPM[N;Q] a �h exists such that

Theorem. If CPM[N;Q] is applied to propagate the solution on an equidistant partition with h6 �h;
then
— if the energy E is such that |Z(h)| is small in all intervals; a constant CN exists such that

�[N;Q]k ¡CNh2N+2; k = 1; 2; : : : ; kmax; (3.5)

provided Q¿b 23Nc+ 1; N = 1; 2; : : : ; 5 and Q= 0 for N = 0. The energy dependence of CN is
stronger and stronger as N increases.

— if E is such that Z(h).0 in all intervals; an energy independent constant �CasN exists such that
�[N;Q]k ¡ �C

as
N h

N =
√
E; k = 1; 2; : : : ; kmax; (3.6)

provided Q¿1 if N = 1; 2; : : : ; and again Q = 0 if N = 0.

The limitation of N up to 5 in the �rst part of the theorem is caused by the limited number of
terms in Eqs. (B.5)–(B.8). However, there are reasons to think that the corresponding claim remains
valid at any N . As a matter of fact it is of the same type as a result obtained for Sturm–Liouville
problems, Theorem 9:5 in [14].
The theorem suggests that, for one and the same partition, the value of the energy E dictates

two di�erent behaviours of the error. If E is close enough to V (x), speci�cally such that |Z(h)| is
small in each interval of the partition, then the method behaves as a method of order n0 = 2N + 2.
In contrast, when E is so high that Z(h) is large and negative, it is another, asymptotic order
nas =N which is appropriate. The theorem also shows that there is a damping of the error when E is
increased.
The existence of two distinct orders allows an alternative way of formulating and identifying a

CPM version. We can just ask to retain in the algorithm only the terms consistent with some input
values for n0 and nas. This will lead to a unique N but to a sum over incomplete perturbations. The
version corresponding to such a requirement is denoted as CPM{n0; nas}. The version corresponding
to all terms given in Appendix B is identi�ed as CPM{12; 10}.
The possibility of introducing an asymptotic order is unparalleled among the usual numerical

methods for di�erential equations (Runge–Kutta or multistep, say). For these methods the ac-
curacy quickly deteriorates when E is increased. A direct consequence is that the CPM’s are
the only methods for which the partition of the integration interval can be formulated from the
very beginning of the run and never altered again, no matter how small or big is the energy.
The E independent coe�cients C(u)m ; C

(u′)
m ; C(v)m and C(v

′)
m (see Eqs. (B.5)–(B.8) in Appendix B,

for version CPM{12; 10}) are also computed once on each step and stored. When the solution
for a given E is advanced on successive steps, only the E dependent � and �m remain to be
calculated (this implies the computation of the pair of the trignometric or hyperbolic sine and
cosine functions plus a few arithmetic operations) and they are introduced in the simple for-
mulae (B.1)–(B.4) for the propagators. (The sums e�ectively consist of only a few terms; for
CPM{12; 10} the maximal m is �ve.) This very possibility of separating the relatively time con-
suming task of generating the partition and of calculating the quantities to be used later on, from



L.Gr. Ixaru / Journal of Computational and Applied Mathematics 125 (2000) 347–357 353

Table 1
Comparison of the four codes for problem 7 of Appendix B in [14] at � = 20

s Reference Es �Es

SLCPM12 SLEDGE SLEIGN SL02F

0 0:0000000000000245 −6:9(−10) −4:5(−10) 1:8(−09) −4:9(−11)
1 77:9169567714434 −1:3(−09) 6:5(−08) 1:1(−08) −1:4(−09)
2 151:4627783464567 2:0(−10) −4:2(−04)? −1:1(−08) −2:4(−04)
3 151:4632236576587 −3:6(−10) 6:0(−08)? −3:0(−08) −3:3(−09)
4 151:4636689883517 2:0(−10) 3:5(−04) −1:3(−08) 2:3(−04)?
5 220:1542298352598 1:2(−09) −1:3(−08) 2:2(−08) −5:4(−09)

CPU time (s) 11:1 30:5 334:4 260:5

the repeatedly asked but fast executable task of integrating the equation at various values for E,
represents perhaps the most important factor which makes the run with the CPM algorithms so
e�cient.

4. A numerical illustration

The results of the CPM{12; 10} based code SLCPM12 [9] are now compared with the results
of the codes SLEDGE [13], SLEIGN [2] and SL02F [16] for problem 7 of Appendix B of [14].
The potential function has the Co�ey–Evans form V (x) = −2� cos(2x) + �2 sin2(2x) with � = 20,
a=−�=2, b= �=2 and the boundary conditions are y(a) = 0, y(b) = 0.
The codes SLEDGE, SLEIGN and SL02F were accessed through SLDRIVER [15]. In all programs

one and the same value for the tolerance is imposed, TOL = 10−8, and the �rst six eigenvalues are
required.
By its very construction, the program SLCPM12 furnishes two approximations for each eigenvalue.

The �rst, called the basic eigenvalue, is the result of the computation on the very partition consistent
with the imposed TOL. The second, called the reference eigenvalue, results by repeating the run on
a partition in which each step of the former is halved. Since the smallest of the two orders of the
method is ten, the reference eigenvalue is expected to be by three orders of magnitude more accurate
than the basic eigenvalue and therefore, the di�erence of the two produces an accurate estimation
of the error in the latter. The knowledge of the reference eigenvalues is also used for the evaluation
of the errors in the eigenvalues produced by the other codes.
In Table 1 we give the reference Es and the deviations �Es = Es − �Es where �Es are the ener-

gies furnished by SLCPM12 on its basic partition (this consisted of only 38 steps), and the usual
outputs for the other three programs. Question marks were placed on the cases for which warn-
ings have been mentioned during the computation. The associated CPU times from a PC with
a 386 processor are also reported. We see that the results from the SLCPM12 are substantially
more accurate than from the other codes and also that the computation is faster. The capacity of
SLCPM12 of simultaneously producing highly accurate reference eigenvalues represents an additional
advantage.
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Appendix A

Functions �(Z); �0(Z); �1(Z); : : : ; originally introduced in [7] (they are denoted there as ��(Z); ��0(Z);
��1(Z); : : :), are de�ned as follows:

�(Z) =

{
cos(|Z |1=2) if Z60;

cosh(Z1=2) if Z ¿ 0;
(A.1)

�0(Z) =



sin(|Z |1=2)=|Z |1=2 if Z ¡ 0;

1 if Z = 0;

sinh(Z1=2)=Z1=2 if Z ¿ 0;

(A.2)

while �m(Z) with m¿ 0 are further generated by recurrence

�1(Z) = [�(Z)− �0(Z)]=Z; (A.3)

�m(Z) = [�m−2(Z)− (2m− 1)�m−1(Z)]=Z; m= 2; 3; 4; : : : ; (A.4)

if Z 6= 0; and by following values at Z = 0:
�m(0) = 1=(2m+ 1)!!; m= 1; 2; 3; 4; : : : : (A.5)

Some useful properties are as follows:
(i) Series expansion:

�m(Z) = 2m
∞∑
q=0

gmqZq

(2q+ 2m+ 1)!
; (A.6)

with

gmq =

{
1; if m= 0;

(q+ 1)(q+ 2) : : : (q+ m) if m¿ 0:
(A.7)

(ii) Asymptotic behaviour at large |Z |:

�m(Z) ≈
{
�(Z)=Z (m+1)=2 for odd m;

�0(Z)=Zm=2 for even m:
(A.8)

(iii) Di�erentiation properties:

�′(Z) = 1
2�0(Z); �′m(Z) =

1
2�m+1(Z); m= 0; 1; 2; : : : : (A.9)

(iv) Generating di�erential equation: �m(Z), m= 0; 1; : : : is the regular solution of

Zw′′ + 1
2(2m+ 3)w

′ − 1
4w = 0: (A.10)

(v) Relation with the spherical Bessel functions:

�m(−x2) =
√
�=2 x−(m+1=2)Jm+1=2(x); m= 0; 1; : : : : (A.11)
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Appendix B

The CPM standard form of the four elements of the propagation matrix P(�), Eq. (2.3), at �=h
is

u(h) = �(Z) +
∞∑
m=1

C(u)m �m(Z); (B.1)

hu′(h) = Z�0(Z) +
∞∑
m=0

C(u
′)

m �m(Z); (B.2)

v(h)=h= �0(Z) +
∞∑
m=2

C(v)m �m(Z); (B.3)

v′(h) = �(Z) +
∞∑
m=1

C(v
′)

m �m(Z); (B.4)

where the C coe�cients depend only on the perturbation while the energy dependence is absorbed
entirely in the Z-dependent functions � and �m.
We give below the expressions of the coe�cients as obtained in [8] by MATHEMATICA. With

V0; V1; V2; : : : de�ned in Eq. (2.14), Z = (V0 − E)h2 and �Vn = Vnhn+2, n=1; 2; : : : these expressions are
as follows:

C(u)1 =−[ �V1 + �V3 + �V5 + �V7 + �V9]=2 + O(h13);

C(u)2 = [5 �V3 + 14 �V5 + 27 �V7 + 44 �V9]=2− [105 �V 21 + 63 �V
2
2 + 45 �V

2
3 + 35 �V

2
4 ]=2520 + O(h

13);

C(u)3 =−3[21 �V5 + 99 �V7 + 286 �V9]=2 + [2 �V1 �V2 + �V1 �V3 + 2 �V1 �V4 + 2 �V2 �V3

+ �V1 �V5 + 2 �V1 �V6 + 2 �V2 �V5 + 2 �V3 �V4 + �V1 �V7 + �V3 �V5]=4

−[63 �V 22 − 60 �V
2
3 + 35 �V

2
4 ]=840 + O(h

13);

C(u)4 = 3[429 �V7 + 2860 �V9]=2 + [− 9 �V1 �V5 + 3 �V2 �V4 − 54 �V1 �V6 − 42 �V2 �V5 − 36 �V3 �V4
− 22 �V1 �V7 + 3 �V2 �V6 − 9 �V3 �V5]=4 + 5[− 9 �V 23 + 35 �V

2
4 ]=168

+[35 �V
3
1 + 42 �V

2
1
�V2 + 35 �V

2
1
�V3 + 21 �V1 �V

2
2 + 54 �V1 �V2 �V3 + 6 �V

3
2 ]=1680 + O(h

13);

C(u)5 =−36465 �V9=2 + [396 �V1 �V6 + 252 �V2 �V5 + 210 �V3 �V4 + 143 �V1 �V7 − 33 �V2 �V6
+ 15 �V3 �V5 − 210 �V 24 ]=4− [805 �V

2
1
�V3 + 651 �V1 �V

2
2 + 420 �V

2
1
�V4 + 300 �V1 �V2 �V3 − �V

3
2 ]=1680

+ �V
4
1 =1152 + O(h

13);

C(u)m =0 + O(ht(m)) with t(m)¿13 ∀m¿6; (B.5)
C(u

′)
0 = [ �V2 + �V4 + �V6 + �V8 + �V10]=2 + O(h14);

C(u
′)

1 =−[3 �V2 + 10 �V4 + 21 �V6 + 36 �V8 + 55 �V10]=2− [105 �V 21 + 63 �V
2
2 + 45 �V

2
3 + 35 �V

2
4 ]=2520

+O(h14);
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C(u
′)

2 = [35 �V4 + 189 �V6 + 594 �V8 + 1430 �V10]=2− [2 �V1 �V3 + 2 �V1 �V5 + �V2 �V4 + 2 �V1 �V7

+ �V2 �V6 + 2 �V3 �V5]=4− [735 �V 21 + 378 �V
2
2 + 675 �V

2
3 + 350 �V

2
4 ]=2520

+O(h14);

C(u
′)

3 =−[693 �V6 + 5148 �V8 + 21450 �V10]=2 + [16 �V1 �V3 + 43 �V1 �V5 + 26 �V2 �V4
+ 82 �V1 �V7 + 48 �V2 �V6 + 63 �V3 �V5]=4 + [1197 �V

2
2 + 3735 �V

2
3 + 4900 �V

2
4 ]=840

+ [7 �V
2
1
�V2 − 35 �V 21 �V4 + 54 �V1 �V2 �V3 − 15 �V

3
2 ]=1680 + O(h

14);

C(u
′)

4 = [19305 �V8 + 182325 �V10]=2− [261 �V1 �V5 + 165 �V2 �V4 + 1210 �V1 �V7 + 726 �V2 �V6

+ 726 �V3 �V5]=4− 5[1917 �V 23 + 7392 �V
2
4 ]=504 + [2331 �V

2
1
�V2 + 2310 �V

2
1
�V4

+ 4752 �V1 �V2 �V3 + 234 �V
3
2 ]=5040 + �V

4
1 =1152 + O(h

14);

C(u
′)

5 =−692835 �V10=2 + [6578 �V1 �V7 + 3927 �V2 �V6 + 3165 �V3 �V5]=4 + 8785 �V 24 =24

− [31395 �V 21 �V4 + 44370 �V1 �V2 �V3 + 5679 �V
3
2 ]=5040 + 13 �V

4
1 =1152 + O(h

14);

C(u
′)

m =0 + O(ht(m)) with t(m)¿14 ∀m¿6; (B.6)

C(v)2 =−[ �V2 + �V4 + �V6 + �V8 + �V10]=2 + O(h14);

C(v)3 = [7 �V4 + 18 �V6 + 33 �V8]=2− [35 �V 21 + 21 �V
2
2 + 15 �V

2
3 ]=840 + O(h

12);

C(v)4 =−[99 �V6 + 429 �V8]=2 + [2 �V1 �V3 + 2 �V1 �V5 + 3 �V2 �V4]=4

+ [63 �V
2
2 + 40 �V

2
3 ]=280 + O(h

12);

C(v)5 = 2145 �V8=2− [27 �V1 �V5 + 19 �V2 �V4]=4− 115 �V 23 =56 + 11 �V
2
1
�V2=240 + O(h12);

C(v)m =0 + O(ht(m)) with t(m)¿12 ∀m¿6; (B.7)

C(v
′)

1 = [ �V1 + �V3 + �V5 + �V7 + �V9]=2 + O(h13);

C(v
′)

2 =−[5 �V3 + 14 �V5 + 27 �V7 + 44 �V9]=2

− [105 �V 21 + 63 �V
2
2 + 45 �V

2
3 + 35 �V

2
4 ]=2520 + O(h

13);

C(v
′)

3 = 3[21 �V5 + 99 �V7 + 286 �V9]=2− [2 �V1 �V2 − �V1 �V3 + 2 �V1 �V4 + 2 �V2 �V3 − �V1 �V5

+ 2 �V1 �V6 + 2 �V2 �V5 + 2 �V3 �V4 − �V1 �V7 − �V3 �V5]=4

− [63 �V 22 − 60 �V
2
3 + 35 �V

2
4 ]=840 + O(h

13);
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C(v
′)

4 =−3[429 �V7 + 2860 �V9]=2− [9 �V1 �V5 − 3 �V2 �V4 − 54 �V1 �V6 − 42 �V2 �V5 − 36 �V3 �V4
+ 22 �V1 �V7 − 3 �V2 �V6 + 9 �V3 �V5]=4 + 5[9 �V 23 + 35 �V

2
4 ]=168− [35 �V

3
1 − 42 �V

2
1
�V2

+ 35 �V
2
1
�V3 + 21 �V1 �V

2
2 − 54 �V1 �V2 �V3 − 6 �V

3
2 ]=1680 + O(h

13);

C(v
′)

5 = 36465 �V9=2 + [− 396 �V1 �V6 − 252 �V2 �V5 − 210 �V3 �V4 + 143 �V1 �V7 − 33 �V2 �V6
+ 15 �V3 �V5 − 210 �V 24 ]=4 + [805 �V

2
1
�V3 + 651 �V1 �V

2
2 − 420 �V

2
1
�V4 − 300 �V1 �V2 �V3

+ 60 �V
3
2 ]=1680 + �V

4
1 =1152 + O(h

13);

C(v
′)

m =0 + O(ht(m)) with t(m)¿13 ∀m¿6: (B.8)
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Abstract

Asymptotic correction, at negligible extra cost, greatly improves the accuracy of higher eigenvalues computed by �nite
di�erence or �nite element methods, and generally increases the accuracy of the lower ones as well. This paper gives a brief
overview of the technique and describes how its previous use with Numerov’s method may be extended to problems with
natural boundary conditions. Numerical results indicate that it is just as successful as with Dirichlet boundary conditions.
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1. Asymptotic correction

The term “asymptotic correction” is used here, following [1], to describe a technique �rst studied
[19] in connection with the computation of the eigenvalues, �(0)1 ¡�

(0)
2 ¡ · · · ; of the regular Sturm–

Liouville problem

− y′′ + qy = �y; (1)

y(0) = y(�) = 0: (2)

The key idea of asymptotic correction is that, at least for su�ciently smooth q, the leading asymptotic
term in the error in the computed eigenvalue is independent of q. Moreover, when q is constant, the
error in the estimate of �(0)k , obtained by the classical second-order centred �nite di�erence method
with the interval [0; �] divided into n equal subintervals, is known to be exactly �1(k; h), where
h := �=n and, following [3], we use the notation

�r(k; h) := k2 − 12 sin2(kh=2)

h2[3 + (1− r) sin2(kh=2)] : (3)

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
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Hence, the known error for the case of constant q can be used to “correct” the estimate obtained
for general q. Indeed, it was shown in [19] that, at least for “su�ciently small” kh, this correction
reduced the O(k4h2) error in the estimate for �(0)k obtained by the classical �nite di�erence estimate to
one of O(kh2). An alternative form of the error, which does not include the restriction to “su�ciently
small” kh, is suggested in [9] and discussed further in [1]. Sometimes the technique has been given
other names, including “algebraic correction” [13] and “the AAdHP correction” [20].
Anderssen and de Hoog [8] extended the results of [19] to problems involving general separated

boundary conditions. For non-Dirichlet boundary conditions, they showed, using asymptotic formu-
lae for eigenvalues of the discrete problem [12], that, for “su�ciently small” kh, the error in the
corrected eigenvalues is O(h2). With these boundary conditions there is usually no simple closed
form expression for the error in the case of constant q, but they gave a simple numerical method
for approximating this error. Fortunately, as noted in [4], in the three important special cases

y′(0) = y′(�) = 0; (4)

y(0) = y′(�) = 0 (5)

and

y′(0) = y(�) = 0; (6)

the exact errors obtained by the classical second-order centered �nite di�erence method for constant
q have the closed forms �1(k−1; h), �1(k− 1

2 ; h) and �1(k− 1
2 ; h), respectively. Asymptotic correction

has been shown to be especially e�ective for the �nite element method [2,10,17]. For �nite element
eigenvalues with linear hat coordinate functions, the appropriate corrections for (1) with boundary
conditions (2), (4), (5) and (6) are �3(k; h), �3(k−1; h), �3(k− 1

2 ; h) and �3(k− 1
2 ; h), respectively. The

method is extended to periodic and semiperiodic boundary conditions in [2,4]. An alternative to the
classical di�erence approximations used in [4] is suggested in [21], and analyzed in [11]. Numerical
evidence shows that asymptotic correction can also be useful for some methods for which a complete
theory is still lacking [5,15], including the computation of eigenvalues of certain partial di�erential
operators [1,13].
A survey of results on asymptotic correction up to 1992, including a discussion of some open

questions, is given in [5], while more recent developments, including progress on the problems listed
in [5], are considered in [7]. Asymptotic correction is particularly useful for the computation of a
substantial number of eigenvalues of regular Sturm–Liouville problems to moderate accuracy (say 8
signi�cant �gures). For singular (or nearly singular) problems, for the computation of eigenfunctions,
and usually even for the highly accurate computation of just the �rst eigenvalue, there are better
methods [20]. Partly because it is so e�cient for dealing simultaneously with many eigenvalues,
asymptotic correction has proved especially useful in the solution of inverse eigenvalue problems
[6,13,14,17,18]. Many authors have suggested that inverse Sturm–Liouville problems be solved nu-
merically by using algorithms for matrix inverse eigenvalue problems, but, as shown in [17,18],
appropriate use of asymptotic correction is crucial to the viability of such methods. Before solving
the corresponding discrete inverse eigenvalue problem, the correction which would be added to the
discrete eigenvalues in the forward problem must be subtracted from the observed eigenvalues of
the continuous problem.
The rest of this paper concerns the use of asymptotic correction with the deservedly popular Nu-

merov method, which gives fourth-order accuracy while using only tridiagonal matrices. Previous
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work on asymptotic correction with Numerov’s method has considered only the boundary condi-
tions (2). Here an extension to the boundary conditions (4), (5) and (6) is proposed and tested.
As shown in [9] for (2), the corrections required for these boundary conditions have the same form
as for the second-order �nite di�erence or �nite element methods, but with �2 instead of �1 or �3.
As with second-order methods [2], results given here for [0; �] may be generalized to an arbitrary
�nite interval.

2. Application to Numerov’s method

Numerov’s method approximates (1) by the three term recurrence relation

−[12− h2q(xi−1)]yi−1 + [24 + 10h2q(xi)]yi − [12− h2q(xi+1)]yi+1
= h2�[yi−1 + 10yi + yi+1]; (7)

where xi := ih, and � and yi are the Numerov approximations of � and y(xi). With the boundary
conditions y0 =yn=0 corresponding to (2), this gives a matrix eigenvalue problem A(0; n)x=�B(0; n)x,
whose eigenvalues, �(0; n)1 ¡�(0; n)2 ¡ · · ·¡�(0; n)n−1 are the Numerov approximations of �

(0)
1 ¡�(0)2 ¡

· · ·¡�(0)n−1. (Note A
(0; n) and B(0; n) are (n − 1) × (n − 1) and tridiagonal.) It is known that �(0)k −

�(0; n)k =O(k6h4), this estimate being sharp. In particular, when q is constant, �(0)k −�(0; n)k = �2(k; h)=

k6h4=240+O(k8h6). Consequently, the estimate for �(0)k produced by asymptotic correction is �̃
(0; n)

k :=
�(0; n)k + �2(k; h). It was shown in [9] that, if q ∈ C4[0; �], then

�̃
(0; n)

k − �(0)k =O(k4h5=sin(kh)); (8)

so that �̃
(0; n)

n−1 − �(0)n−1 = O(1), which is similar to a result found to be sharp for certain second-order
methods [2,4,10]. However, numerical results [1,5,9] suggest that (8) can be sharpened to �̃

(0; n)

k −
�(0)k =O(k3h5=sin(kh)), this latter estimate being sharp.
By Taylor’s theorem, it follows from di�erentiating (1) that, if y′(a) = �y(a), then

y(a+ h)− y(a− h) = h[�(2 + (q(a)− �)h2=3) + h2q′(a)=3]y(a) + O(h5): (9)

Consequently, a fourth-order approximation of the condition y′(0) = 0 is

3(y1 − y−1) = h3q′(x0)y0; (10)

while a fourth-order approximation of y′(�) = 0 is

3(yn+1 − yn−1) = h3q′(xn)yn: (11)

Eliminating y−1 between (10) and (7) with i = 0 gives the equation

[24 + 10h2q(x0) + h3q′(x0)(4− h2q(x−1)=3)]y0 − [24− h2(q(x−1) + q(x1))]y1
= h2�[(10− h3q′(x0)=3)y0 + 2y1]; (12)

while eliminating yn+1 between (11) and (7) with i = n gives

−[24− h2(q(xn−1) + q(xn+1))]yn−1 + [24 + 10h2q(xn)− h3q′(xn)(4− h2q(xn+1)=3)]yn
= h2�[2yn−1 + (10 + h3q′(xn)=3)yn]: (13)
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Let �(1)k , �
(2)
k and �(3)k denote the kth eigenvalues of (1) with boundary conditions (4), (5) and (6),

respectively. Using (12) and (13) with (7), again for i=1; : : : ; n− 1, gives, as Numerov approxima-
tions of �(1)1 ¡�(1)2 ¡ · · ·¡�(1)n+1, the eigenvalues, �

(1; n)
1 ¡�(1; n)2 ¡ · · ·¡�(1; n)n+1 , of a matrix eigenvalue

problem A(1; n)x=�B(1; n)x, where the matrices A(1; n) and B(1; n) so de�ned are (n+1)×(n+1) and again
tridiagonal. Similarly, Numerov approximations of �(2)1 ¡�(2)2 ¡ · · ·¡�(2)n and �(3)1 ¡�(3)2 ¡ · · ·¡�(3)n
are given by the eigenvalues �(2; n)1 ¡�(2; n)2 ¡ · · ·¡�(2; n)n and �(3; n)1 ¡�(3; n)2 ¡ · · ·¡�(3; n)n of the
matrix eigenvalue problems A(2; n)x = �B(2; n)x and A(3; n)x = �B(3; n)x, respectively, the former being
de�ned by combining (7), for i=1; : : : ; n− 1 with (13) and y0 =0, and the latter by combining (7),
for i = 1; : : : ; n− 1 with (12) and yn = 0. The n× n matrices A(2; n); B(2; n); A(3; n) and B(3; n) so de�ned
are again tridiagonal. Indeed A(0; n) and B(0; n) are obtained from A(1; n) and B(1; n) by deleting the �rst
and last row and column, A(2; n) and B(2; n) by deleting the �rst row and column, and A(3; n) and B(3; n)

by deleting the last row and column.
When q = 0, the kth eigenvalues of (1), with boundary conditions (2),(4),(5) and (6), are k2,

(k − 1)2, (k − 1
2 )
2 and (k − 1

2 )
2, respectively. Moreover, when q= 0, (7), (10) and (11) reduce to

− 12yi−1 + 24yi − 12yi+1 = h2�[yi−1 + 10yi + yi+1]; (14)

y−1 = y1 and yn+1 = yn−1, respectively. It is readily checked that, for all real numbers � and �,
yi = sin(i�+ �) satis�es (14) for all integers i, when

�=
12[sin2(�=2)]

h2[3− sin2(�=2)] :

The boundary condition y0=0 requires �=m� for some integer m, while y−1=y1 requires �=(m+1
2)�

or sin(�)=0. Thus possible values of �, and hence the complete set of eigenvalues and corresponding
eigenvectors of the matrix equations A(r; n)x = �B(r; n)x, r = 0; 1; 2; 3, are readily determined by the
remaining boundary condition. Hence, since the corrected estimate, �̃

(r; n)

k , of the kth eigenvalue of
(1) with appropriate boundary conditions is obtained by adding to �(r; n)k a quantity which would
give the exact answer when q= 0, it is readily deduced, using (3), that

�̃
(0; n)

k := �(0; n)k + �2(k; h);

�̃
(1; n)

k := �(1; n)k + �2(k − 1; h);

�̃
(2; n)

k := �(2; n)k + �2(k − 1
2 ; h);

�̃
(3; n)

k := �(3; n)k + �2(k − 1
2 ; h):

The denominator sin(kh) in (8) is no problem with (2) as the matrices A(0; n) and B(0; n) are (n−1)×
(n− 1) and h= �=n. However, because of the larger dimension of the matrices associated with (4)–
(6), any extension of (8) to these boundary conditions must allow for the possibility that sin(kh)=0.
For second-order methods, a related result [2] for (5) and (6) has denominator sin((k − 1

2 )h), and
an alternative approach [4] shows that with (4) the error in the highest eigenvalue computed using
asymptotic correction is again O(1), compared with the O(n2) error in the corresponding uncorrected
eigenvalues. Note also that (8) implies that, when r = 0,

�̃
(r; n)

k − �(r)k =O(k4h5=sin((k − 1
2 )h)): (15)
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Table 1
Errors in computed solutions of (1), (4) with q(x) = 10 cos(2x)

k �k − �(40)k �k − �̃ (40)
k �k − �̃ (20)

k (�k − �̃ (n)
k ) sin((k − 1

2 )h)=k
4h5

n= 10 20 40 80

1 2.07E–5 2.07E–5 3.35E–4 0.288 0.275 0.272 0.271
2 9.92E–5 9.91E–5 1.61E–3 0.254 0.245 0.243 0.243
3 1.68E–4 1.58E–4 2.57E–3 0.128 0.127 0.127 0.127
4 2.80E–4 1.64E–4 2.70E–3 0.057 0.058 0.058 0.059
5 9.16E–4 2.64E–4 4.41E–3 0.046 0.048 0.049 0.049
6 2.95E–3 4.61E–4 7.81E–3 0.042 0.048 0.050 0.050
7 8.13E–3 6.77E–4 1.17E–2 0.049 0.044 0.046 0.047
8 1.98E–2 9.24E–4 1.66E–2 0.011 0.039 0.042 0.043
9 4.34E–2 1.21E–3 2.26E–2 0.068 0.035 0.038 0.039
10 8.74E–2 1.54E–3 3.04E–2 −0:031 0.032 0.035 0.036
11 1.64E–1 1.93E–3 4.06E–2 0.014 0.029 0.032 0.034
14 7.98E–1 3.40E–3 1.01E–1 0.023 0.026 0.027
16 1.90E0 4.72E–3 2.17E–1 0.022 0.023 0.024
18 4.06E0 6.41E–3 3.20E–1 0.012 0.020 0.022
19 5.76E0 7.42E–3 3.07E0 0.057 0.019 0.021
20 8.00E0 8.58E–3 –6.06E0 –0.031 0.018 0.020
21 1.09E+1 9.91E–3 –4.06E0 0.017 0.017 0.019

Moreover, numerical results reported below suggest that, for k = n− 1; n; n+ 1, �̃ (1; n)

k − �(1)k =O(1),
as would also follow from (15). The author conjectures that, if q ∈ C4[0; �], then (15) is true for
r = 0; 1; 2; 3. He hopes to return to this question in a later paper.
Fourth-order di�erence approximations to the more general boundary conditions y′(0) = �1y(0)

and y′(�) = �2y(�) are easily derived from (9), and in principle asymptotic correction can also be
used with Numerov’s method in this more general case, but it is less e�cient than in the cases
considered here, for two reasons. (i) Elimination of y−1 and yn+1 between these equations and (7),
produces a quadratic eigenvalue problem Ax=�Bx+�2Cx which requires more work to solve than
the simpler Ax = �Bx obtained with (2), (4), (5) or (6). (Although the di�erence equations can
also be solved by shooting [16], this is less satisfactory when a large number of eigenvalues are
required.) (ii) There is no longer a simple closed-form solution for the case of constant q, and we
must resort to a numerical procedure for this, as in [8].
Table 1 shows some results obtained by applying asymptotic correction, as described above, to

the Numerov estimates given by (7), (12), (13) for (1), (4) in the case q(x)=10 cos(2x) (Mathieu’s
equation). The last four columns check (15) for n = 10, 20, 40 and 80. To reduce clutter in the
headings of both tables, superscript (1) is omitted, with �(1)k ; �

(1; n)
k , etc. written as �k ; �

(n)
k etc. The

“exact” eigenvalues, �(1)k , were computed as Ck(160; 120), using the extrapolation formula

Ck(n; m) :=
n5 sin((k − 1

2 )�=n)�̃
(1; n)

k − m5 sin((k − 1
2 )�=m)�̃

(1;m)

k

n5 sin((k − 1
2 )�=n)− m5 sin((k − 1

2 )�=m)
(16)
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suggested by (15). Comparison with Ck(120; 80) suggests that all listed results are correct to within
one in the least signi�cant �gure shown. Our results also suggest that, as with (2), the growth of
the error with k was initially slower than that allowed by (15). However, whereas with (2) this was
true for all k, our results showed a sharp increase from �(1)n−2 − �̃

(1; n)

n−2 to �(1)n−1 − �̃
(1; n)

n−1 . Moreover,

for n = 10; 40; 80 and 120, the values of �(1)n−1 − �̃
(1; n)

n−1 , �
(1)
n − �̃

(1; n)

n and �(1)n+1 − �̃
(1; n)

n+1 all di�ered
from the values for n= 20 shown in Table 1 by less than 1%, showing the O(1) estimate given by
(15) for these three quantities to be sharp. With (4), asymptotic correction produces no change for
k = 1, but for all k ¿ 1 and all n¿10 it produced an improvement. However, although a choice of
n¡ 10 is unlikely in practice, (15) does not ensure that asymptotic correction will always produce
an improvement for very small n. In fact for n= 5 it produced improvement only for k = 2, 4 and
6. Limitations of asymptotic correction with very small n are discussed further in [1,5].
The analysis of [9] shows that |�(0)k − �̃

(0; n)

k | generally increases as the norms of the �rst four
derivatives, q ( j), of q increase. To investigate the variation of |�(1)k − �̃

(1; n)

k | with q, the above
calculations were repeated with q = 2cos(2x). Qualitatively, the results were very similar to those
reported above. Again �(1)n−1 − �̃

(1; n)

n−1 , �
(1)
n − �̃

(1; n)

n and �(1)n+1 − �̃
(1; n)

n+1 changed very little with n (their
values being approximately 0.18, −1:05 and −0:22, respectively) and were much larger in magnitude
than �(1)n−2 − �̃

(1; n)

n−2 . All errors were less than
1
5 (and most between

1
15 and

1
30) of their value when

q(x)=10 cos(2x), thus indicating that the dependence on the q ( j) of the error in the results obtained
with asymptotic correction is mildly superlinear. The numerical results of [19] suggest that the errors
in the corrected estimates obtained by the second order method considered there also have mildly
superlinear dependence on the q ( j). This o�ers an explanation of the very high accuracy of the
results obtained for the �rst example ((4.1),(4.2)) of [19]: for that example all q ( j) are bounded
above by e, compared with the larger least upper bound e� for the next example ((4.3),(4.4)) of that
paper. Although signi�cantly larger values of the q ( j) would require a �ner mesh to obtain accuracy
comparable to that reported for our examples, the tridiagonal structure of the matrices allows quite
�ne meshes to be handled e�ciently. However, one attraction of asymptotic correction is that, in
the common case in which the q ( j) are of modest size, excellent accuracy may be obtained with n
only 100 or so. In this case, it may be convenient to use a general purpose method, such as the
MATLAB command “eig(A,B)”, which was used in the calculations reported here.
Asymptotic correction removes only the leading term (as k →∞) of the asymptotic expansion for

the error. This dramatically improves estimates of the higher eigenvalues when the derivatives, q ( j),
are not too large, but is no substitute for mesh re�nement when traditional methods strike trouble
with the lowest eigenvalues, especially when the q ( j) are large. Asymptotic correction produces only
small changes in the lowest eigenvalues and none in �(1; n)1 . Nevertheless, to assess the performance
of our method with more di�cult problems, we tested it on the Co�ey–Evans potential [20], which
on [0; �] takes the form

q(x) = 2� cos(2x) + �2 sin2(2x): (17)

Results were computed for boundary conditions (4), with �=10 and 20, for n=20; 40; 80; 150; 180; 200
and 240. The lower eigenvalues of this problem are tightly clustered, especially for larger values of
�, and this causes di�culties with many methods. For all n when � = 10, and for all n¿ 20 when
� = 20, asymptotic correction produced an improvement for all k ¿ 1, most improvements being
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Table 2
Results for (1), (4) with q(x) = 2� cos(2x) + �2 sin2(2x)

� = 10 � = 20

k �k �k − �̃ (80)
k �k − �̃ (40)

k �k �k − �̃ (80)
k �k − �̃ (40)

k

1 0.0000000 1.43E–4 2.32E–3 0.0000000 1.17E–3 1.93E–2
2 37.7596285 4.42E–4 7.52E–3 77.9161943 7.38E–3 1.22E–1
3 37.8059002 9.93E–5 1.61E–3 77.9161957 9.95E–4 1.63E–2
4 37.8525995 4.43E–4 6.88E–3 77.9161972 9.89E–4 1.62E–2
5 70.5475097 1.97E–3 3.22E–2 151.463224 2.33E–2 3.90E–1
6 92.6538177 1.37E–3 2.25E–2 220.143526 4.31E–2 8.48E–1
7 96.2058159 7.28E–4 1.20E–2 220.154230 1.85E–2 3.09E–1
8 102.254347 2.09E–3 3.45E–2 220.164945 2.52E–2 3.08E–1
38 1419.26453 5.79E–2 –5.71E–2 1572.80102 8.32E–1 –5.57E+1
39 1494.25080 6.23E–2 1.02E+1 1647.60306 8.95E–1 –4.48E+1
40 1571.23811 6.69E–2 –2.63E+1 1724.42022 9.62E–1 –1.44E+2
41 1650.22636 7.19E–2 –2.42E+1 1803.25098 1.03E0 –1.42E+2

substantial. Even for n = � = 20 it produced an improvement for most k. Comparing results for
� = 10 and � = 20 again shows a mildly superlinear growth of errors with ‖q ( j)‖. For both values
of � our results again supported (15), the largest value of

(�(1)k − �̃
(1; n)

k ) sin((k − 1
2 )h)=k

4h5

occurring at k = 1 and the lowest tested value of n. As shown in Table 2, which tabulates some of
our results for (1),(4),(17), even |�(1)k − �̃

(1; n)

k | often decreased when k was increased. The values
shown as the “exact” �k in Table 2 were computed as Ck(240; 180) using (16). They are labelled
“�k” rather than “Ck(240; 180)” to avoid clutter in the headings, not because it is claimed that the
least signi�cant �gures shown are all correct. Nevertheless, comparison with Ck(200; 150) suggests
that all �gures shown for �k−�̃ (40)

and �k−�̃ (80)
are correct. This indicates that our method achieves

quite good accuracy with a fairly coarse mesh for this problem also. Table 2 shows results for the
lower eigenvalues (where the clustering of eigenvalues can cause problems) and also those terms (all
near k=n) for which �(1)k −�̃

(1;40)

k is negative. Despite signi�cant uctuations in the magnitude of the
error near k=n, even the larger errors were smaller than the errors in the corresponding uncorrected
estimates, except for n = 20 (and presumably for some lower n as well). With both Mathieu’s
equation and the Co�ey–Evans equation, q′ vanishes at both boundaries, and this simpli�es (12) and
(13). Results for some examples with q′(0)q′(�) 6= 0 and with boundary conditions (5) are given in
[7]. These results also satisfy (15).
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Abstract
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1. Introduction

Spectral problems for di�erential equations arise in many di�erent physical applications. Perhaps
quantum mechanics is the richest source of self-adjoint problems, while non-self-adjoint problems
arise in hydrodynamic and magnetohydrodynamic stability theory. The problems in hydrodynamic and
MHD stability are almost always of ‘higher order’, either because they involve a coupled system of
ordinary di�erential equations, or because they have been reduced to a single equation of di�erential
order 2m; m¿ 1. Self-adjoint problems may also be of higher order: in particular, as mentioned
in [21], certain quantum-mechanical partial di�erential eigenproblems can be reduced to systems of
ordinary di�erential eigenproblems.
The solution of ODE eigenproblems presents particular di�culties to the numerical analyst who

wants to construct library quality software. General purpose boundary value problem codes do not
generally cope well with eigenproblems. Fortunately an increasing number of pure spectral theorists
have brought their skills to bear on the numerical solution of these problems. Because of the sheer
size of the literature, in this paper we restrict ourselves to a very brief summary of our own
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work. A larger bibliography, which gives more (but still inadequate) credit to some of the other
mathematicians involved in this area, may be found in [20].

2. Self-adjoint problems

In this section we shall consider a 2mth order, nonsingular, self-adjoint problem of the form:

(−1)m(pm(x)y(m))(m) + (−1)m−1(pm−1(x)y(m−1))(m−1)

+ · · ·+ (p2(x)y′′)′′ − (p1(x)y′)′ + p0(x)y = �w(x)y; a¡x¡b; (2.1)

together with separated, self-adjoint boundary conditions. (The precise form of the boundary condi-
tions will be given below.) We assume that all coe�cient functions are real valued. The technical
conditions for the problem to be nonsingular are: the interval (a; b) is �nite; the coe�cient functions
pk (06 k6m − 1), w and 1=pm are in L1(a; b); and the essential in�ma of pm and w are both
positive. Under these assumptions, the eigenvalues are bounded below. (This is proved, for example,
in [11], where the proof shows that the Rayleigh quotient is bounded below.) For good numerical
performance however, the coe�cients need to be piecewise smooth (where the degree of smoothness
depends on the order of the numerical method used).
The eigenvalues can be ordered: �06 �16 �26 · · ·, where limk→∞ �k = +∞ and where each

eigenvalue has multiplicity at most m (so �k+m¿�k for all k). The restriction on the multiplicity
arises from the fact that for each � there are at most m linearly independent solutions of the
di�erential equation satisfying either of the endpoint conditions which we shall describe below.
The numerical methods discussed in this section are based on calculation of the following counting
function:

N (�)=The number of eigenvalues of (2:1) (together with boundary conditions) that are ¡�:

(2.2)

We shall give two formulas for N (�) below, and indicate some methods to calculate it. If we
can calculate N (�), then we can approximate eigenvalues. If �′¡�′′ are two values such that
N (�′)6 j and N (�′′)¿ j + 1, then the jth eigenvalue �j lies in the interval �′6 �j ¡�′′. Now �j
can be approximated by applying the bisection method to N (�) (accelerated by an iterative root�nder
applied to various continuous functions associated with the eigenvalues).
Although the solutions of (2.1) depend on (x; �), we shall often suppress � in the notation.

Corresponding to a solution y(x) of (2.1), we de�ne quasiderivatives:

uk = y(k−1); 16 k6m;

v1 = p1y′ − (p2y′′)′ + (p3y′′′)′′ + · · ·+ (−1)m−1(pmy(m))(m−1);
v2 = p2y′′ − (p3y′′′)′ + (p4y(4))′′ + · · ·+ (−1)m−2(pmy(m))(m−2);

...

vk = pky(k) − (pk+1y(k+1))′ + (pk+2y(k+2))′′ + · · ·+ (−1)m−k(pmy(m))(m−k);
...

vm = pmy(m):

(2.3)
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Consider the column vector functions: u(x)=(u1; u2; : : : ; um)T, v(x)=(v1; v2; : : : ; vm)T, z(x)=(u1; u2; : : : ;
um; v1; v2; : : : ; vm)T. Let S be the 2m× 2m symmetric matrix

S(x; �) =




(�w − p0) 0 0

−p1 0 1 0

−p2 1 0

: : : :

: : : :

: : : :

−pm−2 0 1 0

−pm−1 1 0

0 1

0 1

0 1

: :

: :

: :

0 0 0 · 0 1 0 · · · 0

0 0 0 · 0 0 0 · · · 1=pm




:

(2.4)

and let J be the 2m× 2m symplectic matrix

J =

(
0 −I
I 0

)
:

Then Eq. (2.1) is equivalent to

Jz′ = S(x; �) z: (2.5)

General, separated, self-adjoint boundary conditions for (2.1) are of the form

A1u(a) + A2v(a) = 0; B1u(b) + B2v(b) = 0; (2.6)

where A1; A2; B1; B2 are m× m real matrices, such that A1AT2 = A2A
T
1 ; B1B

T
2 = B2B

T
1 ; and the m× 2m

matrices (A1A2) and (B1B2) have rank m.
We now consider 2m× m matrices

Z(x) =

(
U (x)

V (x)

)
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that are solutions of the extended Hamiltonian system

JZ ′ = S(x; �)Z: (2.7)

The (linearly independent) column vectors of Z(x) are solutions of (2.5).

2.1. The unitary marix �(x; �)

It can be shown that the matrix function U T(x)V (x) − V T(x)U (x) is constant, and this constant
equals 0 if Z satis�es either of the boundary conditions (2.6). If U T(x)V (x)− V T(x)U (x) = 0, (and
Z = (U T; V T)T has rank m, as we suppose), then the m × m matrix V − iU is invertible and the
matrix

�(x) = (V + iU )(V − iU )−1 (2.8)

is unitary. The matrix �(x) and its phase angles were introduced into oscillation theory by Atkinson
[1] and Reid [24].
We now integrate (2.7) from the left and right endpoints toward a chosen point c ∈ [a; b]: Let

ZL(x) =

(
UL(x)

VL(x)

)
; ZR(x) =

(
UR(x)

VR(x)

)

be the solutions of (2.7) with initial conditions ZL(a)=(A2;−A1)T, ZR(b)=(B2;−B1)T. Let �L(x) and
�R(x) be the unitary matrices obtained from ZL(x) and ZR(x) by formula (2.8). The eigenvalues
of �L(x) and �R(x) are {exp(i�Lj (x)); 16 j6m} and {exp(i�Rj (x)); 16 j6m}, respectively. The
phase angles �Lj (x); �

R
j (x) are uniquely determined continuous functions when normalized by the

conditions:

�L1 (x)6 �L2 (x)6 · · · 6 �Lm(x)6 �L1 (x) + 2�;

�R1 (x)6 �R2 (x)6 · · · 6 �Rm(x)6 �R1 (x) + 2�;

06 �Lj (a)¡ 2�; 0¡�Rj (b)6 2�:
At a given point c ∈ [a; b], let

�LR(c) =�∗
L(c)�R(c); (2.9)

and let {exp(i!j); 16 j6m} be the eigenvalues of �LR(c), where the !j are normalized by the
condition

06!j ¡ 2�: (2.10)

It is known that when 0¡!j(�)¡ 2�, !j(�) is a strictly decreasing function of �. The normalization
(2.10) ensures that N (�) is continuous from the left.
Recalling that all of the functions arising from (2.1) depend on (x; �), we shall use the following

notations:

Argdet�L(x; �) = �L1 (x) + �
L
2 (x) + · · ·+ �Rm(x);

Argdet�R(x; �) = �R1 (x) + �
R
2 (x) + · · ·+ �Rm(x);

Argdet�LR(c; �) =!1 + !2 + · · ·+ !m: (2.11)
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The overbar on Argdet�LR(c; �) indicates that the angles are normalized to lie in the interval [0; 2�).
We can now give the �rst formula for the function N (�), which is the number of eigenvalues of
(2.1) and (2.6) that are less than �. The following is proved in [11].

Theorem 1. For any c ∈ [a; b];

N (�) =
1
2� (Argdet�L(c; �) + Argdet�LR(c; �)− Argdet�R(c; �)): (2.12)

The matrix S(x; �) in (2.4) can be partitioned into m× m submatrices:

S =

(
S11 S12

S21 S22

)
:

The di�erential equation (2.7) then translates into a di�erential equation for �(x; �):

�′ = i�
; a¡x¡b; (2.13)

where 
 is the Hermitian matrix given by

2
= (�∗ − I)S11(�− I) + i(�∗ − I)S12(�+ I)
− i(�∗ + I)S21(�− I) + (�∗ + I)S22(�+ I): (2.14)

At the same time, A=Argdet� satis�es the equation

A′ = trace
: (2.15)

There are some existing specialized codes that can integrate the system consisting of Eqs. (2.13)–
(2.15). For example, the code by Dieci et al. [7] is constructed speci�cally for (2.13). Marletta’s
code [21] for solving Hamiltonian systems works by solving (2.13). One can use these or more
general initial value solvers to calculate Argdet�L(c; �) and Argdet�R(c; �). N (�) can then be
calculated by formula (2.12). Note that we need only know �L(c; �) and �R(c; �) to calculate
Argdet�LR(c; �), since the angles !j are normalized to lie in the interval [0; 2�). This is not the case
for Argdet�L(c; �) or Argdet�R(c; �). This is probably the best one can do for general self-adjoint
2mth-order problems. However for 4th and 6th-order problems, there are faster, more e�cient, and
more elegant methods. These will be discussed below.

2.2. The symmetric matrix W and correction parameter �

In order to develop another formula for N (�), we return to the matrices UL(x) and UR(x), and
we de�ne the following integer-valued functions:

�L(x) = nullityUL(x) = m− rankUL(x) for a¡x¡c;

�R(x) = nullityUR(x) = m− rankUR(x) for c¡x¡b;

NL(c; �) =
∑

a¡ x¡ c

�L(x); NR(c; �) =
∑

c¡ x¡ b

�R(x): (2.16)
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It is shown in [11] that �L(x) and �R(x) can di�er from zero at only �nitely many points x; therefore
the sums in (2.16) are �nite. If UL(x) and UR(x) are nonsingular, we de�ne

WL(x) = VL(x)UL(x)−1; WR(x) = VR(x)UR(x)−1: (2.17)

It is known that WL(x) and WR(x) are symmetric matrices. (This follows from the fact that U T(x)V (x)
= V T(x)U (x)). For any symmetric matrix W , let �(W ) be the negative index of inertia (number of
negative eigenvalues) of W . We can now give a second formula for N (�). The following theorem
is proved in [11].

Theorem 2. If UL(c; �) and UR(c; �) are nonsingular; then

N (�) = NL(c; �) + NR(c; �) + �(WL(c; �)−WR(c; �)): (2.18)

There is a more general formula:

N (�) = NL(c; �) + NR(c; �) + �(c; �): (2.19)

If detUL(c; �) 6= 0 6= detUR(c; �), Eq. (2.18) implies �(c; �)=�(WL(c; �)−WR(c; �)). More generally,

�(c; �) =
1
2�(Argdet�L(c; �) + Argdet�LR(c; �)− Argdet�R(c; �)); (2.20)

where the overbars indicate normalized angles:

Argdet�L(c; �) =
m∑
i=1

��
L

i ; Argdet�R(c; �) =
m∑
i=1

��
R

i ;

�Li = 2�nLi + ��
L

i ; �Ri =−2�nRi + ��
R

i ;

where nLi and n
R
i are nonnegative integers, and

06 ��
L

i ¡ 2�; 0¡ ��
R

i 6 2�:
Numerical methods for problems of order 4 and 6 are given in [13–15], using coe�cient approx-
imation. The coe�cient functions are approximated by piecewise-constant functions (equal to their
values at the centers of the mesh intervals). This gives an O(h2) approximation to the original
problem. It turns out that for orders 4 and 6, N (�) can be calculated exactly for the approximate
problems, using formulas (2.18)–(2.20). On each mesh interval, the approximate ODE has con-
stant coe�cients, and the exact solutions can be found. Nevertheless, it is still di�cult to calculate
the contribution N (xi−1; xi) of a mesh interval to NL(c; �) or NR(c; �). Fortunately, it turns out that
there is a simple relation between N (xi−1; xi) and the oscillation number N0(xi−1; xi) corresponding
to any other solution Z0(x)=(U T

0 (x); V
T
0 (x))

T of the approximate problem on [xi−1; xi]. For 4th-order
problems, N0(xi−1; xi) can be calculated for the solution Z0(x) satisfying Dirichlet conditions at xi:
U0(xi) = 0; V0(xi) = I . For 6th-order problems, a special solution Z0(x) is devised for each case,
depending on the number of real and purely imaginary roots of the characteristic equation. The case
with 6 purely imaginary roots is still too di�cult to calculate directly, and requires a homotopy
theorem to show that they all have the same behavior. In these problems, the integration of the ex-
tended Hamiltonian system (2.7) is stabilized by using Ricatti variables, and the error is controlled
by Richardson extrapolation.
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3. Non-self-adjoint problems

While our numerical methods for self-adjoint problems have all been based on the well-developed
oscillation theory for such problems, no such theory exists for non-self-adjoint problems. Numerical
methods for such problems have tended to be more ad-hoc: one typical approach is to adjoin to
the di�erential equation an additional equation d�=dx = 0 plus an additional boundary condition
determining the normalization and sign of the eigenfunction; this gives a boundary value problem
which can be solved with a boundary value code. Finite di�erence and �nite element methods
have also been used, but perhaps the most popular method involving the representation of the
eigenfunctions by a �nite basis set has been the Chebychev � method, which has been extensively
developed and used by many authors including Straughan and Walker [26].
Although there is no oscillation theory for non-self-adjoint problems there is nevertheless a rich

literature on the analytical aspects of these problems, including the classical works of Naimark
[22] and Gohberg and Krein [10]. Many non-self-adjoint operators which arise in applications (see,
e.g., all of the examples of Chandrasekhar [5]) are relatively compact perturbations of self-adjoint
operators and are therefore unlikely to exhibit the extreme ill-conditioning of eigenvalues observed
by Davies [6] and Trefethen [27]. Birkho� [3] was perhaps the �rst person to obtain the asymptotic
distribution of the eigenvalues for a general class of nth-order problems with this property, which we
term Birkho� regularity. For numerical methods based on shooting, Birkho� regularity has important
consequences: for example, it allows one to develop very e�cient methods for counting the number
of eigenvalues of a problem in a half-plane Re �¡s.

3.1. Asymptotics and Birkho� regularity

We consider a di�erential equation of even order n= 2m of the form

y(n) + pn−2(x)y(n−2) + · · ·+ p0(x)y = �y; x ∈ [0; 1]; (3.1)

in which the coe�cients pk are smooth, together with 2m evenly separated boundary conditions
normalized to the form

U0�(y) :=y
( j�)
(0) +

j�−1∑
i=0

�i�y(i)(0) = 0 (�= 1; 2; : : : ; m); (3.2)

U1�(y) :=y
(k�)
(1) +

k�−1∑
i=0

�i�y(i)(1) = 0 (�= 1; 2; : : : ; m): (3.3)

Here the integers j� and k� satisfy 2m − 1¿ j1¿j2¿ · · · ¿jm¿ 0 and 2m − 1¿ k1¿k2¿ · · ·
¿km¿ 0. We require asymptotic information about the behavior of the solutions of (3.1) for large
|�|. Put � = −�n in (3.1) and consider the sectors Sk = {� ∈ C | k�=n6 arg �6 (k + 1)�=n}; k =
0; 1; : : : ; 2n− 1. Let !1; : : : ; !n be the nth roots of unity.

Theorem 3 (Birkho� [2]). Suppose that the coe�cients in (3:1) are continuous in [0; 1]. Then in
each sector Sk the equation

y(n) + pn−2(x)y(n−2) + · · ·+ p0(x)y =−�ny (3.4)
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has n linearly independent solutions y1(x; �); : : : ; yn(x; �) which are analytic functions of � ∈ Sk for
all su�ciently large |�| and which have the asymptotic properties

yk = e�!kx(1 + O(1=�)); (3.5)

d jyk
dx j

= �je�!kx(!j
k +O(1=�)); j = 1; : : : ; n− 1: (3.6)

Now consider the sector S0, and suppose !1; : : : ; !n are ordered so that

Re (�!1)6Re (�!2)6 · · · 6Re (�!n); � ∈ S0: (3.7)

Let j1; : : : ; jm and k1; : : : ; km be the integers in (3.2) and (3.3) and consider∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

!j1
1 · · · !j1

m−1 !
j1
m !j1

m+1 0 · · · 0
...

...
...

...
...

...

!jm
1 · · · !jm

m−1 !
jm
m !jm

m+1 0 · · · 0
0 · · · 0 s!k1m

1
s !

k1
m+1 !

k1
m+2 · · · !k1n

...
...

...
...

...
...

0 · · · 0 s!kmm
1
s !

km
m+1 !

km
m+2 · · · !kmn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
�−1
s
− s�1; (3.8)

where

�−1 =

∣∣∣∣∣∣∣∣
!j1
1 · · · !j1

m

...
...

!jm
1 · · · !jm

m

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
!k1m+1 · · · !k1n
...

...

!kmm+1 · · · !kmn

∣∣∣∣∣∣∣∣
; �1 =

∣∣∣∣∣∣∣∣
!j1
1 · · · !j1

m−1 !
j1
m+1

...
...

!jm
1 · · · !jm

m−1 !
jm
m+1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
!k1m !

k1
m+2 · · · !k1n

...
...

!kmm !kmm+2 · · · !kmn

∣∣∣∣∣∣∣∣
: (3.9)

De�nition 4. The boundary conditions are Birkho� regular if �−1�1 6= 0.

Although we have stated this de�nition for the ordering (3.7) for � ∈ S0, it is easily seen that
the de�nition does not depend on the sector chosen. Moreover, the following result has been proved
recently in [16].

Theorem 5. For even order n=2m all evenly divided; separated; �-independent boundary conditions
(3:2) and (3:3) are Birkho� regular.

Birkho� regularity has two important consequences. Firstly, asymptotic expressions for the eigen-
values were proved by Birkho� [3] (see Theorem 6); secondly, an asymptotic expression can be
obtained for a certain analytic miss-distance function f(�) whose zeros are the eigenvalues (see
Section 3.2 below).

Theorem 6. For n = 2m; Eq. (3:1) with evenly separated �-independent boundary conditions has
precisely two sequences of eigenvalues �+k and �

−
k given for large k by

�±k = (−1)m(2k�)n[1− (−1)mm log �±=(k�i) + O(1=k2)];
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where �+ and �− are the distinct roots of the equation �1�2 = �−1 for the sector S0 and log is any
�xed branch of the natural logarithm.

3.2. The miss-distance function and the characteristic determinant

Eq. (3.1) can be transformed to a 1st-order equation in n variables by many methods. If the
coe�cients are su�ciently smooth then we can �rst write it in the form

y(n) + (qn−2(x)y(m−1))(m−1) + (qn−3(x)y(m−1))(m−2) + (qn−4(x)y(m−2))(m−2)

+ · · ·+ (q2(x)y′)′ + q1(x)y′ + q0(x)y = �y; x ∈ (0; 1): (3.10)

We then consider new variables de�ned by

uk = y(k−1); k = 1; : : : ; m; (3.11)

vk = (−1)k−1[y(n−k) + (qn−2y(m−1))(m−k−1) + (qn−3y(m−1))(m−k−2)

+ · · ·+ (q2k+2y(k+1))′ + q2k+1y(k+1) + q2ky(k)]; k = 1; : : : ; m: (3.12)

Let u= (u1; : : : ; um)T, v= (v1; : : : ; vm)T and z = (uT; vT)T. Eq. (3.1) becomes

Jz′ = S(x; �)z; (3.13)

where

J =

(
0 −I
I 0

)
; S(x; �) =

(
S11(x; �) S12

S21 S22

)
;

the m×m matrices S12, S21 and S22 being independent of x and �. Likewise the boundary conditions
(3.2) and (3.3) can be expressed in the form

A1u(0) + A2v(0) = 0= B1u(1) + B2v(1): (3.14)

Now let ZL = (U T
L ; V

T
L )

T and ZR = (U T
R ; V

T
R )

T be 2m × m solution matrices of (3.13) of full rank
m, such that each column of ZL satis�es the boundary condition at x = 0 and each column of ZR
satis�es the boundary condition at x = 1: in particular,

A1UL(0) + A2VL(0) = 0= B1UR(1) + B2VR(1): (3.15)

Fix c ∈ [0; 1]. Then � is an eigenvalue if and only if there exist nonzero vectors � and � such that
ZL(c; �)�= ZR(c; �)�; the corresponding eigenfunction z of (3.13) is then given by

z(x) = ZL(x; �)�; 06 x6 c; ZR(x; �)�; c6 x6 1:

The existence of � and � to satisfy ZL(c; �)�= ZR(c; �)� is equivalent to the condition

f(�) := det (ZL(c; �); ZR(c; �)) = 0: (3.16)

This equation de�nes our miss-distance function f(�).
The more commonly used miss distance is the characteristic determinant (see [22]) de�ned in

terms of the boundary operators U0� and U1�. Let y1(x; �); : : : ; y2m(x; �) be any 2m = n linearly
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independent solutions of (3.10) which are also analytic functions of � in some domain 
⊆C. Then
the characteristic determinant is

�(�) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U01(y1) U01(y2) · · · U01(yn)
...

...

U0m(y1) U0m(y2) · · · U0m(yn)
U11(y1) U11(y2) · · · U11(yn)
...

...

U1m(y1) U1m(y2) · · · U1m(yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

: (3.17)

It is known that for � ∈ 
, the zeros of �(�) are precisely the eigenvalues in 
; moreover Keldysh
has shown that the order of a zero �∗ of � is precisely the algebraic multiplicity 1 of �∗ as an eigen-
value [22]. Since so much is known about �(�) it is obviously important to know the relationship
between �(�) and f(�): the following result is proved in [16].

Theorem 7. Let u1i ; : : : ; umi; v1i ; : : : ; vmi be the quasiderivatives for the solution yi(x; �); for i =
1; : : : ; n. Let

Y12(x; �) =




u11 · · · u1n
...

...

um1 · · · umn
v11 · · · v1n
...

...

vm1 · · · vmn



; (3.18)

which is a fundamental matrix for (3:13). Let WL=Z∗
LZL and WR=Z∗

RZR ; which are Gram matrices
and nonsingular. Let

A=

(
A1 A2

U ∗
L (0) V

∗
L (0)

)
; B=

(
U ∗
R(1) V

∗
R (1)

B1 B2

)
: (3.19)

Then A and B are invertible and

f(�) = (−1)m detWL(0) detWR(1)
det A det B

�(�) det Y12(c; �)
det Y12(0; �) det Y12(1; �)

: (3.20)

Since f(�) is an entire function this result, combined with the known properties of �(�), imply that
the order of a point �∗ as a zero of f is the algebraic multiplicity of �∗ as an eigenvalue of the
problem. Moreover, by choosing for y1; : : : ; yn the n solutions whose asymptotics are described in

1 For non-self-adjoint problems the algebraic and geometric multiplicities of an eigenvalue may be di�erent. An eigen-
value �∗ of a general non-self-adjoint operator L has not only eigenfunctions, but additional associated functions which
are elements of the null-spaces of the operators (L− �∗)p, p= 1; 2; 3; : : : : The algebraic multiplicity is the dimension of
the sum of all these null spaces.



L. Greenberg, M. Marletta / Journal of Computational and Applied Mathematics 125 (2000) 367–383 377

Theorem 3, we can obtain the asymptotics for f(�) for large |�|. We shall see in the next section
how important this can be.

3.3. �-Integration

For self-adjoint problems all the eigenvalues are real, and there is a monotone increasing miss-
distance function which takes prescribed values at the eigenvalues. For non-self-adjoint problems
one has the harder problem of �nding the zeros of an entire function f(�) in the complex plane,
already addressed by many authors, e.g., [18,28]. An often used approach is based on the argument
principle: the number of zeros of f inside a closed contour � is (1=2�i)

∫
� f

′(�)=f(�) d�. The
integral is computed by splitting up � into a number of segments [zj; zj+1] such that for each j,
for z ∈ [zj; zj+1], wj(z) :=f(z)=f(zj) traces out a curve which lies entirely in the right half-plane
Re (wj)¿ 0. The integral is then equal to

∑
j log(f(zj+1)=f(zj)). In practice it is usually impossible

to verify the condition Re (wj(z))¿ 0 for all z ∈ [zj; zj+1], and so one replaces this by a heuristic
such as |argwj(zj)|¡ �=4, where arg is the branch of the argument taking values in (−�; �]. Various
strategies have been proposed for choosing the points zj.
Knowing the number of zeros of f in, say, a rectangle in C, one can set up a recursive bisec-

tion procedure to home in on individual zeros. For simple zeros it is usually possible, when the
rectangles become su�ciently small, to switch to a quasi-Newton method based on �nite di�erence
approximation of the derivative, and converge rapidly to the zero.
In applications related to linear stability analysis it is often important to know whether or not

any eigenvalues of a problem lie in a half-plane. From Theorem 3 there will be in�nitely many
eigenvalues in the half-plane (−1)m Re(�)¿ 0, so the question is: how many eigenvalues lie in
the half-plane (−1)m Re(�)¡ 0? Ideally one would like the answer to be given by the integral∫ +i∞
−i∞ f′(�)=f(�) d�, but for the function f de�ned by (3.16) this integral does not converge. To
circumvent this we use (3.20). The asymptotics of �(�) are known [22, p. 60], as are those of
the solutions y1; : : : ; yn, so the asymptotics of the terms det Y12(0; �); det Y12(1; �) and det Y12(c; �)
can also be computed, all in terms of analytic functions of �. One is then able to �nd a function
g(�) which is (a) analytic in the half-plane (−1)m Re (�)6 0, with no zeros there, (b) such that as
|�| → ∞ in this half-plane, f(�)=g(�)→ 1. De�ning a new miss-distance f̂ by f̂=f=g, the number
of eigenvalues in the half-plane (−1)m Re(�)¡ 0, counted according to algebraic multiplicity, is
given by

∫ +i∞
−i∞ f̂

′
(�)=f̂(�) d�.

3.4. x-Integration

Evaluating f(�) de�ned by (3.16) involves integrating the di�erential system in some form.
Because � may be large for evaluating some of the integrals mentioned at the end of Section 3.3,
one should perhaps reformulate the system in a more stable set of variables; ideally one should also
use a special numerical method capable of integrating the system for large |�| at a reasonable cost.
One method of achieving these ends is to use the compound matrix method, described in Drazin
and Reid [8, p. 311]. This involves using variables closely related to Riccati variables but satisfying
a linear system of ODEs instead of the usual nonlinear system. The linearity can be exploited by
using a special integrator for linear ODEs, e.g., a method [4,17] based on the Magnus series [19].
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Unfortunately the compound matrix method involves an ODE in binomial (2n; n) variables and
is therefore impractical for equations of order ¿ 6. However, many high-order problems actually
originated from systems of equations of order 2. (This is true of the Orr–Sommerfeld equation, for
example.) In terms of the matrices ZL = (U T

L ; V
T
L )

T and ZR = (U T
R ; V

T
R )

T, let U =UL (or UR) and let
V = VL (resp. VR); then these equations may be written as

− U ′′ + Q(x; �)U = 0; (3.21)

with V = U ′. Eq. (3.21) can be solved for each �xed � by replacing the m × m coe�cient matrix
Q(x; �) by a matrix Q̂(x; �) which is piecewise constant on mesh intervals (xj−1; xj], j=0; : : : ; N; x0=0,
xN =1. On each mesh interval one can solve this approximate equation ‘exactly’ (i.e., symbolically)
and hence obtain a symbolic expression for the Riccati variables associated with the system. Evalu-
ated in the correct way, this symbolic expression gives a stable way of �nding the Riccati variables
for the approximated system. This method has the disadvantage that the error is at best O(h2), where
h is a typical steplength; however it has the advantage that for a given mesh, the relative accuracy
of f(�) often does not deteriorate as |�| increases. The O(h2) can be improved to higher order by
Richardson extrapolation.

4. Numerical examples

We shall give two examples each of self-adjoint and non-self-adjoint problems. We begin with
the self-adjoint examples.

(1) Consider the so-called modi�ed harmonic oscillator, which consists of the equation

‘(y) =−y′′ + (x2 + x4)y = �y

on the interval (−∞;∞). No boundary conditions are needed because the problem is of limit-point
type: the requirement that the eigenfunctions be square integrable su�ces as a boundary condition.
We truncate this problem to the interval (−100; 100), and impose the boundary conditions y(−100)=
0=y(100). Now consider the square L=‘2 of the above operator on the interval (−100; 100). Thus
the fourth-order problem is

L(y) = y(iv) − 2((x2 + x4)y′)′ + (x8 + 2x6 + x4 − 12x − 2)y = �y;
with boundary conditions y(c) = y′′(c) = 0, for c =±100. The eigenvalues of L are the squares of
the eigenvalues of ‘. Clearly the coe�cients become quite large at the endpoints, so this problem
tests how well the code SLEUTH can cope with sti�ness.
(2) Self-adjoint fourth-order problems often arise in the study of vibration and buckling of beams.

For example, Roseau [25, p. 141] analyzes vibrations in a turbine blade. By looking for normal modes
of transverse vibration in the associated wave equation, he obtains the eigenproblem consisting of
the di�erential equation

(EIy′′)′′ − ((F − !2I�)y′)′ − !2�y = 0; 0¡x¡‘;

subject to the boundary conditions

y(0) = y′(0) = 0; EIy′′(‘) = (EIy′′)′(‘)− (F − !2I�)y(‘) = 0:
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Table 1
Eigenvalues found by SLEUTH at TOL= 10−6

Problem Eigenvalue Eigenvalue Code relative “True” relative CPU Number of
number index approximation error estimate error (secs) extrapolations,

number of
mesh points

0 1.9386467 1E− 6 2E− 6 8.4 4,320
1 9 2205.7105 5E− 8 9E− 6 12.7 5,176

99 1044329.235 9E− 9 1E− 9 113.7 3,504

0 1.8115460 ∗ ∗ ∗ 2E− 7 ∗ ∗ ∗ 2,320
2 1 5.9067512 ∗ ∗ ∗ 3E− 8 ∗ ∗ ∗ 3,640

2 10.8786209 ∗ ∗ ∗ 2E− 9 ∗ ∗ ∗ 5,2560

Here ! is the vibrational frequency; y is the displacement perpendicular to the blade; E is the
Young’s modulus; I is the moment of inertia of a cross-section of the blade; � is the linear density
of the blade; and F is the (variable) centrifugal force:

F(x) = 
2
∫ ‘

x
�A(s)(r + s) ds;

where 
 is the angular velocity, A(·) is the cross-sectional area of the blade, and r is the radius of
the turbine.
We took E = I = A(x) = 
 = ‘ = 1 and r = 2=3. With the cross-sectional area constant we

chose �(x) = x, corresponding to a blade made of a material of nonuniform density. Then F(x) =
(1=3)(2 + 2x + x2)(1 − x). We converted the problem to a standard eigenproblem by introducing a
new eigenparameter �:

y(iv) − (((1=3)(2 + 2x + x2)(1− x)− !2x)y′)′ − !2xy = �y; 0¡x¡ 1;

the boundary conditions are actually just Dirichlet conditions u1 = u2 = 0 at x = 0 and Neumann
conditions v1 = v2 = 0 at x=1 (see (2.3) for de�nitions of u1; u2; v1 and v2). For each value !¿ 0
this problem has an in�nite sequence of �-eigenvalues

�0(!)6 �1(!)6 �2(!)6 · · · :
The results in Greenberg [12] imply that �k(!) is a strictly decreasing function of !; the kth
eigenvalue !k of the original nonlinear problem is de�ned by �k(!k)=0. Using a simple root�nding
process, we determined !0; !1 and !2.
The results are shown in Table 1. (We do not quote CPU times for Problem 2 as these depend

very strongly on the root�nding method used and the quality of the initial approximation.)
The two non-self-adjoint problems we shall consider both involve the Orr–Sommerfeld equation

for plane laminar ow:

(−D2 + �2)2y + i�R(U (x)(−D2 + �2)y + U ′′(x)y) = �(−D2 + �2)y; (4.1)

where D= d=dx, and U (x) is a ow pro�le whose stability is in question. The parameters � and R
are the wave number and Reynolds number, respectively.
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Fig. 1. Marginal curve for plane Poiseuille ow

(3) In this �rst example, we sketch the marginal curve for the Poiseuille pro�le: U (x)=1− x2 on
the interval [− 1; 1], with Dirichlet boundary conditions y(c)=y′(c)=0 for c=±1. (By symmetry,
this reduces to the equivalent problem on [0; 1], with boundary conditions y′(0) = y′′′(0) = 0 and
Dirichlet conditions at x = 1.) If for some (R; �), the problem has an eigenvalue � with Re(�)¡ 0,
then the ow is unstable under a perturbation with wave number � and Reynolds number R. If all
eigenvalues have Re(�)¿ 0, then the perturbed ow is stable. The pair (R; �) is marginal if all
eigenvalues satisfy Re(�)¿ 0 and there is at least one eigenvalue with Re(�) = 0. The minimum R
on the marginal curve is the critical Reynolds number. This value Rcrit has the property that any pair
(R; �) is stable if R¡Rcrit. Using the code SLNSA [16], a nonlinear solver and a path-following
procedure, we sketched the marginal curve for plane Poiseuille ow (see Fig. 1). We used only 100
meshpoints, yet found the critical Reynolds number Rcrit = 5771:8, which compares well with the
result of Orszag [23] of Rcrit = 5772:2.
(4) Gheorghiu and Pop [9] considered the Orr–Sommerfeld equation for a liquid �lm owing

over an inclined plane, with a surface tension gradient. In Eq. (4.1) they replace � by �R� on the
right-hand side, a rescaling which does not change the stability criteria. The problem then consists
of the di�erential equation on the interval [0; 1] and the following �-dependent boundary conditions:

(−i�− U (0))(y′′(0) + �2y(0)) + U ′′(0)y(0) = 0;

U ′′(0)y′′′(0) + i�{R(−i�− U (0)) + 3i�}U ′′(0)y′(0)

−i�{2cot � + �2Ca + (−i�− U (0))RU ′(0)}{y′′(0) + �2y(0)}= 0;

y(1) = 0; y′(1) = 0:

Using the ow pro�le

U (x) = (1− x)(1 + x + �);
Gheorghiu and Pop calculate the critical Reynolds number for � = ±1:75 and cot � = 1:19175. We
took Ca = 1 (as the results seem independent of Ca). For this problem, Rcrit is obtained as the
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Table 2
Leftmost eigenvalue for Problem (4)

� R � Magnus � Vector SL �

40 meshpoints (20=40 extrap. for Vector SL)
10−2 0.7947 1.75 (5:7× 10−7, 3.754980) (5:7× 10−7, 3.754980)
10−2 0.7949 1.75 (−1:4× 10−6, 3.754980) (5:7× 10−7, 3.754980)
80 meshpoints (40=80 extrap. for Vector SL)
10−2 0.7947 1.75 (5:7× 10−7, 3.754980) (5:7× 10−7, 3.754980)
10−2 0.7949 1.75 (−1:4× 10−6, 3.754980) (5:7× 10−7, 3.754980)
40 meshpoints (20=40 extrap. for Vector SL)
10−4 0.7945 1.75 (1:2× 10−11, 3.750000) (1:4× 10−8, 3.750000)
10−4 0.7946 1.75 (−1:0× 10−8, 3.750000) (−3:2× 10−9, 3.750000)
80 meshpoints (40=80 extrap. for Vector SL)
10−4 0.7944 1.75 (8:6× 10−9, 3.750000)
10−4 0.7945 1.75 (1:6× 10−11, 3.750000) (−1:0× 10−8, 3.750000)
10−4 0.7946 1.75 (−1:0× 10−8, 3.750000)
40 meshpoints (20=40 extrap. for Vector SL)
10−2 11.9300 −1:75 (2:8× 10−6, 0.249792) (2:8× 10−6, 0.249792)
10−2 11.9400 −1:75 (−3:8× 10−6, 0.249792) (−3:8× 10−6, 0.249792)
80 meshpoints (40=80 extrap. for Vector SL)
10−2 11.9300 −1:75 (2:8× 10−6, 0.249792) (2:8× 10−6, 0.249792)
10−2 11.9400 −1:75 (−3:8× 10−6, 0.249792) (−3:8× 10−6, 0.249792)
40 meshpoints (20=40 extrap. for Vector SL)
10−4 11.9173 −1:75 (2:4× 10−8, 0.250000)
10−4 11.9174 −1:75 (6:6× 10−10, 0.250000) (−2:0× 10−8, 0.250000)
10−4 11.9175 −1:75 (−3:9× 10−12, 0.250000)
80 meshpoints (40=80 extrap. for Vector SL)
10−4 11.9174 −1:75 (6:6× 10−10, 0.250000)
10−4 11.9175 −1:75 (−2:9× 10−13, 0.250000) (5:3× 10−9, 0.250000)
10−4 11.9176 −1:75 (−8:3× 10−9, 0.250000)

limiting case as �↘0. In Table 2 we show the left-most eigenvalue in the complex plane for various
values of R and �, and for the two di�erent values of �. We compare the Magnus method with the
coe�cient approximation vector Sturm–Liouville method. The values of R are chosen close to the
stability=instability boundary predicted by Gheorgiu and Pop for the case �↘0, which are R=0:7945
in the case �=1:75 and R=11:9175 in the case �=−1:75. Both methods show the sign of the real
part of the left-most eigenvalue changing at values of the Reynolds number close to these predicted
values, for small �, even though the number of meshpoints used is very modest. It is particularly
interesting to note the exceptional accuracy of both methods when �=10−2: they agree to all digits
quoted, even using just 40 mesh intervals.
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5. Conclusions

We have discussed some numerical methods for self-adjoint and non-self-adjoint Sturm–Liouville
problems. We have concentrated on our own work because of space limitations, and we apologize
to the many authors whose important contributions have not been included. The methods discussed
here for self-adjoint problems not only approximate the eigenvalues and eigenvectors, but by ap-
proximating the counting function N (�), they also �nd the eigenvalue index (and in fact can aim for
an eigenvalue with given index). For high eigenvalues, the ODE methods discussed here are usually
more accurate and less costly than Galerkin or �nite di�erence methods.
For self-adjoint problems of orders 4 and 6, coe�cient approximation together with the W -matrix

method (as discussed in [13–15]) is the cheapest method we know with high accuracy. Self-adjoint
problems of order greater than 6 require �-matrices, and solution of the equation �′ = i�
. Two
methods for this are Marletta’s method [21] using the Magnus series (which keeps � unitary) and
the method of Dieci et al. [7] (which projects to unitary matrices). The computational costs of
these methods seem to be remarkably similar (see [21] for a comparison). These methods can be
quite expensive for high-order problems; and �nding new, accurate methods with lower cost is an
important and challenging problem.
For non-self-adjoint problems we have discussed the methods given in [16], using the argument

principle. The code described in [16] can �nd the eigenvalues in a rectangle, left half-plane, or
vertical strip. It can �nd the kth eigenvalue as ordered by the real part. The x-integration is carried
out using compound matrices (which can be quite expensive) or, when possible, by transformation to
a 2nd-order vector Sturm–Liouville problem (which is considerably cheaper). Some further problems
and future directions are:

• methods for singular problems, including the approximation of essential spectra,
• analysis and codes for systems of mixed order (or block operators), and the associated problems
with rational coe�cients,
• applications of the various codes discussed here to physical problems, especially in hydrodynamics
and magnetohydrodynamics.
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Abstract

There is considerable interest in determining the existence of eigenvalues of the Sturm–Liouville problem

−(py′)′ + qy = �wy;
where the independent variable x ∈ [0;∞) and p; q and w are real-valued functions, and � is the spectral parameter. In
general, an analytic attack on this problem is quite di�cult and usually requires the use of the variational principal together
with choice of suitable test functions. We show how results from functional analysis together with interval analysis and
interval arithmetic can be used, not only to determine the existence of such eigenvalues, but also to compute provably
correct bounds on their values. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

This paper is a follow up of [7]. In [7] the authors presented a new method for proving the
existence of an eigenvalue below the essential spectrum of Sturm–Liouville problems de�ned by

− y′′ + qy = �y; on J = [0;∞); y(0) = 0; (1)

where q is a real L1(0;∞) perturbation 1 of a real-valued periodic function p on J . This method
combines operator theory and “standard” numerical analysis with interval analysis and interval
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1 In this paper ‘function g is an X perturbation of function f’ means that g=f+�f where �f is a function of kind

X : that is, ‘perturbation’ means the result g, not the perturbing function �f.
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arithmetic, and is illustrated by showing that there is at least one eigenvalue for (1) with

q(x) = sin
(
x +

1
1 + x2

)
(2)

which lies below the essential spectrum.
In this paper we extend and develop further the notions in [7] to cover additional classes of

problems. In Section 2 we introduce the relevant notation and review the approach taken in [7]. In
Section 3 we show how some of the restrictions required by the approach in [7] may be removed
enabling us to prove the existence of several eigenvalues below the essential spectrum of (1). For
completeness, we include in Section 3 a short review of the interval analytic background that is
relevant to our work. Section 4 contains examples, some of which are of physical interest, which
illustrate our method.

2. Mathematical formulation of the method

Of particular interest are the two cases (i) q ∈ L1(0;∞) or (ii) q=p+ q̂ where q̂ is in L1(0;∞)
and p is a periodic function with fundamental periodic interval [a; b]. We remark that if p is a
constant then this case is covered by (i). It is well known that in both cases q is in the limit-point
case at in�nity and that therefore (1) determines a unique self-adjoint operator S in L2[0;∞) with
domain

{y ∈ L2(0;∞):y; y′ ∈ ACloc[0;∞); −y′′ + qy ∈ L2(0;∞); y(0) = 0}:
ACloc being the set of functions that are locally absolutely continuous. For both cases (i) and (ii),
the potential q ensures that S has an essential spectrum �e(q), bounded below and unbounded above.
Indeed in case (i), �e(q) occupies the nonnegative real axis, while for case (ii), it is known that
�e(q)=�e(p) and �e(q) lies in bands, bounded below and extending to in�nity. We denote by �(q)
the spectrum of S and write

�0(q) = inf �e(q): (3)

In order to describe our approach to proving the existence of eigenvalues �n below the essential
spectrum of the operator S we introduce the following notation. Denote by �Nj ([a; b]; q), �

D
j ([a; b]; q),

�Pj ([a; b]; q), (06j6k − 1) the �rst k Neumann, Dirichlet and periodic eigenvalues, respectively, of
the regular Sturm–Liouville problems (SLP) consisting of the left-hand side of (1) together with
either Neumann y′(a) = 0 = y′(b), Dirichlet y(a) = 0 = y(b) or periodic y(a) = y(b); y′(a) = y′(b)
boundary conditions.
The well-known inequality

�N0 ([a; b]; q)6�
P
0([a; b]; q)¡�D0 ([a; b]; q)¡�P1([a; b]; q) (4)

may be found in [11, Theorem 13:10, pp. 209–212].
Our proof of the existence of eigenvalues below the essential spectrum depends on the following:

Theorem 2.1 (Bailey et al. [2]). If

�Dj ([0; b]; q)¡�0(q) (5)

for some b; 0¡b¡∞, and some j ∈ {0; 1; 2; : : :}; then S has at least j + 1 eigenvalues ¡�0(q).
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Proof. (see Bailey et al. [2]). (We remark that this result could also be obtained from the min–max
characterization of eigenvalues.)
Our approach to proving the existence of j eigenvalues below �0(q) is �rst to compute a veri�ed

lower bound l for �0(q) and a veri�ed upper bound u for �Dj ([0; b]; q) for some b and some j such
that

u¡l:

We recall that �Dj ([0; b]; q) is a decreasing function of b and, by [2], �
D
j ([0; b]; q) → �j ¡�0(q)

implies that �j ∈ �(q).
In [7] we dealt with the case when q is an L1(0;∞) perturbation of a periodic potential p. Here

it follows that �e(p)=�e(q) and further from the Floquet theory [8,11] that inf �e(p)= �P0([a; b]; q).
Thus, it follows from (4) that we can take l = �N0 ([a; b]; q). We remark that when q ∈ L1(0;∞),
�0(q) = 0 we can take l= 0.
In [7] we illustrated the above method by taking q(x) = sin(x + 1=(1 + x2)). This is an L1(0;∞)

perturbation of sin(x) and since the essential spectrum is invariant under a unitary map �e(sin) =
�e(cos). It follows then that we can take l= �N0 ([0; 2�]; cos). We remark that for this problem, since
cos is an even function, �N0 ([0; 2�]; cos) = �P0([0; 2�]; cos) giving in this example the optimal value
for l. However, we cannot hope for this to occur in more general examples.
In this paper we turn to wider considerations and address the problem of computing upper bounds

for several eigenvalues below �e(q) both when q ∈ L1(0;∞) and when q is an L1(0;∞) perturbation
of a periodic potential p. It is clear that in both of these classes of examples the method that we
have outlined above has two principal components to proving the existence of �j ¡�e(q); j¿0, viz:

(1) �nding a lower bound l for �e(q);
(2) �nding an upper bound u for �j satisfying u¡l.

We discuss a new method to achieve this in the next subsection.
We remark that once a lower bound for �0(p) is known upper bounds for eigenvalues below the

essential spectrum can be obtained from the min–max characterization. However, this requires use
of test functions which have to be constructed for each problem. By using SLEIGN2 our method
does not require the construction of test functions, in e�ect these are constructed automatically by
SLEIGN2. Further, while this paper is restricted to obtaining upper bounds for eigenvalues below
�0, the methods of [6], under appropriate smoothness conditions on q allow enclosures for these
eigenvalues to be determined.

2.1. A new algorithm to prove the existence of eigenvalues below �0

Upper bounds for eigenvalues of S may be obtained from the BEWZ approximation [2]. This
shows that for operators S with exactly k eigenvalues below �0(q)

�Dj ([0; X ]; q)→ �j([0;∞]; q); (06j6k − 1)
�Dj ([0; X ]; q)→ �0(q) (k6j)

as X →∞, the convergence being from above.
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As we remarked above when q ∈ L1(0;∞) we have �0(q) = 0 and so in this case the problem
of determining a lower bound for the number of eigenvalues below the essential spectrum is to �nd
an integer j such that for some X ¿ 0,

�Dj ([0; X ]; q)¡0:

When q is an L1(0;∞) perturbation of p, our previous method used �N0 ([a; b]; p) as a lower bound
for �0(q). This has the disadvantage that eigenvalues �j([0;∞]; q) with

�N0 ([a; b]; p)6�j([0;∞]; q)¡�0(q)

fail to be detected. In this paper we use a lower bound for �0(q) which is better than �N0 ([a; b]; p)
and thus are able to �nd eigenvalues of S above �N0 ([a; b]; p).
We �rst introduce some notation. Assume q is an L1(a;∞) perturbation of a periodic function p

with fundamental periodic interval [a; b]. Let �1(x; �) be the solution of

−y′′ + qy = �y

on [a; b] determined by the initial conditions y(a) = 0; y′(a) = 1 and let �2(x; �) be the solution
determined by y(a) = 1; y′(a) = 0. Then de�ning

D(�) = �′
1(b; �) + �2(b; �); (6)

where the di�erentiation is with respect to x it follows that the periodic eigenvalues �Pn([a; b]; p) are
the roots of the equation

D(�) = 2: (7)

Our method of obtaining an interval enclosure for �0(q), is to obtain an enclosure [�] i.e. an interval
of the real line which contains �, for the solution � of (7) such that

[�]6 [�D0 ([a; b]; p)]: (8)

Any veri�ed computation of the above inequality, in view of (4), will exclude all the higher periodic
eigenvalues. Our algorithm for establishing (8) is to �rst use SLEIGN2, a “standard numerical
analysis” Sturm–Liouville eigenvalue solver to obtain numerical estimates for both �N0 ([a; b]; p) and
�D0 ([a; b]; p). We then use the algorithm and code reported on in [6] to obtain enclosures of the
true eigenvalues. Next, SLEIGN2 is used to �nd both a numerical approximation of �P0([a; b]; p) and
some � determined by the error tolerance returned by SLEIGN2. Again the methods of [6] are used
to verify that the interval [�P0([a; b]; p)− �; �P0([a; b]; p) + �] contains the approximation �̂P0([a; b]; p)
of �P0([a; b]; p). This is achieved by computing enclosures for both of

D(�̂P0([a; b]; p)± �)− 2:
Provided these enclosures are of di�erent sign, since D(�) is continuous, this establishes the result.
Higher eigenvalues �j are found similarly. By sign [J ] for some interval J of the real line, we mean
the sign of any member of the interval J . This is de�ned only when all members of J have the
same sign.

3. The numerical method

In this section we give a brief overview of the concepts of interval arithmetic that are needed
in this work together with both a short account of Lohner’s AWA algorithm and an algorithm to
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enclose eigenvalues. A fuller discussion of these relevant concepts may be found in [7]. An in-depth
discussion of interval computation, can be found in [1], Lohner’s AWA algorithm is discussed in
[5,9] and the enclosure algorithm for eigenvalues can be found in [6].
All computer realisations of algorithms consist of �nitely many instances of the four basic oper-

ations of arithmetic. When these are applied to real numbers, modeled in a �nite number of bits,
rounding errors can occur. Interval arithmetic seeks to provide safe upper and lower bounds on a
calculation which take these into account. A simple-minded implementation of this concept would
lead to an explosion in the interval width and many sophisticated techniques are available to control
this problem [1].
Most algorithms involve other approximation errors which must also contribute to the �nal enclo-

sure. An example of this is the numerical solution of an initial value problem (IVP)

u′ = f(x; u); u(0) = u0; (9)

where f : [0;∞) × Rn → Rn is su�ciently smooth. In addition, we shall assume that a solution is
known at x = x0. The approach developed by Lohner to enclose the solution of the IVP uses the
Taylor method to determine the solution at x0 + h from its known value at x0, viz.

u(x0 + h) = u(x0) + h�(x0; h) + zx0+h; (10)

where u(x0) + h�(x0; h) is the (r − 1)th degree Taylor polynomial of u expanded about x0 and zx0+h
is the associated local error. The error term is not known exactly since the standard formula gives,
for some unknown �,

zx0+h = u
(r)(�)hr=r!; � ∈ [x0; x0 + h]: (11)

Lohner’s algorithm uses Banach’s �xed-point theorem to compute in interval arithmetic a bound for
this error term. We refer the reader to [5,9] for a complete discussion of the method.
The enclosures for the eigenvalues that we need are computed using the methods reported on in

[6]. Briey, Eq. (1) and boundary conditions

a1y(a) + a2y′(a) = 0 and b1y(b) + b2y′(b) = 0

for real a and b with b¿a together with Pr�ufer transformation

y = � sin �; y′ = � cos � (12)

yields

d�
dx
= (�− q(x)) sin2 �+ cos2 � (13)

with initial condition �(0; �)= �(0)= � ∈ [0; �) where tan �= a2=a1, (a1 6= 0) and �=�=2 otherwise.
Standard results in the spectral theory of SLP allow us to classify the nth eigenvalue of the SLP,
starting counting at n= 0, with the stated separated boundary conditions as that unique � which is
such that Eq. (13) has a solution � with

�(0; �) = �; �(b; �) = � + n�; � ∈ (0; �];
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where tan � = b2=b1, (b1 6= 0) and � = �=2 otherwise. However, it is numerically more convenient
to work with a pair of initial value problems for �L and �R de�ned by (13). The solutions �L(x; �)
and �R(x; �) satisfy the initial conditions (14) and (15), respectively,

�L(0) = �; (14)

�R(b) = � + n�: (15)

We next choose a point c, with 0¡c¡b and de�ne the miss-match distance

D(�) ≡ �L(c; �)− �R(c; �): (16)

The nth eigenvalue is the unique value �n with D(�n) = 0. By continuity we have for �1¡�2 that
if sign[D(�1)] =−sign[D(�2)] then �n ∈ [�1; �2].
Our algorithm for enclosing the nth eigenvalue �n proceeds as follows:

(1) Obtain an estimate, �̂n, for �n with a “standard” numerical Sturm–Liouville solver together
with an error estimate � (we use SLEIGN2 for this);

(2) Form the quantities

�1 = �̂n − �; �2 = �̂n + �:

(3) Use the AWA algorithm to compute enclosures for

D(�1); D(�2):

(4) If (the interval) sign[D(�1)] = −sign[D(�2)] then �n ∈ [�1; �2] otherwise increase � and re-
compute D(�j), j = 1; 2.

4. Numerical examples

In this section we show how the theory and algorithms that we have developed in this paper
may be applied to prove results above eigenvalues below the essential spectrum of a number of
Sturm–Liouville problems.

4.1. q ∈ L1(0;∞)

We commence by proving the existence of several eigenvalues below the essential spectrum for
a number of problems with q ∈ L1(0;∞).

4.1.1. q(x) =−c exp(−x=4) cos(x)
Here we take q(x) = −c exp(−x=4) cos(x) where c is some positive constant. This example has

been discussed by Brown et al. [3] in relation to problems of spectral concentration. Since �0(q)=0
we take l=0 and obtain a lower bound on the number of negative eigenvalues. In Table 1 above we
give for di�erent values of c the largest eigenvalue together with its index, that we have been able
to approximate using SLEIGN2. We also give the safe upper bound for it obtained by our method.
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Table 1
Eigenvalues below the essential spectrum for q(x) =−c exp(−x=4) cos(x)

c Eigenvalue index Eigenvalue approximation Upper bound

26 4 −0:453059 −0:45305
19 3 −0:098782 −0:0987
16 2 −0:181076 −0:181
5 1 −0:215400 −0:216
4 0 −0:264342 −0:264
1.31 0 −0:000451 −0:000451

Table 2
Eigenvalues below essential spectrum for q(x) =−c exp(−x2)

c Eigenvalue Eigenvalue Upper bound
index approximation

50 2 −0:232229 −0:232
40 1 −6:214214 −6:213
20 1 −0:122240 −0:122
10 0 −2:543410 −2:541
2.85 0 −0:000375 −0:00038

4.1.2. q(x) =−c exp(−x2)
For c = 1 this example has been discussed in connection with resonances by Siedentop [10] and

Brown et al. [4]. Again �0(q) = 0 = l and we �nd a lower bound for the number of negative
eigenvalues. The results are contained in Table 2 above.

4.2. Periodic potentials

The examples given here illustrate the power of the methods of this paper to establish the existence
of eigenvalues below �0(p) which we could not reach in [7].

4.2.1. q(x) = c sin(x + 1=(1 + x2))
The lowest point of the essential spectrum is �0=�P0([0; 2�]; c sin(x)). In Table 3 we give enclosures

for �N0 ([0; 2�]; c sin), �P0([0; 2�]; c sin) and �D0 ([0; 2�]; c sin) for a selection of di�ering values of c
while in Table 4 we give numerical estimates, obtained from SLEIGN2, together with the highest
eigenvalue index that we are able to determine and enclosures for the eigenvalues. Thus, we see
that when c = 8 there are at least 3 eigenvalues below �0. We remark that since

[�D2 ([0; 20]; 8 sin(x + 1=(1 + x
2)))]¿ [�N0 ([0; 2�]; 8 sin(x))]

(see Tables 3 and 4) this result could not have been obtained using the methods of [7].
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Table 3
Neumann, periodic and Dirichlet eigenvalues of q(x) = c sin(x)

c Eigenvalue Approximation Enclosure

1 �N0 ([0; 2�]; sin) −0:53370249 [− 0:5337023]
�P0([0; 2�]; sin) −0:378489 [− 0:37848990]
�D0 ([0; 2�]; sin) −0:18339010 [− 0:18338990]

2 �N0 ([0; 2�]; sin) −1:23567617 [− 1:2356767]
�P0([0; 2�]; sin) −1:0701309 [− 1:070123]
�D0 ([0; 2�]; sin) −0:92090643 [− 0:9209034]

4 �N0 ([0; 2�]; sin) −2:77020288 [− 2:7702023]
�P0([0; 2�]; sin) −2:6516838 [− 2:65168205]
�D0 ([0; 2�]; sin) −2:55827832 [− 2:5582768]

6 �N0 ([0; 2�]; sin) −4:41135359 [− 4:4113534]
�P0([0; 2�]; sin) −4:3330181 [− 4:33301656]
�D0 ([0; 2�]; sin) −4:27201653 [− 4:2720167]

8 �N0 ([0; 2�]; sin) −6:11676788 [− 6:1167678]
�P0([0; 2�]; sin) −6:06466963 [− 6:064669867]
�D0 ([0; 2�]; sin) −6:02358961 [− 6:02358990]

Table 4
Eigenvalues for the perturbed problem q(x) = c sin(x + 1=(1 + x2))

c �0 Eigenvlaue Eigenvalue Enclosure �D2 ([0; 20]; q)
index

1 [− 0:37848990] 2 −0:34114653 [− 0:3411467]
2 [− 1:070123] 2 −1:06208432 [− 1:062089]
4 [− 2:65168205] 2 −2:65129447 [− 2:65134]
6 [− 4:33301656] 2 −4:33348751 [− 4:3335487]
8 [− 6:064669867] 2 −6:06536102 [− 6:0653601]
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Abstract

The paper presents a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular
integral equations, in particular the stability of operator sequences associated with di�erent projection methods. The aim
of the paper is to show the main ideas and approaches, such as the concept of transforming the question of the stability of
an operator sequence into an invertibility problem in a certain Banach algebra or the concept of certain scales of weighted
Besov spaces to prove convergence rates of the sequence of the approximate solutions. Moreover, computational aspects,
in particular the construction of fast algorithms, are discussed. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The present paper is mainly devoted to the numerical solution of Cauchy singular integral equations
(CSIEs) of the form

a(t)u(t) +
1
�i

∫
�

[
b(t)
s− t

+ h(s; t)
]
u(s) ds= f(t); t ∈ �; (1.1)

where a; b; f :� → C and h :� × � → C are given functions and u :� → C is sought. Concerning
the integration curve � we will restrict ourselves to the unit circle � = T = {t ∈ C: |t| = 1} (the
periodic case) and the interval �= (−1; 1) (the nonperiodic case). To be able to write Eq. (1.1) in
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short form, we de�ne the multiplication operator aI , the Cauchy singular integral operator (CSIO)
S�, and the integral operator H� by

u 7→ au; u 7→ 1
�i

∫
�

u(s)
s− · ds and u 7→ 1

�i

∫
�
h(s; ·)u(s) ds;

respectively. In case of � = (−1; 1) we will shortly write S and H instead of S(−1;1) and H(−1;1),
respectively. The operator equations and the approximate methods under consideration here can
be described in the following way. Let H1, H2 be Hilbert spaces and Pj

n : Hj → Hj, j = 1; 2,
n=1; 2; : : : , be two sequences of self-adjoint projections converging strongly to the identity operator.
By L(H1;H2) denote the Banach space of all linear and bounded operators from H1 into H2.
In the case of H1 =H2 =:H we will shortly write L(H) instead of L(H;H). For given A ∈
L(H1;H2), f ∈H2, and An ∈L(im P1n ; im P2n ), n= 1; 2; : : : ; consider the operator equation

Au= f; u ∈H1; (1.2)

together with the approximate equations

Anun = fn; un ∈ im P1n ; (1.3)

where fn ∈ im P2n is some approximation of f.
Our main concern is the so-called stability of the sequence {An} = {An}∞n=1, which means by

de�nition that there exists an n0 such that An: im P1n → im P2n is invertible for all n¿ n0 and that
the inverses A−1

n are uniformly bounded, i.e.

sup
{‖A−1

n P2n ‖H2→H1 : n¿ n0
}
¡ ∞:

If the sequence {An} is stable and if u∗ is a solution of (1.2) and u∗n are the solutions of (1.3), then
the estimation

‖P1n u∗ − u∗n‖H16 ‖A−1
n P2n ‖H2→H1‖AnP1n u

∗ − fn‖H2

shows that u∗n converges to u∗ in the norm of H1 if AnP1n → A (strong convergence) and fn → f
(in H2).
In the present paper two general approaches for investigating the stability of operator sequences

are considered. The �rst one is a C∗-algebra approach and is restricted to the case H1 =H2 =:H
and will be introduced to study Galerkin (�nite section) and collocation methods in both the periodic
and the nonperiodic case. The second approach uses a decomposition of the operator A=B+T into a
so-called dominant part B and a compact perturbation T together with the respective approximating
operators Bn and Tn. The main tool is that B and Bn are chosen in such a way that Bnun=Bun for all
un ∈ im P1n . This second approach we will demonstrate in the nonperiodic case, but we should remark
that, in various concrete situations the application of the �rst approach desires for considerations
which are due to the second approach (for example, the investigation of local representatives, when
local principles are applied).
We want to point out that, with the aim of limiting the bibliography, in general we will not refer

to the original papers, but if possible, to textbooks or monographs, where the interested reader can
also �nd the original references.



P. Junghanns, B. Silbermann / Journal of Computational and Applied Mathematics 125 (2000) 395–421 397

2. The periodic case

2.1. Finite section and collocation methods

LetH1=H2=H :=L2(T) be the Hilbert space of all square integrable (complex valued) functions
on the unit circle T equipped with the inner product

〈u; v〉T := 1
2�

∫ 2�

0
u(eis)v(eis) ds:

It is well known that {en}∞n=−∞ with en(t) = tn forms a complete orthonormal system in L2(T).
Thus, we use the orthoprojections P1n = P2n = PTn de�ned by PTn u=

∑n
k=−n〈u; ek〉Tek and look for an

approximate solution un of the equation

Au := au+ bSTu+ HTu= f; (2.1)

in the form un =
∑n

k=−n �knek . We assume that a and b are piecewise continuous functions (i.e.
a; b ∈ PC (T)), which means that they have at each point of T one-sided limits and that (without
loss of generality) the left-sided limits coincide with the funtion values. The �nite section method
consists in �nding the unknowns �kn by solving

〈Aun; ek〉T = 〈f; ek〉T; k =−n; : : : ; n: (2.2)

As an example of a collocation method we consider

(Aun)(tLjn) = f(tLjn); j =−n; : : : ; n; (2.3)

where tLjn = e2�ij=(2n+1). Obviously, the �nite section method (2.2) can be written in the form (1.3)
with An = PTn APTn and fn = PTn f. By LTn we will refer to the interpolation operator

LTn a=
n∑

k=−n

�kek with �k =
1

2n+ 1

n∑
j=−n

a(tLjn)(t
L
jn)

−k ;

which has the property (LTn a)(t
L
jn)= a(tLjn), j= −n; : : : ; n. Then, the collocation method (2.3) can also

be written in the form (1.3), where An=LTn AP
T
n and fn=LTn f. To �nd necessary and su�cient con-

ditions for the stability of the sequences {PTn APTn } and {LTn APTn } we use the following algebraization
of the stability problem.

2.2. Algebraization

By F we denote the C∗-algebra of all sequences {An} of linear operators An : im PTn → im PTn ,
for which the strong limits

A= s− lim
n→∞ AnPTn ∈L(H) and A∗ = s− lim

n→∞ A∗
nP

T
n ;

exist. The norm in F is de�ned by ‖{An}‖F := sup{‖AnPn‖H→H: n = 1; 2; : : :} and the algebraic
operations by {An} + {Bn} := {An + Bn}, {An}{Bn} := {AnBn}, and {An}∗ := {A∗

n}. Let N be the
two-sided closed ideal of F consisting of all sequences {Cn} of operators Cn : im PTn → im PTn such
that limn→∞‖CnPTn ‖H→H = 0. Then, the stability of {An} ∈ F is equivalent to the invertibility of
the coset {An}+N ∈F=N (cf. [21, Proposition 7:5]). The task of �nding necessary and su�cient
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conditions for the invertibility of the coset {An} +N in the quotient algebra F=N is, in general,
too complicated, because of the algebra F is to large and the ideal N is too small. For this reason
we de�ne a further sequence {W T

n } of operators Wn :H→H by

W T
n u=

−1∑
k=−n

〈u; e−n−1−k〉Tek +
n∑

k=0

〈u; en−k〉Tek

and the C∗-subalgebra FW of F consisting of all sequences {An} ∈F, for which the strong limits

Ã= s− lim
n→∞ W T

n AnW T
n and Ã

∗
= s− lim

n→∞(W
T
n AnW T

n )
∗PTn ;

exist. Furthermore, by J we refer to the collection of all sequences {An} of the form
An = PTn K1PTn +W T

n K2W T
n + Cn with Kj ∈K(H); {Cn} ∈N;

where K(H)⊂L(H) denotes the ideal of all compact operators. Then, J is a two-sided closed
ideal of FW and the stability of a sequence {An} ∈ FW is equivalent to the invertibility of the
operators A; Ã :H→H and the coset {An}+J ∈FW =J (see [21, Proposition 7:6, Theorem 7:7]).
To prove the invertibility of the above-mentioned cosets one can apply local principles, for example

the local principles of Gohberg and Krupnik and of Allan and Douglas, which we will shortly describe
in the following. Let B be a unital Banach algebra. A subset M⊂B is called a localizing class, if
0 6∈M and if for any two elements a1; a2 ∈M there exists an a ∈M such that aja= aaj = a for
j = 1; 2. Two elements x; y ∈ B are called M-equivalent if

inf{‖(x − y)a‖B : a ∈M}= inf{‖a(x − y)‖B : a ∈M}= 0:
An element x ∈ B is said to be M-invertible if there exist zj ∈ B and aj ∈M, j = 1; 2, such that
z1xa1 = a1 and a2xz2 = a2. A system {M�}�∈I of localizing classes M� of B is called a covering
system if, for any set {a�}�∈I with a� ∈M�, one can choose a �nite number of elements a�1 ; : : : ; a�m

the sum of which is invertible in B.
Local principle of Gohberg and Krupnik (see [8, Theorem XII.1.1]). Let {M�}�∈I be a covering

system of localizing classes of the unital Banach algebra B. If x ∈ B commutes with all elements
of
⋃

�∈I M� and if x� ∈ B is M�-equivalent to x for all � ∈ I, then x is invertible in B if and only
if x� is M�-invertible for all � ∈ I.
Let B be a unital Banach algebra and Bc a closed subalgebra of the center of B containing the

identity element. For every maximal ideal x ∈ M (Bc), let Jx denote the smallest closed ideal of B
which contains x, i.e.

Jx = closB




m∑
j=1

ajcj : aj ∈ B; cj ∈ x; m= 1; 2; : : : ;


 :

Local principle of Allan and Douglas (comp. [9, Sections 1:4:4, 1:4:6]). An element a ∈ B is
invertible in B if and only if a+Jx is invertible in B=Jx for all x ∈ M (Bc). (In case Jx =B we
de�ne that a+Jx is invertible.)

2.3. Realization

In this section we describe how the local principles can be applied to investigate stability of the
�nite section and the collocation method presented in Section 2.1, and we formulate the main results.
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In the case of the �nite section method one can choose as a covering system of localizing classes
in the quotient algebra FW =J the system {M�}�∈T with

M� = {{PTn PTfPTPTn + PTn QTfQTPTn }+J: f ∈ m�};
where PT = 1

2(I + ST), QT = 1
2(I − ST), and m� denotes the collection of all continuous functions

f :T→ [0; 1] for which there exists a neighborhood Uf of � such that f(t) = 1 for all t ∈ Uf.

Theorem 2.1 (Pr�ossdorf and Silbermann [21, Theorem 7:14]). Let a; b ∈ PC (T); HT ∈K(L2(T));
and c± := a± b. Then the sequence {PTn (aI + bST + HT)PTn } is stable in L2(T) if and only if the
conditions

(a) the operators aI + bST + HT; c±PT + QT :L2(T)→ L2(T) are invertible;
(b) for all t ∈ T and for all � ∈ [0; 1];

c+(t + 0)
c+(t − 0) � +

c−(t + 0)
c−(t − 0) (1− �) 6∈ (−∞; 0]

are satis�ed.

In the case of the collocation method one can use the localizing classes

M� = {{LTn fPTn }+J :f ∈ m�}; � ∈ T;
which also form a covering system of localizing classes in FW =J.

Theorem 2.2 (Pr�ossdorf and Silbermann [21, Theorem 7:19]). Let a; b ∈ PC (T) and h : [−1; 1]2 →
C be continuous. Then the sequence {LTn (aI + bST + HT)PTn } is stable in L2(T) if and only if the
operator aI + bST + HT :L2(T)→ L2(T) is invertible.

Theorem 2.2 remains true if the interpolation operator LTn and the projection PTn are replaced by
MT

n and QT
n , respectively, where

MT
n b=

n∑
k=−n−1

�kek with �k =
1

2n+ 2

n∑
j=−n−1

b(tMjn )(t
M
jn )

−k ; tMjn = e
�ij=(n+1)

and

QT
n u=

n∑
k=−n−1

〈u; ek〉Tek :

Let us ask for stability conditions for sequences {An} belonging to the smallest closed subalgebra
A of F, which contains all sequences of the form {LTn (aI + bS)PTn } with a; b ∈ PC (T) as well as
all sequences belonging to J. We remark that the mappings W{LTn (aI + bS)PTn }= s− lim LTn (aI +
bS)PTn = aI + bS and W̃{LTn (aI + bS)PTn } = s − limW T

n LTn (aI + bS)W T
n = ãI + b̃S, ã(t) := a(t−1),

extend to ∗-homomorphisms W; W̃ :A → L(L2(T)). For the ideas of the proof of the following
result, which is essentially based on the application of the local principle of Allan and Douglas, we
refer to [23, Section 4].
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Theorem 2.3. A sequence {An} ∈A is stable if and only if the operators W{An}; W̃{An} :L2(T)→
L2(T) are invertible.

2.4. Convergence rates and corrected collocation methods

The scale of periodic Sobolev spaces H s(T), s ∈ R, de�ned, for example, as the completion of
C∞(T) w.r.t. the norm

‖u‖T; s =
( ∞∑

k=−∞
(1 + |k|)2s|〈u; ek〉T|2

)1=2
;

is a powerful tool to consider convergence rates of the approximation error for various numerical
methods. That the approximation error of the �nite section and the collocation method will behave
di�erently, is already suggested by the following result.

(A) If f ∈ H s(T) then

‖f − PTn f‖T; t6 const nt−s‖f‖T; s for all t6 s

and, if s¿ 1
2 ,

‖f − LTn f‖T; t6 const nt−s‖f‖T; s for all t with 06 t6 s;

where the constants are independent of n, t, and f.

Let a; b ∈ H r(T) for some r ¿ 1
2 and A=aI+bST+HT. Assume that HT ∈L(L2(T);H r(T)) and

that the respective sequence {PTn APTn } or {LTn APTn } is stable in L2(T). Let u∗ ∈ L2(T) denote the
solution of (2.1), where f ∈ H s(T) for some s6r and, in case of the collocation method, 12 ¡ s.
Then assertion (A) leads to the following.

(B) If u∗n ∈ im PTn is the solution of the �nite section method (2.2) or the collocation method (2.3),
respectively, then

‖u∗ − u∗n‖T; t6const nt−s‖f‖T; s
for all t6 s in case of the �nite section method and for all t ∈ [0; s] in case of the collocation
method.

The error estimate in (B) remains true if we consider instead of the collocation method (2.3) the
collocation–quadrature method

a(tLjn)un(tLjn) + b(tLjn)(STun)(tLjn) + (HT; nun)(tLjn) = f(tLjn); j =−n; : : : ; n; (2.4)

where

(HT; nu)(t) =
2

2n+ 1

n∑
j=−n

h(tLjn; t)t
L
jnu(t

L
jn)

and h(s; t) is assumed to be su�ciently smooth.
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In what follows we describe an idea for the construction of methods (di�erent from the qualo-
cation method proposed by I. Sloan), whose numerical realization is nearly as simple as that of
the collocation method and whose convergence rates in negative Sobolev norms are nearly as good
as that of the �nite section method. Let {mn} and {Mn} be two strictly monotonically increasing
sequences of natural numbers satisfying mn6Mn6 n and limn→∞ (Mn − mn) =∞. De�ne

un = uLn + PTmn
(uP

Mn
− uLn); (2.5)

where uPn and uLn denote the solutions of the �nite section method (2.2) and the collocation method
(2.3), respectively.

Theorem 2.4 (Berthold and Silbermann [3, Theorem 3:4]). Let the above assumptions on a; b, and
f be ful�lled and let −r6 t ¡ − 1

2 . Assume additionally that the L
2-adjoint H ∗ of the operator

H belongs to L(H |t|(T);H r(T)). If both the �nite section and the collocation method are stable
in L2(T) and if f ∈ H s(T) for some s with 1

2 ¡ s6 r; then the corrected approximation de�ned
by (2:5) satis�es the error estimate

‖u∗ − un‖T; t6 const(mt
n n

−s + (Mn − mn)−r +M−r−s
n )‖f‖T; s: (2.6)

If, for example, we choose Mn = 2mn and mn ∼
√
n then we get

‖u∗ − un‖T; t6 const

{
nt=2−s; r¿ 2s+ |t|;
n−r=2; r ¡ 2s+ |t|;

which is better than O(n−s) if r ¿ 2s.

2.5. Fast algorithms

In general the matrices of the algebraic systems resulting from the above considered methods are
not structured. Nevertheless it is possible to construct fast algorithms based on these methods and
having a complexity of O(n log n). These algorithms are based on the decomposition of the operator
into a simply structured dominant part aI + bST= cPT+dQT (c= a+ b, d= a− b) and a smoothing
part HT and on the observation that the behaviour of the Fourier coe�cients of high order of the
approximate solution is essentially determined by the dominant part of the operator. A further aim
besides the low complexity is to preserve the convergence rate of the error for a possibly wide range
of Sobolev norms.
Firstly we demonstrate Amosov’s idea for the example of the collocation method (2.3), and

secondly we describe shortly how it is possible to combine this idea with the concept of the corrected
collocation method (2.5). Amosov’s method or the so-called parametrix–quadrature method for (2.4)
consists in determining an approximation by

un = PTm uLm + QT
mzn; (2.7)

where zn=LTn BL
T
n f and B denotes the parametrix c−1PT+d−1QT, QT

m= I −PTm is the complementary
projection of PTm , and uLm is the solution of (2.4) with m instead of n and g=f− (cPT + dQT)QT

mzn
instead of f. The positive integer m ¡ n is chosen in such a way that (2n+1)=(2m+1) is also an
integer. The algorithm can be devided into three steps.
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Step 1: The computation of zn=LTn BL
T
n f. Let f̃n= [f(t

L
jn)]

n
j=−n and f̂n= [〈f; ej〉T]nj=−n denote the

vectors of the function values at the collocation points and the vector of the Fourier coe�cients of
f with indices −n; : : : ; n, respectively. Then

ẑn = F−1
n (C−1

n FnI+n + D−1
n FnI−n )F

−1
n f̃n;

where Fn= [(tLjn)
k]nj; k=−n and F−1

n = [(1=(2n+1))(tLjn)
−k]nj; k=−n are the Fourier matrix of order 2n+1

and its inverse, respectively. The other matrices are de�ned as

I+n =

[
0 0

0 In+1

]
∈ C(2n+1)×(2n+1); I−n = I2n+1 − I+n ; Cn = diag c̃n; Dn = diag d̃n

(In is the unit matrix of order n).
Step 2: Calculation of LTmg. We have

g̃m = f̃m − (CmIm;nFnI+n + DmIm;nFnI−n )I
m
n ẑn;

where Imn is a diagonal matrix

diag [ 1; : : : ; 1︸ ︷︷ ︸
n−m

; 0; : : : ; 0; 1; : : : ; 1︸ ︷︷ ︸
n−m

]

of order 2n+1 and Im;n is the (2m+1)× (2n+1)-matrix with the entries [Im;n]jk =1 if t
L
jm= tLkn and

[Im;n]jk = 0 otherwise, j =−m; : : : ; m; k =−n; : : : ; n.
Step 3: Solution of the m× m algebraic system corresponding to

LTn (cPT + dQT + HT)uLm = LTmg:

The complexity of the �rst two steps is O(n log n), that one of the third step equals O(m3): But,
choosing m ∼ n1=3 then the calculation of un needs only O(n log n) operations. If f∈H s(T) for
some s¿ 1

2 and a; b ∈ H r(T), H ∈L(L2(T);H r(T)) for some r ¿ s and if the collocation method
(2.3) is stable in L2(T), then, for all su�ciently large n and m ∼ n1=3, we have the estimate

‖u∗ − un‖T; t6const nt−s‖f‖T; s
for all t ¿ 1

2 with s− (r − s)=26 t6 s, where un is the approximation de�ned by (2.7) (see [1]).
The parametrix-Galerkin method combines the Amosov algorithm with the corrected collocation

method. Here the approximation un is de�ned by un=PTmn
yPMn
+QT

mn
zn, where we use the same notations

as in Section 2.4, and it is important that for this approximation un the same error estimate (2.6)
as for the pure corrected collocation method holds true (see [4]). A generalization of this approach,
i.e. the combination of Amosov’s idea with the idea of corrected collocation methods, to a wider
class of pseudodi�erential equations on closed curves can be found in [24], where additionally a
two-grid iteration method is used for the solution of the Galerkin equation.

2.6. Spline approximation methods

Here we like to demonstrate how spline approximation methods for CSIEs on closed curves,
especially on the unit circle, can be investigated using a generalization of the C∗-algebra approach
described in Section 2.2. Via the parametrization s 7→ e2�ix, 06 x ¡ 1, we have a one-to-one
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correspondence between functions u on T and 1-periodic functions ũ on R, where ũ(x) = u(e2�ix).
Throughout this section we shall identify the functions u and ũ.
Let � be a nonnegative integer and n a natural number, and let S�

n :=S�
n (�) denote the space of

smooth 1-periodic splines of degree � on the uniform mesh � := {k=n : k = 0; : : : ; n − 1}. Thus, S�
n

(�¿ 1) consists of periodic C �−1 piecewise polynomials of degree � and has dimension n. S0
n is

de�ned as the corresponding space of piecewise constant functions. Let � ∈ [0; 1) be a �xed number,
where �¿ 0 if �= 0. The �-collocation method for the equation

Au= f; (2.8)

which we consider in L2(T) for A= aI + bST, determines an approximate solution un ∈S�
n by

(Aun)
(
k + �
n

)
= f

(
k + �
n

)
; k = 0; : : : ; n− 1: (2.9)

It is easily seen that the left-hand side of (2.9) makes sense in case of � = 0 if and only if
0 ¡ � ¡ 1. The Galerkin method de�nes un ∈S�

n by

〈Aun; ’n〉T = 〈f;’n〉T for all ’n ∈S�
n : (2.10)

The simplest quadrature method for Eq. (2.8) is the so-called method of “discrete vortices”, which
reads as follows. Let tk = e(�i(2k+1))=n, sk = e2�ik=n, k = 0; : : : ; n − 1, and determine the approximate
values �k of u(sk) by the system

a(tj)
�j+1 + �j

2
+ b(tj)

n−1∑
k=0

2�k

sk − tj

sk
n
= f(tj); j = 0; : : : ; n− 1: (2.11)

Once a suitable basis of S�
n is chosen, the approximate equation is reduced to an n×n linear system

for the unknown coe�cients of un, whose matrix has a special structure, namely the structure of a
paired circulant. This property owns also many other spline approximation methods. So we have to
study the stability of some sequences constituted by paired circulants.
Let ‘2(n) denote the n-dimensional complex Hilbert space Cn provided with the inner product

〈�; �〉=
n−1∑
k=0

�k�k ; �= [�k]
n−1
k=0 ; �= [�k]

n−1
k=0 ∈ Cn

and the norm ‖�‖ =√〈�; �〉. In what follows, each operator An ∈ L(‘2(n)) will be identi�ed with
the corresponding matrix in Cn×n (w.r.t. the standard basis in Cn). Introduce the unitary operators
Un;U−1

n ∈L(‘2(n)) by

Un� :=


 1√

n

n−1∑
j=0

e2�ikj=n�j




n−1

k=0

; U−1
n � :=


 1√

n

n−1∑
j=0

e−2�ikj=n�j




n−1

k=0

:

A �nite Toeplitz matrix Tn= [aj−k]
n−1
j; k=0 is said to be a circulant if a−k = an−k , k =1; : : : ; n− 1. It is

easily seen that An ∈ L(‘2(n)) is a circulant if and only if there exists a vector � = [�k]
n−1
k=0 ∈ Cn

such that An=UnM�U−1
n , where M� is the diagonal matrix diag [�0; : : : ; �n−1]. Obviously, the numbers

�k are just the eigenvalues of An and �(k) = [(1=
√
n) e2�ijk=n]n−1j=0 , k=0; : : : ; n−1, are the corresponding

eigenvectors.
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Given a bounded function � :T→ C, let �n and �̃n denote the diagonal matrices

diag [�(t0); : : : ; �(tn−1)] and diag [�(�0); : : : ; �(�n−1)];

respectively, where tk = e2�ik=n and �k = e2�i(k+�)=n. Consider the circulant �̂n :=Un�nU−1
n . Obviously,

‖�̂n‖= ‖�n‖6 sup
t∈T
|�(t)| and ‖�̃n‖6 sup

t∈T
|�(t)|:

Let Cn ∈L(‘2(n)) satisfy limn→∞‖Cn‖=0. For given a; b ∈ C (T) and �; � ∈ PC (T) we introduce
the paired circulants

Bn = ãn�̂n + b̃n�̂n + Cn: (2.12)

Since sup{‖Bn‖ : n = 1; 2; : : :} ¡ ∞, it makes sense to consider the smallest Banach algebra A
(w.r.t. the sup-norm and componentwise operations), which contains all sequences of the form
(2.12). De�ne the functions g(n)j =

√
n�(n)j , where �(n)j denotes the characteristic function of the arc

[e2�ij=n; e2�i( j+1)=n)⊂T. By Ln we denote the orthogonal projection from L2(T) onto span {g(n)j : j =
0; : : : ; n−1}. If we identify the operators of L(im Ln) with their matrices corresponding to the basis
{g(n)j : j= 0; : : : ; n− 1}, we obtain that L(im Ln) =L(‘2(n)). In particular, the operators Un as well
as ãn; b̃n; �̂n; �̂n;Cn, and Bn= ãn�̂n+ b̃n�̂n+Cn will be thought of as belonging to L(im Ln). Moreover,
setting K�

nf =
∑n−1

j=0 f(e
2�i( j+�)=n)�(n)j we get

Bn = K�
naLnUnK0

n �U
−1
n + K�

nbLnUnK0
n �U

−1
n + Cn:

Furthermore, the system {g(n)j : j = 0; : : : ; n − 1} forms an orthogonal basis. Consequently, for any
Dn ∈ L(im Ln), the matrix of the adjoint operator D∗

n corresponding to this basis is exactly the

adjoint matrix of Dn. We conclude that B∗
n = (̂ ��)n(̃ �a)n+ (̂ ��)n(̃ �b)n+C

∗
n . Now it is easy to see that A

actually forms a C∗-algebra. So we are interested in whether elements of A are invertible modulo
the ideal G of all sequences tending in norm to zero. The solution of this problem is rather involved.
We try to point out the main steps (for further details see [21, Chapter 10]).

(A) We de�ne two families of C∗-homomorphisms fromA intoL(L2(T)), which reect the needed
information, as we will see later on. For � ∈ T de�ne
kE = kE(�; �; n) ∈ {0; : : : ; n− 1} by � ∈ (e2�i(kE+�−1)=n; e2�i(kE+�)=n]:

We set

T (�; �)n : im Ln → im Ln;
n−1∑
j=0

�jg
(n)
j 7→

n−1∑
j=0

�jg
(n)
j−kE (g(n)−k := g(n)n−k):

Now de�ne E (�;1)n : im Ln → im Ln by E (�;1)n =UnT (�;0)U−1
n . Notice that

E (�;1)n ãn(E (�;1)n )−1 = ãn for a ∈ C (T) and E (�;1)n �̂n(E (�;1)n )−1 = ̂n;

where (t) = �(t · tE) with tE = e2�ijE=n de�ned by jE = jE(�; n) ∈ {0; : : : ; n − 1} and � ∈
(e2�i( jE−1)=n; e2�ijE=n]. One can prove that, for any sequence {An} ∈A and for any � ∈ T, there
exist the strong limits

W(�;1){An}= s− lim
n→∞ E (�;1)n An(E (�;1)n )−1
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and

W(�;1){An}∗ = s− lim
n→∞ [E

(�;1)
n An(E (�;1)n )−1]∗:

In particular, for the sequences Bn in (2.12) one obtains

W(�;1){Bn}= [a�(�+ 0) + b�(�+ 0)]PT + [a�(�− 0) + b�(�− 0)]QT:

It follows that W(�;1) :A→L(L2(T)) is a C∗-homomorphism.
(B) Introduce the family of operators Pn ∈L(L2(T)),

(Pnf)(t) :=
[(n−1)=2]∑
k=−[n=2]

fktk ; fk :=
1
2�i

∫
T
f(t)t−k−1 dt:

Then there is an isometric isomorphism En : im Ln → im Pn,

n−1∑
j=0

�jg
(n)
j (t) 7→

[(n−1)=2]∑
j=0

�jtj +
n−1∑

j=[(n−1)=2]+1
�jtj−n:

Finally we set E (�;2)n :=EnT (�; �)n : im Ln → im Pn. Again one can prove that, for any sequence
{An} ∈A and any � ∈ T there exist the strong limits

W(�;2){An} := s− lim
n→∞E

(�;2)
n An(E (�;2)n )−1

and

W(�;2){An}∗ = s− lim
n→∞ [E

(�;2)
n An(E (�;2)n )−1]∗:

In particular, for Bn from (2.12) we get

W(�;2){Bn}= a(�)�̃+ b(�)�̃;

where �̃(t) = �(1=t). Thus, W(�;2) :A→L(L2(T)) is also a C∗-homomorphism.
(C) Let J be the closure of

{
r∑

k=1

{(E (!k ;1)
n )−1LnTkE (!k ;1)

n }+ {Cn}
}

;

!k ∈ T, Tk ∈K(L2(T)), ‖Cn‖ → 0, r ∈ {1; 2; : : :}, and consider the smallest C∗-algebra A0

containingA and J. Then it turns out that the above de�ned two families of C∗-homomorphisms
are also de�ned on A0 and that J forms a two-sided closed ideal in A0.

(D) The cosets {ãn} + J, a ∈ C (T), form a C∗-subalgebra C of the center of A0=J, which
is ∗-isomorphic to C (T). Let J� denote the smallest closed ideal in A0=J which contains
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the maximal ideal � ∈ T of C. Then, by ({An} + J) + J� 7→ W(�;2){An} there is generated
a homomorphism (A0=J)=J� → L(L2(T)), which we also denote by W(�;2). The image of
(A0=J)=J� under this homomorphism is exactly PC (T), and � 7→ ({(̂�̃)n + J) + J�} de-
scribes the inverse homomorphism W−1

(�;2) : PC (T)→ (A0=J)=J�. These arguments entail that,
for {An} ∈A0, the invertibility of W(�;2){An} for all � ∈ T ensure the invertibility of {An}+J
in A0=J, and this invertibility leads to the Fredholmness of all W(�;1){An}. Conversely, a little
thought shows that the Fredholmness of all W(�;1){An} implies the invertibility of all W(�;2){An}.

We end up with the following stability result.

Theorem 2.5. A sequence {An} ∈A0 is stable if and only if W(�;1){An} is invertible for all � ∈ T.

The determination of the functions � and � for methods (2.9)–(2.11) is by no means simple.
They are computed in [21, Chapter 10]. Using their concrete nature and Theorem 2.5 one obtains
the following.

Theorem 2.6. Assume the operator A=aI+bST with continuous coe�cients a and b to be invertible
in L2(T).

(a1) If � is odd and �= 0 or if � is even and �= 1
2 (if � is odd and �= 1

2 or � is even and �= 0),
then the collocation method (2:9) is stable if and only if

a(�) + �b(�) 6= 0 (�a(�) + b(�) 6= 0) for all � ∈ [− 1; 1]; � ∈ T:
(a2) If 0 ¡ � ¡ 1 and � 6= 1

2 ; then the �-colloccation method (2:9) is stable if and only if

a(�) + �b(�) 6= 0 for all � ∈ [− 1; 1]; � ∈ T:
(b) The Galerkin method (2:10) is stable if and only if

a(�) + �b(�) 6= 0 for all � ∈ [− 1; 1]; � ∈ T:
(c) The quadrature method (2:11) is stable if and only if

�a(�) + b(�) 6= 0 for all � ∈ [− 1; 1]; � ∈ T:

Again convergence rates are available in the scale of the periodic Sobolev spaces H s(T) (see
[21, Chapter 10]). For further extensions (piecewise continuous coe�cients, curves with corners or
even composed curves) see [9,21]. Let us �nally remark that the stability of the qualocation method
proposed by I. Sloan can be studied completely with the help of Theorem 2.5.

3. The nonperiodic case

3.1. The classical collocation method

To describe the main ideas concerning the construction of the classical collocation method and its
investigation it is su�cient to consider equations of type (1.1), where the coe�cients a and b are
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constants, since the main tool is the mapping property (3.1) which can be generalized to the case of
H�older-continuous coe�cients a and b (cf. [21, Theorem 9:14]). Beside the weighted L2-convergence
of the classical collocation method for CSIEs, in this section we also consider the weighted uniform
convergence based on the application of special weighted Besov norms. Moreover, we will shortly
discuss the application of the classical collocation method to some classes of CSIEs with weakly
singular perturbation kernels and of hypersingular integral equations of Prandtl’s type. Finally we
present some results concerning fast algorithms based on Amosov’s idea.

3.1.1. CSIOs, Jacobi polynomials, and the classical collocation method
Let � and � be real numbers greater than −1. Then the classical Jacobi polynomials P�;�

n (x),
n= 0; 1; 2; : : : ; are de�ned, for example, by the generalized Rodrigues’ formula

(1− x)�(1 + x)�P�;�
n (x) =

(−1)n
2nn!

(
d
dx

)n {
(1− x)n+�(1 + x)n+�

}
:

It is well known that these polynomials satisfy the orthogonality relations∫ 1

−1
P�;�
n (x)P�;�

k (x)(1− x)�(1 + x)� dx = �nkh�;�
n ;

where �nk denotes the Kronecker delta and

h�;�
n =




2�+�+1

2n+ �+ � + 1
�(n+ �+ 1)�(n+ � + 1)

n!�(n+ �+ � + 1)
if �+ � 6= −1 or n= 1; 2; : : : ;

�(�+ 1)�(� + 1) if �+ � =−1 and n= 0:

Thus, the normalized Jacobi polynomials are given by

p�;�
n (x) = [h

�;�
n ]

−1=2P�;�
n (x); n= 0; 1; 2; : : : :

Now, let a and b ¡ 0 be real numbers with a2 + b2 = 1 and let �0 with 0 ¡ �0 ¡ 1 be de�ned by
a− ib= ei��0 . Choose integers � and � such that � := �+ �0 and � := �− �0 lie between −1 and 1.
Then, for the operator A0 = (aI + ibS)v�;�I with v�;�(t)= (1− t)�(1+ t)�, the very important relation

(A0p�;�
n )(t) = (−1)�p−�;−�

n−� (t); −1 ¡ t ¡ 1; n= 0; 1; 2; : : : ; (3.1)

holds true, where � = −� − � = −� − � and p−�;−�
−1 (t) ≡ 0. This relation suggests to consider

Eq. (1.2) with A= A0 +Hv�;�I in the pair (H1;H2) of Hilbert spaces H1 = L2�;� and H2 = L2−�;−�,
where, for ¿ −1 and �¿ −1, L2; � denotes the Hilbert space of all w.r.t. the weight v;�(t) square
integrable functions with the inner product

〈u; v〉; � :=
∫ 1

−1
u(t)v(t)v;�(t) dt:

Moreover, to prove convergence rates the following Hilbert scale of weighted Sobolev spaces is very
convenient. Let s¿ 0 and de�ne

L2; s; � :=

{
u ∈ L2; � :

∞∑
n=0

(1 + n)2s|〈u; p;�
n 〉; �|2 ¡ ∞

}
:
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Equipped with the scalar product

〈u; v〉; �; s :=
∞∑
n=0

(1 + n)2s〈u; p;�
n 〉; �〈v; p;�

n 〉; �;

{L2; s; �}s¿ 0 is a Hilbert scale generated by the operator Bu :=
∑∞

n=0 (1 + n)〈u; p;�
n 〉; �p;�

n with the
domain D(B) = L2;1; � . As an immediate consequence of (3.1) we get that the operator A0 can be
extended to a bounded linear operator A0 :L2�;� → L2−�;−� and that A0 :L

2; s
�;� → L2; s−�;−� is a one-sided

invertible Fredholm operator with index �, where ker A0 = span {p�;�
0 } in case � = 1 and im A0 =

{f ∈ L2; s−�;−� : 〈f;p−�;−�
0 〉−�;−� = 0} in case � = −1. If by S;�

n :L2; � → L2; � we denote the Fourier
projection

S;�
n u :=

n−1∑
k=0

〈u; p;�
k 〉; �p;�

k

then, for all s¿ 0 and for all u ∈ L2; s; �, we have

(A) limn→∞‖u− S;�
n u‖L2; s; �

= 0,

(B) ‖u− S;�
n u‖L2; t; �

6 nt−s‖u‖L2; s; �
, 06 t6 s,

(C) ‖S;�
n u‖L2; t; �

6 nt−s‖u‖L2; s; �
, t¿ s.

Moreover,

(D) for s¿ 1
2 , the space L

2; s
; � is continuously embedded into the space C̃; �̃ with ̃= 1

2max{0; + 1
2}

and �̃= 1
2max{0; �+ 1

2}.

Here, for nonnegative real numbers � and �, by C�; � we refer to the Banach space of all contin-
uous functions u : (−1; 1) → C, for which v�;�u is continuous on [ − 1; 1], equipped with the norm
‖u‖∞; �; � = sup{v�;�(t)|u(t)| : t ∈ [− 1; 1]}.
To approximate the integral operator H0=Hv�;�I Gaussian rules are often used. The Gaussian rule

w.r.t. the Jacobi weight v;�(t) is given by

G;�
n (u) :=

1
�

∫ 1

−1
(L;�

n u)(t)v;�(t) dt =
n∑

k=1

�;�
kn u(t

; �
kn );

where the interpolation operator L;�
n w.r.t. the zeros t; �kn , t

; �
1n ¡ · · · ¡ t;�nn , of p

;�
n (t) is de�ned by

L;�
n u :=

n∑
k=1

u(t; �kn )‘
;�
kn ; ‘;�

kn (t) =
n∏

j=1; j 6=k

t − t; �jn

t; �kn − t; �jn

;

and �;�
kn are the Christo�el numbers �;�

kn =
1
�
∫ 1
−1 ‘

;�
kn (t)v

;�(t) dt. For s¿ 1
2 and u ∈ L2; s; �; the relations

(E) limn→∞‖u− L;�
n u‖L2; s; �

= 0;

(F) ‖u− L;�
n u‖L2; t; �

6 const nt−s‖u‖L2; s; �
; 06 t6 s;
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hold true, where the constant does not depend on n; t; and u. With the help of (3.1) one can show
that

(A0un)(t
−�;−�
j;n−� ) = b

n∑
k=1

��;�
kn

t�;�kn − t−�;−�
j;n−�

un(t
�;�
kn ); j = 1; : : : ; n− �;

for each algebraic polynomial un(t) of degree less than or equal to 2n. Now, the classical collocation
method for the equation

av�;�(t)u(t) +
1
�

∫ 1

−1

[
b

s− t
+ h(s; t)

]
v�;�(s)u(s) ds= f(t); (3.2)

consists in the determination of an approximate solution un(t) =
∑n

k=1 �kn‘
�;�
kn by solving the system

n∑
k=1

��;�
kn

[
b

t�;�kn − t−�;−�
j;n−�

+ h(t�;�kn ; t−�;−�
j;n−� )

]
�kn = f(t−�;−�

j;n−� ); j = 1; : : : ; n− �: (3.3)

In case of � = 1 an additional condition, for example
∑n

k=1 �
;�
kn �kn = 0; has to be considered. Of

course, taking into account again relation (3.1) system (3.3) is equivalent to

(A0 + L−�;−�
n−� Hn)un = L−�;−�

n−� f; (3.4)

where, for continuous functions u : (−1; 1)→ C the operator Hn is de�ned by

(Hnu)(t) =
n∑

k=1

��;�
kn h(t�;�kn ; t)u(t�;�kn ): (3.5)

3.1.2. Weighted L2 -convergence
By C r

’; r¿ 0 an integer and ’(t) =
√
1− t2; we denote the space of all r times di�erentiable

functions u : (−1; 1) → C satisfying the conditions u(k)’k ∈ C [ − 1; 1] for k = 0; 1; : : : ; r. Then the
operators Hn de�ned in (3.5) have the following approximation property:
(G) If h(: ; t) ∈ C r

’ for some integer r¿ s ¿ 1
2 uniformly w.r.t. t ∈ [−1; 1] then, for 06 �6 s and

u ∈ L2; s�;�;

‖L−�;−�
m (Hn − Hv�;�)u‖L2; �−�;−�

6 constm�n−s‖u‖L2; s�; �
:

In the following theorem, which can be proved with the help of relations (A)–(G) for simplicity we
restrict the formulations to the case of index � = 0.

Theorem 3.1 (cf. Berthold et al. [2]). Let �+�=0 and assume that Eq. (3:2) has a unique solution
u∗ ∈ L2�;�. If; for some s¿ 1

2 and some integer r¿ s; h(: ; t) ∈ C r
’ uniformly w.r.t. t ∈ [ − 1; 1];

h(t; :) ∈ L2; s−�;−� uniformly w.r.t. t ∈ [− 1; 1]; and f ∈ L2; s−�;−�; then u∗ ∈ L2; s�;� and the approximate
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Eqs. (3:4) possess for all su�ciently large n a unique solution u∗n =
∑n

k=1 �
∗
kn‘

�;�
kn ; where

‖u∗n − u∗‖L2; ��; �
6 const n�−s‖u∗‖L2; s�; �

; 06 �6 s (3.6)

and the constant does not depend on n; �; and u∗.

3.1.3. Weighted Besov spaces and weighted uniform convergence
This section presents a concept for studying weighted uniform convergence of the classical col-

location method. The main tool of this approach is to de�ne a scale of subspaces of the weighted
space C�; � of continuous functions depending on the order of best weighted uniform approximation
by algebraic polynomials and to study the mapping properties of the Cauchy singular and regu-
lar integral operators as well as integral operators with weakly singular kernels w.r.t. this scale of
subspaces. For details we refer the interested reader to [12].
Let Pn denote the set of algebraic polynomials of degree less than n. For constants �; �¿ 0

and a function f ∈ C�; � we denote by E�;�
n (f) the best weighted uniform approximation of f by

polynomials belonging to Pn; i.e. E�;�
n (f) = inf{‖f − p‖∞; �; � :p ∈ Pn}; E�;�

0 (f) = ‖f‖∞; �; �. For a
sequence {bn} of positive real numbers with limn→∞ bn = 0 we de�ne the weighted Besov space

C {bn}
�; � =

{
u ∈ C�; � : ‖u‖�; �;{bn} := sup

n=0; 1; 2; :::
b−1n E�;�

n (u) ¡ ∞
}

:

Then C {bn}
�; � is a Banach space compactly embedded into C�; �; and the embedding C {bn}

�; � ⊂C {cn}
�; � is

compact if limn→∞ bn=cn = 0. In case of bn = (n + 1)− log�(n + 2) with ¿ 0 and �¿ 0 we write
C ; �

�; � instead of C
{bn}
�; � .

Let A0 =(aI + ibS)v�;�I :L2�;� → L2−�;−� be the operator considered in Section 3.1.1 (cf. (3.1)) and
de�ne Â0=(aI− ibS)v−�;−�I :L2−�;−� → L2�;�; which is an at least one-sided inverse of A0. Moreover,
let

�= �+ − �−; � = �+ − �−; 06 �±; �± ¡ 1:

Then we have the following important property of the operators A0 and Â0:

(A) A0 ∈L(C ; �
�+ ; �+ ;C

; �+1
�− ; �−) and Â0 ∈L(C ; �

�− ; �− ;C
; �+1
�+ ; �+ ).

By h ∈ C�; �; s ∩ C {bn}
�; �; t we mean that the function h(s; t)v�; �(s)v�;�(t) is continuous on [ − 1; 1]2 and

that h�;�
s ∈ C {bn}

�; � uniformly w.r.t. s ∈ [− 1; 1]; where h�;�
s (t) = h(s; t)v�; �(s).

(B) If h ∈ C�; �; s∩C {bn}
�; �; t and �+�− ¡ 1; �+�− ¡ 1; then H0 ∈L(C�+ ; �+ ;C {bn}

�; � ); where H0=Hv�;�I .

In what follows, for simplicity we again assume that �=0 and consider for the approximate solution
of (3.2) instead of the classical collocation method (3.3) the more general collocation method

(A0un + Hnun)(tjn) = f(tjn); j = 1; : : : ; n; (3.7)

where {t1n; : : : ; tnn} is a sequence of partitions of the interval [−1; 1] with −1¡t1n ¡ · · · ¡tnn ¡ 1.
By Ln we denote the respective interpolation operator and by ‖Ln‖�; � the weighted Lebesque constant
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de�ned by

‖Ln‖�; � = sup{‖Lnf‖∞; �; � :f ∈ C�; �; ‖f‖∞; �; � = 1}:

Theorem 3.2 (Junghanns and Luther [12, Theorem 6:8]). Let �+ �= 0 and assume that Eq. (3:2)
has a unique solution u∗ ∈ C�+ ; �+ . If h ∈ C �; �

�; �; s ∩ C ; �
�; �; t with some nonnegative constants �; �; �; �

satisfying �6 �−; �6�−; �+�− ¡ 1; �+�− ¡ 1; if f ∈ C ; �
�; � ; and if limn→∞ n− log�+1n‖Ln‖�; �=0;

then; for all; su�ciently large n Eqs. (3:7) are uniquely solvable and the respective polynomials u∗n
converge in the norm of C�+ ; �+ to u∗; where

‖u∗n − u∗‖∞; �+ ; �+6 const

(
log�+1n

n
‖Ln‖�; � + log

�+1n
n�

)
‖f‖C ; �

�; �

with a constant independent of n and f.

3.1.4. Fast algorithms
In case |�|= |�|= 1

2 ; i.e. a= 0; b=−1; we can adopt Amosov’s idea to the collocation method
(3.3) in order to get a fast algorithm for the numerical solution of (3.2) with O(n log n) complexity,
which retains the convergence rate (3.6) of the classical collocation method for a scale of weighted
Sobolev norms. We demonstrate the approach for the example of the equation

1
�

∫ 1

−1

[
1

t − �
+ h(�; t)

]√
1 + �
1− �

u(�) d� = f(t): (3.8)

In what follows we assume that, for some s¿ 1
2 and some r ¿ s; f ∈ L2; s�−1 = L2; s1=2;−1=2; �(t) =√

(1 + t)=(1− t); h(: ; t) ∈ L2; r� uniformly w.r.t. t ∈ [ − 1; 1]; and h(�; :) ∈ L2; r�−1 uniformly w.r.t.
� ∈ [− 1; 1]. Moreover, assume that Eq. (3.8) has a unique solution u ∈ L2�. We choose integers m
and n; such that 0¡m¡n and d := (2n + 1)=(2m + 1) is an integer, and de�ne an approximation
un = wm + (I − S�

m)vn; where vn ∈ im S�
n and wm ∈ im S�

m are the solutions of

1
�

∫ 1

−1

vn(�)
t − �

�(�) d� = (L�−1

n f)(t) (3.9)

and
1
�

∫ 1

−1

wm(�)
t − �

�(�) d� + (L�−1

m Hmwm)(t) = (L�−1

m g)(t) (3.10)

with

g(t) = f(t)− 1�
∫ 1

−1

(S�
mvn)(�)
t − �

�(�) d�;

respectively. De�ne matrices

U �
n =

[
cos((j+1=2)(2k−1)=(2n+ 1))�

cos((k−1=2)�=(2n+1))
]n−1; n

j=0; k=1

and U �−1

n =
[
sin((2j+1)k�=(2n+1))
sin(k�=(2n+1))

]n−1; n

j=0; k=1

as well as Hn=[h(t
�
kn; t

�−1

jn )]
n
j; k=1 and �

�
n=diag[�

�
1n; : : : ; �

�
nn]. Let v̂n=[〈vn; p�

j 〉�]n−1j=0 and f̃n=[f(t
�−1

jn )]
n
j=1.

Then Eq. (39) is equivalent to

v̂n =−U �−1

n ��−1

n f̃n: (3.11)
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Eq. (3.10) can be written as

[(−U �−1

m )TU �
m +Hm](U �

m)
Tŵm = g̃m: (3.12)

Since U �−1

n can be handled as a sine transform, (3.11) can be realized with O(n log n) complex-
ity. Moreover, because of {t�−1

jm }mj=1⊂{t�
−1

jn }nj=1 the right-hand side of (3.12) is equal to f̃m −
rnm(U �−1

n )T[0; : : : ; 0; [v̂n]m; : : : ; [v̂n]n−1]
T with rnm[�k]

n
k=1 = [�d·k]

m
k=1 and can also be computed with

O(n log n) complexity. Thus, if m ∼ n1=3 the complexity is O(n log n) in order to determine un

provided the values f(t�
−1

jn ) and h(t�km; t
�−1

jm ) are given. Moreover, under the above assumptions one
can prove that ‖u∗−un‖�; t6 const nt−s‖u∗‖�; s for all t ¿ 1

2 with s− (r− s)=26 t6 s. This approach,
i.e. the application of Amosov’s idea to the nonperiodic case, was demonstrated in [2] for the �rst
time. In [13] there is shown, how it is possible to apply the concept of weighted Besov spaces (see
Section 3.1.3) to prove convergence rates in weighted uniform norms for this fast algorithm.

3.1.5. Operators related to CSIOs
Here we study two types of SIOs which are closely related to the CSIO A0 = (aI + ibS)v�;�I

considered in Sections 3.1.1 and 3.1.3. The �rst operator is the hypersingular integral operator DA0;
where D = d=dt denotes the operator of generalized di�erentiation and which can be written as a
�nite part integral operator

(DA0u)(t) = a
d
dt
[v�;�(t)u(t)] +

b
�

∫ 1

−1

v�;�(�)
(� − t)2

u(�) d�; t ∈ (−1; 1): (3.13)

The second one is the weakly SIO

(Wu)(t) = a
∫ t

−1
v�;�(�)u(�) d� − b

�

∫ 1

−1
v�;�(�) ln|� − t| u(�) d�; t ∈ (−1; 1): (3.14)

The operator D of generalized di�erentiation is a continuous isomorphism between the spaces L2; s+1;0; �

and L2; s1+;1+� for all s¿ 0 and all ; �¿ − 1; where L2; s; r; � denotes the subspace of L2; s; � of those
functions f; for which 〈f;p;�

k 〉; � = 0 for k = 0; : : : ; r; and r¿ 0 and L2; s; r; � = L2; s; � for r ¡ 0. From
this and the mapping property (3.1) one can conclude that DA0 belongs to L(L

2; s+1
�;� ;L2; s1−�;1−�) for

all s¿ 0 and that

DA0u= (−1)�
∞∑
n=0

√
(n− �)(n+ 1)〈u; p�;�

n 〉�;�p1−�;1−�
n−�−1

for all u ∈ L2; s+1�;� . Consequently, DA0 :L
2; s+1; �
�;� → L2; s1−�;1−� is a continuous isomorphism. With these

mapping properties one can investigate collocation and collocation–quadrature methods for example
for integro-di�erential equations of Prandtl’s type and construct fast algorithms using the concept
presented in Section 3.1.4 (see, for example, [5,6]).
For the weakly SIO from (3.14), in case �+ � =−1 one can use the relations∫ t

−1
v�;�(�)p�;�

n (�) d� =−
1
n
v�+1; �+1(t)p�+1; �+1

n−1 (t); t ∈ (−1; 1)
and ∫ 1

−1
v�;�(�) ln|� − t|p�;�

n (�) d� =
1
n

∫ 1

−1

v�+1; �+1(�)
� − t

p�+1; �+1
n−1 (�) d�; t ∈ (−1; 1);
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for n= 1; 2; : : : ; which lead to

Wp�;�
n =−1

n
p−�−1;−�−1

n ; n= 1; 2; : : : :

Analogous considerations are possible for �+�=0 and 1. In all cases we get that W :L2; s�;� → L2; s+1�;�
is a continuous operator.
In particular, in the case of the generalized airfoil equation

1
�

∫ 1

−1

[
1

t − �
+ h1(�; t) ln|� − t|+ h2(�; t)

]√
1 + �
1− �

u(�) d� = f(t);

these mapping properties can be used to investigate collocation and collocation–quadrature methods
in scales of weighted Sobolev spaces and to use Amosov’s idea for the construction of fast algorithms
(cf. [2,11,20]).

3.1.6. SIEs with weakly singular perturbation kernels
Here we show how it is possible to use the concept of weighted Besov spaces presented in Section

3.1.3 for investigating collocation methods for SIEs with weakly singular perturbation kernels of the
form h(s; t) = (s − t)−1[k(s; t) − k(s; s)] : We again consider the case � = 0 and the collocation–
quadrature method (3.7). But, to get su�ciently good convergence rates it seems to be necessary to
choose special collocation points {t1n; : : : ; tnn}. For nonnegative constants � and � with �6�− and
�6�− choose numbers r; s ∈ {0; 1} in such a way that

− �
2
+
1
4
− �6 r6 − �

2
+
5
4
− � and − �

2
+
1
4
− �6 r6 − �

2
+
5
4
− �: (3.15)

Then, let m = n − r − s and {tjn}nj=1 = {t−�;−�
jm }m+r

j=1−s; where t−�;−�
0m ∈ (−1;min{t−�;−�

1m ; t�;�1n }) and
tm+1;m ∈ (max{t−�;−�

mm ; t�;�nn }; 1) are knots satisfying
1 + t−�;−�

0m ∼ n−2 if �¿ 0; 1− t−�;−�
m+1;m ∼ n−2 if �¿ 0

and

min{t−�;−�
1m ; t�;�1n } − t−�;−�

0m ∼ n−2; t−�;−�
m+1;m −max{t−�;−�

mm ; t�;�nn } ∼ n−2:

If Ln denotes the Lagrange interpolation operator w.r.t. these nodes {t−�;−�
jm }m+r

j=1−s then, due to
[7, Theorem 4:1], ‖Ln‖�; � =O(log n).

Theorem 3.3 (Junghanns and Luther [14, Theorem 4:3]). Let �+ �= 0 and assume that Eq. (3:2)
has a unique solution in u∗ ∈ C�+ ; �+ . In (3:15) choose � = �−; � = �− and the collocation nodes
tjn as above. If h(s; t) = (s − t)−1[k(s; t)− k(s; s)] with k ∈ C ; �

0;0; s ∩ C ; �
0;0; t ; f ∈ C ; �+1

�− ; �− ; then; for all
su�ciently large n; Eqs. (3:7) are uniquely solvable and the solutions u∗n satisfy

‖u∗n − u∗‖∞; �+ ; �+6 const
log�+3n

n
‖f‖C ; �+1

�− ; �−

with a constant independent of n and f.
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3.2. Finite section and collocation methods w.r.t. weighted Chebyshev polynomials

If the ideas of Section 3.1 are applied to the case of variable coe�cients a(t) and b(t) then a
lot of di�culties occur. A �rst essential drawback is the fact that then in general one has to de-
termine the parameters of Gaussian rules associated to generalized Jacobi weights, which are re-
lated to the coe�cients a and b of the operator equation. This in turn requires the computation
of the recurrence coe�cients of the orthogonal polynomials w.r.t. such weights. Thus, one has a
considerable computational complexity in the preprocessing, which, in particular, renders more dif-
�cult the application of these methods to nonlinear CSIEs. A second disadvantage is the fact that
the mapping properties, on which the classical collocation method is based, require a certain H�older
continuity of the coe�cients a and b. Last but not least, the classical collocation method is more or
less restricted to the scalar case and in general not applicable to the case of a system of CSIEs.
The approach we present in this section is only based on the parameters of classical Chebyshev

polynomials, which implies a very cheap preprocessing, and is applicable both to the case of piece-
wise continuous coe�cients and to the case of a system of CSIEs. Although technical details as well
as results are di�erent the theoretical investigations, especially for the collocation method, follow
the same lines as in Sections 2.2 and 2.3.

3.2.1. Stability of a �nite section and a collocation method
Let �(t) = (1 − t2)−1=2 denote the Chebyshev weight of the �rst kind. For � = (−1; 1) and

piecewise continuous coe�cients a; b ∈ PC [ − 1; 1]; we consider Eq. (1.1) in the Hilbert space
H= L2� :=L

2
−1=2;−1=2; where, for simplicity, we restrict ourselve to the case h ≡ 0. For de�niteness

we agree that a(−1 + 0) = a(−1) for each a ∈ PC [ − 1; 1]. The CSIO S :L2� → L2� is bounded,
i.e. S ∈ L(L2�) (see [8, Theorem I:4:1]). By ’(t) =

√
1− t2 we denote the Chebyshev weight of

second kind and by Un(t) the respective orthonormal polynomial of degree n with positive leading
coe�cient, i.e.

Un(cos x) =

√
2
�
sin(n+ 1)x

sinx
; x ∈ [0; �]; n= 0; 1; 2; : : : :

Then the system {ũ n}∞n=0 with ũ n :=’Un is an orthonormal basis in L2�. We de�ne the respective
Fourier projections Pn by

Pnu=
n−1∑
k=0

〈u; ũ k〉�ũ k

and, for the operator A= aI + bS; we are interested in the stability of the sequence {PnAPn} of the
respective �nite sections corresponding to the Galerkin method. Moreover, if t’jn are the Chebyshev
nodes of second kind, t’jn = cos(j�=(n+ 1)); j = 1; : : : ; n; we investigate the collocation method

(Aun)(t
’
jn) = f(t’jn); j = 1; : : : ; n; un ∈ im Pn: (3.16)

Of course, this collocation method can be written equivalently as

MnAun =Mnf; un ∈ im Pn;

where Mn denotes the (weighted) interpolation operator Mn = ’L’
n’

−1I with the usual Lagrange
interpolation operator L’

n w.r.t. the nodes t’jn. Hence, concerning the collocation method (3.16), our
aim is to study the stability of the sequence {MnAPn} in L2�.
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We introduce the operator J :L2� → L2(T); u 7→ ∑∞
n=0〈u; ũ n〉�en. Of course, J :L2� → H(T) is an

isometric isomorphism, where H(T) := {f ∈ L2(T): 〈f; e−n〉 = 0; n = 1; 2; : : :} is the Hardy space.
De�ne � ∈ PC (T) by

�(t) =

{
1; I t ¿ 0;

−1; I t ¡ 0

and, for a function u : [−1; 1]→ C; û(t)=u(R t). De�ning WT :L2(T)→ L2(T) by (WTf)(t) :=f(�t)
and, for a ∈ L∞(T); the Toeplitz operator T (a) :H(T) → H(T) and the Hankel operator H (a):
H(T)→ H(T) by T (a) :=PTaPT and H (a) :=PTae−1WTPT; respectively, we get

(A) aI = J−1[T (â)− H (âe−1)]J ,
(B) S =−J−1[T (�) + H (�e−1)]J .

The proof of the stability criterion for the �nite section method (Theorem 3.4) is based on a result
presented in [22] (cf. also [9, Section 6:2]) for the stability of a sequence {Bn} of �nite sections
Bn = PTn BPTn + I − PTn ; where B ∈ L(L2(T)) and {Bn} belongs to the smallest closed subalgebra
of the algebra of all bounded sequences {An}; An ∈ L(L2(T)) (equipped with component-wise
algebraic operations and the supremum norm, cf. Section 2.2), containing the constant sequences
{PT}; {e−1WT}; and {aI} for a ∈ PC (T); as well as the sequences {PTkn} for every positive integer
k. This is possible because of the following two observations. First, the sequence {PnAPn} is stable
in L2� if and only if the sequence {PTn (JAJ−1PT + QT)PTn } is stable in L2(T). Second, in view of
(A) and (B) we have

JAJ−1 = T (â)− H (âe−1)− [T (b̂)− H (b̂e−1)][T (�) + H (�e−1)]

(for details, see [19, Section 5]).

Theorem 3.4. Let a; b ∈ PC [− 1; 1] and c± = a± b. Then the sequence {Pn(aI + bS)Pn} is stable
in L2� if and only if the following four conditions are ful�lled:

(a) The operator aI + bS :L2� → L2� is invertible.
(b) The operator (â− b̂�)PT + QT :L2(T)→ L2(T) is invertible;
(c) The point 0 lies outside the half-circle; which is formed by the segment [c+(1); c−(1)] and the

half-circle line from c−(1) to c+(1) that lies to the left of the line from c−(1) to c+(1); and
outside the half-circle; which is formed by the segment [c−(−1); c+(−1)] and the half-circle
line from c+(−1) to c−(−1) that lies to the left of the line from c+(−1) to c−(−1).

(d) For all t ∈ (−1; 1) and all � ∈ [0; 1]; the relation

c+(t + 0)
c+(t − 0)� +

c−(t + 0)
c−(t − 0)(1− �) 6∈ (−∞; 0]

holds true.

To study the stability of the collocation method we use the concept explained in Section 2.2,
where the C∗-algebra FW is constructed in the same way, but now w.r.t. the space H = L2�; the
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projections Pn instead of PTn ; and the operators Wn instead of W T
n ; where Wnu=

∑n−1
k=0〈u; ũ n−1−k〉�ũ k .

The covering system of localizing classes can be chosen in the same manner as in Section 2.3 for
the collocation method, but with the interpolation operator Mn instead of LTn . One can show that the
sequence {Mn(aI + bS)Pn} belongs to the algebra FW if a; b ∈ PC and that the respective coset
commutes with all elements from the localizing classes. The strong convergence

s− lim
n→∞WnMn(aI + bS)Wn = aI − bS in L2�

leads to the following result (see [19, Section 6]).

Theorem 3.5. For a; b ∈ PC [− 1; 1]; the sequence {Mn(aI + bS)Pn} is stable in L2� if and only if
the operators aI ± bS : L2� → L2� are invertible.

Now let us investigate the stability of sequences {An} belonging to the smallest closed subalgebra
A of F; which contains all sequences of the form {Mn(aI + bS)Pn} with a; b ∈ PC [− 1; 1] and the
ideal J. Although this algebra is not a C∗-algebra it turns out that A is an inverse closed subalgebra
of FW . For the proof of the following result, which is essentially based on the application of the
local principle of Allan and Douglas, and to some generalizations we refer to the forthcoming papers
[15,17].

Theorem 3.6. There is an isomorphism � from A=J onto an algebra of continuous functions living
on ((−1; 1)× [0; 1]) ∪ ({±1} × �D). This isomorphism sends {MnaPn}+J into

(t; �) 7→




a(t + 0)� + a(t)(1− �) (a(t + 0)− a(t))
√

�(1− �)

(a(t + 0)− a(t))
√

�(1− �) a(t + 0)(1− �) + a(t)�




for (t; �) ∈ (−1; 1)× [0; 1] and (t; z) 7→ a(t) for (t; z) ∈ {±1} × �D. The coset {MnSPn}+J is sent
into

(t; �) 7→
[
1 0

0 −1

]
for (t; �) ∈ (−1; 1)× [0; 1]

and (t; z) 7→ z for (t; z) ∈ {±1}× �D. The sequence {An} ∈A is stable if and only if the operators
W{An}; W̃{An} : L2� → L2� (W{An} = s − lim AnPn; W̃{An} := s − limWnAnWn) are invertible and
�{An}(t; z) 6= 0 for all (t; z) ∈ {±1} × �D.

We remark that the invertibility of W{An} already implies det �({An} + J)(t; �) 6= 0 for all
(t; �) ∈ (−1; 1)× [0; 1].

3.2.2. Convergence rates
The aim of this section is to introduce a suitable scale of Sobolev spaces in order to give a

convergence rate for the error of the collocation method. The de�nition of such spaces is suggested
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by the orthonormal system {ũ n} in L2�; which we used as ansatz functions. Thus, we de�ne

L̃
2; s

� :=


u ∈ L2�: ‖u‖s;∼ :=

( ∞∑
n=0

(1 + n)2s|〈u; ũ n〉�|2
)1=2

¡∞

 ; s¿ 0:

Since 〈u; ũ n〉� = 〈�u; Un〉’ we have ‖u‖s;∼ = ‖�u‖L2; s’
; where L2; s’ = L2; s1=2;1=2 is a special case of the

Sobolev spaces introduced in Section 3.1.1. This means that the multiplication operator �I : L̃
2; s

� →
L2; s’ is an isometric isomorphism. A consequence of this is that the relations (A)–(F) of Section

3.1.1 remain true if S;�
n ; L;�

n ; and L2; s; � are substituted by Pn; Mn; and L̃
2; s

� ; respectively. Hence, we
get the following theorem.

Theorem 3.7. Let the operator A = aI + bS : L̃
2; s0
� → L̃

2; s0
� be continuous for some s0¿ 1

2 . If the

sequence {An}= {MnAPn} is stable in L2� and if the solution u∗ of Au=f belongs to L̃
2; s

� for some
s¿ 1

2 ; then

‖u∗n − u∗‖t;∼6 const nt−s‖u∗‖s;∼; 06 t6 s;

where u∗n ∈ im Pn is the solution of (3:16) and the constant does not depend on n; t; and u∗.

Of course, the condition u∗ ∈ L̃2; s� is satis�ed for some su�ciently large s only if u∗ is smooth in
the interior of the integration interval and behaves near the endpoints like the ansatz functions ũ n.
Thus, in order to be more exible, this fact requires the investigation of similar collocation methods,
for example of collocation methods again w.r.t. Chebyshev nodes but with other classical Jacobi
weights in the functions ũ n (see, for example [15,18]).

3.2.3. Computational aspects
A suitable implementation of the collocation method (3.16) will enable us to solve the resulting

system of linear equations with a fast algorithm that requires only O(n2) operations and O(n) storage
due to the special structure of the system matrix. At �rst we write un in (3.16) in the form

un(t) = ’(t)
n∑

k=1

�kn‘kn(t) with ‘kn(t) =
Tn(t)

(t − t�kn)T ′
n(t

�
kn)

: (3.17)

Since, for t 6= t�kn; k = 1; : : : ; n;

(S‘kn)(t) =
1

T ′
n(t

�
kn)

1
�i

∫ 1

−1

’(s)Tn(s)
(s− t)(s− t�kn)

ds

=
1

T ′
n(t

�
kn)

1
t�kn − t

1
�i

∫ 1

−1

(
1

s− t�kn
− 1

s− t

)
’(s)Tn(s) ds

=
1

T ′
n(t

�
kn)

�n(t�kn)− �n(t)
t�kn − t

;
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where �n = S’Tn = 1
2S’(Un − Un−2) = i

2 (Tn+1 − Tn−1); the collocation method (3.16) can be written
in the form

n∑
k=1

�jk
�kn

T ′
n(t

�
kn)
= fj; j = 1; : : : ; n; (3.18)

where fj = f(t’jn) and

�jk =
b(t’jn)�n(t�kn)− a(t’jn)’(t

’
jn)Tn(t

’
jn)− b(t’jn)�n(t

’
jn)

t�kn − t’jn
:

Here we assume that n is an even number to guarantee t�kn 6= t’jn. We see that the coe�cients �jk can
be written in the form

�jk =
�j�k − �j

k − �j
:

Thus, the system matrix has a L�owner structure, which gives us the possibility to apply the idea of
UV-reduction presented in [10] to establish an algorithm of O(n2)-complexity to solve the system
(3.18). The details one can found in [19, Section 9].

3.2.4. Systems of CSIEs
We consider a system of CSIEs of the form

‘∑
k=1

(ajkI + bjkS)uk = fj; j = 1; : : : ; ‘:

Let a=[ajk]
‘

j; k=1; b=[bjk]
‘

j; k=1; and denote by S the diagonal operator [�jkS]
‘

j; k=1 in (L
2
�)

‘. Analogously,
I ; Pn; and Mn are de�ned. Then, the respective operator sequence of the collocation method can be
written in the form {Mn(a I + b S)Pn}. Now from Theorem 3.6 one can easily obtain the following
result.

Theorem 3.8. Let ajk ; bjk ∈ PC [ − 1; 1]. If ajk(±1) = bjk(±1) = 0 for all j¡k (or for all j¿k);
then the sequence {Mn(a I + b S)Pn} is stable in (L2�)‘ if and only if the operators a I ± b S are
invertible in (L2�)

‘ and if |akk(±1)|¿ |bkk(±1)| for all k = 1; : : : ; ‘.

Another result one can �nd in [19, Section 7].

3.2.5. Application to nonlinear CSIEs
In a series of applications nonlinear CSIEs of the form

F(t; u(t)) +
1
�

∫ 1

−1

u(s)
s− t

ds+ d= 0; x ∈ (−1; 1); (3.19)

occur, where F : [ − 1; 1] × R → R is given and u : [ − 1; 1] → R satisfying u(−1) = u(1) = 0 as
well as the real number d are sought. Thus, if we are interested in a linearization of Eq. (3.19)
(for example, in order to apply a Newton iteration method), then we have to solve more general
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equations than (1.1). A possible description is the following. Let V be a �nite-dimensional subspace
of L2� and look for a solution (u; v) ∈ L2� × V of the equation

(aI + bS)u+ v= f; (3.20)

where a; b ∈ PC [ − 1; 1] and f ∈ L2� are given functions. We try to apply the collocation method
(3.16) to this situation. Obviously, X :=L2×V equipped with the norm ‖(u; v)‖X :=

√
‖u‖2L2� + ‖v‖2L2�

is a Banach space. Let {ṽ0; : : : ; ṽm−1} be a basis in V and de�ne the isomorphism Jm : X → L2� by

Jm

(
u;

m−1∑
k=0

�k ṽk

)
:=

∞∑
j=0

〈u; ũ j〉�ũ j+m +
m−1∑
k=0

�kũ k = Vmu+
m−1∑
k=0

�kũ k ;

where V denotes the shift operator V ũn=ũ n+1; n=0; 1; 2; : : : : Then the inverse operator J−1 : L2� → X
is given by

J−1
m f =

(
(V ∗)mf;

m−1∑
k=0

〈f; ũ k〉�ṽk
)

:

Thus, setting w = Jm(u; v) Eq. (3.20) is equivalent to

(aI + bS)(V ∗)mw + Kw = f; w ∈ L2�;
where the operator K : L2� → L2� is de�ned by Kw :=

∑m−1
K=0〈w; ũ k〉�ṽk . The respective collocation

method for Eq. (3.20) reads as

Mn(aI + bS)Pnun +Mnvn =Mnf; un ∈ im Pn−m; vn ∈ V ;

or equivalently as

Bnwn :=Mn[(aI + bS)(V ∗)m + K]Pn =Mnf; wn ∈ im Pn:

It turns out that V=’I−i S;  (t)=t. Since Bn=Mn(aI+bS)Pn(MnV ∗Pn)m+MnKPn and V ∗=’I+i S
one concludes that the sequence {Bn} belongs to the algebra A considered in Section 3.2.1 and can
apply Theorem 3.6 if the basis functions ṽk of V are su�ciently regular.

Theorem 3.9 (Junghanns and M�uller [16, Theorem 2.7]). Let a; b ∈ PC [−1; 1]; m ∈ {1; 2; : : :}; and
assume that the functions ṽk ; k = 0; : : : ; m− 1; are locally Riemann integrable and satisfy

|ṽk(t)|6 const (1− t2)−�; t ∈ (−1; 1); for some � ∈ (0; 14 ):
Then the sequence {Bn} is stable in L2� if and only if the operators (aI + bS)(V ∗)m + K and
(aI − bS)Vm are invertible in L(L2�).

Let us investigate the collocation method

F(t’jn; un(t
’
jn)) +

1
�

∫ 1

−1

un(s)
s− t’jn

ds+ dn = 0; j = 1; : : : ; n; (un; dn) ∈ Xn: (3.21)

Xn := im Pn−1×C. To solve this collocation equation approximately we try to determine a sequence
{(u(m)n ; d(m)n )}∞m=0⊂Xn with u(m+1)n = u(m)n +�u(m)n by a modi�ed Newton method

a0(t
’
jn)�u(m)n (t’jn) +

1
�

∫ 1

−1

u(m+1)n (s)
s− t’jn

ds+ dm+1
n =−F(t’jn; u(m)n (t’jn)); (3.22)

j = 1; : : : ; n; where a0(t) = Fu(t; u(0)n (t)).
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Theorem 3.10 (Junghanns and M�uller [16, Theorem 3.9]). Let (u∗; d∗) be a solution of (3:19).
Assume that a(t) := a0(t) and b(t) ≡ i satisfy the conditions of Theorem 3:9 for m = 1 and
ṽ0(t) ≡ 1; that the function Fu : [− 1; 1]× R→ R is continuous and satis�es the H�older condition

|Fu(t; u1)− Fu(t; u2)|6 const |u1 − u2|; t ∈ [− 1; 1]; u1; u2 ∈ R
and that ’−1u∗ belongs to C ; �

1=2;1=2 for some ¿ 1
2 (cf. Section 3:1:3). Then; for all su�ciently

large n; there exists an element (u(0)n ; d(0)n ) ∈ Xn such that Eq. (3:22) possesses a unique solution
(�u(m)n ; dm+1)

n ) for all m = 1; 2; : : : : The sequence {(u(m)n ; d(m)n )} converges for m → ∞ in the norm
of X :=L2� × C to a solution (u∗n ; d∗

n) of Eq. (3.21) and; for 0¡�¡− 1
2 ;

‖(u∗n ; d∗
n)− (u∗; d∗)‖X6 const n�− log�(n+ 1);

where the constant does not depend on n.
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Abstract

We present a survey of numerical methods (based on piecewise polynomial approximation) for integral equations
of Mellin type, including examples arising in boundary integral methods for partial di�erential equations on polygonal
domains. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In the last 30 years or so a great deal of interest has focused on the numerical analysis of
boundary integral equations arising from PDEs on nonsmooth domains (see [49] for one of the
pioneering papers in this �eld). Here the chief di�culties are not only the loss of smoothness of
the solution near nonsmooth boundary points, but also (and more crucially) the singularity induced
in the integral operator itself. The development of a proper understanding of these singularities has
a huge practical motivation due to the large range of applications — particularly in engineering
— and even the geometrically simple case of a polygonal domain still contains open problems of
considerable mathematical subtlety. This survey concentrates on the numerical analysis of a class
of equations which arises generically in such problems, namely the equations of Mellin type. The
simplest case of such an equation contains the operator

Kv(s) =
∫ 1

0
�
(
s
�

)
v(�)

d�
�

; s∈ [0; 1]; (1.1)

where the kernel � is a given function on R+:=[0;∞). Often � is a smooth function on (0;∞)
satisfying certain asymptotic estimates at 0 and ∞, in which case �(s=�)�−1 is smooth at s= �¿ 0
but blows up with O(�−1) when s = � → 0 (i.e., the operator (1.1) has a �xed singularity at the
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origin). Note that the upper limit of integration in (1.1) is to some extent arbitrary, since the operator
K�v(s):=

∫ �
0 �(s=�)v(�) d�=�; s∈ [0; �] can easily be reduced to (1.1) via the transformation �→ ��.

The operator K (or more generally K�, for �¿ 0) can be considered as a localised version of the
operator: Kv(s):=

∫∞
0 �(s=�) d�=�; s∈R+, which is normally treated using the Mellin transform:

ṽ(z) =
∫∞
0 sz−1v(s) ds, for z ∈C. The convolution theorem then states that (for suitably well-behaved

� and v) we have K̃v= �̃ṽ, and from this it is easily shown that ‖K‖26‖K‖2 = supRe(z)= 12 |�̃(z)|.
(Here ‖·‖2 denotes the operator norm on the space L2 of square-integrable functions.) Moreover, K is
also bounded on L∞ and on C (the continuous functions on [0; 1]), with ‖K‖∞=

∫∞
0 |�(s)| ds=s¡∞

(provided this integral exists), in which case

lim
s→0

Kv(s) = �̃(0)v(0) for v∈C: (1.2)

Using (1.2) the following simple argument ([3]) shows that K is noncompact in C: For each
n∈N:={1; 2; : : :}, let vn : [0; 1] → R denote a continuous function with vn(0) = 1 = ‖vn‖∞ and
supp vn⊂ [0; 1=n]. If K were compact on C then the sequence {Kvn} would contain a convergent
subsequence, {Kvnj} in C. However, (1.2) implies that Kvnj(0)= �̃(0) for all j. Moreover, for s¿ 0
we can employ the change of variable x = s=� to obtain |Kvnj(s)|6

∫∞
njs
|�(x)| dx=x → 0 as j → ∞,

demonstrating that {Kvnj} cannot have a continuous limit when �̃(0) 6= 0. In fact the spectrum of
K contains all the values of �̃(z) for Re(z) = 0, and K is not compact on any Lp space either (see
Section 3 for a discussion of this).
All the problems which we shall consider in this paper have as their heart the solution of

second-kind equations of the form

(I − K)u= f (1.3)

with K as de�ned in (1.1). An important role in the theory of these equations is played by the
�nite section operator KT�, where T� is the truncation operator satisfying T�v(s) = 0, for s¡� and
T�v(s)= v(s) for s¿�. Then, for �∈ (0; 1], we have KT�v(s)=

∫ 1
� �(s=�)v(�) d�=�. At various points

in this review we will require assumptions on (i) the well-posedness of (1.3) and (ii) the stability
of the corresponding �nite section operators, i.e.,

(i) ‖(I − K)−1‖6C and (ii) ‖(I − KT�)−1‖6C as �→ 0; (1.4)

for some norm ‖ · ‖. Throughout the paper we let C; C1; C2; : : : denote generic constants in the usual
way.
To analyse (1.3), we introduce for �∈R and r ∈N, the space Cr;� comprising the completion of

the in�nitely smooth functions on (0; 1] with respect to the norm ‖v‖r; �:=sups∈(0;1]; l=0; :::r |s[l−�]Dlv(s)|,
where [�] = � for �¿0 and [�] = 0 for �¡ 0. In general the solution u of (1.3) (or perhaps the
higher derivatives of u) will have a singularity at s = 0, and thus will lie in Cr;� with the size
of � depending on the zeros of the symbol 1 − �̃(z), for z ∈C (see, for example, [12] or [38,
pp. 172–174]).
To approximate (1.3), we introduce piecewise polynomial spaces on [0; 1] as follows. For any

integer n¿1, introduce a mesh 0 = x0¡x1¡ · · ·¡xn = 1. Then for r ¿d+ 1¿0; Sr;d
n denotes the

functions which reduce to polynomials of degree r − 1 on each interval Ii = (xi−1; xi) and have d
continuous derivatives globally on [0; 1]. Thus, for r ¿ 0; Sr;−1

n denotes the piecewise polynomials
of degree r − 1 which may be discontinuous at each xi; i = 1; : : : ; n− 1, whereas Sr; r−2

n denotes the
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smoothest splines on [0; 1] (without any end-point conditions). We shall also need the 2�-periodic
smoothest splines of degree r−1 (and Cr−2 continuity), which we denote Sr

n;p. There is a well-worked
literature on approximation in these spaces (see, e.g., [18,38,46]).
To deal with the singularity in u, one approach is to consider graded meshes constructed (either

analytically or adaptively) to satisfy the inequalities

hi6C1(1=n)(i=n)q−1 and xi¿C2(i=n)q; i = 1; : : : ; n; (1.5)

for some grading exponent q¿1, where hi = xi − xi−1. These inequalities imply that near x = 0
mesh subintervals are of length O((1=n)q) whereas near x= 1 they are of length O(1=n) as n→∞.
We call meshes which satisfy (1.5) “q-graded at 0”. A standard example of such a mesh is [42]
xi:=(i=n)q; i = 0; : : : ; n, which satis�es (1.5) with C1 = q and C2 = 1.
To illustrate the properties of such meshes, consider approximating a function u∈Cr;� by Sr;−1

n

(where r¿1), and suppose for convenience that �∈ (0; 1]. Then standard Taylor series
estimates show that there exists a function �n ∈ Sr;−1

n such that ‖u − �n‖∞; Ii6hr
i‖Dru‖∞; Ii , pro-

vided the norm on the right-hand side is �nite. Thus, for i¿2 making use of (1.5), we have
‖u−�n‖∞; Ii6Chr

i x
�−r
i−1 ‖u‖r; �6C(1=n)r((i− 1)=n)q�−r‖u‖r; �6C(1=n)r‖u‖r; �, where the �nal inequality

requires that the grading exponent q should be su�ciently large, namely q¿r=�. On the other hand,
for s∈ I1, elementary arguments show that |u(s) − u(0)|6Cs�‖u‖r; �6C(1=n)r‖u‖r; �, again provided
q¿r=�. So, setting �n ≡ u(0) on I1 we see that ‖u − �n‖∞ is of optimal order O(1=n)r . In some
examples the solution u of (1.3) is not continuous but instead has an in�nite singularity of order
s�−1 (as s → 0) for some �∈ ( 12 ; 1). Then analogous arguments to those given above (but in the
L2 context) [17] show that there exists �n ∈ Sr;−1

n with �n ≡ 0 on I1 such that ‖u− �n‖2 = O(n−r)
provided q¿r=(�− 1

2 ). Both the L2 and uniform estimates also extend to the case of approximation
by splines of arbitrary smoothness [18].
An alternative way of dealing with a singularity in the solution u(s) of (1.3) at s = 0 (and a

method which we shall consider in more detail below) involves a change of variable s=(x), where
 : [0; 1] → [0; 1] is an increasing function, with (0) = 0; (1) = 1 and (x) having a zero of an
appropriately high order at x= 0. For example if u∈Cr;� where �∈ (0; 1] and if  has r continuous
derivatives on [0; 1] with (Dj)(x)=O(xq−j) for j=0; : : : ; r, then it is easily shown that the function
u ◦  has r continuous derivatives, provided q¿r=�. This function can then be approximated by a
piecewise polynomial �n of desired smoothness with respect to the uniform mesh xi = i=n, yielding
(after inverse transformation) an optimal order approximation �n(−1(s)) to u(s). If (1.3) has a
solution which blows up at s = 0 (for example the function u(s) = s�−1 with �∈ ( 12 ; 1)), then the
straight substitution s= (x) with (x) given above makes it worse rather than better-behaved. This
di�culty can be circumvented by considering instead the function w(x) = (u ◦ )(x)|′(x)|, with 
as above, which arises naturally when u appears inside an integral. Then it is easily shown that
w(s) has r continuous derivatives provided q¿(r + 1)=� (see, e.g., [21]). Such nonlinear change of
variables techniques can be combined with piecewise polynomial approximation schemes or indeed
global schemes involving algebraic or trigonometric polynomials. A selection of results can be found
for example in [5,16,32,36,37,41].
A third method of obtaining optimal convergence for singular solutions (which we shall not discuss

at length here) is to augment the approximating spaces with some of the singular terms occurring
in the expansion of the solution (see, e.g., [12,33,34,51]).
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However the chief di�culty in solving (1.3) is not the approximation of the singular solution u but
rather proving the stability of the chosen numerical method, with the main theoretical barrier being the
noncompactness of the operator K . This was emphasised in [10], where it was shown that there exist
piecewise polynomial collocation methods which converge optimally when K is compact but which
actually diverge for (1.3) when K is given by (1.1). In [10] a way around this barrier was found by
considering a modi�ed method (which excluded the counterexample but which was nevertheless very
close to a standard collocation method) and proving stability and convergence for it. Subsequently,
this modi�cation technique has been applied to a great variety of spline approximation methods for
(1.3) (see [38] for an extensive review), and as far as we are aware, it is still the standard way
of proving stability and convergence for practical methods for integral equations of Mellin type. In
particular, this approach has been successfully extended to collocation and quadrature methods based
on global algebraic and trigonometric polynomials. Examples of results which use the modi�cation
technique to prove stability (in conjunction with mesh grading) are [9–11,15,17,19,20,24,27,29,39],
whereas the same technique is used in conjunction with a nonlinear change of parametrisation in
[21–23,25,26,30–32,35,47]. The modi�cation technique for proving stability later found a more
practical use as a parameter for accelerating the convergence of multigrid-type algorithms [4,40].
It is important to point out that in the case of classical Galerkin methods for boundary integral

equations on corner domains (where a variational formulation of the underlying integral equation
is exploited and errors due to quadrature are not taken in to account), the stability analysis is not
di�cult provided one restricts to the energy norm. The numerical analysis then reduces to �nding
e�cient ways of approximating the singular solution. In this context the literature is older and
includes, for example, [51,12]. The papers [6,7] also concern the Galerkin method but analyse errors
in the uniform norm and therefore require a more sophisticated stability analysis.
We begin this survey in Section 2 by illustrating the use of the modi�cation technique in the

(relatively simple) context of discontinuous piecewise polynomial collocation methods for (1.3).
The modi�ed method can be thought of as the discretization of the �nite section approximation
of K , and then a perturbation argument is the key to proving stability. In Section 3 we explain
how this idea can be extended to a uni�ed convergence theory of spline approximation methods for
Eq. (1.3). Section 4 is devoted to some examples of second- and �rst-kind boundary integral equa-
tions for elliptic PDEs on corner domains leading to the model Eq. (1.3) (more precisely systems
of such equations), with emphasis on Laplace’s equation. In Section 5 we give a survey of results
on Symm’s integral equation and related �rst-kind equations.

2. Introduction to modi�cation techniques

To illustrate the technique of modi�cation (mentioned in Section 1) in a simple setting, consider
Eq. (1.3) and suppose that assumption (1.4) holds in the essential supremum norm. Assume also
that � satis�es the estimates∫ ∞

0
sk |Dk�(s)| ds=s¡∞ for all integers k¿0: (2.1)

To solve (1.3), we consider classical piecewise polynomial collocation methods in Sr;−1
n . To de�ne

the collocation procedure, choose r points 06�16 · · ·6�r61 in the reference domain [0; 1] and map
these to each Ii with the formula xij= xi−1 + �jhi; i=1; : : : ; n; j=1; : : : ; r. De�ning the interpolatory
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projection Pn onto Sr;−1
n by requiring that Pnv(xij) = v(xij) for all i; j it follows that Pn converges

pointwise to the identity on C and has uniform norm bounded as n→∞. The classical collocation
method for (1.3) seeks an approximate solution un ∈ Sr;−1

n such that

(I − PnK)un = Pnf: (2.2)

To focus on the di�culty in analysing (2.2), recall that if K :L∞ → C were compact, then
‖(I −K)− (I −PnK)‖∞=‖(I −Pn)K‖∞ → 0 as n→∞ (since pointwise convergence is uniform on
compact sets). Hence, by the Banach perturbation lemma (applied in L∞) and the well-posedness
assumption (1.4)(i), (I − PnK)−1 exists for n su�ciently large and has uniform norm bounded as
n → ∞. In this case a unique collocation solution un exists, and u − un = (I − PnK)−1(u − Pnu),
from which we obtain the usual error estimate ‖u− un‖∞6C‖u− Pnu‖∞.
As mentioned in Section 1, this argument fails for the noncompact operator K in (1.1), an ob-

servation which led in [10] to the introduction of the (slightly more general) modi�ed collocation
method. Here, for simplicity, we shall introduce this technique in the special case where the solution
u of (1.3) satis�es u(0) = 0, although — as we indicate in Section 3 — the principle can be ap-
plied in the general case also. In its simplest form the modi�cation technique involves choosing an
integer i ∗¿0 and seeking un ∈ Sr;−1

n satisfying un≡ 0 on [0; xi∗] and (instead of (2.2)) the modi�ed
collocation equations:

(I − K)un(xij) = f(xij); j = 1; : : : r; i = i∗+1; : : : ; n:
In operator form this can be written

un ∈ Sr;−1
n : (I − PnT xi∗K)un = PnT xi∗f; (2.3)

which is clearly equivalent to (1.3) when i∗=0.
To analyse (2.3), the �rst step is to recall the formal identity: (I−Txi∗K)−1=I+Txi∗(I−KTxi∗)−1K .

Using this, together with the assumption (1.4)(ii) and the identity ‖T�‖∞ = 1, it follows that, for
�xed i∗¿0; ‖(I − Txi∗K)−1‖∞ is uniformly bounded as n→∞. Then, attempting to mimick the
argument in the compact case, we can show that (2.3) is well-posed provided we show that ‖(I −
Txi∗K)− (I − PnT xi∗K)‖∞ = ‖(I − Pn)Txi∗K‖∞ is su�ciently small. Although this quantity does not
approach zero as n → ∞, we shall see in the next lemma that it can be made arbitrarily small
independent of n by an appropriate choice of parameter i∗.

Lemma 2.1. There exists a constant C independent of n and i∗ such that ‖(I−Pn)Txi∗K‖∞6C(1=i∗)r .

Proof. Let v∈L∞. For i¿ i∗, we have, using (1.5),
‖(I − Pn)Kv‖∞; Ii 6Chr

i‖DrKv‖∞; Ii6Chr
i x

−r
i−1‖sr(DrKv)(s)‖∞; Ii

6C(1=i∗)r‖sr(DrKv)(s)‖∞; Ii : (2.4)

Now, by assumption (2.1) the Mellin convolution operator srDrK (with kernel srDr�) is bounded
on L∞, and (2.4) proves the lemma.

From this we can prove the stability of (2.3) using the Banach lemma by taking i∗ su�ciently
large:
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Theorem 2.2. There exists i ∗¿0 such that for all n su�ciently large; the modi�ed collocation
equations (2:3) have a unique solution un and satisfy the error estimate ‖u−un‖∞6C‖u−PnT xi∗u‖∞.

If u∈Cr;� with 0¡�61 and u(0) = 0 then, as described in Section 1, the above error estimate
implies convergence with optimal order O(n−r) provided q¿r=�. Note the philosophy of the argu-
ment: Lemma 2.1 shows that there exists a modi�cation parameter i∗ (�xed with respect to n) which
ensures stability. Then Theorem 2.2 shows that the resulting modi�ed method converges optimally
provided the mesh is appropriately graded. The choice of any �xed i∗ for stability does not a�ect the
rate of convergence as n→∞, although it does a�ect the asymptotic constant in the error estimate.

3. Further results for second-kind equations

We now give a survey of results on piecewise polynomial collocation methods and their iterated
and discrete versions for Eq. (1.3). Using graded meshes and modi�ed spline spaces as described
in the previous section, it is possible to obtain stability (provided (I − K) is well-posed) and the
same optimal orders of convergence as in the case of second-kind equations with smooth kernels.
We present here general convergence results in the space Lp = Lp(0; 1); 16p6∞, for which we
need the following assumptions:

(A1) For all k¿0;
∫∞
0 s1=p+k |Dk�(s)| ds=s¡∞.

(A2) The symbol 1− �̃(z) does not vanish on Re(z)=1=p, and the winding number of this function
with respect to the origin is equal to 0.

(A3) For some 1¿�¿− 1=p; u∈Ck;� for all k.

Note that (A1) (with k=0) ensures that K is bounded on Lp and �̃(z) is a continuous function on
Re(z)=1=p vanishing at in�nity. It turns out that (A2) is then equivalent to each of the conditions (i)
and (ii) in (1.4) for the Lp norm. This follows from known results on Wiener–Hopf integral equations
(see [38]). The assumption (A3) holds if the right-hand side f of (1.3) is (in�nitely) smooth on
[0; 1] and (1−�̃(z))−1 is analytic in the strip −�6Re(z)61=p; see [20] for precise regularity results.
We �rst consider the modi�ed collocation method (2.3) again and extend Theorem 2.2 to the Lp

case [19].

Theorem 3.1. Assume the mesh {xi} is q-graded at 0; and suppose i∗ is su�ciently large. Then
the collocation method (2:3) is stable in Lp. It converges in Lp with optimal order O(n−r) pro-
vided q¿r=(�+ 1=p) (although when �∈ [0; 1]; the additional assumption u(0) = 0 is required for
convergence).

The proof is analogous to that of Theorem 2.2. Note that the crucial estimate (2.4) (for the Lp

norm) follows from the boundedness of the operators srDrK (ensured by (A1)) and the standard
local approximation property of Sr;−1

n , i.e., ‖(I −Pn)v‖p; Ii6Chr
i‖Drv‖p; Ii , with C independent of i; n

and v (see, e.g., [46]). To obtain consistency of the method in the case �∈ [0; 1]; u(0) 6= 0, more
general modi�cations of the spline spaces instead of the simple cut-o� by zero on [0; xi∗] should be
used; see [10] for a version including the piecewise constants on the �rst i∗ subintervals and [20]
for a method based on splines from Sr;0

n which reduce to a (global) constant on [0; xi∗]. However,
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in general the stability of these methods cannot be obtained from (1.4)(ii) by small perturbation. To
get around this problem, either an additional condition on the norm of K should be imposed [10]
or another approach based on Wiener–Hopf factorization can be employed [20].
As mentioned in the introduction, in several important classical second kind boundary integral

equations on corner domains (which have localisation of form (1.3) — see Section 4), the operator
to be approximated turns out to be strongly elliptic and the Galerkin method is stable without
modi�cation in the energy norm. If one wants to prove convergence in other norms (e.g., the
uniform norm) more delicate analyses are needed (e.g., [6,7,9]). More generally, for problem (1.3)
under the assumptions (A1)–(A3) above, we must again consider modi�cations in order to prove
stability even for the Galerkin method (see [18,20]). Indeed the unmodi�ed method is in general
unstable for operators satisfying only (A2) [20].
The collocation method is of practical interest because its implementation requires less numeri-

cal integration than the Galerkin method. However, even the collocation method generally requires
quadrature for its implementation, and this should be included in an error anaylsis. Thus we now
discuss a fully discrete version of the collocation method (2.3), which also turns out to be closely
related to the classical Nystr�om method. To de�ne this method, introduce an r point interpolatory
quadrature rule on [0; 1]:

∫ 1
0 v ∼=∑r

j=1!jv(�j) with weights !j and points 06�1¡ · · ·¡�r61. Let
R be the order of this rule so that R¿r and R = 2r if and only if �j are the r Gauss–Legendre
points on [0; 1]. De�ne xij as in Section 2 and set Q={(i; j): i= i ∗+1; : : : ; n; j=1; : : : ; r}. Then the
(modi�ed) composite quadrature rule obtained by shifting the above rule on [0; 1] to each Ii, and
summing over i¿ i∗, is ∫ 10 v ∼=∑Q !jv(xij)hi. The integral operator K in (1.3) will be approximated
by

Knv(s) =
∑
Q

!j�(s=xij)v(xij)hi=xij: (3.1)

The (modi�ed) discrete collocation method for (1.3) seeks an approximate solution un ∈ Sr;−1
n satis-

fying un ≡ 0 on [0; xi∗] such that
(I − PnT xi∗Kn)un = PnT xi∗f; (3.2)

where Pn is the interpolatory projection de�ned in Section 2. The Nystr�om (or discrete iterated
collocation) solution u∗n(s) to (1.3) is then de�ned by u∗n = f + Knun, and it satis�es

(I − Kn)u∗n = f; (3.3)

note that PnT xi∗u∗n=un. By collocation at s=xij; (i; j)∈Q, (3.3) is reduced to the linear system (3.2)
for u∗n(xij) = un(xij), the solution of which in turn gives u∗n(s) for all s∈ [0; 1]. The following result
extends Theorem 3.1 to the discrete collocation method (3.2) and establishes superconvergence for
the Nystr�om method (3.3).

Theorem 3.2. Under the assumptions of the preceding theorem; the method (3:2) is stable and
optimally convergent in Lp. Moreover; if the grading exponent satis�es the (possibly stronger)
requirement q¿R=(� + 1=p); then the Nystr�om solution converges with the error
bound ‖u− u∗n‖p =O(n−R) as n→∞.

For details of the proof of Theorem 3.2, we refer to [19,27]. To give a brief overview of the
proof, we remark that the stability of (3.2) can be obtained from that of the collocation method by
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small perturbation in the operator norm, as described in [19]. It is also possible to approach (3.3)
directly in the case p =∞. In [27] it is shown that the operator Kn de�ned in (3.1) is uniformly
bounded on C. This allows a more straightforward approach to stability by regarding I − Kn as a
small perturbation of the �nite section operator I −KTxi∗ . The error bound for the Nystr�om solution
follows from the estimate ‖u − u∗n‖p6C‖(K − Kn)u‖p, where the last term is of order O(n−R),
provided that u∈CR;�, for 06�61; u(0) = 0, and the grading exponent satis�es q¿R=�.
For the model problem (1.3) it is simple to extend all the above methods to the case when

u(0) 6= 0. Using (1.3) together with (1.2), it follows that (1 − �̃(0))u(0) = f(0). Then it is easy
to see that the function v:=u − u(0) satis�es v(0) = 0 and can be computed by solving (1.3) with
the modi�ed right-hand side f(s) − f(0)(1 − K1(s))=(1 − �̃(0)) (where 1 is the unit function on
[0; 1]). In more general situations (such as the second-kind boundary integral equations described in
Section 4), Eq. (1.3) appears only as a localised model problem in a coupled system and in this
context it is not possible to compute u(0) explicitly. Nevertheless, stable and consistent methods can
be constructed by considering appropriate extended systems [27].
All the results mentioned in this section can be generalised to systems of equations of the form

(1.3). In particular, the stability of the methods can be again obtained from the stability of the
�nite section operators by small perturbation. However, for matrix operators, condition (1.4)(ii) is
no longer equivalent to the well-posedness of (I −K) and requires the invertibility of an additional
Mellin convolution operator; see [38] for a discussion of this in the case of Wiener–Hopf operators.
Fortunately, there is an important special case where (1.4)(ii) is always satis�ed in the L2 norm,
namely the case of a strongly elliptic (matrix) symbol, i.e., Re(I − �̃(z)) is uniformly positive
de�nite for Re(z) = 1

2 . Together with (A1) and (A3) (for p= 2), this implies stability and optimal
convergence for the modi�ed collocation and quadrature methods, whereas Galerkin’s method is of
course stable with i∗=0. We indicate an important application of this technique in Section 5.
Finally we want to emphasise that the simple perturbation argument presented in Lemma 2.1 is

restricted to the case of continuous symbols. The stability analysis of more general classes of con-
volution operators (containing singular integral operators of Cauchy type for example) requires more
sophisticated methods combining Mellin and local Banach algebra techniques; see, e.g., [39,38,14,29].

4. Boundary integral equations on corner domains

Boundary value problems for linear elliptic PDE’s can be reduced to boundary integral equations
through the use of a fundamental solution. For Laplace’s equation in 2D this is the function G(x; y)=
(2�)−1 log|x−y|−1. If U satis�es Laplace’s equation in a bounded polygonal domain 
 with boundary
� then the Cauchy data u:=U |� and v:=@nU |� satisfy Green’s identity

Vv(x)−Wu(x) =−( 12)u(x); x∈�;

for all smooth points x of �, where Vv(x) =
∫
� G(x; y)v(y) d�(y) is the single layer potential,

Wu(x)=
∫
� @n(y)G(x; y)u(y) d�(y) is the double layer potential, and @n denotes di�erentiation in the

outward normal direction from 
. This identity can be extended to all x∈� by taking appropriate
limits. An analogous relation holds for exterior problems. For the Neumann problem, with v given,
we have to solve the second-kind equation

u(x)− 2Wu(x) = g(x):=− 2Vu(x) (4.1)
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for the Dirichlet data u. For the Dirichlet problem with u given, we have to solve the �rst-kind
equation

2Vv(x) = g(x):=− u(x) + 2Wu(x); (4.2)

for the Neumann data, and for mixed Dirichlet–Neumann conditions a �rst–second kind system
arises. Analogous equations arise from the classical indirect boundary integral method [2]. A rigorous
justi�cation of the underlying potential theory in nonsmooth domains can be found in [12]. The
method is of course applicable to much more general PDEs (e.g., [50]).
To see how the model problem (1.3) arises from these applications, consider the case that � is

(in�nitely) smooth with the exception of a corner, without loss of generality situated at the origin 0.
We further assume that � in the neighbourhood of 0 consists of two straight lines intersecting with
an interior angle (1 − �)�, 0¡ |�|¡ 1. Consider a parametrisation (s) : [− �; �] → �, |′(s)|¿ 0
for s∈ [�; �], which near s= 0 may be given by

(s) =

{
(−cos ��; sin ��)|s|; s∈ [− �; 0];

(1; 0)|s|; s∈ [0; �]: (4.3)

Considering �rst of all the relatively straightforward case (4.1), let  be a smooth function on
� with  (x) ≡ 1 when |x|6�=2 and  (x) ≡ 0 when |x|¿� and observe that 2W −  2W is an
operator with smooth kernel. The behaviour of (4.1) is thus dominated by the localised operator,
I −  2W . A short calculation shows that

( 2W )u((s)) =




∫ �

0
�
(
s
�

)
u((�))

d�
�

; s∈ [− �; 0];

−
∫ 0

−�
�
(
s
�

)
u((�))

d�
�

; s∈ [0; �];
where

�(s):=
sin ��
�

{
s

1− 2s cos ��+ s2

}
:

Thus  2W corresponds to a matrix of operators of form (1.1) and the analysis of (1.3) is the
key to understanding (4.1). The above argument can be extended to the case of many corners in an
obvious way.
Now let us turn to the �rst-kind Eq. (4.2). The connection to (1.3) here is much less obvious.

With the parametrisation  : [− �; �]→ � introduced above, we can write

(2Vu)((s)) =
1
�

∫ �

−�
log

1
|(s)− (�)|w(�) d�=:Vw(s); (4.4)

where w(�) = u((�))|′(�)|. (Note that here we take the Jacobian into the unknown. As indicated
in Section 1, this is useful when nonlinear parametrisations are used to treat corner singularities.) In
the theory of V a special role is played by the operator

Aw(s):=
1
�

∫ �

−�
log

1
|2 sin(s− �)=2|w(�) d� + Jw; (4.5)

where Jw = (1=2�)
∫ �
−� w(�) d�. The �rst term in the expression for A is simply the operator V

restricted to the unit circle (s) = (cos s; sin s). The additional compact perturbation J is added to
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make A invertible with the result that A is an isometry from Hk onto Hk+1 for all k (where Hk

denotes the usual 2�—periodic Sobolev space of order k). It is a special feature of V that it can
in some sense be conveniently regularised by the operator A−1. More precisely, we can write

A−1Vw = A−1(A+ (V − A))v=: (I +M)v; (4.6)

where M = A−1(V − A) and

(V − A)w(s) =
1
�

∫
�
log
|2 sin(s− �)=2|
|(s)− (�)| w(�) d� − Jw:

When � is smooth (e.g., C∞), the kernel of the �rst term in V − A has a removable singularity
and it can be shown [53] that the operator V − A maps L2 to Hk for all k¿0 and hence that M is
compact from L2 to Hk for all k. Thus in the smooth case the �rst-kind Eq. (4.2) is equivalent to
the nonstandard second-kind equation

(I +M)w = f :=A−1g: (4.7)

When � is polygonal the regularization (4.6) can still be carried out, but the resulting operator M
is no longer compact. In fact, local to each corner of �, M turns out to be composed of Mellin
convolution operators of the form (1.1). To see this we need some more details about the operator
A. We have the well-known relations (see e.g., [38]) DA = H and A−1 = −HD + J , where H is
the 2�-periodic Hilbert transform Hv(s) = −(2�)−1 ∫ �−� cot((s − �)=2)v(�) d� (with the integral to
be interpreted in the Cauchy principle value sense) and D is the 2�-periodic di�erentiation operator.
Hence, the essential behaviour of M near each corner can be found by studying HD(V − A). To
compute this, we observe that

DVw(s) =−1�
∫ �

−�

((s)− (�)) · ′(s)
|(s)− (�)|2 w(�) d�:

For w locally supported near 0, i.e., supp w⊂ [− �; �], we have the representation

DVw(s) =



−1�

∫ 0

−�

w(�)
s− �

d� +
∫ �

0
�1

(
s
�

)
w(�)

d�
�

; s∈ [− �; 0]

∫ 0

−�
�1

(
s
�

)
w(�)

d�
�
− 1�

∫ �

0

w(�)
s− �

d�; s∈ [0; �]
where

�1(s) =
1
�

{
cos ��− s

1− 2s cos ��+ s2

}
:

This calculation, which shows that D(V −A)=DV −H can be represented as a matrix of operators
of the form (1.1), was �rst given in [53] and shows that A−1(V − A) is represented (local to
each corner) as a product of H with operators of the form (1.1). From this a numerical analysis
of collocation methods followed [28,52]. However, this analysis was somewhat restricted, mainly
because M = A−1(V − A) = −HD(V − A) (modulo compact operators) and although the operator
D(V − A) was well-understood (as above) the important product HD(V − A) was not. In [21] this
product was computed using the symbolic calculus for Mellin operators. This is possible since (local
to the corner 0) we can write (modulo a compact operator)

Hv(s) =
∫ �

−�

1
s− �

v(�) d� =
∫ �

−�
(s=� − 1)−1v(�)d�

�
; s∈ [− �; �]
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which can be also treated using the Mellin transform. In fact in [21] more general results than this
were obtained. Following the “parametrisation” method for handling singularities outlined in Section
1, [21] considered parametrisations of � which varied more slowly than arc length near each corner.
An example is to parametrise � near 0 by replacing |s| with |s|q in (4.3). The above calculation
�rst of V in (4.4) (which now depends on q) and of A−1(V −A) can again be performed and yields
again a representation of M near each corner involving operators of the form (1.1).
In this section we have shown that model problem (1.3) arises in both standard and nonstandard

ways from localisations of boundary integral equations on nonsmooth domains. (Here we have
restricted to the Laplace equation but similar local problems arise, for example, from the Helmholtz
equation [11] and in linear elasticity [24].) For the classical second-kind boundary integral equations
(such as (4.1)) on polygonal domains it is possible to give a complete error analysis of (modi�ed)
methods, using the knowledge of numerical methods for the local model problem (1.3) outlined
in Sections 2, 3 — see, for example [27]. However, for �rst kind equations such as (4.2) which
are connected to the model problem (1.3) in less standard way, the numerical analysis is more
complicated. In the �nal section we give a brief survey of this area with pointers to the literature
where the reader can �nd more details.

5. Results for �rst-kind equations

We �rst discuss the numerical solution of Symm’s integral equation (4.2) on polygonal domains
by high-order spline collocation methods. To approximate the singularities of solutions at the corner
points, the �rst idea that comes to one’s mind is to attack this equation directly by using splines on
graded meshes as in the case of the double-layer potential equation (4.1). This approach was taken
in [13] where stability and optimal convergence rates for piecewise linear break-point collocation
were proved with respect to a weighted Sobolev norm. So far these results have not been generalized
to higher-order splines.
On the other hand, if � is smooth then the operator in (4.2) is a classical periodic pseudodif-

ferential operator, and thus the full force of the general convergence theory developed in [1,44,45]
for collocation methods with smooth splines (mostly) on uniform grids becomes available; see also
the review in [48] for these and related methods and the detailed presentation in [38]. Although the
piecewise constant mid-point collocation method was shown to converge for quite general meshes in
[8], this analysis is restricted to smooth boundaries and there is still no general convergence analysis
for (4.2) for general boundaries and general piecewise polynomial approximation schemes.
This situation essentially motivated the approach in [21] where the use of a nonlinear parametri-

sation (or mesh grading transformation) of the boundary curve together with a uniform mesh has
allowed a �rst stability and convergence analysis of high-order collocation methods in the presence
of corners.
To illustrate this type of result, we retain the notation of the preceding section and parametrise

the boundary � with one corner at 0 by  : [− �; �]→ � such that (0) = 0, and, near s= 0,

(s) =

{
(−cos ��; sin ��)|s|q; s∈ [− �; 0];

(1; 0)|s|q; s∈ [0; �]: (5.1)
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Here the grading exponent q is an integer ¿1. The Eq. (4.2) transforms to

Vw(s) = g(s); s∈ [− �; �]; (5.2)

where V and w are de�ned as in (4.4) (but using the nonlinear parametrisation (5.1)), and
g(s):=g((s)). By appropriate choice of q, the solution w of (5.2) can be made smooth local to the
corner (provided g is smooth), and hence w can be optimally approximated using splines from Sr

n;p

(the 2�-periodic smoothest splines of degree r − 1 on the uniform mesh xi = ih, i = 0; : : : ; n, with
meshsize h= 2�=n). To discretise (5.2), introduce the interpolant Qnv∈ Sr

n;p by requiring
(a) when r is odd Qnv(ti) = v(ti); i = 1; : : : ; n,
(b) when r is even Qnv(xi) = v(xi); i = 0; : : : ; n− 1,
where ti are the mid-points of subintervals. Then the collocation method for (5.2) seeks wn ∈ Sr

n;p

such that

QnVwn = Qng: (5.3)

The approach to the analysis of (5.3) is analogous to that used in Section 4 where (4.2) is trans-
formed to the nonstandard second kind Eq. (4.7). In fact (5.3) can be rewritten as a nonstandard
projection method for (4.7) as follows. For any v∈H 0, let Pnv∈ Sr

n;p solve the collocation equations
QnA(Pnv)=QnAv for the circle operator A de�ned in (4.5). It is well-known (see [38, pp. 492–493]
and the references listed at the beginning of this section) that this prescription de�nes a (uniformly)
bounded projection operator Pn : H 0 → Sr

n;p. It is then straightforward to see that (5.3) is equivalent to

(I + PnM)wn = Pnf; with M = A−1(V − A); f = A−1g: (5.4)

To overcome the di�culty in the stability analysis of (5.3), or equivalently (5.4), one may introduce
an analogous cut-o� procedure in the vicinity of the corner as in the case of the model second-kind
Eq. (1.3). To describe the modi�cation, introduce the truncation T�v as T�v(s) = 0, for |s|¡�, and
T�v(s) = v(s) for �¡ |s|¡ �. Then, for any �xed i∗¿0, consider the method

Qn(A+ (V − A)T i∗h)wn = Qng; (5.5)

which coincides with (5.3) when i∗=0. By mimicking the derivation of (5.4) from (5.3), it is easily
seen that (5.5) is equivalent to

(I + PnMT i∗h)wn = Pnf: (5.6)

Applying the technique outlined in Sections 2 and 3 to the projection method (5.6) and employing
the (nontrivial) Mellin analysis of the operator M discussed in the previous section, one then can
prove the following convergence result for the modi�ed collocation method [21].

Theorem 5.1. Suppose the grading exponent satis�es q¿ (r + 1
2)(1 + |�|); where (1 − �)� is the

interior angle at the corner. Then there exists i∗ such that (5:5) has a unique solution for all n
su�ciently large and is optimally convergent in the L2 norm; i.e.; ‖w − wn‖2 = O(n−r) as n→∞.

A crucial prerequisite for this result is the strong ellipticity of the second-kind operator I +
M , i.e., Re(I + M) is positive de�nite in H 0 = L2, modulo compact operators. Together with a
uniqueness result for the transformed integral equation (5.2), this implies the analogue of (1.4) in
this setting, i.e., the well-posedness of I+M and the stability of the �nite section operators I+MTi∗h
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(as h → 0) in H 0. The �nal step in the stability proof for (5.6) is again a perturbation argument
similar to that of Lemma 2.1, which however, requires a thorough study of the Mellin convolution
kernel of the operator M localised to the corner (see [21], with improvements given in [23]). The
optimal error estimate then follows from standard spline approximation results since, as it was also
shown in [21], the solution of (5.2) satis�es w∈Hr and has appropriate decay as s → 0 provided
the grading exponent q is su�ciently large.
The above stability and convergence results may be extended to various related parametrisation

methods and to other �rst-kind equations on polygonal boundaries. In [23] it was shown that Theorem 5.1
remains true when the collocation integrals are approximated using singularity subtraction and a
suitable composite quadrature rule. A fully discrete trigonometric collocation method is given in
[26]. This method is based on the trapezoidal rule and is easier to implement than the quadrature–
collocation scheme of [23]. More general results on discrete qualocation methods can be found in
[31]. Parametrisation methods based on global algebraic polynomials have recently been applied to
Symm’s equation [35] and to the generalized airfoil equation for an airfoil with a ap [36,47].
A convergence analysis of the trigonometric collocation method applied to mixed boundary value
problems on corner domains is presented in [25].
In conclusion we remark that the numerical analysis of these 2D corner problems is still not

as satisfactory as in the case of smooth boundaries where even fully discrete high-order methods
of almost linear computational complexity are known. However, fast solution methods for classical
�rst-kind integral equations on open arcs have recently been obtained applying the cosine transform
and discrete trigonometric collocation (see [43] and the references therein). The development of
analogous methods for more general problems on corner domains remains a challenge for the future.
Moreover, a stability theory of such methods which avoids the use of any modi�cation technique
appears to be another intriguing open problem. At present this is even not known in the relatively
straightforward model case of global (algebraic or trigonometric) polynomial collocation methods
applied to second-kind Mellin convolution equations.
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Abstract

In this paper we give an overview on well-known stability and convergence results for simple quadrature methods
based on low-order composite quadrature rules and applied to the numerical solution of integral equations over smooth
manifolds. First, we explain the methods for the case of second-kind equations. Then we discuss what is known for the
analysis of pseudodi�erential equations. We explain why these simple methods are not recommended for integral equations
over domains with dimension higher than one. Finally, for the solution of a two-dimensional singular integral equation,
we prove a new result on a quadrature method based on product rules. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A major task in numerical analysis is to provide methods for the solution of integral equations. For
instance, the popular boundary element method consists in transforming a boundary value problem
for a partial di�erential equation into an equivalent boundary integral equation and in solving this
boundary equation numerically. Usually, collocation or Galerkin schemes are applied for the dis-
cretization of integral equations. If no analytic formulas for the integrals appearing in the discretized
matrix operators are known, then, in a further discretization step, the integrals are to be replaced
by quadrature formulas. Therefore, methods like Galerkin’s, collocation or qualocation are called
semi-discretization schemes. To get e�cient numerical methods, the question arises how to choose
optimal quadrature rules. This essential question is discussed in a lot of papers in the engineering
literature, and mathematicians have analyzed and systematized these quadrature algorithms (cf., e.g.,
[2,10,19–22,26,28,40,41,50,53,56,59]).
However, right from the start (cf., e.g., [39]) fully discrete schemes have been proposed. Applying

these so-called quadrature methods, the integrals in the original integral equation are directly replaced
by a quadrature rule. The entries of the resulting linear system can be expressed as linear combina-
tions of kernel function values with quadrature weights as coe�cients. The advantage of quadrature
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methods is that they require less time for writing codes and a little bit less time for computation.
On the other hand, as a rule of thumb, the approximation errors of quadrature methods are a little
bit larger than those of Galerkin or collocation schemes. Especially, the errors measured in nega-
tive Sobolev norms may be essentially larger than those for Galerkin methods. However, there are
cases when quadrature methods can compete with the accuracy of other schemes. Quadrature meth-
ods can be recommended for univariate integral equations of the second kind with smooth kernels.
For univariate equations of the �rst kind and nonsmooth kernels, quadrature methods often require
modi�cations, and their analysis is much more involved. Note that �rst kind equations with smooth
kernels are ill-posed, and the methods of their regularization will not be discussed in this paper.
In case of higher-dimensional equations, the simple quadrature methods can be recommended only
for second-kind equations with smooth kernels. For the general case, more complicated quadrature
methods like methods based on product integration are needed. The latter, however, are very close
to Galerkin or collocation methods with quadrature approximated entries in the sti�ness matrix. Note
that, in general, there is no big di�erence between a quadrature method and a collocation scheme
combined with an e�cient quadrature algorithm. Only the “singular” integrals in the main diagonal
of the sti�ness matrix and the “almost singular” integrals corresponding to the neighbor elements
are treated di�erently. Unfortunately, this small di�erence is essential for the convergence analysis
and the error estimates.
Similarly to the semi-discretized schemes, the quadrature methods can be divided into h-methods,

p-methods, and h–p-methods according to the underlying quadrature rule. If the last is exact for
high-order polynomials, i.e., a variant of a Gau� rule, then the quadrature algorithm is called a
p-method. These p-versions of quadrature are known to be useful for second-kind equations, and
they have been studied very extensively for Cauchy singular integral equations over the interval
(cf. the results and references in [17,18,44]). Quite recently they have been applied to di�erent
one-dimensional operator equations as well (cf. [33,37] and see also [58] for a comparable ap-
proach). If the underlying quadrature rule is a low-order composite rule, i.e., if the domain of
integration is subdivided into small domains of step size less or equal to h and if a low-order rule
like the trapezoidal rule or Simpson’s rule is applied to each subdomain, then we call the quadra-
ture method an h-method. h-methods for second- and �rst-kind equations have been well analyzed
(cf., e.g., [3,4,15,16,18,23,44] and the references in these publications). Clearly, due to the �xed
polynomial accuracy, these h-versions of quadrature methods are designed for problems with �nite
degree of smoothness. Finally, a combination of the composite technique with quadrature rules over
the subdomains of variable orders (cf. [55]) is called an h–p method. Note that p- and h–p-methods
seem to be very promising even for equations with a �nite degree of smoothness. The analysis of
these methods for general equations, however, seems to be a challenging problem.
In this paper we give an overview on more or less well-known results for the h-version of

quadrature methods. In Section 2 we shall introduce the notion of simple quadrature methods and
that of quadrature methods with product integration. We shall formulate some convergence results for
second-kind equations with smooth kernel functions and smooth solutions. In Section 3 we shall apply
simple quadrature methods to pseudodi�erential equations, i.e., to �rst-kind integral equations over
smooth curves and over the torus. Note that, for these methods, a sort of “Fourier analysis” is required
to derive stability and convergence. If the integral operator is de�ned over nonsmooth boundary
curves, then the “Fourier analysis” of the approximation methods is much more involved, and we
refer, e.g., to [16,44] for more details. In Section 4 we show how the concept of mesh gradings
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for higher-dimensional quadrature methods leads naturally to fully discretized collocation schemes.
We explain why simple quadrature methods may not converge in case of second-kind boundary
integral equations over curves and surfaces with corners and edges. Finally, we explain that, from
the view point of complexity, simple quadrature methods over graded meshes are not optimal for the
approximation of these higher-dimensional integral equations. In Section 5 we consider a quadrature
method based on product integration for the numerical solution of two-dimensional strongly singular
integral equations.

2. Quadrature methods and Fredholm integral equations of the second kind

A lot of boundary value problems over domains with smooth boundary can be converted into a
Fredholm integral equation of the second kind (cf., e.g., [34]) the numerical theory for which is
well known (cf., e.g., [3,4,23]). Let us begin with the simplest one-dimensional case. Suppose we
have to solve the equation

x(t) +
∫ 1

0
k(t; �)x(�) d�=y(t); 06t61; (2.1)

where y and k are given smooth functions and x is to be determined. Replacing the integral by the
rectangle rule, we obtain the Nystr�om method for (2.1).

x̃(t) +
n−1∑
l= 0
k
(
t;
l+ 1=2
n

)
x̃
(
l+ 1=2
n

)
1
n
=y(t); 06t61: (2.2)

The solution of this continuous equation over the interval [0; 1] consists of two steps. First, one has
to solve the quadratic linear system for the values x̃((j + 1

2)=n); j=0; : : : ; n− 1

x̃
(
j + 1=2
n

)
+

n−1∑
l= 0
k
(
j + 1=2
n

;
l+ 1=2
n

)
x̃
(
l
n

)
1
n
=y

(
j
n

)
; j=0; 1; : : : ; n− 1: (2.3)

Then, knowing the values x̃(j=n), x̃ is to be computed via Nystr�om’s interpolation

x̃(t)=y(t)−
n−1∑
l= 0
k
(
t;
l+ 1=2
n

)
x̃
(
l+ 1=2
n

)
1
n
; 06t61: (2.4)

Using, e.g., the theory of collectively compact operators, one can prove that (2.2) is stable, i.e., that
(2.3) has a unique solution for n large enough and that the spectral norm of the inverse matrix is
uniformly bounded. The approximate solution x̃ converges to x with the same order as the quadrature
rule in (2.2) approximates the integral in (2.1).
Next, we generalize this method. Suppose � is a compact manifold which is embedded in a

Euclidean space and which is either closed or open. One should think of closed smooth curves or
two-dimensional closed surfaces (i.e., boundary surfaces of open domains) or pieces of these two.
Over the manifold we consider the integral equation

a(t)x(t) +
∫
�
k(t; �)x(�) d��=y(t); t ∈� (2.5)

including the kernel k and the coe�cient function a. For �rst-kind equations, a is zero. If a is
a bounded nonvanishing function, then we can divide the equation by a. Thus we may suppose
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that a is a constant. A good example for the kernel k is the two-dimensional double-layer kernel
which corresponds to three-dimensional boundary value problems for Laplace’s equation and which
is de�ned by the formula k(t; �):=(t − �) · ��=(4�||t − �||3), where ||t − �|| is the Euclidean distance
from t to � and �� stands for the unit normal to the manifold � taken at the point �. Note that the
integral operator corresponding to this double-layer kernel is a pseudodi�erential operator of order
minus one (cf., e.g., [9,25]). The double-layer equation including this integral operator is an equation
of the second kind with a=0:5. In order to discretize (2.5) we introduce a partition �=

⋃K
k = 1 �k

of � into small submanifolds �k of diameter less than a prescribed small positive number h. Fixing
a small integer L and choosing quadrature knots tk; l ∈�l; l=1; : : : ; L, and nonnegative quadrature
weights !k;l; l=1; : : : ; L, for a quadrature over �k , we arrive at the composite quadrature rule∫

�
f(�) d��=

K∑
k = 1

∫
�k
f(�) d�k � ∼

K∑
k = 1

L∑
l= 1
f(tk; l)!k;l: (2.6)

Note that, for �ner and �ner approximations, K tends to in�nity, the maximum h of the diameters
diam�k; k =1; : : : ; K , tends to zero but L is supposed to be �xed. By mQ we denote the order of
convergence de�ned by∣∣∣∣

∫
�
f(�) d��−

K∑
k = 1

L∑
l= 1
f(tk; l)!k;l

∣∣∣∣6ChmQ : (2.7)

For example, the partition could be a triangulation of a two-dimensional polyhedron and the quadra-
ture rule the mid-point rule

∫
�k
f ∼ f(tk;1)!K;1 with tk;1 the centroid of triangle �k and !k;1:=

∫
�k
1

or the three-point rule using the mid-points of the sides of the triangle as quadrature knots and
the weights !k;l=

∫
�k
1=3. Note that the mid-point rule is exact for linear functions whereas the

three-point rule is exact for quadratic functions over the subtriangles of the triangulation which
leads to an order of convergence of mQ=2 and 3, respectively. For polygons the subdomains are
intervals, and one could take the trapezoidal rule and Simpson’s rule, which are exact for linear and
cubic polynomials, respectively. In other words mQ=2 and 4, respectively. However, for periodic
functions over the interval, the order mQ of the trapezoidal rule is even ∞. In case of curved poly-
gons or polyhedra, we can introduce parametrization mappings  : 
 → � to reduce the integral∫
�k
f to the integral

∫

k
f ◦  · |′| over a subdomain 
k = −1(�k) of 
 which is a subtriangle or

subinterval. Applying the just mentioned rules to the transformed integral, we end up with a rule of
the form (2.6).
Now, we replace the integration in (2.5) by quadrature (2.6) and arrive at the corresponding

simple quadrature method (cf. (2.3))

ax̃h(tk′ ; l′) +
K∑
k = 1

L∑
l= 1
k(tk′ ; l′ ; tk; l)x̃h(tk; l)!k;l=y(tk′ ; l′); k ′=1; : : : ; K; l′=1; : : : ; L: (2.8)

If the constant coe�cient a is not zero and if the linear system (2.8) is solved, then we even can
de�ne the Nystr�om interpolant (cf. (2.4))

x̃h(t):=
1
a

{
y(t)−

K∑
k = 1

L∑
l= 1
k (t; tk; l) x̃h (tk; l)!k;l

}
; t ∈�: (2.9)

Theorem 1. Suppose that the compact manifold � is mQ + 1 times continuously di�erentiable and
the right-hand side y is mQ times continuously di�erentiable. Furthermore; suppose that the kernel
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k is mQ times continuously di�erentiable with respect to each of its variable such that even the
mixed derivatives @�t @

�
� k(t; �) with order � and � less than or equal to mQ are bounded. Finally;

assume that the constant a is not zero and that; for y≡ 0; the integral equation (2:5) has only the
trivial solution x≡ 0. Then the linear system of the quadrature method (2:8) is uniquely solvable
for any right-hand side y at least if the step size of discretization h is su�ciently small. The
approximate solution x̃h converges uniformly to the exact solution x and

sup
t ∈�
|x̃h(t)− x(t)|6ChmQ (2.10)

with a constant C independent of the discretization parameters h and K .

Note that in case of quasi-uniform partitions, i.e., in case that there exists a constant c¿1 with
c−1h6irad�k6diam�k6ch,

diam�k :=sup{|t − �|: t; �∈�k};

irad�k :=sup{j: ∃�∈�k s:t: |t − �|6j⇒ t ∈�k};
then the number of degrees of freedom is of order O(h−d) with d=1 and 2 for boundary curves
and two-dimensional surfaces, respectively.

Theorem 2. Suppose that k is the kernel of a classical pseudodi�erential operator of negative order
−m. Furthermore; suppose that mQ¿m¿0; that the compact manifold � is m+1 times continuously
di�erentiable; and the right-hand side y is m times continuously di�erentiable. Finally; assume that
a is a nonzero constant and that; for y≡ 0; the integral equation (2:5) has only the trivial solution
x≡ 0. Then the linear system of the quadrature method (2:8) is uniquely solvable for any right-hand
side y at least if the step size of discretization h is su�ciently small. The approximate solution
x̃h converges uniformly to the exact solution x and

sup
t ∈�
|x̃h(t)− x(t)|6C log h−1hm (2.11)

with a constant C independent of the discretization parameters h and K .

In particular, the quadrature method applied to the double-layer equation over a two-dimensional
boundary manifold converges with order O(h log h−1). To prove the results of the last two theorems,
one �rst shows stability of the discretized operators on the right-hand side of (2.8). This can be done,
for instance, by the principle of collective compactness. Once stability is shown, the convergence
order is derived from the order of convergence of the quadrature. For details we refer, e.g., to
[3,4,18,23]. The reason for the restrictive order of convergence in Theorem 2 is the singular behavior
of the kernel which can be characterized by the so called Calder�on–Zygmund estimate

|@�t @�� k(t; �)|¡C |t − �|−d+m−|�|−|�|; (2.12)

valid for all derivatives of order � and � such that −d + m − |�| − |�|¡0. Here −m is the order
of the pseudodi�erential operator and d the dimension of the underlying manifold �. The order in
Theorem 2 can be improved if a slightly modi�ed quadrature method is considered. This modi�cation



444 A. Rathsfeld / Journal of Computational and Applied Mathematics 125 (2000) 439–460

is called singularity subtraction or regularization (cf., e.g., [18]). To introduce this method we write
(2.5) as

b(t)x(t) +
∫
�
k(t; �)[x(�)− x(t)] d��=y(t); t ∈�;

b(t):=a+
∫
�
k(t; �) d��: (2.13)

Thus, we assume that we are able to compute the function b explicitly. For example, for the
double-layer equation over smooth surfaces, constant functions are known to be eigenfunctions of
the integral operator corresponding to the eigenvalue one-half, and (2.13) takes the form

x(t) +
1
4�

∫
�

n� · (t − �)
||�− t||3 [x(�)− x(t)] d��=y(t); t ∈�: (2.14)

If we replace the integration in (2.13) by quadrature (2.6), we obtain the following quadrature
method and the following Nystr�om interpolation step:

b(tk′ ; l′)x̃h(tk′ ; l′) +
K∑
k = 1

L∑
l= 1
k(tk′ ; l′ ; tk; l)[x̃h(tk; l)− x̃h(tk′ ; l′)]!k;l=y(tk′ ; l′);

k ′=1; : : : ; K; l′=1; : : : ; L: (2.15)

x̃h(t):=
y(t)−∑K

k = 1

∑L
l= 1 k(t; tk; l)x̃h(tk; l)!k;l

b(t)−∑K
k = 1

∑L
l= 1 k(t; tk; l)!k;l

; t ∈�: (2.16)

Theorem 3. Suppose that k is the kernel of a classical pseudodi�erential operator of negative
order −m. Furthermore; suppose that mQ¿m+ 1¿0; that the compact manifold � is m+ 2 times
continuously di�erentiable; and that the right-hand side y is m+1 times continuously di�erentiable.
Finally; assume that a is a nonzero constant and that; for y≡ 0; the integral equation (2:5) has
only the trivial solution x≡ 0. Then the linear system of the quadrature method (2:15) is uniquely
solvable for any right-hand side y and the denominator in (2:16) does not vanish at least if the
step size of discretization h is su�ciently small. The approximate solution x̃h converges uniformly
to the exact solution x and

sup
t ∈�
|x̃h(t)− x(t)|6C log h−1hm+1 (2.17)

with a constant C independent of the discretization parameters h and K .

Another way to improve quadrature methods for nonsmooth kernels is to apply quadrature rules of
product type (cf., e.g., [3,18,30]). Indeed, in many applications the kernel function k(t; �) is singular
but it admits a factorization

k(t; �)= ksm(t; �)ksi(t; �); (2.18)

where the �rst factor ksm has at least a �nite degree of smoothness and where the singularity of k is
contained in ksi. Moreover, we suppose that the singular kernel ksi is simpler such that the integral
of ksi can be computed by analytic formulae. Or we suppose that ksi(t; �) is analytic with respect
to � for � 6= t such that the integral of ksi can be computed by higher-order Gau� rules and other
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techniques (cf., e.g., [28,53,55,56]). Note that an additional additive perturbation by a smooth kernel
function can be treated easily. For the sake of simplicity, however, we drop this additional term.
One example for a factorization of the form (2.18) is the representation of one-dimensional po-

tential kernels for the Helmholtz equation. In particular, the single-layer kernel kk corresponding to
the equation with wave number k and transformed to the 2� periodic interval (cf. [30]) takes the
form

kk(t; �)=M1(t; �)log
∣∣∣∣4 sin2 t − �2

∣∣∣∣+M2(t; �);

M1(t; �):=− 1
2�J0(k|(t)− (�)|);

M2(t; �):=
i
2
H (1)
0 (k|(t)− (�)|)− H1(t; �)log

∣∣∣∣4 sin2 t − �2
∣∣∣∣ ; (2.19)

where  : [0; 2�]→ � is the parametrization of the boundary curve, J0 is the Bessel function of order
zero, and H (1)

0 is the Hankel function of order one. The factors M1 and M2 in (2.19) are analytic
(resp. smooth) functions if the parametrization  is analytic (resp. smooth). Another example for a
factorization is the representation k(t; �)= k0(t; �)|t− �|−� for a typical boundary integral kernel over
a smooth boundary curve �̃, where k0 is an analytic function and where �¿0 is a certain degree of
singularity. If  :�= [0; 2�]→ �̃ denotes the parametrization of the boundary manifold and if 0 is
the parametrization of the unit circle, then we get a factorization of the form (2.18) for the kernel
transformed to the 2�-periodic interval setting

ksm((t); (�)):=k0((t); (�))
|(t)− (�)|�
|0(t)− 0(�)|� |

′(�)|;

ksi((t); (�)):=|0(t)− 0(�)|−�: (2.20)

Unfortunately, such a factorization does not work for the higher-dimensional case. In the higher-
dimensional case, the structure of singularity is more involved and depends strongly on the geometry.
Thus factorization (2.18) is to be de�ned by ksm(t; �)= k0(t; �) and ksi(t; �)= |t− �|−� (cf., Section 5
for more details). Then, in the case of curved boundaries, there are no analytic formulas available
for the integration of ksi. However, if the boundary manifold is piecewise analytic, then the integral
of ksi can be computed by tensor products of Gaussian quadratures. For general boundaries of �nite
degree of smoothness, the parametrization  can be replaced by a piecewise polynomial interpolant ̃
which is polynomial at least over each subdomain �k of the corresponding partition of the quadrature
method. After this substitution the integral over the kernel ksi(̃(t); ̃(�))= |̃(t)− ̃(�)|−� can again
be computed by tensor products of Gaussian quadratures (for more details in some special case cf.,
e.g., [14]).
Now, we choose points �k; l ∈�k and interpolating polynomials ’k;l over �k such that ’k;l(�k; l′)=

�l; l′ . Polynomial means here polynomial with respect to a given parametrization of the boundary
manifold. We consider the quadrature rule∫

�
k(t; �)x(�) d�=

∫
�
ksi(t; �)[ksm(t; �)x(�)] d�
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∼
K∑
k = 1

∫
�k
ksi(t; �)

L∑
l= 1
[ksm(t; �k; l)x(�k; l)]’k;l(�) d�

=
K∑
k = 1

L∑
l= 1
ksm(t; �k; l)x(�k; l)!

p
k; l; !pk; l:=

∫
�k
ksi(t; �)’k;l(�) d�: (2.21)

In order to simplify the assumptions, we assume that the manifold � is a curve or a surface given
by a single parametrization  : 
 → � and that the preimages 
k :=−1(�k) of the subdomains �k
are intervals or triangles. Moreover, we suppose that the L parameter points �k; l corresponding to
the quadrature knots �k; l= (�k; l)∈�k are de�ned as the a�ne images of �xed points �l; l=1; : : : ; L
in the standard interval [0; 1] (resp., in the standard triangle {(s1; s2): 06s26s161}). Likewise, the
polynomials ’k;l are supposed to be the pull backs of interpolatory polynomials ’l de�ned over the
standard interval or triangle. If this basis spans a space containing all polynomials of degree less
than mp, than the convergence order of the quadrature rule is mQ=mp. Applying the corresponding
product rule to (2.5), we arrive at the quadrature method

ax̃h(�k′ ; l′) +
K∑
k = 1

L∑
l= 1
ksm(�k′ ; l′ ; �k; l)x̃h(�k; l)!

p
k; l=y(�k′ ; l′); k ′=1; : : : ; K; l′=1; : : : ; L: (2.22)

Let us note that, for the special choice ksm≡ 1, method (2.16) coincides with the piecewise poly-
nomial collocation method, where the trial space is the span of the {’k;l; k =1; : : : ; K; l=1; : : : ; L}.
In other words, the quadrature method with product rule is already a compromise between quadrature
and collocation method.

Theorem 4. Suppose that the kernel k admits a factorization (2:18); where ksm is mp times contin-
uously di�erentiable with respect to both variables such that even the mixed derivatives @�t @

�
� k(t; �)

with order � and � less than or equal to mp are bounded. For ksi(t; �); we suppose the same degree
of di�erentiability for t 6= � and; for t → � and the same orders of di�erentiation; estimates (2:12)
where m¿0. Furthermore; suppose that the compact manifold � is mp + 1 times continuously
di�erentiable; and that the exact solution x and the right-hand side y are mp times continuously
di�erentiable. Finally; assume that a is a nonzero constant and that; for y≡ 0; the integral equa-
tion (2:5) has only the trivial solution x≡ 0. Then the linear system of the quadrature method
(2:22) is uniquely solvable for any right-hand side y at least if the step size of discretization h is
su�ciently small. The approximate solution x̃h converges uniformly to the exact solution x and

sup
t ∈{�k; l:k = 1;:::; K; l= 1;:::; L}

|x̃h(t)− x(t)|6Chmp (2.23)

with a constant C independent of the discretization parameters h and K .

3. Quadrature methods for pseudodi�erential equations over smooth boundaries

Boundary integral operators over smooth boundaries belong to the class of classical pseudodi�eren-
tial operators (cf., e.g., [9,25]). If the order of such an operator is nonnegative, then the kernels of the
integral operators are strongly singular or even hypersingular. The convergence of simple quadrature
methods applied to such functions is not guaranteed. In fact, in many situations the straightforward
quadrature methods do not converge. We present here convergent variants of quadrature methods,
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only. All these methods rely on a singularity subtraction step (cf., e.g., (3.7), (3.8), and [6,49] for
operators of order minus one) though, at �rst glance, this may not be visible. Let us start with the
simplest case, i.e., with a Cauchy singular integral equation over the unit circle T

Ax(t):=a(t)x(t) + b(t)
1
�i

∫
T

x(�)
�− t d�+

∫
T
k(t; �)x(�) d�=y(t); t ∈T: (3.1)

Here a; b; k, and y are given functions and x is to be determined. Using the ideas developed for
second-kind integral equations, it is not hard to reduce the problem for arbitrary kernel functions k
to the case k ≡ 0. Moreover, for simplicity, we suppose a and b to be continuous. We choose an
even positive integer n, set tk :=ei2�k=n, and consider the following quadrature rules:∫

T
f(�) d�=

∫ 2�

0
f(eis)ieis ds ∼

n−1∑
l= 0
f(tl)tl

2�i
n
; (3.2)

∫
T
f(�) d� ∼ ∑

l= 0;:::; n−1
l≡ k+1 mod 2

f(tl)tl
4�i
n
: (3.3)

Note that rule (3.3) has doubled step size in comparison with (3.2). However, it is appropriate to
functions f having a singularity at tk and will lead to optimal quadrature methods. Thus, we consider
(3.1) for t= tk ; k =0; : : : ; n− 1, replace the integral by rule (3.3) to obtain the quadrature method

a(tk)x̃(tk) + b(tk)
1
�i

∑
l= 0;:::; n−1
l≡ k+1 mod 2

x̃(tl)
tl − tk tl

4�i
n
=y(tk); k =0; : : : ; n− 1: (3.4)

We call this quadrature method stable if, at least for su�ciently large n, Eq. (3.4) are uniquely
solvable for any right-hand side and if the Euclidean matrix norms of the matrices of the linear
systems in (3.4) and the norms of their inverses are uniformly bounded with respect to n. The
method is called convergent if the trigonometric interpolation

Lnx̃(t):=
n−1∑
k = 1

x̃(tk)
1
n

n=2−1∑
l=−n=2

tl

tlk
(3.5)

tends in the L2 norm to the exact solution x of (3.1) for all continuous right-hand sides y. Note
that stability is an important condition for solving the linear system of equations. Moreover, it is
necessary for the method to be convergent. We get (cf. [44] and compare the analogous results in
[5,32]).

Theorem 5. If the singular integral operator A is invertible; then the quadrature method (3:4) is
stable and convergent. For a right-hand side which is m times di�erentiable such that the mth
derivative is square integrable; the L2 error ||Lnx̃ − x|| is less than a constant times n−m.

Proof. We assume a and b to be constant. The general case can be treated by well-known localization
techniques (cf., e.g., [44]). Set ek(t):=tk , denote the span of the ek ; k = − n=2; : : : ; n=2 − 1 by Tn,
and recall that Ln stands for the interpolation projection of (3.5). Now it is well known that ek is
an eigenfunction of A corresponding to the eigenvalue a+ b sign(k + 1

2). Hence, Tn is an invariant



448 A. Rathsfeld / Journal of Computational and Applied Mathematics 125 (2000) 439–460

subspace for A. The collocation solution xn ∈Tn is de�ned by Axn(tk)=y(tk); k =0; : : : ; n−1, i.e., by
LnAxn=Lny. Consequently, we get Axn=Lny and the collocation solution xn=A−1Lny converges
to the exact solution x=A−1y. Thus in order to prove our theorem, it is su�cient to show the
equivalence of method (3.4) and the collocation method.
The solution x̃ of (3.4) is a discrete function over {tk ; k =0; : : : ; n − 1}. We identify x̃ with the

linear interpolation Lnx̃. Then our proof is �nished if we show

Axn(tk)= axn(tk) + b
1
�i

∑
l= 0;:::; n−1
l≡ k+1 mod 2

xn(tl)
tl − tk tl

4�i
n
:

We have to prove that, for xn ∈Tn,
1
�i

∫
T

xn(�)
�− tk d�=

1
�i

∑
l= 0;:::; n−1
l≡ k+1 mod 2

xn(tl)
tl − tk tl

4�i
n
: (3.6)

We arrive at
1
�i

∫
T

xn(�)
�− tk d�=

1
�i

∫
T

xn(�)− xn(tk)
�− tk d�+ xn(tk)

1
�i

∫
T

1
�− tk d�

=
1
�i

∑
l= 0;:::; n−1
l≡ k+1 mod 2

xn(tl)− xn(tk)
tl − tk tl

4�i
n
+ xn(tk); (3.7)

where we have used that e0≡ 1 is an eigenfunction corresponding to the eigenvalue 1, that {xn(t)−
xn(tk)}={t− tk} is in the span{ek ; k = − n=2; : : : ; n=2− 2} and that (3.3) is exact on span{ek ; k = −
n=2; : : : ; n=2 − 2}. Note that the exactness of (3.3) is a simple consequence of the formula for the
geometric series. Now (3.6) follows from (3.7) by a straightforward computation. The convergence
order can be derived by standard methods (cf., e.g., [44]).

Theorem 5 can be generalized to nonuniform partitions (cf. [8,38,54]). An analogous result holds
for the one-dimensional hypersingular equation ([27], cf. also [7,11,29]). However, the singularity
subtraction step (3.7) is to be replaced by the following regularization of the �nite part integral:

1
2�

∫
T

x̃(�)
|�− tk |2 |d�|=

1
2�

∫
T

x̃(�)− x̃(tk)− x̃′(tk)(�− tk)
|�− tk |2 |d�|

+ x̃(tk)
1
2�

∫
T

1
|�− tk |2 |d�|+ x̃

′(tk)
1
2�

∫
T

�− tk
|�− tk |2 |d�|: (3.8)

Applying (3.3) to the �rst integral on the right-hand side, computing the others and performing some
easy calculations, we arrive at the quadrature approximation

1
2�

∫
T

x̃(�)
|�− tk |2 |d�| ∼

n
8
x̃(tk) +

∑
l= 0;:::; n−1
l≡ k+1 mod 2

x̃(tl)
|tl − tk |2 tl

2
n
; (3.9)

which, again, is exact for x̃= xn ∈Tn. Note that a regularization like in (3.8) is necessary in order
to obtain a convergent quadrature method.
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Now, let us consider the generalized single-layer equation

Ax(t):=
∫
T
k(t; �)x(�)|d�|=y(t); t ∈T; (3.10)

k(t; �) := a(t)k0(t; �) + b(t)k1(t; �) + k2(t; �);

k0(t; �) :=−1� log |t − �|; k1(t; �):=k1(t=�);

k1(ei2�u):=

{
i[u− 0:5] if 0¡u¡1;

0 if u=0;
(3.11)

where a, b and k2 are smooth functions. Operator A is a pseudodi�erential operator with principal
symbol �A(t; �)= [a(t) + b(t) sign(�)]|�|−1. Replacing integration by quadrature (3.2), we arrive at
the quadrature method

n−1∑
l= 0

k(tk ; tl)x̃(tl)
2�
n
=y(tk); k =0; : : : ; n− 1: (3.12)

Note that k0(t; t):=lim�→t k0(t; �)=∞. Thus, in the last formula, we need to �x an arti�cial �nite
value for k0(t; t)= k0(1; 1). Due to the factor 2�=n this value is of no importance for the consistency
of the quadrature. However, the choice of this value is essential for the stability and the order of
convergence. We take k0(1; 1)= − log n=� which corresponds to the quadrature method modi�ed
by singularity subtraction [6,49]. For quadrature methods applied to the general pseudodi�erential
equation (3.10) of order −1 and analogous methods applied to other pseudodi�erential equations
of negative order, the method of the proof to Theorem 5 fails. The theory of collectively compact
operators is helpful to treat the compact perturbations

∫
k2(t; �)x(�)|d�|. The stability of the main

part of the equation, however, requires new techniques. Of course, stability is to be understood not
in terms of the Euclidean matrix norm but in terms of a more general operator norm induced by
the norms of the Sobolev spaces in which A and its inverse are bounded. The �rst method of proof
is the so-called localization principle. The second is the Fourier analysis or circulant technique. For
example, the stability of the discretized weakly singular operator de�ned by the left-hand side of
(3.12) can be reduced by localization to the stability of the corresponding matrices with frozen
functions a, b, and k2. The matrix with constant a, b, and k2 is a circulant and takes the form

Vn:=
(
−a log |1− tk−l|2n + bk1(tk−l)

2�
n
+ k2

2�
n

)n−1
k; l= 0

: (3.13)

In general, a matrix (ak; l)n−1k; l= 0 is called a circulant if ak; l= ak−l and ak−l= ak−l±n. The eigenvalues
{�l; l= − n=2;−n=2 + 1; : : : ; n=2− 1} of the circulant (ak−l)n−1k; l= 0 are connected with the entries by

�k =
n−1∑
l= 0

ei2�lk=nal: (3.14)

Using (3.14), writing |1− tl|=2|sin(�l=n)|, and substituting sin(�x) by �x∏∞
j= 1 (1− x2=j2), it is not

hard to verify that the matrix Vn has the eigenvalues

�nl =

{
[s(tl)]=n if l= − n

2 ; : : : ;−1; 1; : : : ; n2 − 1;
2�k2 if l=0;

(3.15)
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where the numerical symbol function s is de�ned by s(t):=a f (t) + b g(t),

f (t):=2 log(2�)− 2 ∑
l∈Z; l 6=0

log|l| tl; g(ei2�u):=� cot(�u):

Note that function f is smooth except at t=1. Multiplying f (t) by (t − 1)2 we get an absolutely
convergent series. By the way, f is the symbol function of the Toeplitz matrix (−2 log|k− l|)∞k; l=−∞
which is the quadrature discretization of step size one for the logarithmic equation over the real axis.
Comparing eigenvalues (3.15) with the eigenvalues �0 = 2�k2 and �l=(a+sign(l+ 1

2))|l|−1; l= ±
1;±2; : : : corresponding to operator A, we observe the consistency property �nl =�l → 1 for any
�xed l and for n → ∞. The stability is equivalent to the existence of a constant c¿1 such that
c−1|�l|6|�nl |6c|�l| holds for su�ciently large n and l=−n=2; : : : ; n=2−1. We arrive at the following
typical theorem.

Theorem 6. If the pseudodi�erential operator A of order −1 is invertible, if k0(1; 1) is chosen to
be −log n=�; and if a(t)+ �b(t) 6= 0 for all t ∈T and −16�61; then the quadrature method (3:4)
is stable and convergent. For a right-hand side which is four times continuously di�erentiable or
at least contained in the Sobolev space H 4(T); we get the estimate (cf. (3:5))

sup
t ∈T
|Lnx̃ − x|6C ||Lnx̃ − x||H 1(T)6Cn−2 ||y||H 4(T): (3.16)

The assumption a(t) + �b(t) 6= 0; −16�61 means that operator A is strongly elliptic. Note that
the interval [− 1; 1] in this condition originates from [− 1; 1]= {g(t)=f (t): t ∈T}. The convergence
order two in estimate (3.16) can be derived from the symbol function s, too. Namely, if there
exists a constant �¿0 such that |x|f (x)= 1 + O(|x|�) and xg(x)= 1 + O(|x|�) for x → ±0, then
|�nl − �l|=|�l|6O(n−�) and the order of convergence is �. In fact this constant exists, and is equal
to two. As it is well known (cf. [6,49]), the convergence order is even three in the case that the
coe�cient b vanishes identically. To improve the order of convergence, one can use, for instance,
an end-point correction for the rectangle rule (cf. [1]). More details and di�erent modi�cations to
improve convergence can be found in [6,18,31,35,36,44,49,52,57].
In general, for the stability of the quadrature method applied to a �rst-kind integral operator, the

invertibility of the operator is not su�cient. Often strong ellipticity turns out to be the necessary and
su�cient stability condition. For one-dimensional pseudodi�erential operators of order less than −1,
the quadrature method can also be considered as a Galerkin method with Dirac-� ansatz functions (cf.
[51]). In this case standard techniques for the Galerkin approximation of strongly elliptic operators
can be applied.
Finally, let us remark that there is not much known for quadrature methods applied to pseu-

dodi�erential equations over the boundaries of higher-dimensional domains. The only paper in this
direction we know about is due to Saad Abdel-Fattah [48]. To report this result, we consider the
two-dimensional pseudodi�erential operator of order zero over the torus T2 := {(t1; t2)∈R2: 06ti
¡ 1; i = 1; 2}

Ax(t) := a(t)x(t) +
∫
T2
k(t; �)x(�)d�=y(t); t ∈T2;

k(t; �) := k0(t; t − �) + k2(t; �); (3.17)
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where the coe�cient a and the kernel function k2 are supposed to be smooth and one-periodic
functions and where the singular kernel k0(t; �) satis�es

k0(t; %�)= sign(%)k0(t; �)%−2; % 6= 0 (3.18)

and is smooth and one-periodic with respect to t ∈T2 and smooth with respect to � for |�|=1.
Applying the tensor product trapezoidal rule to (3.17), we arrive at the quadrature method

a
(
k1
n
;
k2
n

)
x
(
k1
n
;
k2
n

)
+

n−1∑
l1 ;l2 = 0

k
((
k1
n
;
k2
n

)
;
(
l1
n
;
l2
n

))
x
(
l1
n
;
l2
n

)
1
n2

=y
(
k1
n
;
k2
n

)
; k1; k2 = 0; : : : ; n− 1: (3.19)

Here the singular value k(t; t) is set to zero. Using localization techniques and two-dimensional
Fourier analysis, Saad proved the following theorem.

Theorem 7. If the singular integral operator A is invertible and satis�es condition (3:18); then
method (3:19) is stable and convergent in the same sense as method (3:4) in Theorem 5.

The convergence order for smooth right-hand sides is one. Note that this result is not important
as a result for the arti�cial torus but it is important as a local analysis of the quadrature method
over regular tensor product grids. Of course, for a full understanding of quadrature methods a lot of
further local cases have to be studied, and these cases seem to be much more involved.

4. Negative results for quadrature methods applied to higher-dimensional equations

Now, let us have a look at quadrature methods for the solution of general integral equations over
two-dimensional manifolds. If the kernel function and the manifold are smooth, then we have nice
results for second-kind equations like in Theorem 1 and a lot of problems with �rst-kind equations
which are severely ill-posed and not discussed here. In many important applications, however, the
kernel k(t; �) is singular in the sense of (2.12). In this case, even if the quadrature method is stable,
the convergence of the quadratures and, consequently, that of the approximate solutions is very poor
(cf., e.g., Theorem 7) if the method is not, in fact, diverging. We only mention here the lack of
convergence for the simplest quadrature method applied to the double-layer equation over polyhedra.
Without loss of generalization, we choose the simplest example and consider the equation

2 [1− dc(t)] x(t) + 1
2�

∫
�

�� · (t − �)
|t − �|3 x(�) d ��=y(t); t ∈� (4.1)

over the boundary � of C = {(x1; x2; x3)∈R3: 06xi61; i=1; 2; 3}. Here �� is the unit normal to �
at � and dC(t) is the normalized solid angle of C at the boundary points, i.e., dC(t)= 1

8 for vertex
points, dC(t)= 1

4 for edge points, and dC(t)=
1
2 else. Note that the double layer kernel is strongly

singular at the edge and vertex points and (2.12) holds with m=0. For simplicity, we choose
�=

⋃K
k = 1 �k to be the partition of � into K =6n

2 uniform squares of side length h=1=n, and we
suppose that rule (2.6) in method (2.8) is the mid-point rule. Then the error supk; l |x̃h(tk; l)− x(tk; l)|
need not tend to zero even if the right-hand side y is smooth. This follows from the fact that the
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quadrature error does not turn to zero uniformly. Indeed, choose tk′ ; l′ =(0:5h; 0; 0:5h) and x to be
one over {(x1; x2; 0)∈R3: 06xi61; i=1; 2} and zero over the rest of � and consider the quadrature
error ∫

�
k(tk′ ; l′ ; �)x(�)d��−

K∑
k = 1

1∑
l= 1

k(tk′ ; l′ ; tk; l)x(tk; l)!k;l

=
1
2�

∫ 1

0

∫ 1

0

(0; 0; 1) · ((0:5h; 0; 0:5h)− (x1; x2; 0))
|(0:5h; 0; 0:5h)− (x1; x2; 0)|3 dx1 dx2

− 1
2�

n∑
k1 ; k2 = 1

(0; 0; 1) · ((0:5h; 0; 0:5h)− ([k1 − 0:5]h; [k2 − 0:5]h; 0))
|(0:5h; 0; 0:5h)− ([k1 − 0:5]h; [k2 − 0:5]h; 0)|3 h2

=
1
2�

∫ n

0

∫ n

0

0:5
|(0:5; 0; 0:5)− (x1; x2; 0)|3 dx1 dx2

− 1
2�

n∑
k1 ; k2 = 1

0:5
|(0:5; 0; 0:5)− ([k1 − 0:5]; [k2 − 0:5]; 0)|3 :

Obviously, this tends to

1
2�

∫ ∞

0

∫ ∞

0

0:5
|(0:5; 0; 0:5)− (x1; x2; 0)|3 dx1 dx2

− 1
2�

∞∑
k1 ; k2 = 1

0:5
|(0:5; 0; 0:5)− ([k1 − 0:5]; [k2 − 0:5]; 0)|3 ;

i.e., to the quadrature error over an unbounded conical boundary manifold. This quadrature error with
step size h=1 is di�erent from zero. Now, the convergence properties of the quadrature method
correspond to those of the quadrature rule, and method (2.8) does not converge with respect to
the supremum norm. Similar homogeneity arguments apply to quadrature methods including special
graded meshes and double-layer equations over general piecewise smooth boundary manifold. To get
a converging quadrature method, it is su�cient to choose the version with singularity subtraction
(2.15) (cf. [47]). Analogous arguments can be used also for disproving the convergence in the case
of strongly singular integral equations.
Now turn again to general quadrature methods over two-dimensional manifolds. To improve a

low order of convergence, one has to adapt the quadrature to the singular behavior of the kernel
function � 7→ k(t; �). We shall discuss two methods, mesh gradings in this section and product rules
in Section 5. The �rst and simplest way of adaption is to use a mesh grading towards the singularity
point t of the kernel. In other words, the quadrature rule employed for the numerical method should
not be a �xed rule but it should depend on the source point t. Such an improved method seeks
approximate values x̃(t) for the unknown solution x over the points t of a �xed grid G. For each
point t ∈G, we have to approximate the integral ∫ k(t; �)x(�) d� in (2.5) by a quadrature rule over a
re�ned grid Gt the points of which accumulate around t. Hence function values x(�) at the quadrature
knots �∈Gt of this re�ned grid are required, and these can be obtained by interpolating the �xed
set of approximate values {x̃(t); t ∈G}. If the interpolant is x̃I , i.e., if the values x̃(�); �∈Gt are
approximated by x̃I (�); �∈Gt , then the quadrature approximation to

∫
k(t; �)x(�) d� is a discretization
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of
∫
k(t; �)x̃I (�) d�. In other words, the resulting scheme in its simplest form is rather not a quadrature

method but rather a fully discretized collocation method.
An exception, where a re�ned mesh can lead to an improved quadrature method in the sense of

(2.15), is the case of second-kind integral equations over nonsmooth but piecewise smooth surfaces.
Let the piecewise smooth surface �∈R3 take the form ⋃m�

m= 1 �
m, where all the patches �m are

smooth. Then, for instance, the kernel k(t; �) of the double-layer equation satis�es (2.12) with m=0
for points t; � from di�erent patches �m and �m

′
. For points of the same smooth boundary patch �m,

estimate (2.12) holds with m=1. Moreover, if the patches �m are planar, then the double-layer kernel
vanishes. Hence, one can choose a �xed mesh G graded towards the boundaries of the patches �m,
and, for each t ∈G, the grids Gt can be chosen to be G. The mesh grading means that the diameter
of the partition domain has to be small when the domain is close to the edge, i.e., to the boundary
of the smooth patches �m. Unfortunately, a partition with subdomains small only in the direction
toward the edge and larger in the direction parallel to the edge is not su�cient. The resulting
quadrature methods take the form (2.15). The number of subdomains and the corresponding number
of degrees of freedom corresponding to such gradings is usually in the order [h−1]� where h is the
maximal mesh size and where �¿2 depends on the smoothness of the solution or, equivalently, on
the geometry of �. Thus, substantially more degrees of freedom are necessary than the [h−1]2 for
methods over uniform grids. The corresponding quadrature methods are analyzed in [45,47].
To evaluate this quadrature method over graded meshes we turn to the complexity. Let us suppose

that � is the order of complexity for Nystr�om’s methods over regular grids, i.e., suppose that the
number of necessary arithmetic operations to compute an approximate solution with a supremum
norm error less than a prescribed �¿0 is less than O([�−1]�). Here the � depends on the singularities
of the exact solution to the double-layer equation. It turns out that, using an appropriately graded
mesh, the order of complexity of Nystr�om’s method can be reduced to �=2. In contrast to this
higher-dimensional result for quadrature methods, the complexity order of the univariate quadrature
method and that of higher-dimensional discretized collocation or Galerkin methods can be reduced
to an arbitrarily small number if only a quadrature rule (resp. a trial space) of su�ciently high
order is used and if the mesh is appropriately graded. In particular, in case of the two-dimensional
collocation method, the graded meshes can be chosen to include subdomains which are of small size
in direction to the closest edge and which have a larger size in the perpendicular direction. Hence,
the number of degrees of freedom can be estimated by [h−1]2 and, at least asymtotically, the order
of complexity can be reduced to an arbitrarily small number. Consequently, even in the case of
second-kind equations, the fully discretized collocation or Galerkin methods are more e�cient than
the simple quadrature methods (2.8) and (2.15).

5. Product quadrature for two-dimensional singular equations

Suppose � is a smooth two-dimensional manifold. Over � we consider the integral equation
Ax=y from (2.5) with A an operator invertible in the space L2(�). We suppose that the kernel
k admits a factorization k(t; �)= ksm(t; �)ksi(t; �) with the factor ksm of �nite degree of smoothness
and with the singularity factor ksi, which satis�es (2.12) with m=0 and d=2. We assume that, in
contrast to the integration of k, the integration of ksi is easy to perform. Using the factorization,
we can consider the product quadrature rule (2.21) of order mp and the corresponding quadrature
method (2.22) from Section 2.
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Let us discuss one important example. Operator A could be a classical pseudodi�erential operator
of order zero. Clearly, the corresponding equation is of the form (3.17) with T2 replaced by �. To
enable an explicit factorization, we consider singular kernels k0 (cf. (3.17)) of the form

k0(t; �)= k00(t; �)
p(t − �)
|t − �|� ; (5.1)

where � is an integer greater or equal to two and where p is a homogeneous polynomial of degree
�− 2. Using (5.1), we de�ne the factorization k0(t; �)= ksm(t; �)ksi(t; �) by

ksm((s); (s′)) := k00((s); (s′)) · |′(s′)|;

ksi((s); (s′)) :=
p((s)− (s′))

|′(s′)| · |(s)− (s′)|� ; (5.2)

where  : 
 → � is the parametrization of � and where |′(s)| with s=(s1; s2) stands for the
Jacobian determinant |@s1(s)×@s2(s)| of the parametrization. To simplify the formulas, for the case
that there is no global parametrization, we suppose that 
 is the disjoint union of the parameter
domains corresponding to local parametrization patches.
For our example, we now consider a quadrature partition �=

⋃K
k = 1 �k which corresponds to a

triangulation of the parameter domain 
. We may suppose that the parametrization  is analytic over
each panel �k since otherwise we can replace  by a piecewise polynomial parametrization which is
polynomial over the parametrization domain −1(�k) (for an estimate of such an replacement cf., e.g.,
[14]). Note that the integrand s′ 7→ ksi((s); (s′))|′(s′)| is analytic over all triangular subdomains
−1(�k) with a possible singularity at s′= s. The degree of smoothness of ksm is determined by the
degree of smoothness of k00 and of .
Let us turn back to the general case. To simplify the notation, we suppose from now on, that

the knots �k; l are located in the interior of the triangular panels �k . Moreover, we shall call the
triangulation �=

⋃K
k = 1 �k locally quasi-uniform if

(i) There is an �¿0 such that the interior angles of the triangles −1(�k) are all bounded between
� and �− �.

(ii) There exists constants c¿0 and �¿1 such that the quadrature step size h:=max{diam�k : k =
1; : : : ; K} satis�es the estimate ch�6min{diam�k : k =1; : : : ; K}.

(iii) There is a constant C¿0 such that, for any two nonneighbor subdomains �k and �k′ , we have
diam�k6C dist(�k; �k′).

As before, we call method (2.22) stable, if (2.22) is uniquely solvable for any right-hand side at
least for su�ciently small h and if the norm of the matrix

[(a�(k; l); (k′ ; l′) + ksm(�k; l; �k′ ; l′)!
p
k′ ; l′)(k; l); (k′ ; l′)]

−1

inverse to the matrix of system (2.22) is uniformly bounded for all locally quasi-uniform partitions
with su�ciently small step size h. The norm of the matrix is the one induced by the L2 space. Since∥∥∥∥ K∑

k = 1

L∑
l= 1

�k; l’k; l

∥∥∥∥
L2(�)

∼
√

K∑
k = 1

L∑
l= 1

%2k |�k; l|2; %k :=

√∫
�k
1 d�t (5.3)

holds for any sequence of numbers �k; l, the norm of the matrix is the Euclidean matrix norm of

[aI + (%kksm(�k; l; �k′ ; l′)!
p
k′ ; l′%

−1
k′ )(k; l); (k′ ; l′)]

−1:
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As mentioned in Section 2, the quadrature method based on product integration is a perturbation
of the collocation method where the trial functions are functions spanned by ’k;l. More precisely,
the collocation method seeks an approximate solution x̃ for the exact solution x of (2.5) in the
span of the functions ’k;l such that Ax̃(�k; l)=y(�k; l) holds for any point �k; l. The coe�cients of
x̃ with respect to the basis functions ’k;l are to be determined from a system of linear equations
including the so-called sti�ness matrix (A’k′ ; l′(�k; l))(k; l); (k′ ; l′). Analogously to the quadrature method,
the collocation is called stable if the sti�ness matrix is invertible at least for small step size h
and if the Euclidean matrix norm of the inverse matrices (%kA’k′ ; l′(�k; l)%−1k′ )

−1
(k; l); (k′ ; l′) are uniformly

bounded. The stability analysis of these collocation methods for two-dimensional manifolds is a
di�cult task. It seems, there exist only very few results for special cases (cf. [24,42] and, for
similar operator equations, cf. [3,12,13,43,46,60]). On the other hand, many engineers use collocation
methods successfully without observing any stability problem. If stability is true, then the derivation
of the usual convergence results for the collocation is not di�cult.

Theorem 8. We suppose that the partition �=
⋃K
k = 1 �k is locally quasi-uniform. Furthermore;

we suppose that the parametrization  is analytic over each subdomain �k and mp + 1 times
continuously di�erentiable. Recall that mp¿2 is the order of approximation of the interpolation
f 7→∑

k; l f(�k; l)’k;l and the order of the product rule (2:21). We assume that the kernel of (2:5)
admits a factorization k(t; �)= ksm(t; �)ksi(t; �) such that the factor ksm is mp times continuously
di�erentiable and that ksi satis�es (2.12) with m=0 and d=2. For the exact solution x of (2:5);
we suppose the existence of square integrable derivatives up to order mp. Finally; we suppose that
the integral operator on the right-hand side of (2:5) is invertible and that the collocation method
based on the trial basis functions ’k;l and the collocation points �k; l is stable. Then the quadrature
method (2:22) based on product quadrature is stable; too. Moreover; we get the error estimate

||x̃h − x||L2(�)6Chmp log h−1; x̃h(t):=
L∑
l= 1

x̃h(�k; l)’k;l(t) if t ∈�k: (5.4)

Proof. We have to show two things. First, to obtain stability, we have to prove that the matrix of
the quadrature method is a small perturbation of the collocation matrix with respect to the norm.
Second, to show the error estimate, we have to derive consistency, i.e., we have to consider the
di�erence of the quadrature discretized operator applied to the exact solution minus the operator
applied to the exact solution and to prove that the result can be estimated by the right-hand side of
the estimate in (5.4).
For the di�erence of the matrix entries corresponding to the quadrature and collocation matrices,

we get

d(k; l); (k′ ; l′) := ksm(�k; l; �k′ ; l′)!
p
k′ ; l′ −

∫
�k′
k(�k; l; t)’k′ ; l′(t) d�t

=
∫
�k′
[ksm(�k; l; tk′ ; l′)− ksm(�k; l; t)]ksi(�k; l; t)’k′ ; l′(t) d�t: (5.5)

In view of the local uniformness of the mesh, we conclude, for t ∈�k and t′ ∈�k′ with disjoint �k
and �k′ , that (cf. condition (iii) of the local uniformness)

dist(�k; �k′)6 |t − t′|6dist(�k; �k′) + diam�k + diam�k′
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6 (1 + 2C)dist(�k; �k′);

|t − t′|−2 ∼ |�k; l − �k′ ; l′ |−2: (5.6)

Similarly, for neighbors �k and �k′ , the de�nition of the points �k; l= (�k; l) as a�ne images of
interior points �k in the standard triangle, implies

|t − �k′ ; l′ |−2 ∼ |�k; l − �k′ ; l′ |−2 (5.7)

for any t ∈�k . Using this, the estimate |’k;l′(t)|6C diam(�k)−1|t − �k; l| valid for l 6= l′, condition
(2.12), representation (5.5), and the di�erentiability of kernel ksm, we arrive at

|d(k; l); (k′ ; l′)|6C
{
h | �k; l − �k′ ; l′ |−2%2k′ if k 6= k ′;
h if k = k ′:

(5.8)

We estimate the norm of the corresponding matrix by Schur’s lemma to get

n := ||(%kd(k; l); (k′ ; l′)%−1k′ )(k; l); (k′ ; l′)||

6 sup
k; l

{ ∑
k′ ;l′
|d(k; l); (k′ ; l′)|

}
sup
k′ ;l′

{∑
k; l
%2k |d(k; l); (k′ ; l′)|%−2k′

}
: (5.9)

Now, inequality (5.8) together with (5.6),(5.7) and property (iii) of local uniformness of the quadra-
ture partition lead to∑

k′ ;l′
|d(k; l); (k′ ; l′)|6Ch+ Ch

∑
k′ ;l′
|�k′ ; l′ − �k; l|−2%2k′

6Ch+ Ch
∫
�\�k
|t − �k; l|−2 d�t6Ch log h−1;

∑
k; l
%2k |d(k; l); (k′ ; l′)|%−2k′ 6Ch+ Ch

∑
k; l
|�k′ ; l′ − �k; l|−2%2k6Ch log h−1:

Hence, the di�erence of the quadrature discretized operator minus the collocation discretized operator
has a norm n less than Ch log h−1.
Next, we turn to the estimation of the di�erence of the quadrature discretized operator minus the

full operator applied to the exact solution. Thus, we have to estimate the norm of
∑

k; l dk; l’k; l with

dk; l :=
∑
k′ ;l′

ksm(�k; l; �k′ ; l′)x(�k′ ; l′)!
p
k′ ; l′ −

∫
�
k(�k; l; t)x(t) d�t

=
∫
�
ksi(�k; l; t){L[ksm(�k; l; t)x(t)]− [ksm(�k; l; t)x(t)]} d�t;

where L stands for the interpolatory projection, i.e., L[ksm(�k; l; t)x(t)]:=
∑

k′ ; l′ ksm(�k; l; �k′ ; l′)x(�k′ ; l′)
’k′ ; l′(t). We split dk; l=d1k; l + d

2
k; l with

d1k; l :=
∫
�k
ksi(�k; l; t){L[ksm(�k; l; t)x(t)]− [ksm(�k; l; t)x(t)]} d�t;

d2k; l := dk; l − d1k; l
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and estimate the norms of
∑

k; l d
1
k; l’k; l and

∑
k; l d

2
k; l’k; l separately. Using the approximation property

of the interpolation as well as the smoothness assumptions for ksm and x, we arrive at

|d2k; l|6C
∑

k′ 6=k; l′
|ksi(�k; l; �k′ ; l′)|%k′

√∫
�k′
|L[ksm(�k; l; t)x(t)]− [ksm(�k; l; t)x(t)]|2 d�t

6C
∑

k′ 6=k; l′
|ksi(�k; l; �k′ ; l′)|%k′hmp

√
mp∑
n= 0

∫
�k′
|3nx(t)|2 d�t:

This expression can be looked at as the result of multiplying the vector (
√∑

n

∫
�k′
|3nx(t)|2 dt)(k′ ; l′)

by a matrix. Hence, in view of (2.12) and (5.3), the norm of
∑

k; l d
2
k; l’k; l is less than

Chmp ||(%k |�k; l − �k′ ; l′ |−2%k′)(k; l); (k′ ; l′)||
√

mp∑
n= 0

∫
�
|3nx(t)|2 d�t: (5.10)

Analogously to the estimate h log h−1 for (5.9), we get the estimate C log h−1 for the matrix norm in
(5.10). Finally, the norm of

∑
k; l d

2
k; l’k; l is less than the expression Ch

mp log h−1 on the right-hand
side of the estimate in (5.4).
Let us turn to

∑
k; l d

1
k; l’k; l. Over an arbitrary smooth and bounded two-dimensional manifold �̃,

the functions of the Sobolev space H 2 are known to be Lipschitz, and we get that, for a �xed
constant C¿0, for any �̃∈ �̃, and for any function f̃ on �̃,∫

�̃
|�̃− t̃|−2|f̃(�̃)− f̃(t̃)| d�̃ t̃6C

√∫
�̃
|3f̃(t̃)|2 d�̃ t̃ + C

√∫
�̃
|32f̃(t̃)|2 d�̃ t̃:

Choosing �̃:={t̃= t=diam�k : t ∈�k}, substituting the variable of integration t̃ by t=diam�k , and setting
f(t)= f̃(t̃) and f(�)= f̃(�̃), we arrive at∫

�k
|�− t|−2|f(�)− f(t)| d�k t6C

√∫
�k
|3f(t)|2 d�k t

+C diam�k

√∫
�k
|32f(t)|2 d�k t; �∈�k:

Using this and the approximation property for projection L, we obtain that

|d1k; l|6C
∣∣∣∣
∫
�k
|�k; l − t|−2|L[ksm(�k; l; t)x(t)]− [ksm(�k; l; t)x(t)]| d�t

∣∣∣∣
6C

√∫
�k
|3{L[ksm(�k; l; t)x(t)]− [ksm(�k; l; t)x(t)]}|2 d�t

+Ch

√∫
�k
|32{L[ksm(�k; l; t)x(t)]− [ksm(�k; l; t)x(t)]}|2 d�t

6Chmp−1
mp∑
n= 0

√∫
�k
|3nx(t)|2 d�t:
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Hence, in view of %k6Ch and (5.3), we get that the norm of
∑

k; l d
1
k; l’k; l is less than Ch

mp , and
the consistency order of (5.4) is shown.

Note that, in view of the last proof we can relax the assumptions of Theorem 8. The global
di�erentiability of  and ksm can be replaced by di�erentiability over each subdomain �k together
with the global boundedness of these local derivatives. This weaker assumption holds true when
a parametrization is replaced by its piecewise polynomial interpolation. Furthermore, Theorem 8
remains true if the solution x has a weak singularity at a �nite number of points. In this case,
the mesh should be graded toward these points such that the larger values for the

√∫
�k
|3mpx|2 in

the estimates for the interpolation error x−∑ x(�k; l)’k;l are compensated by the factors [diam�k]
mp

which are smaller than hmp .
Further, we remark that the logarithm in the error estimate (5.4) can be dropped if the integral

operator with the kernel function |k(t; �)| is bounded in L2. This last assumption holds true, e.g.,
for operators of double-layer type de�ned over non-smooth domains. Finally, a generalization of
Theorem 8 to operators of order minus one and to piecewise linear collocation over regular grids
has been treated in [14]. In that paper even a fast quadrature algorithm for a wavelet approach has
been derived.
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Abstract

The qualocation method for boundary integral equations on smooth curves is reviewed, with an emphasis on recent
developments, including ‘second-generation’ qualocation rules and ‘tolerant qualocation’. Using smoothest splines and
uniform meshes, this version of the qualocation method can achieve the same convergence order as the Galerkin method,
with no additional smoothness requirement on the solution, for a wide range of boundary integral operators. Included are
singular integral equations with nonconstant coe�cients. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Qualocation was introduced in the late 1980s [5,12,13,30,36] as a compromise between the
Galerkin and collocation methods: roughly speaking, it aimed, in the context of spline approxi-
mation methods for boundary integral equations on curves, to achieve the bene�ts of the Galerkin
method at a cost comparable to the collocation method.
At the one extreme, the Galerkin methods (reviewed, for example, in [25,31,41]) have a robust and

elegant stability analysis, and beautiful convergence and superconvergence properties; yet they are
costly to implement, and indeed are usually impossible to implement without further approximation.
At the other extreme the collocation method (see [3,4,28,31]) is simpler to implement, but has a more
delicate stability analysis, and does not in general (as we shall see) have the same superconvergence
properties. The qualocation method (the name means ‘quadrature modi�ed collocation method’) aims
to achieve the best properties of both.
In structure, the qualocation method is similar to the Galerkin method, but with the exact inner

products in the Galerkin method replaced by carefully tailored quadrature rules. For earlier reviews
of qualocation, see [31,32].
To allow us to de�ne the qualocation method more precisely, some de�nitions are needed. We

suppose that our boundary integral equation (of which examples are given later) lives on a smooth
curve � which is the boundary of a simply connected bounded domain 
⊆R2: After suitable
0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00485-4
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parametrisation of the curve �; the boundary integral equation can be written as

(Au)(x) = f(x); x ∈ [0; 1]; (1.1)

where A is an integral operator on a space of (real- or complex-valued) 1-periodic functions, f is
a given function, and u is the unknown function.
Spline methods begin with the introduction of a partition of the (periodic) interval [0; 1]:

0 = x0¡x1¡ · · ·¡xn−1¡ 1: (1.2)

Using the periodic labelling convention, xk+n = xk for all k; we de�ne hk :=xk+1 − xk as the length
of the kth interval and h:=maxk hk as the maximum length of an interval. Unless stated otherwise,
we shall assume that the partition is uniform, i.e. xk = k=n for k =0; : : : ; n− 1; and h= hk =1=n: (In
particular, irregular meshes are not allowed, an important limitation on qualocation methods.)
Now let Sh denote the space of smoothest splines of order r¿1 on the partition {xk}: That is to

say, vh ∈ Sh is a polynomial of degree 6r − 1 on each sub-interval [xk ; xk+1]; and vh ∈ Cr−2: Thus
Sh is a space of piecewise constant functions if r = 1; of continuous piecewise-linear functions if
r = 2; and of cubic splines if r = 4: (In principle splines of lesser smoothness, such as continuous
quadratics, can be used, but the obstacles in the way of the analysis are considerable, see [22], and
qualocation methods for such spaces have so far not been developed.)
The Galerkin method for Eq. (1.1) and the space Sh is: �nd uGh ∈ Sh such that

(AuGh ; �h) = (f; �h) ∀�h ∈ Sh; (1.3)

where (·; ·) denotes the L2 inner product

(f; g):=
∫ 1

0
f(x)g(x) dx:

In contrast, the qualocation method is: �nd uQh ∈ Sh such that

〈AuQh ; �h〉= 〈f; �h〉 ∀�h ∈ Sh; (1.4)

where

〈f; g〉:=
n−1∑
k=0

hk

J∑
j=1

wj(f �g)(xk + �jhk) (1.5)

and the parameters �j and wj for j = 1; : : : ; J are �xed numbers satisfying

06�1¡ · · ·¡�J ¡ 1; wj ¿ 0 for j = 1; : : : ; J: (1.6)

The expression on the right-hand side of (1.5) can be thought of as the composite quadrature rule
that results from applying to the product (f �g) a scaled version of the J -point quadrature formula

qF :=
J∑

j=1

wjF(�j) ≈
∫ 1

0
F(x) dx (1.7)

on each sub-interval [xk ; xk+1]: The real story of qualocation begins with the observation that we
have great freedom in the choice of the rule q: If we wish we can design new rules that depend on
A and Sh; rather than rely on any of the usual choices such as Simpson’s rule, Gauss rule, etc. We
shall return to the question of the choice of q shortly.
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For the practical implementation of either the Galerkin or qualocation methods we �rst need to
select a basis {�1; : : : ; �n}⊆ Sh: In the case r = 2; for example, one may take the familiar ‘hat
functions’, or for the case r = 4 the cubic B-splines. Then (taking the Galerkin case �rst) the
approximation may be written as

uGh =
n∑

i=1

ai�i;

where (from (1.3)) the coe�cients satisfy the n× n linear system
n∑

i=1

(A�i; �k)ai = (f;�k); k = 1; : : : ; n:

The n× n matrix with elements (A�i; �k) is invariably dense, expensive to compute with the spline
bases used here, and generally impossible to compute exactly, since each element is a double integral
(one, the ‘inner’ integral, comes from the operation of A on �i; the other, the ‘outer’ integral, is the
inner-product integral).
The qualocation matrix, instead, has elements 〈A�i; �k〉; in which the inner integral still has to

be evaluated, but the outer integral is now replaced by the quadrature rule (1.5) with Jn points,
meaning that A�i need be evaluated only at these points.
It is in the choice of the ‘qualocation rule’ q that the distinctive character of the qualocation

method lies. In this review we shall be mainly concerned with recent developments, especially the
‘second generation’ qualocation rules of [37], see Section 4, which allow the method to be applied
much more widely, and the ‘tolerant’ variant of the qualocation method, which allows the full
results of the Galerkin method to be recovered. However, in this introductory section we indicate
the possibilities in the simplest way, by describing instead the oldest qualocation method (introduced
in [30]), applied to one of the simplest boundary integral equations.
Consider, then, the particular case of the boundary integral equation

− 1�
∫
�
log|X − Y |U (Y ) dl(Y ) = F(X ); X ∈ �; (1.8)

where dl(Y ) is the element of arc length, and |X−Y | the Euclidean distance between points X and Y
on �: This equation (discussed in detail in [31]) arises, for example, if the solution of the Dirichlet
problem for the Laplacian, i.e., �� = 0 in 
; with � = F on �; is expressed as a ‘single-layer
potential’

�(X0) =−1�
∫
�
log|X0 − Y |U (Y ) dl(Y ); X0 ∈ 
; (1.9)

where U is an unknown ‘charge-density’. We shall therefore refer to (1.8) as the ‘single-layer
equation for the Laplacian’, or just ‘the single-layer equation’.
To allow us to put (1.8) into the required form (1.1), the �rst step is to parametrise the smooth

curve � by a 1-periodic function � ∈ C∞(R); � : [0; 1] → �; with |�′(x)| 6= 0; in which case (1.8)
becomes

− 2
∫ 1

0
log|�(x)− �(y)|u(y) dy = f(x); (1.10)
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where

f(x) = F(�(x)); u(x) =
1
2�U (�(x))|�

′(x)|; x ∈ R:
This is of form (1.1) with A= V; where

(Vu)(x):=− 2
∫ 1

0
log|�(x)− �(y)|u(y) dy; x ∈ R: (1.11)

Suppose, now, that Eq. (1.10) is approximated by the Galerkin method described above, with r=2
so that uGh is a continuous piecewise-linear function on the uniform mesh {xk}: What is so wonderful
about the Galerkin method? To understand this we need to appreciate that the error u− uGh can be
measured in many di�erent ways. (In the following we quote well-known results, see for example
[15].) At the simplest level, the Galerkin equation has a unique solution for h su�ciently small, and
the error in the L2 norm has the optimal order, namely

‖u− uGh ‖06Ch2‖u‖2:
(Here C is a generic constant, ‖v‖0 denotes the L2 norm ‖v‖0 =(v; v)1=2; and ‖ · ‖2 is the norm in the
Sobolev space H 2; of L2 functions whose second derivatives are in L2; we are therefore assuming
implicitly that u is smooth enough to belong to H 2:) This unsurprising result in the L2 norm is easily
achieved by many other approximation methods, including the collocation method, see below.
Suppose, however, that we are interested not in u itself, but rather in �(X0) at some point X0 ∈ 
;

where �(X0) is the potential given by (1.9), or equivalently given in terms of u by

�(X0) =−1�
∫ 1

0
log|X0 − �(y)|u(y) dy:

If we compute the Galerkin approximation to �(X0) by

�G
h (X0):=−

1
�

∫ 1

0
log|X0 − �(y)|uGh (y) dy (1.12)

with the integral evaluated exactly, then it follows from results in [15] that the error �(X0)−�G
h (X0)

is of the remarkably high order h5, that is,

|�(X0)− �G
h (X0)|6Ch5‖u‖2; (1.13)

where C is a constant which depends on X0 but not on h:
More generally, the h5 order of convergence of the Galerkin method seen in (1.13) is experienced

whenever we compute not u itself but rather an inner product

(u; w):=
∫ 1

0
u(x)w(x) dx

for w a suitably smooth function: the error, if w has three square-integrable derivatives, is from [15]

|(u; w)− (uGh ; w)|= |(u− uGh ; w)|6Ch5‖u‖2‖w‖3: (1.14)

This hidden convergence of the Galerkin method, which can be seen only if u is post-processed in
some such way as above, is conveniently expressed through the use of ‘negative norms’, which may
be de�ned for s¿ 0 by

‖v‖−s:= sup
06=w∈Hs

|(v; w)|
‖w‖s : (1.15)
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We may now write, equivalent to (1.14),

‖u− uGh ‖−36Ch5‖u‖2: (1.16)

This is the form in which such results are stated in [15]. (Here and elsewhere in the paper to
make the results as simple as possible we shall generally state only the strongest results available.
Analogous results are available for u ∈ Ht with t ¡ 2; or in norms ‖u − uGh ‖s with s¿ − 3; at the
expense of corresponding reductions in the exponent of h:)
For most practical methods the O(h5) error of the Galerkin method in appropriate negative norms

is hard to achieve. One that does achieve this order is the oldest qualocation method, from [30],
which uses a 2-point rule (i.e., J = 2), with one quadrature point at the end-point and the other at
the mid-point, and to that extent (when we think of applying this rule to sub-intervals put together)
is like Simpson’s rule. But the weights are not the Simpson weights: for the case r = 2 and the
single-layer equation (1.10) the rule is

qF = 3
7F(0) +

4
7F(

1
2):

This ‘ 37 ;
4
7 ’ rule, as we shall call it, is tailor-made to ensure that the qualocation method for the

single-layer potential for the Laplacian yields

‖u− uQh ‖−36Ch5‖u‖4; (1.17)

which has the same high order of convergence as the Galerkin method.
Admittedly, the high order of convergence in (1.17) comes at a certain cost: we see that u is

now required to have four derivatives in L2 instead of just 2. The ‘extra smoothness’ requirement
in the estimate (1.17) is a characteristic defect of the original qualocation method, and is a serious
limitation whenever the exact solution u is not smooth. Later in this review we shall see how the
defect can be overcome, by changing to the ‘tolerant’ version of the qualocation method, see Section
6, and employing ‘second generation’ qualocation rules, (see Section 3).
For the present, though, we content ourselves by seeing that the high order of convergence really

is achievable in practice with the 3
7 ;
4
7 qualocation rule. In this simple example (taken from [5]) the

curve � is taken to be the circle of radius 1
2 centred at the origin and the boundary function F is

the restriction to � of a harmonic function

�(y) = 1
2(cos 2�y; sin 2�y); F(X ) = F(X1; X2) = X1

and the quantity computed is �(X0); where X0 = (0:1; 0:2): In Table 1 we show, for various n; the
error |�(X0)−�Q

h (X0)| (with �Q
h (X0) de�ned in analogy with (1.12), with uGh replaced by uQh ); and

Table 1
Errors and apparent orders of convergence �; single-layer equation for circle

n Qualocation � Collocation �
( 37 ;

4
7 rule)

8 1.31 (−5) 5.06 (−4)
16 3.71 (−7) 5.14 5.98 (−5) 3.08
32 1.12 (−8) 5.04 7.37 (−6) 3.02
64 3.50 (−10) 5.00 9.18 (−7) 3.00
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we also show the apparent order of convergence �, computed as log2 of the ratio of errors for two
successive values of n: Very clearly, the error from the qualocation method is small and converging
rapidly, and the apparent order of convergence is approaching 5 in completely convincing way.
In the same table we show also the errors achieved with the (breakpoint) collocation method. In

this method we again take an approximation uCh ∈ Sh; where Sh is the space of continuous piecewise
linear functions on the uniform partition, but this time with the approximation being determined by
collocation at the breakpoints; i.e. by

uCh ∈ Sh; (VuCh )(xk) = f(xk); k = 0; : : : ; n− 1: (1.18)

Very clearly, the collocation error in Table 1 is not of order h5: rather, it is of order h3: This is
consistent with a result in [3] (or see [31]), where it is proved that the (best) result available for
the breakpoint collocation method with piecewise linear splines is

‖u− uCh ‖−16Ch3‖u‖2:
This is a good moment to observe that the collocation method (1.18) is in fact a special case of the
qualocation method: it is easily seen that the qualocation equation (1.4) is equivalent (mathematically,
but not necessarily numerically) to the collocation equation (1.18), if we take q to be the 1-point
(i.e., J = 1) rule qF = F(0): In this article we are mainly interested in qualocation methods that
have better properties than the collocation method, thus we will from now on require J¿2:
Before �nishing this introductory section we make one minor extension to the Galerkin and

qualocation methods as described above: in both methods it is sometimes desirable, or even essential,
to use not one but two spaces of splines: one in which to seek the solution, the other in which to
‘test’ it. Thus, just as we have de�ned a space Sh of smoothest splines of order r¿1; now we �x
also r′¿1 and de�ne a space S ′

h of smoothest splines of order r
′: Then the Petrov–Galerkin scheme

studied, for example, by Saranen [26] is, instead of (1.3): �nd uGh ∈ Sh such that

(AuGh ; �h) = (f; �h) ∀�h ∈ S ′
h (1.19)

and the qualocation scheme, instead of (1.4) is: �nd uQh ∈ Sh such that

〈AuQh ; �h〉= 〈f; �h〉 ∀�h ∈ S ′
h: (1.20)

These are the forms we shall assume from now on.
The remainder of the paper is arranged as follows. In the next section we consider some of

the boundary integral operators that can occur in practice, so that we can understand the kinds
of problems that the qualocation methods need to solve. Then in Section 3, we introduce the
‘second-generation’ qualocation schemes. Briey, these have the same form as before, and so are
de�ned by (1.20), (1.5) and (1.7), but now have qualocation rules that are much more robust than
the 3

7 ;
4
7 rule above. These second-generation rules are designed to handle a much wider range of

boundary integral operators, including operators with nonconstant coe�cients. In Section 4, we ex-
plain in briefest outline the theory behind the second-generation schemes, and then in somewhat
more detail point to tables of such rules, and explain how further second-generation qualocation
rules can be computed. A numerical illustration, for singular integral equations with nonconstant
coe�cients, is given in Section 5.
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In Section 6, we introduce an easy yet important modi�cation of the qualocation method, called
(for reasons that will soon become clear) ‘tolerant qualocation’. The tolerant version of qualocation
di�ers only in that the inner products on the right-hand side of (1.20) are integrated exactly (or at any
rate to high accuracy), which is computationally easy to do since all the real work is associated with
computing the left-hand side matrix, and perhaps also with solving the linear system. Yet we shall
see that this small change has the e�ect (when used in conjunction with second-generation rules)
of overcoming completely the principal defect of the qualocation method, namely the additional
smoothness requirements on the exact solution (when compared to the Galerkin method) in error
bounds such as (1.17). Tolerant qualocation, used in conjunction with second-generation rules, is
the version of the qualocation method we would recommend in practice.
Finally, in Section 7 we point to extensions to more di�cult problems, such as the treatment of

corners, splines other than smoothest splines, irregular meshes, fully discrete methods, and (above
all in importance) extension to three-dimensional problems. In each such case the available results
are fragmentary, and almost all of the interesting questions are open.

2. Boundary integral operators we may meet

The purpose of this section is not to give a systematic exposition of boundary integral operators,
but rather to explain the principal properties of some important boundary integral operators on curves,
because these inuence very much the design and selection of qualocation methods (by which we
mean the selection of r and r′, as well as the qualocation rule q). For further discussion of boundary
integral operators see [14,24,28,41], and Section 3 of Lamp et al. [17].
Starting with the single-layer operator (1.11), an essential aspect of this operator for a smooth

curve is revealed if we take the particular case of the circle, and ask: what does the operator do to the
Fourier mode  k(x):=e2�ikx, for k 6= 0? The surprisingly simple answer (see, for example, [19] or [31]
Proposition 1), is V k= |k|−1 k , so that  k is an eigenfunction with eigenvalue |k|−1: In the language
of pseudo-di�erential operators, or  do’s (for which we refer to [1,20,29], and see also below) V is
a  do of order −1 with (constant) ‘symbol’ |�|−1. (The order is −1 because this is the degree of the
positive homogeneous function |�|−1:) Operators with nonconstant symbol are also important; one
such is the operator B de�ned by (Bu)(x)=a(x)(Vu)(x), where a is a given C∞ 1-periodic function.
Now the symbol of B (again based on the action of the operator on  k for k 6=0) is a(x)|�|−1.
In general, if an operator L operating on 1-periodic functions has the result

(L k)(x) = �(x; k) k ; k 6= 0;
when operating on  k(x) = e2�ikx, where � : R× R→ C is a C∞ function of the �rst variable, and
with respect to the second variable has the property

�(x; ��) = ���(x; �) for � ∈ (0; 1) and � ∈ R \ {0};
then L is a  do of order � and symbol �(x; �); see [29].
It is useful to think of  do’s of order −1 as ‘once-smoothing’ operators. Another operator of

order −1 is the operator J de�ned for k 6= 0 by J k=k−1 k , so that (apart from a constant factor) J
is the operator of anti-di�erentiation. In this case the symbol is �−1: Unlike the previous examples,
in this case the symbol is ‘odd’, i.e., �(x;−�) = −�(x; �) for � 6= 0, whereas the symbol in the
previous example was ‘even’, i.e., �(x;−�) = �(x; �).
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The simplest example of an operator of order 0 is the identity operator, for which the symbol is
of course 1, which is even. Another  do of order 0 is the Hilbert transform S, given by

(SU )(X ) =
1
�i

∫
�

1
Y − X

U (Y ) dY;

where � is now a curve in the complex plane C, and the integral is to be understood in the
principal-value sense. The symbol for the Hilbert transform is sign � for � 6= 0 (see [19]) which is
odd.
Pseudo-di�erential operators of order +1 are also important. One such is the operation of (tan-

gential) di�erentiation, for which the symbol is 2�i� for � 6= 0, which is odd. Another is the
‘hypersingular’ operator, for which the symbol is |�|, which is of course even.
So far the operators we have mentioned have had symbols which are either even or odd, and

most have also been constant. However, many pseudo-di�erential operators of importance lack at
least one of these properties. For example, the important ‘singular integral operators’, of the form
aI + bS, are neither even nor odd if both a and b are nonzero, and if either a or b is nonconstant
then the symbol is nonconstant: for the symbol is a(x) + b(x) sign �. We shall consider singular
integral operators in the next section.

3. Second-generation qualocation

The earliest qualocation rules, see [5], had limited applicability, in that they assumed the operator
A in the boundary integral equation (1.1) to be (in the language explained in the preceding section)
a pseudo-di�erential operator, or  do, with a principal symbol (i.e. the symbol of the highest order
part of the operator) either even or odd, and constant. Moreover, any perturbation of the principal
part of the operator was assumed to be an integral operator with an unlimited smoothing capability.
While some problems are of this type (a notable example being the single-layer equation for the

Laplacian for a smooth curve �), most are not.
The ‘second-generation’ qualocation rules are designed to handle much more general problems, and

for that reason are much more robust. In this section we explain the class of problems to be tackled,
and specify more precisely the convergence results that are to be sought for second-generation
qualocation methods. Our principal reference here is the recent paper [39].
As a �rst illustration of the broader problems to be tackled, consider the ‘singular integral equation’

A(X )U (X ) +
B(X )
i�

∫
�

U (Y )
Y − X

dY + C(X )
∫
�
K(X; Y )U (Y ) | dY |= F(X ); X ∈ �; (3.1)

where � is a smooth curve in the complex plane, A; B; C are smooth complex-valued functions, and
K is a given weakly singular kernel, which for the sake of de�niteness we take to be

K(x; y):=log|x − y|+ K ′(x; y) (3.2)

with K ′ a C∞ function of both variables. With � parametrised by the C∞ function � and with
a(x):=A(�(e2�ix)) and b(x) : =B(�(e2�ix)), the principal symbol in this case is a(x)+ b(x) sign � (see
Section 2), which is of order 0, but in general neither even nor odd.
This example is more complicated than the examples considered in [5] in three ways: the symbol

is neither even nor odd (unless A or B is absent); the symbol is not constant, since it depends
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on x; and the principal part of the operator (i.e. the part corresponding to the principal symbol) is
accompanied, through (3.2), by a  do of lower order (namely, in this case, order −1).
To be able to apply the qualocation method we need to assume (as with the corresponding Galerkin

method) that (3.1) is either ‘strongly elliptic’ or ‘oddly elliptic’, as de�ned below.
First, though, we state the problem in greater generality, by assuming, following [39], that the

operator A in (1.1) has the form, for some � ∈ Z,
Au:=b+(x)L�

+u+ b−(x)L
�
−u+ Ku; (3.3)

where b± are 1-periodic complex-valued C∞ functions, and L�
+ and L�

− are constant-coe�cient
 do’s of order � and (constant) symbol |�|� and |�|� sign �, respectively. (That is, L�

+ k= |k|� k and
L�
− = |k|� sign k  k for k 6= 0, with  k(x) = e2�ikx.) Concrete characterisations of the operators L�

± for
� =−1; 0 and 1 are given in Section 2. Moreover, we assume that K can include any combination
of  do’s of lower integer order:

K :=
∞∑
i=1

(ai;+(x)L�−i
+ + ai;−(x)L

�−i
− ) + K ′; (3.4)

with ai;± ∈ C∞ and with only a �nite number of the ai;± allowed to be nonzero, and K ′ an integral
operator with a kernel which is a C∞ function of both variables.
We also assume, using the de�nitions in [39], that the operator in (3.3) is either ‘strongly elliptic’

or ‘oddly elliptic’: the operator is said to be (uniformly) strongly elliptic if there exists a C∞

complex-valued function � such that

inf
x∈R
min{Re(�(x)(b+(x) + b−(x))); Re(�(x)(b+(x)− b−(x)))}¿ 0:

If b± are real, this is equivalent to the assumption

b+(x) + �b−(x) 6= 0 for all � ∈ [− 1; 1] and x ∈ R:
It is (uniformly) oddly elliptic if the same property holds with b+ and b− interchanged. Roughly,
the operator A is strongly elliptic if the �rst term of (3.3) dominates, it is oddly elliptic if the second
term dominates.

Assumption 3.1. If A is strongly elliptic then the spline orders r and r′ are chosen either both even
or both odd. If A is oddly elliptic then r and r′ are chosen of opposite parity.

This assumption is natural even for the Galerkin method. (If A is both strongly elliptic and oddly
elliptic, see [37], then either choice can be made.)
Even if r and r′ satisfy Assumption 3.1, it is not necessarily the case that an arbitrary qualocation

rule q gives a stable method. The issue of the stability of qualocation rules is studied in [37], in the
context of constant-coe�cient operators, by means of Fourier analysis.
In the old-style qualocation methods, applied to constant-coe�cient operators which are either

even or odd, stability is always guaranteed for rules with a number of points J¿2 (see Theorem 3
of Chandler and Sloan [5]). With the more complicated problems discussed here this is no longer
true. Rather, for each candidate qualocation rule q stability is something that has to be determined
computationally, by testing the strict positivity of a certain real-valued function. It is reported in
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[37] that of all the rules tested there approximately half were stable. Only stable rules are recorded
in that paper.
In [37] it is shown that if the method is stable, then the qualocation solution uQh of the correspond-

ing constant-coe�cient operators (either strongly or oddly elliptic, as appropriate), always satis�es
the basic error estimate

‖u− uQh ‖�6Chr−�‖u‖r (3.5)

if u ∈ Hr . This observation will allow us to avoid in this survey a formal de�nition of stability: for
the present discussion it is enough to say that a particular qualocation method is stable if it satis�es
the error estimate (3.5) in the corresponding constant-coe�cient case.
The basic error estimate (3.5) is also achieved by the appropriate collocation methods, even for

the variable-coe�cient case, see [3,4,31]. For the qualocation method we are seeking, for the full
variable-coe�cient case, not only estimates of form (3.5), but also, as explained in Section 1, higher
orders of convergence, through a judicious choice of the qualocation rule q. That leads us to de�ne an
additional order of smoothness associated with each qualocation method: we say that the additional
order of smoothness is b, with 06b6r′, if the best possible estimate for the error in the qualocation
solution for a constant-coe�cient operator of form (3.3) with K = 0 is

‖u− uQk ‖�−b6Chr−�+b‖u‖r+b: (3.6)

(Here we see again the additional smoothness requirement on u when b¿ 0. We repeat that this can
be eliminated completely, provided we are using second-generation qualocation rules, by changing
to the ‘tolerant’ version of the qualocation method as de�ned in Section 6.)
The highest value of b, namely b = r′, the order of the test space, yields the full O(hr−�+r′)

order of convergence of the (Petrov–)Galerkin method with trial and test spaces of orders r and r′,
respectively.

4. Second-generation qualocation — the rules and a theorem

In this section we specify precisely the properties required of the qualocation rules if they are to
yield estimates of form (3.6) when applied to equations Au= f with A of the full generality given
in (3.3) and (3.4), and we explain where to �nd tables of such rules, or how to compute new ones.
We �nish by stating precisely a convergence theorem (from [39]) that applies to such rules.
The �rst requirement, explored in [37] for the case in which the coe�cients in (3.3) are constant

and K is an integral operator with smooth kernel, is that the rule q must integrate exactly certain
1-periodic functions G�, de�ned for �¿ 1 by the absolutely convergent series

G�(x) =
∞∑
p=1

1
p�
cos 2�px:

(Compared to the usual de�nition, we have dropped an unnecessary factor of 2 from the de�nition
of G�.) Note two obvious properties, that the exact integral over [0; 1] is 0, and that G� is symmetric
about x = 1

2 . For methods of computing G� and further properties see [21].
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The precise necessary and su�cient condition established in [37] for b to be the additional order
of smoothness in (3.6) is

qGr−�+‘:=
J∑

j=1

wjGr−�+‘(�j) = 0 for ‘ = 0; 1; : : : ; b− 1: (4.1)

The requirement on q that is manifested by (4.1) emerges from the detailed analysis by Fourier series
arguments in [37]. Space does not permit us to detail the arguments here, but analogous arguments,
in the context of simpler operators that are either even or odd, are considered in the earlier review
[32].
Condition (4.1), while still needed when the coe�cients in (3.3) are no longer constant, is then

no longer enough: it is found in [39] that now q must also have a classical degree of precision
of r − � + b − 1 — that is, the rule q must now also integrate exactly all polynomials of degree
6r − � + b− 1.
There is a signi�cant overlap between these two conditions, as becomes clear from the observation

that when � is even G� is just a constant times the Bernoulli polynomial B� of (even) degree � (see
[5,21]).
In practice, it is convenient to require the quadrature rule q to be symmetric, by which we mean

that if �∈ (0; 1) is a quadrature point then so is 1 − �, and the weight associated with 1 − � is
the same as that associated with �. (If q is symmetric and �1 = 0 then it is really the associated
quadrature rule

q̃F :=
1
2
w1(F(0) + F(1)) +

J∑
j=2

wjF(�j) (4.2)

which is symmetric in the ordinary sense. Because the mesh is uniform, the rules q̃ and q have
exactly the same e�ects.)
Because a symmetric quadrature rule automatically integrates to zero an odd-degree polynomial

which is symmetric about the mid-point 12 , and because (4.1) already holds, we see that the require-
ment that the rule q be of precision r − � + b− 1 is satis�ed if conditions (4.1) are supplemented
by

qB2m = 0; 062m¡r − �: (4.3)

Tables listing qualocation quadrature rules satisfying the constant-coe�cient condition (4.1), and
which are also stable in the sense that (3.5) holds for appropriate constant-coe�cient operators, are
published in [37]. Separate tables are given there (numbered 1 to 6) for the strongly elliptic and
oddly elliptic cases, and for operators of orders �=−1; 0 and +1. Some of the rules in these tables
also satisfy (4.3), and are therefore available for use in second-generation qualocation rules. Those
are the rules labelled there GJ;b;� and LJ;b;� (with � = r − �), with capital letters G and L rather
than lower case. (The rules labelled GJ;b;� are ‘Gauss-like’ in that end-points are not included. Those
labelled LJ;b;� are ‘Lobatto-like’ when expressed in the equivalent form (4.2).) The quadrature points
and weights for the rules GJ;b;� and LJ;b;� are listed in Tables A and B of Sloan and Wendland [37].
The convergence properties of the qualocation method with the second-generation qualocation

rules described above, applied to variable-coe�cient operators of form (3.3), are summed up in the
following theorem.
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Theorem 4.1 (Sloan and Wendland [39]). Let A be given by (3:3) and (3:4); and be either strongly
elliptic or oddly elliptic. Moreover; let r; r′ satisfy Assumption 3:1; with r ¿� + 1 and r′¿2; and
assume that the qualocation rule characterised by r; r′ and q is stable; in the sense that (3:5) holds
in the corresponding constant-coe�cient case with K = 0. Then the qualocation solution uQh ∈ Sh

exists and is unique for h su�ciently small; and satis�es (3:5). Moreover; if q satis�es (4:1) and
(4:3) then uQh also satis�es

‖u− uQh ‖�−b6Chr−�+b‖u‖r+b: (4.4)

Space allows us only the merest sketch of the proof of the theorem. Essentially there are two parts, of
which the �rst and most delicate is to establish that the basic convergence estimate (3.5) extends to
the variable-coe�cient case. This proof, which in essence extends stability to the variable-coe�cient
case, follows the model of that of Arnold and Wendland [4] for the collocation case. It makes
essential use of Korn’s trick, and of the fact that the commutator of a smooth function with a
pseudo-di�erential operator is a pseudo-di�erential operator of lower order. However, there is one
major di�erence from the collocation case. This we now attempt to explain.
First, we must write the qualocation method in a di�erent way, by introducing the ‘qualocation

projection’, which is the projection Rh onto the space S ′
h de�ned by

Rhg ∈ S ′
h; 〈Rhg; �h〉= 〈g; �h〉 ∀�h ∈ S ′

h:

(Since this equation is just the qualocation method for the case of the identity operator with r = r′,
the existence and uniqueness of Rhg for J¿2 is ensured by Theorem 3 in [5].) The qualocation
approximation (1.20) to Au= f can now be written as

uQh ∈ Sh; RhAu
Q
h = Rhf:

The following ‘commutator property’, from [38], plays a crucial role in the proof of Theorem 4.1:

‖Rh(aL
�
±vh)− aRh(L

�
±vh)‖06c(a)h‖vh‖� (4.5)

for vh ∈ Sh and a a smooth function. That result is essentially a spline property, in that it does not
hold if the space S ′

h is replaced by a space of trigonometric polynomials. This fact notwithstanding,
the proof in [38] is by way of a highly technical Fourier series argument. (For a related commutator
property, obtained by a di�erent argument, see [11].)
The signi�cance of the commutator result is that it allows a smooth non-constant function to

be, in e�ect, ‘moved through’ Rh, at the cost of only a small error. The commutator property is
not needed in the collocation argument in [4], for the simple reason that the commutator in that
case vanishes at each collocation point xk : for in that case we have, for all continuous functions
F; (RhF)(xk) = F(xk), and hence

(Rh(aF))(xk) = a(xk)F(xk) = (a(RhF))(xk); k = 0; : : : ; n− 1:
The second part of the proof is to prove (4.4), knowing already the estimate (3.5). This is done by a
duality argument, using both the Aubin–Nitsche trick as in the corresponding proof for the Galerkin
method, see [15], and a technical quadrature estimate, (see [39], Theorem 4.1) for the di�erence
〈aL�

±wh; vh〉 − (aL�
±wh; vh), for a smooth and wh ∈ Sh; vh ∈ S ′

h. For further details we refer to Sloan
and Wendland [39].
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5. Numerical illustration

In this numerical example, taken from [39], Eq. (3.1) is solved with C(X ) = 0, for the case in
which � is the unit circle. The circle is parametrised by X = e2�ix; so that with

u(x) = U (X ); f(x) = F(X ); a(x) = A(X ) and b(x) = B(X );

the equation becomes

a(x)u(x) + 2b(x)
∫ 1

0

u(y)
e2�iy − e2�ix e

2�iy dy = f(x); x ∈ R:

For the coe�cients a(x); b(x) we choose

a(x) = 3 + 2 sin 2�x; b(x) = 1; x ∈ R;
making the singular integral operator strongly elliptic, and choose f so that the exact solution is

u(x) = cos 2�x + i|sin 2�x|:
For the approximation method we choose r=r′=2; so satisfying Assumption 3.1, and as qualocation
rule we select, from Table 2 of [37], the 3-point rule G3;2;2; which has the points and weights

�1 = 0:1057 4635 7567; w1 = 0:2680 6328 1387;

�2 = 0:5; w2 = 1− 2w1;
�3 = 1− �1; w3 = w1:

Table 2 shows the computed errors for this problem in the H 0; H−1 and H−2 norms, for n= 16; 32
and 64, together with the apparent order of convergence �: (The norms were estimated by evaluating
quadrature approximations to the Fourier coe�cients of the error, and inserting them into the Fourier
series de�nition of the norm, see [31]). From the results it is clear that the errors are satisfyingly
small, and moreover that the orders of convergence (remembering that � = 0 in this case) are as
predicted by Theorem 4.1, for the case u ∈ H 4, namely

‖u− uQh ‖0 = O(h2); ‖u− uQh ‖−1 = O(h3); ‖u− uQh ‖−2 = O(h4):
(In fact in this example u is not in H 4, nor even in H 2; we do not understand why the full O(h4)
order is nevertheless maintained.)

Table 2
Errors in Hs norms and apparent orders of convergence �

n s = 0 � s =−1 � s =−2 �

16 0.584 (−2) 0.365 (−3) 0.434 (−4)
32 0.144 (−2) 2.02 0.440 (−4) 3.05 0.249 (−5) 4.12
64 0.360 (−3) 2.00 0.546 (−5) 3.01 0.151 (−6) 4.04
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6. The tolerant version of qualocation

In this section we describe a simple modi�cation, introduced in the qualocation context in [40],
that has the surprising e�ect of overcoming the principal defect in the qualocation method, namely
the high smoothness requirement on the exact solution in Theorem 4.1.
Tolerant qualocation di�ers in only one way from the standard method described above, namely

that the inner product on the right-hand side of (1.20) is now evaluated exactly, rather than by using
the qualocation rule q. Thus the method is: �nd uTh ∈ Sh such that

〈AuTh ; �h〉= (f; �h) ∀�h ∈ S ′
h: (6.6)

The bene�t of evaluating the right-hand side exactly was �rst pointed out (in the context of a fully
discrete qualocation method) by Saranen and Sloan [27]. Exact evaluation of the right-hand side was
exploited also in [23].
For the purposes of the present review, where we are emphasizing second-generation qualocation

rules, it is preferable to focus not on [40], but rather on the more recent paper [35], which considered
the full range of operators allowed in [39] (see Section 3) and came to the following nice conclusions:
�rst, that the additional smoothness requirement on u seen in (4.4) is entirely eliminated; and second,
that the qualocation rules needed to achieve a given order of convergence are exactly the same
second-generation rules already considered in Section 4. (The conclusions of Tran and Sloan [40]
were more complicated, with the tolerant method imposing extra requirements on the rule q. That
is because only simple operators were considered there, and the qualocation rules in [40] were not
the robust second-generation rules considered in [35].)
The conclusions of Sloan and Tran [35] are summed up in this companion to Theorem 4.1.

Theorem 6.1 (Sloan and Tran [35]). Let A; r and r′ be as in Theorem 4:1. Then the tolerant qualo-
cation solution uTh ∈ Sh exists and is unique for h su�ciently small; and satis�es

‖u− uTh‖�6Chr−�‖u‖r : (6.7)

Moreover; if q satis�es (4:1) and (4:3) then uTh also satis�es the estimate

‖u− uTh‖�−b6Chr−�+b‖u‖r : (6.8)

The result in (6.8), in contrast to that in (4.4), is optimal for the given norms on the left and right.
If b has its maximum value r′ then the result in (6.8) is exactly that achieved by the Petrov–Galerkin
method with the same trial and test spaces.
To prove Theorem 6.1, we note �rst that the existence and uniqueness of uTh for small h is

almost obvious, given that it is only the right-hand side of the qualocation equation that has been
changed. For a similar reason, it turns out after some argument that we are able to derive the basic
stability result (6.7) from the corresponding result for the standard qualocation method in Theorem
4.1. The main result (6.8) rests again on a duality argument, and uses many of the ideas of Sloan
and Wendland [39], including the delicate quadrature estimate mentioned at the end of Section 4.
Of course there are some di�erences, the most important being that the tolerant qualocation equation
(6.6), unlike (1.20), is not ‘consistent’: if u ∈ Sh it does not follow that uTh = u:
Why is it that the change to the right-hand side of the qualocation equation leads to such an

improvement? This is hard to answer, because of the highly technical nature of the arguments.
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Perhaps the best that can be said is that the standard qualocation method, because it involves the
application of a quadrature approximation to f (or more precisely, to f�h); inevitably imposes
a smoothness requirement on u, given that f = Au: at the very least we need Au continuous. The
tolerant version makes no such demands in u; and it turns out that no higher smoothness requirement
arises in the proof.
In the implementation of tolerant qualocation it is of course usually impossible to integrate the

right-hand side of (6.6) exactly. However, since most of the computational work is associated with
the left-hand side (either in setting up the matrix, or in obtaining the solution of the linear system),
it is not di�cult to compute the right-hand side to any desired accuracy.
The following numerical example, extended from [40], is for the single-layer equation (1.8), for

the case in which � is an ellipse centred at the origin with major axis of length 4 along the
x-axis, and minor axis of length 2, parametrised by X = (2 cos 2�x; sin 2�x); x ∈ [0; 1]; and with
F(X ) = f(x) =

√
x(1− x); so that the solution u(x) is not smooth at x = 0: The quantity computed

is �(X0); see (1.9), with X0 = (1:0; 0:3).
The operator in this example is strongly elliptic and of order −1. We choose r′ = r = 2 (the

piecewise-linear case), and select from Table 1 of Sloan and Wendland [37] a rule q with the
maximum additional order of convergence b = r′ = 2: From the possible rules G4;2;3 and L4;2;3 we
choose the latter, which is given explicitly by

�1 = 0; w1 = 0:0798 0806 8152; (6.9)

�2 = 0:1557 3169 6555; w2 = 0:2673 8508 6074; (6.10)

�3 = 0:5; w3 = 1− w1 − 2w2; (6.11)

�4 = 1− �2; w4 = w2: (6.12)

As noted above, because f(x) =
√
x(1− x) is not smooth, neither is u: in fact (see [40]) u ∈ H−�

for �¿ 0 but u 6∈ H 0: Because of this limited smoothness of u the best convergence order for the
tolerant qualocation method (from (6.8), suitably modi�ed), is

‖u− uTh‖−36Ch3−�‖u‖−�:

In contrast, the best result available from traditional qualocation (see (3.5)) is

‖u− uQh ‖−16Ch1−�‖u‖−�:

In Table 3 we show the (estimated) errors for �rstly the tolerant method with the qualocation rule
L4;2;3; secondly the standard qualocation method with the same rule L4;2;3; and thirdly the standard
qualocation method with the 3

7 ;
4
7 rule as described in Section 1. (Note that if u is smooth all rules

are predicted to give errors of order O(h5); this is con�rmed numerically for the �rst and third cases
in [40].)
From the results in Table 3 it appears that the order of convergence of the tolerant method is

better than the predicted order O(h3−�); and the order of the standard qualocation rules better than
the predicted order O(h1−�): Still, the story is clear, that the tolerant version of qualocation does
give improved accuracy when the solution is not smooth. This supports our recommendation, that the
tolerant version of the qualocation method, used in conjunction with second generation qualocation
rules, is the one to be preferred in practice. Additionally, a comparison of the two results for the
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Table 3
Estimated errors and apparent convergence order � for the potential �(X0); for a nonsmooth
solution u

n Tolerant � Standard � Standard �
qualocation qualocation qualocation
(L4;2;3) (L4;2;3) ( 37 ;

4
7 )

32 0.659 (−5) 0.471 (−5) 0.278 (−4)
64 0.371 (−7) 7.47 0.606 (−6) 2.96 0.115 (−4) 1.28
128 0.307 (−8) 3.59 0.219 (−6) 1.47 0.398 (−5) 1.53
256 0.289 (−9) 3.41 0.716 (−7) 1.61 0.129 (−5) 1.62

standard qualocation method shows that improving the quality of the underlying rule q can improve
the accuracy, even if not the asymptotic order of convergence.

7. Extensions and open questions

The principal remaining limitation of the qualocation method, in its tolerant second-generation
form as presented in Section 6, is that it requires a uniform mesh. Can the method be extended to
a wider class of meshes, or even to arbitrary meshes? Possibly, but a di�erent approach to stability
would be needed, one not based on Fourier series. Is it conceivable that the same second-generation
qualocation rules q as in Section 4 would still be valid? (For rules that include the endpoint,
form (4.2) should then be understood.) Perhaps, but even experimental evidence is lacking. For
the older style qualocation rules a numerical experiment in [5] with an irregular mesh provides a
counterexample, but it is clear that the second-generation qualocation rules have much better local
behaviour.
Can the methods be extended to curves with corners? One application of the qualocation method

(for the case of the single-layer equation on a polygon) has been studied in [6]. There the mesh
was in e�ect ‘graded’ near the corner by introducing a carefully tailored transformation that spreads
out both sides of the corner, and then using a uniform mesh with respect to the new variable. The
arguments used there extend to second-generation qualocation methods, but for the tolerant version
a separate analysis would be needed.
Are there qualocation methods for splines other than smoothest splines? Most promising, perhaps,

are the C0 splines. For these the stability properties of discrete orthogonal projection (or equivalently,
of the qualocation approximation for the case of the identity operator) was studied in [8] (with no
requirement of mesh uniformity), and commutator properties analogous to (4.5) were studied in [10].
A preliminary study of qualocation with C0 splines on quasi-uniform meshes, applied to strongly

elliptic singular integral equations with piecewise-smooth coe�cients, has recently been completed
[9].
Fully discrete versions of qualocation, not discussed here, were studied by Sloan and Burn [34],

Saranen and Sloan [27], McLean and Sloan [23] and Jeon et al. [16]. The paper [23] employed
a direct two-dimensional quadrature scheme, allowing the discrete approximation to preserve the
self-adjointness property of the operator A in a case such as the single-layer operator.
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Another approach to stability, based on the stability of the Galerkin method, has been used in the
study of qualocation-like methods for the single-layer equation on Lipschitz curves, see [2,33]. In
this work, however, higher-order convergence was not explored.
Finally, can qualocation methods be developed for problems in which � is a surface rather than

a curve? This is undoubtedly the biggest challenge, but the way forward is not clear, since uniform
meshes and Fourier methods are no longer applicable. The only 3D studies known to the writer in
which the methods might be thought of as true qualocation methods are two papers [7,18] which
extend the Galerkin-based arguments of Sloan and Atkinson [33] to the single-layer equation for a
plate, using piecewise-constant elements. Again higher-order convergence was not established.
In all the directions mentioned in this section it seems fair to say that there are many more

questions than answers.
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Abstract

In a preceding paper (Hackbusch, Computing 62 (1999) 89–108), a class of matrices (H-matrices) has been introduced
which are data-sparse and allow an approximate matrix arithmetic of almost linear complexity. Several types ofH-matrices
have been analysed in Hackbusch (Computing 62 (1999) 89–108) and Hackbusch and Khoromskij (Preprint MPI, No.
22, Leipzig, 1999; Computing 64 (2000) 21–47) which are able to approximate integral (nonlocal) operators in FEM
and BEM applications in the case of quasi-uniform unstructured meshes. In the present paper, the general construction of
H-matrices on rectangular and triangular meshes is proposed and analysed. First, the reliability of H-matrices in BEM is
discussed. Then, we prove the optimal complexity of storage and matrix–vector multiplication in the case of rather arbitrary
admissibility parameters �¡ 1 and for �nite elements up to the order 1 de�ned on quasi-uniform rectangular=triangular
meshes in Rd; d=1; 2; 3. The almost linear complexity of the matrix addition, multiplication and inversion of H-matrices
is also veri�ed. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A class of hierarchical (H) matrices has been recently introduced in [5]. They are shown to pro-
vide an e�cient tool for a data-sparse approximation to large and fully populated sti�ness matrices
arising in BEM and FEM applications. In fact, the storage and matrix–vector multiplication com-
plexity of the rank-k H-matrices associated with quasi-uniform grids are estimated by O(kn log n),
where n is the problem size, see [5,6]. Moreover, these matrices also allow the arithmetic of optimal
complexity. In particular, the “formatted” matrix–matrix addition, product as well as the inversion
for a class of H-matrices were proven to have almost linear complexity O(n logq n) with mod-
erate q¿0. In this way the approach may be applied for the data-sparse approximation and fast
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solution of the linear integral=pseudodi�erential equations which arise in the FE=BE methods for
elliptic problems.
First, we discuss the principal ingredients of the H-matrix techniques. We then show the existence

of optimal order approximations by H-matrices for a class of integral operators in FEM=BEM
applications. We prove the almost linear complexity of various H-matrix operations. In particular,
we study the complexity of hierarchical matrices in the following cases:

(i) arbitrary constant �¡ 1 in the admissibility criterion;
(ii) quasi-uniform quadrangular=triangular meshes in Rd; d= 1; 2; 3;
(iii) piecewise constant=linear=bilinear elements.

Our results for the storage and matrix–vector multiplication expenses are given with asymptotically
sharp constants which depend explicitly upon the spatial dimension d, the parameter � and the
problem size. We prove the linear-logarithmic complexity of the formatted addition, multiplication
and inverse of H-matrices.
We also stress that our constructions apply to unstructured quasi-uniform meshes as well, using

the techniques from [6]. The extension to the case of graded meshes was discussed in [7]. A class
of H2-matrices having the linear complexity O(n) was developed in [9]. The systematic approach
to build optimal order degenerate approximations (wire-basket expansions of the order O(logd−1 n))
for a class of kernels in FEM and BEM applications has been considered in [8].

2. Introduction to H-matrices

2.1. A motivation for data-sparse approximations in BEM

In this section, we discuss simple examples illustrating the principal ideas of H-matrix approxima-
tions in BEM. The nonlocal operators to be approximated arise in both FEM and BEM applications.
FE=FD approximations of elliptic PDEs result in sparse sti�ness matrices. In such applications, we
are interested in the data-sparse approximation of the inverse to discrete elliptic operators or to the
Schur-complement matrices with respect to a certain subset of degrees of freedom. In both cases, we
actually deal with a discretisation of an integral (pseudodi�erential) operator with implicitly given
Schwartz kernel. Below, we consider three examples of integral operators

(Au)(x) =
∫
�
s(x; y)u(y) dy; x∈�:=[0; 1] (1)

with = 1; 2; 3, where

s1(x; y):=log(1 + (x − y)2); s2(x; y):=log(x + y); s3(x; y):=log|x − y|: (2)

The FE Galerkin discretisation of (1) with piecewise constant basis functions de�ned for the uniform
grid (partitioning)

Xi = [(i − 1)h; ih]; h:=n−1; 16i6n

leads to the full sti�ness matrix

M = (mij)i; j∈ I ; mij:=
∫
Xi×Xj

s(x; y) dx dy;
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where I={1; : : : ; n} is the corresponding index set of the Galerkin ansatz functions {’i}i∈ I . Assume
a hierarchical p-level structure of the grid by imposing n= 2p. The H-matrix approximation to M
will provide a matrix MH such that the error M −MH is of the same order �=h�; �¿ 0, as for the
Galerkin error related to M . However, both the storage and the matrix–vector multiplication costs
for MH will amount to O(n logq n) instead of O(n2), with a moderate q¿0 discussed below.
For the �rst example in (2) the desired approximation MH can be obtained exploiting the global

smoothness of the kernel in the product domain �×�. Due to classical approximation theory there
exists a simple approximation of s1(x; y) by a short sum s̃1:=

∑k
�=1 a�(x)c�(y) of separable functions

(e.g., by the Taylor expansion or by the ortho–projection onto polynomials, see also Section 3) such
that ∣∣∣∣∣∣s1(x; y)−

k∑
�=1

a�(x)c�(y)

∣∣∣∣∣∣. � (3)

with k =O(log �−1). The corresponding sti�ness matrix

MH:=(m̃ij)i; j∈ I ; m̃ij:=
∫
Xi×Xj

s̃1(x; y) dx dy;

provides the required approximation of M on the one hand, and also it has the data-sparse structure
(indeed, it is a matrix of rank k) of the complexity O(kn), on the other hand. Therefore, the global
smoothness of s1 allows a data-sparse approximation of M by an n× n low-rank matrix.
The singular kernels in the second and third examples allow instead of a global only blockwise

degenerate approximations. In this way, the above construction is applied locally in a hierarchical
manner and it is based on an admissible partitioning of the product index set I × I . Such an
admissible partitioning is described below using hierarchical cluster trees of I and I × I .

2.2. The cluster trees of I and I × I

Starting with the full index set I 01 :=I of level 0, we then split it into two equal subsets I
1
1 and I

1
2

and then apply this procedure to each part successively such that at level p, we reach the one-element
sets Ip1 = {1}; : : : ; I pn = {n}. In general, at level ‘, we have the set of tree vertices (clusters)

I ‘j :={(j − 1)2p−‘ + 1; : : : ; j2p−‘} for 06‘6p; 16j62‘:

In the following, the vertices are called the clusters. Each cluster �= I ‘j has exactly two sons, I
‘+1
j′

and I ‘+1j′′ with j′ = 2j + 1 and j′′ = 2j + 2, obtained by halving the parent vertex. The set of all
clusters I ‘j together with the tree structure is called the cluster tree T (I). In this example, T (I)
is a binary tree of depth p. I is the root of T (I) and the sets Ipi , i = 1; : : : ; n, are the leaves of
T (I) (one-element vertices). Introducing the isomorphism between the index set I and the interval
decomposition {Xi}i∈ I by i ↔ Ji, one can de�ne diameters and the distance between two clusters �
and � just measuring the Euclidean diameter diam(X (�)) and the distance dist (X (�); X (�)), where
X (�):=

⋃{X�: �∈ �}.
Having in hands the cluster tree T1:=T (I), we then construct the corresponding hierarchical tree

T2:=T (I × I) on the product index-set I × I and with the same number p of levels. In our particular
case, we have the following set of vertices:

I ‘ij:=I
‘
i × I ‘j for 06‘6p; 16i; j62‘:
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Fig. 1. Block-structure for MN (a) and MD (b) formats.

The set of sons S2(t) of t = I ‘ij ∈T2 is given by S2(t):={�× � : �∈ S1(I ‘i ); �∈ S1(I ‘j )}, where S1(f)
is the set of sons belonging the parent cluster f∈T1. This construction inherits the hierarchical
structure of T (I) and provides the recursive data access of optimal complexity. The tree T2 contains
a variety of large and small blocks. The block decomposition described later on will use only blocks
contained in T2. Note that the general construction of hierarchical trees T1=T (I) and T2=T (I×I) for
an arbitrary index set I is introduced in [5,6]. Here we concentrate only on the particular examples
which, however, illustrate the main features of the general framework.
The hierarchical format of an H-matrix is based on a particular partitioning P2 of I × I satisfying

certain admissibility conditions. The latter will guarantee the optimal approximation.

2.3. Admissible block partitionings P2 and H-matrices

A partitioning P2⊂T2 is a set of disjoint blocks b∈T2 such that the union of all blocks from
P2 yields I × I . The partitioning P2 is usually built by a recursive construction involving implicitly
an admissibility condition. The latter incorporates characteristics of the singularity locations of the
kernel function s(x; y); x; y∈�, and provides the balance between the size of matrix blocks and
their distance from the singularity points.
For a globally smooth kernel as the �rst example s1 in (2), we need no admissibility restriction;

therefore the biggest block I×I is already admissible resulting in the simplest partitioning P2={I×I}.
As we have seen above, this block will be �lled by a rank-k matrix.
In the second example (kernel s2), we use the following admissibility condition: a block � × �

with �; �∈T1 belongs to P2 if
min{diam(�); diam(�)}62�max(dist(�; 0); dist(�; 0)); (4)

where �61 is a given threshold parameter responsible for the approximation. Let, e.g., �= 1
2 . The

block I×I is not admissible and must be decomposed into its four sons (see Fig. 1a). Three of them
already satisfy (4), and only one must be re�ned further on. Finally, we obtain the block partitioning

P2 = {I ‘ij ∈T2: 0¡‘¡p; max{i; j}= 2} ∪ {Ip11}:
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The block-matrix corresponding to b∈P2 is denoted by Mb:=(m��)(�;�)∈ b. The level number ‘ of a
block b is written as level(b).
In the case of s3(x; y), the admissibility condition is more restrictive because we have the singu-

larity of the kernel in each diagonal point x = y of the product domain �× �. Now �× � belongs
to P2 if

min{diam(�); diam(�)}62� dist(�; �); �¡ 1: (5)

For the choice �= 1
2 , we obtain a block partitioning P2:=

⋃p
‘=2 P

‘
2 , where P

2
2 = {I 214} ∪ {I 241} and

P‘2 = {I ‘ij ∈T2: |i − j|¿1 and I ‘ij ∩ P‘
′
2 = ∅; ‘′¡‘} for ‘ = 3; : : : ; p:

So far, we have given an explicit de�nition of the partitioning P2. In the following, we describe a
recursive de�nition 1 which leads to the same partitioning.
Now, we consider families of three di�erent matrix formats: R; N, and D which correspond to

P2-partitionings in the above-mentioned examples. Here “D” is the abbreviation for the case with
diagonal singularities. R-matrices are matrices of rank 6k. The value of k is thought to be much
less than the problem (or block) size, in particular, the choice k = O(log n) is su�cient for the
optimal order approximation. The R-matrices can be represented in the form

k∑
i=1

[ai; ci] where [ai; ci]:=ai ∗ cHi ;

with column vectors ai and row vectors cHi . We abbreviate by n‘ = 2
p−‘ the problem size on the

level ‘. The set of real R-matrices of the size n‘ is denoted by MR⊂Rn‘×n‘ . This class gives the
trivial example of H-matrices of the rank k.
The class MN⊂Rn‘×n‘ , ‘=p; : : : ; 1, of N-matrices serves for the approximation of the operators

with the kernel s2(x; y) having only one singularity point x=y=0 in �×�. For ‘=p; N-matrices
are simple 1× 1 matrices. Then we de�ne the N-format recursively for the levels ‘=p− 1; : : : ; 1.
An n‘ × n‘ matrix M has the N-format if

M =
[
M11 M12

M21 M22

]
with

n‘
2
× n‘
2
-blocks Mij; i; j = 1; 2; (6)

where M11; M12; M22 ∈MR and M21 ∈MN. Similarly, we de�ne the transposed format: M is an
N∗-matrix if M T has the N-format. This format may be applied in the case of one singular point
of s(x; y) at x=y=1. The sets of N- and N∗-matrices are denoted by MN and MN∗ , respectively.
Finally, the class MD of H-matrices of the D-format is de�ned by the following recursion. Let

M ∈Rn‘×n‘ with ‘ = p; : : : ; 1. For ‘ = p; MD contains all 1 × 1 matrices. For ‘ = p − 1; : : : ; 1, an
n‘ × n‘-matrix M belongs to MD if

M =
[
M11 M12

M21 M22

]
with M11; M22 ∈MD; M12 ∈MN; M21 ∈MN∗ ; (7)

where all block-matrices Mij are of the size n‘=2 × n‘=2. In the case of p = 4, the resulting block
structure of an 16× 16 matrix is given in Fig. 1. The partitionings de�ned above correspond to the

1 The explicit and recursive de�nitions are possible for the model problems discussed. In general, there is an algorithm
for computing the minimal admissible partitioning (see [3]).
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choice � = 1
2 in the related admissibility conditions (4) and (5). This provides the approximation

order O(�m) with the appropriate choice m = O(log n), see Section 3. Note that if the partitioning
P2 is given a priori, then, we obtain the following explicit de�nition of H-matrices.

De�nition 1. Let a block partitioning P2 of I×I and k ¡n=2p be given. The set of real H-matrices
induced by P2 and k is

MH; k(I × I; P2):={M ∈RI×I : ∀b∈P2; there holds rank (Mb)6k}: (8)

Note that H-matrices with block-dependent rank (e.g., k(b):=a1level(b) + a2) can also be con-
sidered, cf. [9]). In [9], a special hierarchical construction of bases {ai}; {ci} for the block-matrices
Mb leads to an O(n) complexity of both the memory and the matrix–vector multiplication.

3. Reliability of H-matrix approximations in BEM

The H-matrices provide sparse discretisations of integral operators. In this section, we show that
the hierarchical matrices are also dense enough, i.e., they lead to the same asymptotically optimal
approximations as the exact FE=BE Galerkin schemes. We consider the typical BEM applications,
where integral operators of the form

(Au)(x) =
∫
�
s(x; y)u(y) dy; x∈�

occur with s being the fundamental solution (singularity function) associated with the p.d.e. under
consideration or with s replaced by a suitable directional derivatives Ds of s. Here � is either a
bounded (d−1)-dimensional manifold (surface) or a bounded domain in Rd, d=2; 3. The H-matrix
techniques exploit the block-wise approximation of s by a degenerate kernel based on the smoothness
properties of the singularity function s (cf. [4, De�nition 3:3:3]). This holds for s as well as for
@s(x; y)=@n(x) or @s(x; y)=@n(y) (double-layer kernel and its adjoint; cf. [4, (8:1:31a,b)]) even if the
normal vector n is nonsmooth (because of the nonsmoothness of the surface �). More precisely, we
assume that the singularity function s satis�es 2

|@�x@�ys(x; y)|6c(|�|; |�|)|x − y|−|�|−|�|g(x; y) for all |�|; |�|6m (9)

and for all x; y∈Rd; x 6= y, where �; � are multi-indices with |�|= �1 + · · ·+ �d. We consider two
particular choices of the (singular) function g¿0 de�ned also on � × �. The �rst case g(x; y) =
|s(x; y)| is discussed in [6]. The second choice to be discussed is g(x; y)=|x−y|1−d−2r. Here 2r ∈R is
the order of the integral operator A :Hr(�)→ H−r(�). Similar smoothness prerequisites are usually
required in the wavelet or multi-resolution techniques (cf. [1,13]). We shall give a simple example
how the above assumption on the kernel implies the local expansions of the form

s�;� =
k∑
j=1

aj(x)cj(y); (x; y)∈ �× � (10)

2 In the case g(x; y) = |s(x; y)|, estimate (9) is a bit simpli�ed. It covers most of the situations, e.g., the case of the
singularity function (1=4�)|x−y|−1 for d=3. As soon as logarithmic terms appear (as for d=2; s(x; y)=log(x−y)=2�),
one has to modify (9). A simple modi�cation is also required for the single-layer potential on polyhedrons.
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for each cluster �× �∈P2, where k is the order of expansion. Then, we prove the consistency error
estimate. We refer to [2] on the familiar multipole expansions of the form (10) applied in the case
of the Laplace equation.
By De�nition 1, H-matrices are composed locally (blockwise) of rank-k matrices. These low

rank matrices can be constructed by means of separable representations (10). In turn, the latter
can be obtained, for example, by polynomial approximation with the Taylor expansion 3 of s(x; y).
Alternatively, the local L2-projection onto the set of polynomials as well as the multipole-type
expansions (the latter are only available for special kernels like (1=4�)|x − y|−1 for d= 3) may be
also applied.
Let x; y vary in the respective sets X (�) and X (�) corresponding to the admissible clusters �; �∈T1

(cf. Section 2.2) and assume, without loss of generality, that diam(X (�))6diam(X (�)): The optimal
centre of expansion is the Chebyshev centre 4 y∗ of X (�); since then ||y − y∗||6 1

2diam(X (�)) for
all y∈X (�). The Taylor expansion reads s(x; y) = s̃(x; y) + R with the polynomial

s̃(x; y) =
m−1∑
|�|=0

1
�!
(y∗ − y)� @

�s(x; y∗)
@y�

(11)

and the remainder R, which can be estimated by

|R|= |s(x; y)− s̃(x; y)|6 1
m!
||y∗ − y||m max

�∈ X (�); ||=m

∣∣∣∣@s(x; �)@�

∣∣∣∣ : (12)

Below, we recall the familiar approximation results based on the Taylor expansions (see, e.g., [6]
for the proof).

Lemma 2. Assume that (9) is valid and that the admissibility condition (5) holds with � satisfying
c(0; 1)�¡ 1. Then for m¿1; the remainder (12) satis�es the estimate

|s(x; y)− s̃(x; y)|6c(0; m)
m!

�m max
y∈ X (�)

|g(x; y)|; x∈X (�); y∈X (�): (13)

Let AH be the integral operator with s replaced by s̃(x; y) for (x; y)∈X (�)× X (�) provided that
�×�∈P2 is an admissible block and no leaf. Construct the Galerkin system matrix from AH instead
of A: The perturbation of the matrix induced by AH − A yields a perturbed discrete solution of the
initial variational equation

〈(�I + A)u; v〉= 〈f; v〉 ∀v∈W :=Hr(�); r61;

where �∈R is a given parameter. The e�ect of this perturbation in the panel clustering methods is
studied in several papers (cf. [10–12]). Here we give the consistency error estimate for the H-matrix
approximation. De�ne the integral operator Â with the kernel

ŝ(x; y):=

{
max
y∈ �
|g(x; y)| for (x; y)∈X (�)× X (�); �× �∈P2;

0 otherwise:
(14)

3 This does not require that the practical implementation has to use the Taylor expansion. If the singular-value decom-
position technique from [5] is applied, the estimates are at least as good as the particular ones for the Taylor expansion.

4 Given a set X , the Chebyshev sphere is the minimal one containing X . Its centre is called the Chebyshev centre.
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For the given ansatz space Wh⊂W of piecewise constant=linear FEs, consider the perturbed Galerkin
equation for uH ∈Wh,

〈(�I + AH)uH; v〉= 〈f; v〉 ∀v∈Wh:

In the following we use a bound on the discrete operator norm ||Â||Wh→W ′
h
appearing in

|〈Âu; v〉|6||Â||Wh→W ′
h
||u||W ||v||W ; ∀u; v∈Wh: (15)

Lemma 3. Assume that (9) is valid. Suppose that the operator �I + A∈L(W;W ′) is W -elliptic.
Then there holds

||u− uH||W6c
{
inf
vh ∈ Vh

||u− vh||W + c(0; m)m!
�m||Â||Wh→W ′

h
||u||W

}
:

The norm of Â is estimated by

||Â||Wh→W ′
h
.

{
||A|| if g= s(x; y) ∧ s(x; y)¿0;
�(d; r)hmin{0; r} if g= |x − y|1−d−2r ; (16)

where (with �= 1− d− 2r)

�(d; r):=

( p∑
l=0

22(l−p)�
)1=2

=



O(1); �¿ 0;
O(p); �= 0;
O(h�); �¡ 0:

Proof. The continuity and strong ellipticity of A imply

||u− uH||W . inf
v∈Wh
||u− v||W + sup

u;v∈Wh

|〈(A− AH)u; v〉|
||u||W ||v||W ||uH||W

(cf. �rst Strang Lemma). On the other hand, under assumption (9), Lemma 2 yields

|〈(A− AH)u; v〉|. c(0; m)
m!

�m||Â||Wh→W ′
h
||u||W ||v||W ; u; v∈Wh:

Indeed,

|〈(A− AH)u; v〉|. c(0; m)
m!

�m
∑

�×�∈ P2

∫
X (�)×X (�)

|ŝ(x; y)u(y) v(x)| dx dy

.
c(0; m)
m!

�m||Â||Wh→W ′
h
||u||W ||v||W : (17)

Now, assuming that (c(0; m)=m!)�m||Â||Wh→W ′
h
is su�ciently small, estimate (16) and �¡ 1 imply

the strong ellipticity of the discrete Galerkin operator yielding the stability ||uH||W6c||u||W . Note
that in the case g = s(x; y), the �rst assertion in (16) follows from the bound |||u|||W6||u||W for
all u∈Wh. In the case g = |x − y|1−d−2r and r¿0, bound (16) follows from the direct estimate
based on the essential properties of the admissible partitioning P2: diam(�) = O(2−‘); �∈P‘2 and
#P‘2 =O(2

d‘). In the case r ¡ 0, we �rst obtain an estimate with the constant �(d; r) in the L2-norm.
Then, applying the inverse inequality ||v||L2(�) . hr||v||Hr(�); v∈Wh completes our proof.
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The block Rk-approximation in the Galerkin method may be computed as the block entry A�×�
H

of the sti�ness matrix AH:={〈AH’i; ’j〉}Ni; j=1 associated with each cluster �×� on the level ‘ may
be presented as a rank-k matrix

A�×�
H =

m−1∑
|�|=0

a� ∗ bT� where k:=
(
d� + m− 1
m− 1

)
=O((m− 1)d�)

is the number of terms and

a� =
{∫

X (�)
(y − y∗)�’i(y) dy

}N�
i=1

; b� =
{∫

X (�)

@�s(x; y∗)
@y�

’j(x) dx
}N�
j=1

:

Here N� = #�=O(2d�(p−‘)) (resp. N� = #�=O(2d�(p−‘))) is the cardinality of � (resp. �). Note that
in BEM applications, we have d�=d−1, while for volume integral calculations there holds d�=d.

4. H-matrices on tensor-product meshes

4.1. Partitioning of tensor-product index set]Proof

In 
 = (0; 1)d with d= 1; 2; 3, we consider the regular grid

I = {i = (i1; : : : ; id): 16ik6N; k = 1; : : : ; d}; N = 2p: (18)

We de�ne the norms |i|∞=max16n6d|in| and |i|1 =∑d
n=1 |in|. Each index i ∈ I is identi�ed with the

(collocation) point �i1 :::id = ((i1 − 1
2 )h; : : : ; (id − 1

2 )h)∈Rd; where h:=1=N and the value �i = �i1 :::id is
the midpoint of the support Xi of the basis function ’i in the FE or BE method considered (cf. (19)
below).
The cluster tree T1 = T (I) of I uses a division of the underlying cubes into 2d subcubes. The

blocks

t‘j = {i : 2p−‘j1 + 16i162p−‘(j1 + 1); : : : ; 2p−‘jd + 16id62p−‘(jd + 1)}
for j ∈{0; : : : ; 2‘ − 1}d belong to level ‘. S1(t‘−1j′ ):={t‘j : 062j′k − ik61 (16k6d)} de�nes the set
of sons of the cluster t‘−1j′ . Hence, the tree T1 consisting of all blocks at all levels ‘∈{0; : : : ; p}
is a binary, quad- or octree for d = 1; 2; 3, respectively. The number of clusters on level ‘ equals
O(2d‘).
Each index i ∈ I is associated with the d-dimensional cube 5
Xi :={(x1; : : : ; xd) : (i1 − 1)h6x16i1h; : : : ; (id − 1)h6xd6idh}; (19)

which may be considered as the support of the piecewise constant function for the index i. Using
the Euclidean norm, we obtain the diameter diam(t) =

√
d2p−‘h=

√
d=2‘ for blocks of level ‘. Let

�; � be two blocks of level ‘ characterised by j and j ′, i.e., �= t‘j , � = t
‘
j′ . Then

dist(�; �) = 2−‘
√
�(j1 − j′1)2 + · · ·+ �(jd − j′d)2 (20)

5 The grid can also be associated with a regular triangulation and, e.g., the supports Xi of piecewise linear functions,
see Section 5. The asymptotic complexities turn out to be the same as for the present choice.
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Fig. 2. Unacceptable region for the given clusters “×”, “⊗” depending on the threshold constant �.

with �(�):=max{0; |�| − 1}. Let the block-cluster tree T2 = T (I × I) be de�ned in accordance with
the cluster tree T1 = T (I) (see [5] for more details). An important property is stated in

Remark 4. Let �× �∈T (I × I): Then �; �∈T (I) belong to the same level ‘∈{0; : : : ; p}.

In view of this remark, for ‘∈{0; : : : ; p}, we denote by T‘2 the set of clusters �×�∈T2 such that
blocks �; � belong to level ‘. In particular, T 02 ={I×I} is the root of T2 and Tp2 ={{(x; y)} : x; y∈ I} is
the set of leaves. The set of clusters t ∈T (I) from level ‘ is called T‘1 . In the following we consider
the choice

�= �� =

√
d
2�
; �∈N (21)

of �. Note that increasing � yields arbitrarily small values of �.
Using min{diam(t1); diam(t2)} =

√
d=2‘ and dist(t1; t2) from (20), we observe that t ∈T (I × I)

is admissible for the choice (21) if the squares X1 = X (�); X2 = X (�), �; �∈T (I) have a relative
position as indicated in Figs. 2a–c corresponding to � = 1; 2 and 3, respectively, with d = 2. The
square X (�) corresponding to � is the crossed square, while X (�) must be outside the bold area. In
the case of d= 2 and �= 1=

√
2; i.e., for � = 1, the admissible T2-partitioning P2 was described in

details in [6]. Note that the general De�nition 5 of Mp(p; �)-formats given below generalises the
particular examples for d= 1; 2; 3 from [5,6].

4.2. Basic de�nitions

In this section, we introduce the general formats for matrices operating in the vector space KI

for the cell-centred tensor product grid I = I dh in 
 = (0; 1)
d with the mesh-size h = 2−p; #I = 2dp

and d = 1; 2; 3. The natural notation of indices from I = I dh is by multiindices i = (i1; : : : ; id) with
16in6N = 2p.
As in the particular cases in [5,6], we can describe the partitioning by a number of formats

Mj
q =Mj

q(p; �); where q∈{0; : : : ; p}, � is parametrised by (21) and the multiindex j = (j1; : : : ; jd)
with | j|∞6� indicates a translation in the following sense. Let b = � × �′ ∈T‘2 be a block of
level ‘ = p − q. If � = �′; we have a diagonal block corresponding to the vanishing shift, i.e.,
j = 0=(0; : : : ; 0). For these blocks we shall introduce the top format M0

q =M0
q (p; �). In general, let

�=(i01; : : : ; i0d)+{(i1; : : : ; id): 16in62‘} and �′=(i01 + j12‘; : : : ; i0d+ jd2‘)+{(i1; : : : ; id) : 16in62‘}
be two clusters (cubes of length 2‘). Then their relation is given by the translation in direction
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j̃ = (j1; : : : ; jd)T. We write �′ =Tj
‘�, where Tj

‘ is the translation operator with respect to the vector
h‘ · j̃; | j|∞62‘ − 1 (due to (21), we actually have the bound | j|∞6� for non-admissible clusters),
where h‘ = 2−‘.
Let �∈T1 be a cluster from level ‘. The corresponding set of sons, S1(�) = {�i}i ∈ Id is associated

with the set of multiindices Id, where

Id = {k∈Nd : |k|∞ = 1 ∧ |k|1 = d}; dim Id = 2d;

as depicted in Fig. 3a for d = 3, and Fig. 3b for d = 2. Equivalently, S1(�) = {a; b; c; d; e; f; g; h}.
This multiindex block numbering indicates the location of sons with respect to the centre of gravity
of the parent cluster: cent(�i)= cent(�)+ 1

2h‘+1i for �i ∈ S1(�). For example, there holds �ia = a and
�ib = b with the vector notations ia = (−1; 1; 1); ib = (1; 1; 1). The block-matrix with columns from
a and rows from b is denoted by Aiaib ∈Ka×b. The examples of two-dimensional vectors are drawn
in Fig. 3b, where, e.g., i1 = (−1; 1); i2 = (1; 1).
For block-clusters �×�′ ∈T‘2 from level ‘=p−q, where �′=Tj

‘�, | j|∞6�, we de�ne recursively
for q=0; : : : ; p the formats Mj

q=Mj
q(p; �) of H-matrices from K�×�′ starting from q=0 and ending

with q = p. In this way, a family of auxiliary formats Mj
q, with | j|∞ 6= 0 is involved, e.g., “next

neighbours” (| j|∞=1), “2-layer neighbours” (| j|∞=2) and so on. In De�nition 5 below these formats
contain the same construction at the next level (“self-reference”) and other formats as depicted in
the graph generalising the corresponding picture from [6]:

top format j = 0 self -reference = 2d

↓ ↘
next neighbours: | j|∞ = 1 : : : self -reference62d−1

↓ ↘
second-layer neighbours: | j|∞ = 2 : : : self -reference62d−2

↓ ↘
“large-distance” formats: | j|∞¿ 2 : : : self -reference = 0 (| j|∞¿ �

2 + 1)↓
leaves Rk self -reference = 0.

We underline that the matrix format Mj
q does not depend on the particular choice of the cluster �

but it is only determined by the translation operator Tj
p−q. Roughly speaking, each format under

consideration actually speci�es (in general, recursively) the location and size of Rk-blocks in the
matrix array from KI×I corresponding to the given admissible partitioning P2 of I×I . The partitioning
P2 itself is generated implicitly by De�nition 5 below. Here the basic parameters p∈N and �∈N
are both �xed, so, we may skip them in the notation Mj

q without ambiguity.
We recall that MR

q is a set of Rk-matrices of the size 2
dq × 2dq; q = 0; 1; : : : ; p. Now, we de�ne

our format in the following range of parameters: q= 0; 1; : : : ; p and | j|∞62‘ − 1, where ‘=p− q.

De�nition 5. (a) For q= 0; : : : ; p and for all | j|∞¿� + 1, de�ne the format Mj
q by Mj

q =MR
q .

(b) For q= 0, de�ne Mj
0 as the set of 1× 1 matrices for all | j|∞6�.
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Fig. 3. (a) Multiindex labelling of sons of the 3D cluster, where a=(−1; 1; 1); b=(1; 1; 1); c=(−1;−1; 1); e=(−1; 1;−1);
d= (1;−1; 1), f = (1; 1;−1); g= (−1;−1;−1); h= (1;−1;−1). (b) The ordering by local translations for 2D cell.

(c) Consider the case q=1; : : : ; p and 16| j|∞6�. To describe the recursion step, assume that for
each q6q0 with some q0¿0, the format Mj

q is already de�ned for all 16| j|∞6�. In the following
we de�ne the format Mj

q for q= q0 + 1. Consider indices j with 16| j|∞6� and blocks �× �′ ∈T2
of level l= p− q such that �′ =Tj

‘�.
6

For the matrices from K�×�′ , we say that A�;�′ = {Aii′}i ∈ Id;i′ ∈ I ′d belongs to Mj
q, if Aii′ ∈Mi′−i+2j

q−1 ,

where, due to the admissibility condition there holds Mi′−i+2j
q−1 ∈MR

q−1 for all indices from the range
|i ′ − i + 2j|∞¿� + 1.
(d) Finally, for j=0, de�ne the top formats M0

q for q=1; : : : ; p. Let �∈T1 be from level ‘=p−q.
Then we say that A�;� = {Aii′}i ∈ Id;i′ ∈ Id belongs to M0

q if there holds Aii ∈M0
q−1 and Aii′ ∈Mi′−i

q−1 for
i ′ 6= i, where the auxiliary formats are already de�ned in item (c).

Note that the format M0
p introduced by De�nition 5 reproduces (with di�erent abbreviations) the

particular constructions from [5,6] given for d= 1; 2; 3 and for � = 1.

4.3. Complexity estimates

In the following, we discuss the storage requirements Nst and the cost NMV of the matrix–vector
multiplication for the general M0

p(p; �) formats. The corresponding results for the particular cases
M0

p(p;
√
d=2) were presented in [5,6].

Note that the maximal level number p is 6O(|log h|): In the following, we call a pair of one
addition and one multiplication a coupled operation.

Theorem 6. Let d∈{1; 2; 3}; A∈M0
p;k(p; �) and � = ��:=

√
d=2�; �∈N. Then the matrix–vector

multiplication complexity is bounded by

NMV6(2d − 1)(
√
d�−1 + 1)d pkn (22)

6 As above, we use the local numbering of sons S(�) = {�i}i ∈ Id and S(�
′) = {�′i′}i′ ∈ I′

d
, where I ′d =Tj

‘Id.
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coupled operations. There holds

Nst6(2d − 1)(
√
d�−1 + 1)d pkn (23)

for the storage requirements. Both estimates are asymptotically sharp.

Proof. Recall that the matrix–vector multiplication with matrices from MR
p costs 2kn multiplications

and kn additions. For each �∈T‘1 , we introduce the set of nonadmissible clusters R(�) by
R(�):={�′ ∈P‘1 ; �′ 6= � : diam(�′)¿ 2��dist(�′; �)}:

For any son �∈ S(�), the number Q�:=#{b∈P2: b = � × �} of Rk-blocks in the block-matrix row
of A and associated with a cluster position � is majorised by the corresponding one for the case of
purely “interior” cluster �. 7 Particularly, Q� equals the number of sons ��′ ∈ S(�′) from the set of
clusters �′ ∈T‘1 , which are neighboured to � and satisfy the admissibility condition with �,

Q�:=#{��′ : ��′ ∈ S(�′); �′ ∈R(�); � × ��′ satis�es (5)}:
In the case of purely “interior” clusters, the direct calculation shows that this number is equal to Q�=
(2d−1)(2�+1)d. Now the multiplication complexity of all Rk-blocks from the given level ‘ amounts
to 2‘Q� multiplications of Rk-blocks with a vector of the dimension n2−‘. Moreover, we have the
summation of intermediate results located in the block columns which costs (k − 1)Q� additions of
full n-dimensional vectors. This exactly results in the constant 2 for counting the coupled operations.
To prove the sharpness of this bound, we note that the number of “nearly boundary” clusters 8 on
each level ‘ is estimated by O(2(d−1)‘). Thus, the complexity count for the corresponding matrix
blocks is dominated by the value O(

∑p
‘=0 2

−‘kn) = O(kn) which shows that (22) is asymptotically
sharp. The bound (23) is proven along the same line.

Remark 7. It is clear by the construction that using linear=bilinear elements disturbs the parameter
� only slightly. In fact, the perturbed parameter is estimated by �new = �+ ch¡ 1 for small enough
h. Then all the previous constructions remain verbatim with the corresponding modi�cations.

In view of above remark, we need also the construction based on the truncated tree. For a level
number p0 ∈{0; : : : ; p}, we call the T2-partitioning P∗

2 a p0-truncation of P2 if it is obtained from
the smaller tree T ∗

2 ⊂T2 by deleting all vertices belonging to levels ‘¿p − p0 and inserting the
sons of size 1 × 1 (leaves) for all nonadmissible blocks of the initial tree T2 at level ‘ = p − p0,
i.e., �∈Tp−p02 has the sons S(�) = {{i}: i∈ �}. By assumption, all nonadmissible blocks of level
‘=p−p0 are full submatrices. Clearly, a treatment of these blocks costs 2dp0 (2�+1)dn operations.
This yields the following estimates (24) and (25) for the p0-truncated partitioning: the matrix–vector
product costs

NMV6(2d − 1)(
√
d�−1 + 1)d(p− p0)kn+ 2dp0−1(

√
d�−1 + 1)dn (24)

7 The purely “interior” cluster �∈ T1 from level ‘ is de�ned to satisfy dist(�; @
)¿�2−‘, see an example with the
cluster “×” in Fig. 2.

8 The “nearly boundary” cluster �∈ T1 from level ‘ is de�ned to satisfy dist(�; @
)6(� − 1)2−‘, see an example in
Fig. 2.
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coupled operations; for the storage needs there holds

Nst6(2d − 1)(
√
d�−1 + 1)d(p− p0)kn+ 2dp0 (

√
d�−1 + 1)dn: (25)

Remark 8. Bounds (24) and (25) allow the optimal choice p0 = O(log k) of the parameter, which
provides a balance between both summands on the right-hand sides. On the other hand, along the
line of Section 3:6 in [6] and taking into account Theorem 6, we conclude that � = O(1)¡ 1 and
k = log� n with some � = �(d) would be the optimal choice retaining the approximation order
O(h�); �¿ 0, of the exact Galerkin scheme.

5. H-matrices on triangular meshes

5.1. Translation operators on the index set I4

The computational domain 
 is assumed to be composed of a �nite number M of macrotriangles

1; : : : ; 
M . For the ease of presentation, we restrict our considerations to 
 = 
1, i.e., M = 1. We
consider the index set I = I4 associated with the supports of piecewise constant elements. The index
structure for the hierarchical triangulation is de�ned in accordance with Fig. 4. Fig. 4c illustrates
the non admissible clusters with respect to �1 ∈T (I) taken as a crossed triangle. Here all admissible
clusters �2 must be outside the bold area restricted by �� and composed of � cluster layers, where
� is parametrised by �= �� = 2=3� with � = 1; 2; 3; : : :.
The cluster tree T1 = T (I) is de�ned by a subdivision of each triangle into four equal parts. The

admissible partitionings from the block cluster tree T (I × I) are determined by (4) with the constant
�= ��, see also Figs. 4b and c.
We identify the sons of a cluster �∈T‘1 in accordance with their relative locations, which will

be described by the proper translation=reection operators. In this way, we introduce the oriented
clusters from T1 =�∪� : the subset � contains clusters with the “standard” orientation, see Fig. 4a,
while � contains the set of reected clusters with respect to the centre of gravity (e.g., �4 in Fig. 4a).
Accordingly, we write �‘=�∩ T‘1 and �‘=� ∩ T‘1 . We also distinct the orientationally dependent
and orientationally invariant transforms. The latter include simple translations � to be speci�ed later
on. The orientationally dependent (converting) maps include the identity operators E� and E� in the
classes � and � , respectively, as well as reection operators Sm :�→ � , ST

m :� → �, m=1; 2; 3

Fig. 4. The hierarchical triangulation: local ordering, nonadmissible clusters; �1 = 2
3 ; �2 =

1
3 .
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de�ned below. We shall also distinguish the mapping classes T� and T� containing the maps from
�‘ → T‘1 and �

‘ → T‘1 , respectively.
Assume that the target cluster � belongs to �. The son �4 ∈ S(�) (see Fig. 4a) belongs to �‘+1

and it corresponds to the trivial translation operator E� , while �i, i = 1; 2; 3 belong to �‘+1. Let
�i, i = 1; : : : ; 4, be the centres of gravity for the corresponding clusters �i providing �4 = cent(�).
Introduce the vectors jnm=�m−�n and reection transforms Sm and ST

m with n; m=1; 2; 3. Sm maps
the cluster �m into its symmetric image �4 with respect to the centre of common edge. Similarly,
the transposed (inverse) mapping ST

m :�4 → �m may be introduced. The general translation �= �j�

is de�ned as a shift by the vector h‘j�. Here, �∈N3
0 such that j� : = �1j13 + �2j21 + �3j32, where

j13 + j21 + j32 = 0. The general transforms T1 ∈T�, T2 ∈T� now take the form

T1:=�j�(Sm)�; T2:=�j�(ST
m)
�; �∈{0; 1}; m∈{1; 2; 3}: (26)

We callT∈S‘� if |T|6�, where the “norm” is de�ned by |T|=max{|�|; |�|∞}: This value measures
the translation distance (shift) between � and �′=T�. Note that the transposed transform is de�ned
by (say, for T∈T�)

TT:=(ST
m)
��−j�

yielding TTT = E� , TTT= E�.
With the given �¿1, the nonadmissible area for the underlying cluster � is then de�ned by

R(�):={T�: 16|T|6�}:
For example, let � = �4 ∈�‘ be the smallest triangle located in the centre of the reference triangle
drawn in Fig. 4b and choose �1 = 2

3 . Then, nonadmissible clusters within the bold area R(�4) are
associated with the set of transforms {�±j1 ; �±j2 ; �±j3 ; S1;S2; S3, �j3S1, �j1S2, �j2S3}∈S‘1 \ E�
corresponding to � = 1. Let �; �′ ∈T‘1 with �′ =T�, where T∈S‘� . For the matrix block � ×
�′ ∈K�×�′ , we construct the family of formats MT

p−‘(p; �) =MT
p−‘, where the case |T| = 0, i.e.,

T∈{E�; E�}∈S‘0 , corresponds to the top format M
4
p−‘(p; �)=M4

p−‘ if T=E� and M∇
p−‘(p; �)=

M∇
p−‘ if T= E� .
To have a constructive de�nition, we need the recursive representation of MT

p−‘ in terms of
matrices with smaller subindex p − ‘ − 1. To that end, with each �′ =T‘�, we associate a 4 × 4
matrix of transforms on level ‘ + 1 generated from T‘ by a lifting mapping

L‘ : T‘ → {Tjj′

‘+1}4j; j′=1; Tjj′

‘+1 ∈S‘+1� ; 06�62|T‘|+ 1;
where Tjj′

‘+1 :�j → �′j′ , �j ∈ S(�); �′j′ ∈ S(�′). All the transforms Tjj′

‘+1 belong to class (26), where
the speci�c parameters �; � and m are uniquely determined by the corresponding characteristics of
T‘ and by the choice of j and j′. In particular, according to Fig. 4a, the matrix-valued operator
Ll(E�):={Tjj′} has the form

L‘(E�):=

E� �j2 �−j1 S1

�−j2 E� �j3 S2

�j1 �−j3 E� S3

ST
1 ST

2 ST
3 E�

; L‘(E�):=

E� �−j2 �j1 ST
1

�j2 E� �−j3 ST
2

�−j1 �j3 E� ST
3

S1 S2 S3 E�

; (27)
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Fig. 5. Coupling of clusters corresponding to typical translations for � = 1.

where Tjj′ ∈S‘+11 ; j; j′ = 1; : : : ; 4. Having de�ned the lifting mapping L‘, we are looking for the
recursive representation of the matrix structure (format) of the block b=�×T� for l=0; : : : ; p−1
and �∈T‘1 ,

A�;�′ = {Ajj′}j; j′=1; :::;4 ∈MT‘
p−‘ if Ajj′ ∈MT

jj′
‘+1

p−‘−1:

While all the far-distance formats with |Tjj′

‘+1|¿� are supposed to have a 2p−‘−1×2p−‘−1 Rk-matrix
structure, the blocks corresponding to nonadmissible area |Tjj′

‘+1|6� are to be de�ned in the next
recurrence steps.
For example, let us consider the recursive block structure of a particular format M4

p (p;
2
3 ), where

the initial index set belongs to the class �. We choose �1 = 2=3 and build the matrix-valued lifting
transforms L(T‘), T‘ ∈S‘

1 for typical neighbouring translations with |T‘| = 1. Here and in the
following, R denotes the class of translations with |T|¿�+ 1 resulting in the Rk-matrix blocks on
the corresponding level. The following schemes illustrate typical lifting transforms in the case of
two clusters with one common vertex, see Fig. 5 (left and middle):

L‘(� j1S2):=

� j1S2 R R R
R R R R
R R R R
R R R R

; L‘(� j1):=

R R � j1 R
R R R R
R R R R
R R R R

: (28)

The translation of sons for two adjacent clusters with one common edge has the following block
(recursive) structure, see Fig. 5(right):

L‘(ST
1 ):=

R R R R
R �−j3ST

1 ST
1 �j3

R ST
1 �j3ST

1 �j2

R �j1 �−j2 �j1 S2

: (29)

Using the nondiagonal lifting transforms de�ned by (28) and (29), we can describe the recursion
for the identity transforms, see (27), which then generates the top formats, see the diagram in
Fig. 6.
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Fig. 6. The subtrees of the diagonal and typical auxiliary formats on I4, where F1 = �±j3ST
1 ; F2 = �j1S2.

5.2. General de�nition and complexity of M4
p -formats

Corresponding to the case 
∈�, we introduce the general M4
p -format, where the level number

p∈N is a �xed parameter. If the target domain 
∈� , the format M∇
p may be de�ned along the

same line. Recall MR
q as a set of Rk-matrices of the size 4

q × 4q, q= 0; 1; : : : ; p.

De�nition 9. (a) For q= 0; : : : ; p de�ne MT
q =MR

q for all |T|¿� + 1.
(b) For q= 0, de�ne M4

0 (p; �) and MT
0 (p; �) as the sets of 1× 1 matrices for all |T|6�.

(c) Consider the case q=1; : : : ; p and 16|T|6�. Assume that for each q6q0 the format MT
q is

already de�ned for all T : |T|6�, and de�ne the formats MT
q for q= q0 + 1. Consider translation

T∈S‘� with |T|= �; �− 1; : : : ; 1 and blocks �; �′ ∈T‘1 of level ‘= p− q such that �′ =T�. For
the matrices from R�×�′ , we say that A= {Ajj′}�j ∈ S(�); �′j′ ∈ S(T�) belongs to MT

q if

Ajj′ ∈MT
jj′
l+1

q−1 for |Tjj′

l+1|6�
and (due to item (a))

Ajj′ ∈MR
q−1 for |Tjj′

l+1|¿� + 1;
where Tjj′

‘+1:=(L
‘(T))jj′ .
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(d) Finally, de�ne the top format M4
q for q = 1; : : : ; p. Let �∈�‘ be from level ‘ = p− q and

set T = E� ∈S‘0 . Then we say that A = {Ajj′}�j; �j′ ∈ S(�) belongs to M4
q if there holds Ajj ∈M4

q−1

and Ajj′ ∈ML‘(E�)jj′
q−1 for j 6= j′. The same construction is applied for �∈�‘, T= E� .

The following statement gives sharp complexity bounds for the above-de�ned family of formats.
Here we use the generalised construction based on the p0-truncated partitioning as in Section 4.

Theorem 10. Let A∈M4
p (p; �) with ��=2=3�; �=1; 2; : : : . With given p0 ∈{0; : : : ; p−1}; suppose

thatM4
p corresponds to the p0-truncated partitioning P

∗
2 . Then the complexity of the matrix–vector

multiplication is bounded by

N4
MV66(6�

2 + 6� + 1)(p− p0)kn+ 22p0−1(6�2 + 6� + 1)kn
coupled operations. Moreover;

N4
st63(6�

2 + 6� + 1)(p− p0)kn+ 4p0 (6�2 + 6� + 1)kn:
The constants in both relations are asymptotically sharp.

Proof. The proof is similar to those from Theorem 6. In fact, let �∈ S(�) be an arbitrary son for each
“purely interior” cluster �∈T‘1 . Then, the number of sons �′ ∈ S(�′) from the set of neighbouring to
� clusters �′ ∈T‘1 , i.e., �′ ∈R(�), and satisfying with � the admissibility condition (4) on level ‘+1,
is equal to Q� = (22 − 1)((1 + 3�)2 − 3�2). Then the assertions follow.

Remark 11. Combining De�nition 9 with the corresponding results from Section 4, we obtain for-
mats of the optimal complexity for the right triangular prism elements in 3D. Further extensions of
construction from above to the 3D case are based on breaking the tetrahedron into 8 or 27 parts.

Remark 12. Due to larger nonadmissible area in the construction of the M4
p (p; �)-format, see The-

orem 10, the corresponding constants in N4
st and N4

MV appear to be bigger than in the case of
Mp-formats.

When using grid (18) for �nite di�erence or �nite element discretisations of the second-order
PDEs, we obtain a �ve-, seven-, or nine-point formula as discretisation matrix for d=2 (similar for
d=3). The next lemma implies that such a matrix can be represented exactly as an H-matrix, see
[6] for the proof in the case of Mp-format.

Lemma 13. The FE sti�ness matrix Ah is in the set 9 MH; k(I × I; P2) for any k¿1.

As a consequence, the approximate inverse of Ah ∈Mp as well as of Ah ∈M4
p can be computed

with the complexity O(p2k2n), where n= #I , see Section 6.3.

9 If I is as in (18) with �xed p; MH; k(I × I; P2) equals Mp (p;
1√
2
). However, this lemma holds for rather general

H-partitionings.
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6. Matrix addition, multiplication and inversion

6.1. Matrix addition

In this Section, we study the complexity of matrix addition, multiplication and inverse-to-matrix
operations for the principal case �=1 and with d=2. As in [5], one can introduce the approximate
addition + , multiplication ∗ , and inversion to the matrices from Mp=M0

p(p;
1√
2
). The complexity

analysis of formatted addition + is rather simple (it operates with the same types of formats in a
blockwise sense) and yields N + (p) = O(pn), where n = 2dp. Indeed, let us denote by symbols
© and × each set of formats Mj

p where | j|1 = 1 and | j|1 = 2 ∧ | j|∞ = 1, respectively. Then the
recursion

N + (p) = 4N + (p− 1) + 8N◦+◦(p− 1) + 4N×+×(p− 1) (30)

follows from (28), see Fig. 6a. In turn, the recursive De�nition 5 easily implies

N◦+◦(p) = 2N◦+◦(p− 1) + 2N×+×(p− 1) + 12NR1+R1(p− 1);
N×+×(p) =N×+×(p− 1) + 15NR1+R1(p− 1):

The latter two relations lead to the bounds

N×+×(p) = O(n); N◦+◦(p) = O(n): (31)

Substitution of (31) into (30) implies the desired complexity estimate for N + (p), taking into
account NR+R(p) = 21n+O(1), see [5].

6.2. Complexity of matrix multiplication

The proof of N ∗ (p) = O(p2k2n) is more lengthy, since various combinations of factors occur.
First, we introduce the formatted matrix–matrix multiplication procedure. The recursive de�nition of
formatted multiplication of two matrices A and B from Mp is similar to De�nition 5 above. For the
precise description, we use the following notations and remark. We call j1 ≺ j2 if either | j1|∞¡ | j2|∞
or | j1|∞ = | j2|∞ ∧ | j1|1¡ | j2|1 and de�ne j1 ≈ j2, otherwise.

Remark 14. Any Rk-matrix of the size 2dq × 2dq may be exactly converted to each of the formats
Mj

q, | j|∞61, so we have the imbedding MR
q ,→ Mj

q. We also assume that either M
j1
q ,→ Mj2

q if
j2 ≺ j1 ∨ j1 ≈ j2 or (if the above imbedding is not the case) Mj1

q may be approximately converted
to the format Mj2

q with almost linear cost, where M
j
q ,→MR

q for | j|∞¿ 1. This assumption is based
on the properties of the particular format Mp under consideration.

De�nition 15 (Recursion step). Assume that for some q¡p and for each A∈Mj1
q , B∈Mj2

q the
Mj3

q -formatted product C = A ∗H B∈Mj3
q is already de�ned for | jm|¿0, m= 1; 2; 3.

Then, for each matrix A∈Mj1
q+1 and B∈Mj2

q+1 with the recursive block structure A= {Aij}i; j ∈ Id ,
B= {Bij}i; j ∈ Id , we de�ne C = A ∗H B:={Ckm}k;m∈ Id with Ckm ∈Mk−m+2j3

q+1 by

Ckm =
∑
i ∈ Id

Aki ∗H Bim; Aki ∈Mk−i+2j1
q ; Bim ∈Mi−m+2j2

q :



498 W. Hackbusch, B.N. Khoromskij / Journal of Computational and Applied Mathematics 125 (2000) 479–501

Here the formatted addition +H is understood as the operation within the format Mk−m+2j3
q in view

of Remark 14. In particular, if j1 = j2 = j3 = 0, we obtain the multiplication procedure for the top
format.

In view of De�nition 15 and taking into account the particular structure of Mp-format, the com-
plexity estimate N ∗ (p) on the level p is reduced recursively to the following operation counts:
N ∗ (p− 1);N ∗◦(p− 1);N ∗×(p− 1), N◦∗×(p− 1), N◦∗◦(p− 1) and N×∗×(p− 1). The latter
may be further reduced to the already known estimates for NR∗R(p− 2) and NR+R(p− 2), see the
proof of Lemma 16.

Lemma 16. The following complexity bounds hold:

N + (p) = O(pkn); N ∗ (p) = O(p2k2n) + O(k3n): (32)

Proof. The �rst assertion is proved in Section 6.1. The bound for ∗ is based on the recurrence

N ∗ (p) = 4N ∗ (p− 1) + 16N ∗◦(p− 1) + 8N ∗+(p− 1)
+16N◦∗◦(p− 1) + 16N◦∗+(p− 1) + 4N+∗+(p− 1) +

∑
�;�∈ℵ

N�+�(p− 1);

(33)

where ℵ:={ ; ◦;×; R}. To proceed with, we then estimate the remaining terms on the right-hand side
above. In this way we use the relations

N ∗◦(p) = 2N ∗◦(p− 1) + 2N ∗+(p− 1)
+12N ∗R(p− 1) + 4N◦∗◦(p− 1) + 24N◦∗R(p− 1)
+6N◦∗+(p− 1) + 2N+∗+(p− 1) + 12N+∗R(p− 1) +

∑
�;�∈ℵ

N�+�(p− 1);

N ∗+(p) =N ∗+(p− 1) + 2N◦∗+(p− 1) +N+∗+(p− 1)
+15(N ∗R(p− 1) + 2N◦∗R(p− 1) +N+∗R(p− 1)) +

∑
�;�∈ℵ

N�+�(p− 1);

N◦∗◦(p) = 4N◦∗R(p− 1) + 12N+∗R(p− 1) + 40NR∗R(p− 1) +
∑
�;�∈ℵ

N�+�(p− 1);

N◦∗+(p) = 4N◦∗R(p− 1) + 8N+∗R(p− 1) + 52NR∗R(p− 1);
N+∗+(p) = 7N+∗R(p− 1) + 57NR∗R(p− 1) +

∑
�;�∈ℵ

N�+�(p− 1);

N+∗R(p) = 4N+∗R(p− 1) + 60NR∗R(p− 1) +
∑
�;�∈ℵ

N�+�(p− 1):

Note that N�+�(p) = O(n) for �; �∈{◦; ×; R}, while N +�(p) = O(pn) for �∈{◦; ×; R}. Substi-
tuting these results into above recurrences and taking into account NR∗R(p) = 3n − 1, see [5], we
obtain

N�∗�(p) = O(n); N ∗�(p) = O(pn); �; �∈{◦;×; R}:
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Finally, Eq. (33) results in the recursion N ∗ (p) = 4N ∗ (p − 1) + O(pn), which yields the
desired assertion. In fact, the term O(k3n) results from the cost of eigenvalue problem solvers (or
the singular-value decomposition) within the implementation of Rk-matrix arithmetic, see [5].

6.3. Matrix inversion

The recursive inversion is based on blockwise transformations and the Schur-complement calcu-
lations involving the addition and multiplication addressed above, see [5] for more details. While
in [5] the H-matrix was treated as a 2 × 2 block matrix, now the re�nement format has a 4 × 4
block pattern. This does not change the complexity order NInversion(p)=O(p2n) obtained there with
k =O(1).
As an alternative, here we discuss in more details the nonrecursive construction of the inverse

of an H-matrix based on the iterative correction and formatted matrix–matrix multiplication. We
propose to apply the nonlinear iterations for computation of A−1. The proper initial guess X0 may
be obtained by the recursive Schur-complement algorithm from [5]. Assume that A is invertible.
Let us solve the nonlinear operator equation in the corresponding normed space Y :=Rn×n of square
matrices

F(X ):=X−1 − A= 0; X ∈Y

by the Newton’s method, which results in the iterations

Xi+1 = Xi(2 I − A · Xi); X0 given; i = 1; 2; : : : : (34)

For this scheme, which is well known from the literature, we give a simple direct convergence
analysis.

Lemma 17. Let A∈Y be invertible and assume that the initial guess in (34) satis�es

||A|| ||X0 − A−1||= q¡ 1: (35)

Then iteration (34) converges quadratically;

||Xi+1 − A−1||6c q2i ; i = 1; 2; : : : : (36)

Suppose that A and X0 are both the s.p.d. matrices and X0 satis�es 0¡X0¡A−1. Then the iteration
(34) yields Xi = X Ti ¿ 0 for all i = 1; 2; : : : .

Proof. Denote Xi = A−1 − �i. By de�nition
Xi+1 = 2(A−1 − �i)− (A−1 − �i)A (A−1 − �i) = A−1 − �iA�i;

which implies

�i+1 = �i A �i; i = 1; 2; : : : : (37)

Therefore, the �rst assertion follows:

||�i+1||6||A||(1+2+22+23+···+2i−1) ||�0||2i6c q2i :
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In the case of s.p.d. matrices, we have A−1¿�0¿ 0 by assumption. Furthermore, assume by induc-
tion, that A−1¿�i ¿ 0. Then Xi+1 is symmetric and (37) yields �i+1 = A−1 − Xi+1¿ 0. Moreover,
the inequality

A1=2�i+1A1=2 = (A1=2�iA1=2)2¡I

implies �i+1¡A−1 yielding Xi+1¿ 0. This proves the induction step.

Due to the quadratic convergence of the scheme proposed, we need only log log �−1 iterative steps
which results in the O(k2p2n log log n) complexity of the iterative correction algorithm.
A speci�c truncation error analysis of the ∗ -multiplication and of the inversion will not be

considered in this paper. However, the background to create e�cient calculus of H-matrices is
based on the observation that for many practically important problem classes the product or the
sum of pseudodi�erential operators A and B as well as the inverse operator A−1 have the integral
representations which ensure the existence of the proper H-matrix approximations to A+ B, B ∗ A
and A−1 themselves. Having in hands the linear complexity multiplication=inversion algorithms, one
may use then two basic strategies for fast solution of the operator equation Au= f:

(a) Direct method based on the H-matrix approximation to the operator A−1 by the recursive
Schur-complement scheme. Here the approximation of A−1 must be su�ciently good.

(b) Computation of a rather rough inverse B ≈ A−1 and correction by few steps of ui+1 = ui −B ∗H
(Aui − f).

Both approaches provide almost linear complexity algorithms for solving a wide class of integral=
pseudodi�erential equations.
To complete the discussion, we note that all the H-matrix formats considered may be extended

to the case of quasi-uniform unstructured meshes. A possible construction is based on the �ctitious
uniform tensor-product or triangular grids discussed in the previous section, see [6]. We do not
claim that such a construction is optimal, but it leads to a straightforward proof of the almost
linear complexity bounds. The H-matrices on graded meshes have been analysed in [7]. Numerical
experiments mainly con�rm the approximation and complexity results for the H-matrix techniques
applied to the boundary integral operators in 3D as well as for the data-sparse approximation to
inverse of the discrete Laplacian. These results will be reported in a forthcoming paper.
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Abstract

In this paper we give an overview on the de�nition of �nite element spaces for the h-, p-, and hp-version of the
BEM along with preconditioners of additive Schwarz type. We consider screen problems (with a hypersingular or a
weakly singular integral equation of �rst kind on an open surface �) as model problems. For the hypersingular integral
equation and the h-version with piecewise bilinear functions on a coarse and a �ne grid we analyze a preconditioner
by iterative substructuring based on a non-overlapping decomposition of �. We prove that the condition number of the
preconditioned linear system behaves polylogarithmically in H=h. Here H is the size of the subdomains and h is the size
of the elements. For the hp-version and the hypersingular integral equation we comment in detail on an additive Schwarz
preconditioner which uses piecewise polynomials of high degree on the �ne grid and yields also a polylogarithmically
growing condition number. For the weakly singular integral equation, where no continuity of test and trial functions across
the element boundaries has to been enforced, the method works for nonuniform degree distributions as well. Numerical
results supporting our theory are reported. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of piecewise polynomials of high degree guarantees high accuracy of Galerkin solu-
tions for elliptic boundary value problems even with singularities [8]. This holds both for the �-
nite element method (FEM) [9] as well as for the boundary element method (BEM) [41], i.e.,
for Galerkin schemes to solve corresponding integral equations. The convergence analysis of the
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hp-version of the BEM for integral equations on polygons is analyzed in [1,11,20,21,23] within the
framework of Mellin convolution operators. For three-dimensional problems, i.e., integral equations
on polyhedral=open surfaces see [19,26,27,29]. The solution of the weakly singular integral equation
of the �rst kind with the single-layer potential belongs to the countably normed spaces B1�(�) when
� is a polyhedron. The solution of the hypersingular integral equation with the operator of the normal
derivative of the double-layer potential belongs to B2�(�) when the given data are piecewise analytic
on �. The Dirichlet problem for the Laplace operator in a polyhedral domain, which is converted
into the above weakly singular integral equation, is analyzed in [29], whereas the corresponding
Neumann problem leads to the hypersingular integral equation considered in [30]. We show in both
cases that the solution of the boundary integral equation can be approximated exponentially fast
by appropriately chosen piecewise polynomials on a geometric mesh which is re�ned towards the
edges and corners of the polyhedral surface. The trial functions can be chosen as tensor products
of Legendre polynomials and their antiderivatives, respectively. For further reference compare the
survey article [41].
The development of e�cient adaptive re�nement strategies for BEM to solve 3D problems is of

high practical importance. Residual error estimators for the h-version have been studied in [5,6] ex-
tending to BEM the Eriksson=Johnson approach for FEM. Another strategy to de�ne error indicators
uses hierarchical multilevel decompositions of the trial spaces (for curves see [4,46], and for weakly
singular integral equations on surfaces see [32]). The framework of adaptive multilevel decomposi-
tions seems also to be suitable for the construction of p- and hp-adaptive methods (for numerical
experiments of the BEM see [28]). For a complete theoretical study the corresponding multilevel
decompositions need to be analyzed which do not only localize the subspaces containing the trial
functions with high degrees but these subspaces must be further decomposed. To the authors’ knowl-
edge this is still an open problem. Nevertheless, a sequence of preliminary work has been developed
recently, examining the preconditioners for domain decomposition techniques belonging to h-, p-,
and the hp-versions BEM. A lot of work has been done for preconditioning techniques for the pure
h-version [22,42,47]; for the p-version see [13,14,16,48] and for the hp-version see [24,25]. Here
in Section 2 we will report on [24]. So far there seems to be no theoretical results available for
domain decomposition methods for the hp-version of the BEM for 3D problems on nonuniform
meshes with anisotropic elements. First results for two-level decompositions with respect to the
polynomial degree are in [28] which can be used for adaptive re�nements. The above-mentioned
references deal with symmetric positive de�nite problems. Domain decompositions for nonsymmet-
ric or inde�nite systems for the BEM on curves (h- and p-version) are investigated in [44,45].
These techniques can also be applied to 3D problems [15] and be used for adaptive steering of
inde�nite boundary element problems [28]. There is a rapidly growing literature on the above topic
for the FEM. For brevity the given references address only the BEM (only some papers for the
FEM are cited). For the h-version BEM there are further preconditioning techniques which however
do not use subspace decompositions of the boundary element space (see [39] and the references
therein).
The paper is organized as follows. In Section 2 we present the additive Schwarz method for

the hp-version of the Galerkin boundary element method applied to �rst kind integral equations
on surfaces. In Section 3 for the h-version we prove the polylogarithmic growth of the condition
number for the preconditioned system of the hypersingular integral equation. In Section 4 we give
some numerical experiments showing the inuence of preconditioning for various p-versions.
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2. Schwarz methods for boundary integral equations of �rst kind

Additive Schwarz methods for the h- and p-versions of the BEM applied to weakly singular and
hypersingular integral equations of �rst kind in R2 are studied in [14,25,47,48]. For the p-version
[14,48] it could be shown that the condition number of the additive Schwarz operator grows at most
like O(log2 p) where p denotes the polynomial degree (for the hp-version see below this section).
For the h-version we could show in [47] that the condition number of the additive Schwarz operator
grows at most like h−� for �¿ 0 arbitrarily small where h denotes the mesh size. The corresponding
result for methods with hierarchical basis functions in R2 is derived in [46] with growth O(|log h|).
For a summary of the results compare the survey article [42]. The multilevel method from [47] could
be generalized to hypersingular integral operators on surfaces in [15]. The results show bounded
condition number of the preconditioned system for closed surfaces and an upper bound O(|log1=2 h|)
for the condition number in case of open surfaces. Additive Schwarz decompositions with two levels
and independent coarse grid and �ne grids were analyzed in [22] for hypersingular integral operators
on surfaces. As described below the corresponding condition numbers of additive Schwarz operators
grow at most like O(|log2H=h|) where H denotes the size of the subdomains.
Domain decompositions and additive Schwarz methods for the p-version of the BEM in R3 are

discussed in [13,16–18]. For nonoverlapping decompositions and weakly singular integral operators
it could be shown in [18] that the condition number of the corresponding additive Schwarz operator
grows at most like O(log2Hp=h). In [16] special, nonhierarchical basis functions have been used
to de�ne decompositions for hypersingular operators where the condition number of the additive
Schwarz operator grows at most polylogarithmically in p. Overlapping decompositions are analyzed
for 2D problems in [49] and for 3D in [17].
As a model problem we consider the weak form of the hypersingular integral equation

〈Du; v〉L2(�) = 〈f; v〉L2(�) for all v ∈ H̃
1=2
(�) (1)

on a plane rectangular surface piece �⊂R3 where f ∈ H−1=2(�) is a given function. Here D is the
hypersingular integral operator

Du(x) =
1
4�

@
@nx

∫
�
u(y)

@
@ny

1
|x − y| dSy; x ∈ �

which is a continuous and positive-de�nite mapping from H̃
1=2
(�) onto H−1=2(�), cf. [40]. Hence,

there holds the equivalence of norms

〈Dv; v〉L2(�) ' ||v||2H̃ 1=2(�)
for all v ∈ H̃

1=2
(�):

The Sobolev spaces H̃
1=2
(�) and H−1=2(�) are de�ned in the next section. The solution u of (1)

is the jump across � of the solution of a Neumann problem for the Laplacian in R3\ ��, cf. [40].
The extension of our results to hypersingular integral equations on closed, polyhedral surfaces [37]
and to more practical problems like exterior traction problems in linear elasticity is essentially
straightforward and for ease of presentation we concentrate on the generic model problem for the
Laplacian.
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The Galerkin scheme for (1) reads as follows. Given a �nite-dimensional subspace 	⊂ H̃
1=2
(�)

with dim	 = N �nd uN ∈ 	 such that

〈DuN ; v〉L2(�) = 〈f; v〉L2(�) for all v ∈ 	: (2)

The solution u of (1) behaves singularly at the edges and corners of �, cf. [37,43]. Due to these
singularities the standard h- and p-versions of the Galerkin method converge at a rather low rate. On
the other hand, when appropriately combining mesh re�nements and polynomial-degree distributions
in a nonuniform fashion, even an exponential rate of convergence is achievable, cf. [19,29].
The approach from [24] described here is a �rst step towards preconditioning methods for the

general hp-version of the boundary element method in three-dimensions. We consider nonuniform
meshes as well as nonuniform degree distributions. However, we require that the elements are shape
regular, i.e., they are not too distorted, and locally quasi-uniform. Moreover, we assume that the
polynomial degrees vary not too much within elements, i.e., the ratio of maximum and minimum
polynomial degrees is bounded on individual elements. Since the polynomial degrees on neighboring
elements are coupled by the continuity of the basis functions this boundedness of the ratio then
holds also on patches of adjacent elements. Therefore, we call this nonuniform p version locally
uniform.
In any case, the sti�ness matrices for the hp-version in (2) are ill-conditioned and a preconditioner

is necessary for an e�cient solution. The method of choice for solving positive de�nite linear systems
is the conjugate gradient method. Let A denote the sti�ness matrix of the linear system with spectral
condition number �. Then a bound on the decrease of the energy norm of the error, after k steps,
is given by

2

(√
� − 1√
� + 1

)k

where � =
�max(A)
�min(A)

:

The goal, now, is to investigate a preconditioner for A which yields good bounds for �. Provided
the sti�ness matrix is given in a suitable basis with appropriate numbering of basis functions, we
present a preconditioner which amounts to a block-Jacobi step where some of the blocks may overlap
with others. Each block of this method corresponds to a discretization of the integral operator for
a given subspace of the full approximation space 	. Therefore, the preconditioner is related to a
decomposition of 	 into subspaces. The main structure of this decomposition is given by a three-level
method. There are two levels for the piecewise polynomials of lowest degree corresponding to a
coarse and a �ne mesh. The �ne level subspace then is further decomposed into a couple of subspaces
associated with the wire basket and individual elements of the coarse mesh. Finally, the third level
is given by the full space of piecewise polynomials of high degrees and is also further decomposed.
The subspaces of the latter decomposition belong to the wire basket and individual elements of the
�ne mesh.
The three-level decomposition of our method is analogous to that proposed by Guo and Cao [10]

for the �nite element method in three-dimensions. However, we have to deal with a hypersingular
integral operator on surfaces that means we have to consider trace spaces of H 1. We take polynomials
with minimal L2-norm as given in [36] and use the L2-bilinear form on the wire basket.
Let us note that [24] extends the results in [22] where the pure h version of the boundary element

method on quasi-uniform meshes is considered. Indeed, the �rst two levels of our preconditioner are
identical with the subspace decomposition of the h version in [22] where, however, in each case
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the original bilinear form is used as preconditioner. In our previous paper [25] we also deal with
preconditioners for the hp-version of the boundary element method where, in particular, geometrically
graded meshes and nonuniform polynomial degrees are considered. However, that paper only deals
with two-dimensinal problems on polygonal domains, i.e., with integral operators on curves, and
the subspace decompositions and technical tools are not as sophisticated as for three-dimensional
problems.
The ansatz space 	 consists of piecewise polynomials of varying degree on a locally quasi-uniform

mesh. This mesh is de�ned by two levels.
One level is the coarse mesh which is given by a regular family of triangles or quadrilaterals,

�� =
⋃J

j=1
��j. The elements �j of this level are called subdomains and its nodal points are referred

to as vertices whereas the lines between the vertices are the edges. The subdomains must be shape
regular, i.e., they are not too distorted. The coarse mesh can be nonuniform and the diameter of �j
is denoted by Hj.
The second level of the mesh is the �ne mesh. It is given by partitioning each subdomain into a

number of quasi uniform quadrilaterals �ji (the elements) which are shape regular and of diameter
hj on �j. The nodal points of the �ne mesh are called nodes and the lines between the nodes are
the sides.
Having de�ned the mesh on � the h–p approximation space is completely determined by de�ning

basis functions locally on the reference element �ref :=(−1; 1)2 and by specifying polynomial degrees
on the elements of the mesh.
On the reference element we use the vector of polynomial degrees

P= (p1 ; : : : ; p4 ; pI1 ; pI2);

where pj and pIj are the degrees associated with the sides and the interior of �ref (x1- and
x2-direction), respectively, in a certain order. The maximum polynomial degree on �ref is denoted
by pmax. The elements �ji are associated with degree vectors Pji, and we assume that the ratio of
the maximum and minimum polynomial degrees on individual elements is bounded uniformly on
the �ne mesh.
Now let us de�ne the basis functions. As in the standard p version we make a distinction between

nodal, side, and internal shape functions. Let ’p
0 denote the pth degree polynomial on I :=(−1; 1)

with ’p
0 (−1) = 0 and ’p

0 (1) = 1 which minimizes the L2(I)-norm over the space of all pth degree
polynomials (subject to the same boundary conditions).

• One of the four nodal shape functions, the one for node V1 = (−1;−1), is given by

’
p1
0 (−x1)’p4

0 (−x2):

• One of the sets of side shape functions, for the edge E1 = {(x1; x2); x2 =−1}, is given by

 p1 (x1)’
pI2
0 (−x2)

where  p1 is a polynomial of degree p1 such that  
p1 (−1) =  p1 (1) = 0.

• The interior shape functions are polynomials of degree pI1 in x1 and of degree pI2 in x2 which
vanish at the sides of �ref .
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Using the shape functions de�ned above we introduce a polynomial space on �ref by

	P(�ref ) =	[N ]
P (�ref ) +

4⋃
l=1

	[l]
P (�ref ) +	[I ]

P (�ref ):

Here, 	[N ]
P (�ref ) is the space of nodal shape functions on the reference element �ref ; 	[l]

P (�ref ) is
the space of side shape functions on the side l of �ref , and 	[I ]

P (�ref ) denotes the space of interior
shape functions on �ref .
The full h–p approximation space on � is now de�ned by taking a�ne transformations onto the

elements �ji of the polynomial space 	P(�ref ). Using the notation previously introduced we have on
each element the representation

	Pji(�ji) =	[N ]
Pji
(�ji) +

4⋃
l=1

	[l]
Pji
(�ji) +	[I ]

Pji
(�ji)

and the full space

	(�) = { ;  |�ji ∈ 	Pji(�ji)} ∩ H̃
1=2
(�):

We decompose the approximation space by

	(�) =	H (�) +	W(�) +
⋃
j

	�j +	W (�) +
⋃
j; i

	[I ]
Pji
(�ji): (3)

Here, 	H (�) = �h	∗
H (�) where 	∗

H (�) is the space of piecewise linear=bilinear functions on the
coarse mesh and

�h : 	(�)→ 	h(�)

is the interpolation operator onto the space of piecewise bilinear functions 	h(�) on the �ne mesh.
Further, 	W(�) is the space of piecewise bilinear functions on the �ne mesh which are zero at
the nodes which are not on the wire basket W. The piecewise bilinear functions on the �ne mesh
which are nonzero only on the subdomain �j span the space 	�j . The remaining spaces, 	W (�) and
	[I ]

Pji
(�ji), represent a decomposition of the space of high-degree polynomials. 	W (�) is spanned by

all the side and nodal functions and 	[I ]
Pj i(�ji) comprises all polynomials of the speci�ed degrees on

�ji that vanish on �\�ji.
Note that the above decomposition amounts to a three-level method. The �rst two levels, 	H (�)

and 	W(�) +
⋃

j 	�j , represent a two-level decomposition of the piecewise polynomials of lowest
degree whereas the third level, 	W (�) +

⋃
j; i 	

[I ]
Pji
(�ji), contains all piecewise polynomials of higher

degrees.
For ease of presentation we use, instead of (3), also the notation

	(�) = H1 + · · ·+ Hk;

for the three-level decomposition of 	(�) where the number of subspaces k equals to three plus
the number of subdomains �j plus the number of elements �ji (if the polynomial degrees are large
enough such that all the subspaces are nonempty).
The additive Schwarz method consists in solving, by an iterative method, the equation

PuN :=(P1 + P2 + · · ·+ Pk)uN = fN ; (4)
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where the projections Pj : 	(�)→ Hj; j = 1; : : : ; k, are de�ned for any v∈	(�) by

aj(Pjv; ’) = 〈Dv; ’〉L2(�) for any ’ ∈ Hj:

Here, aj; j=1; : : : ; k, are given bilinear forms. On all but the wire basket spaces 	W(�) and 	W (�)
we use the original bilinear form given by the integral operator, i.e.,

aj(v; w):=〈Dv; w〉L2(�) for v; w both in 	H (�); 	�j or 	
[I ]
Pji
(�ji):

On the wire basket spaces 	W(�) and 	W (�) we use the L2-bilinear form over the wire baskets,
i.e.,

aj(v; w):=〈v; w〉L2(W) for v; w ∈ 	W(�) (5)

and

aj(v; w):=〈v; w〉L2(W ) for v; w ∈ 	W (�): (6)

The right-hand side of (4), fN =
∑k

j=1 PjuN , can be computed without knowing the solution uN

of (2) by

aj(PjuN ; ’) = 〈f;’〉L2(�) for any ’ ∈ Hj; j = 1; : : : ; k:

Eq. (4) is the preconditioned linear system and an estimate of its condition number is given by the
next theorem.

Theorem 1. There exist positive constants c1; c2 which are independent of Hj; hj; and pj such that
for all v ∈ 	 there holds

c1 min
j

(
1 + log

Hj

hj
pj

)−2
〈Dv; v〉L2(�)6〈DPv; v〉L2(�)6c2〈Dv; v〉L2(�):

P is the additive Schwarz operator de�ned by the decomposition of the ansatz space 	 and by
the given bilinear forms.

The proof of Theorem 1 needs a far amount of technical details (see [24]). For simplicity we
present in the next section the proof for the pure h-version, i.e., pj = 1, from [22]. Nevertheless,
this simpler case should still su�ce to highlighten the various building blocks of our analysis.
A prototype of a weakly singular integral equation is

〈Vu; v〉= 〈f; v〉 ∀v ∈ H̃
−1=2
(�); (7)

with the single-layer potential operator

Vu(x):=
1
4�

∫
�

u(y)
|x − y| dsy:

This pseudodi�erential operator has order −1, and the corresponding energy space is the dual space
H̃

−1=2
(�) of H 1=2(�) where the latter is an interpolation space between L2(�) H 1(�). Hence to obtain

bounds for the condition number of the additive Schwarz operator for weakly singular operators
inequalities of the form

c1
N∑
i=1
||vi||2H̃−1=2(�)

6||v||2
H̃−1=2(�)

6c2
N∑
i=1
||vi||2H̃−1=2(�)
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are of central importance. The function v belongs to the BEM trialspace which is now a subspace of
H̃

−1=2
(�) and the representation v=

∑N
i=1 vi belongs to an appropriate subspace splitting. In contrary

to the hypersingular operator the conformity in case of the weakly singular operator requires no
continuity of the piecewise polynomial trial functions and the components of v can, e.g., be de�ned
by restrictions.
Let us consider the Galerkin scheme for (7) and concentrate on the p-version of BEM for which

we introduce a nonoverlapping method which is almost optimal. To de�ne the additive Schwarz
preconditioners for our model problem let ��h=

⋃J
j=1

��j be a given mesh of J rectangles which de�ne

implicitly the subspace 	⊂ H̃
−1=2
(�) of piecewise polynomials on �h by specifying the polynomial

degrees. For the decomposition of 	 we choose a coarse mesh ��H=
⋃n

j=1
�Gj of size H¿h, assuming

that �H is compatible with the boundary element mesh �h. We decompose

	 = H0 ⊕ H1 ⊕ · · · ⊕ Hn; (8)

where H0 is the space of piecewise constant functions on the coarse mesh �H and

Hj:={v|Gj : v ∈ 	\H0; 〈v; 1〉L2(Gj) = 0}; j = 1; : : : ; n:

Theorem 2 (Heuer [15,18]). There exists a constant c¿ 0 independent of h; H; and p such that
for the condition number of the additive Schwarz operator P implicitly de�ned by the decomposition
(8) there holds

�(P)6c
(
1 + log

(
H
h
(p+ 1)

))2
:

Remark 1. Above the same degree p is used everywhere, for simplicity, but here the method
works for nonuniform degree distributions as well. The above Theorem can be directly applied
to the h-version (using piecewise constant trial functions), cf. [32]. Since the boundary element
functions for the weakly singular integral equations need not to be continuous across the inner
element boundaries the proof of Theorem 2 only consists of a detailed analysis of the Sobolev
norms involved. No special care has to be taken of the basis functions. In contrast, Theorem 1
covers the hypersingular integral operator and there the trial space 	 is a subspace of H̃

1=2
(�) and

therefore continuity of the boundary element functions across the element boundaries is required.

In the two-dimensional situation, when dealing with integral equations on curves, additive Schwarz
methods for weakly singular operators directly correspond to additive Schwarz methods for hypersin-
gular operators and viceversa. This is due to the existence of simple isomorphisms between H̃

1=2
(�)

and

H̃
−1=2
0 (�):=

{
 ∈ H̃

−1=2
(�):

∫
�
 ds= 0

}
;

which are the energy spaces of operators of orders 1 and −1, respectively.
The extensions of standard di�erentiation and integration, which preserve polynomials, onto H̃

1=2
(�)

and H̃
−1=2
0 (�), respectively can be taken. By these mappings, any subspace decomposition of an

ansatz space for hypersingular operators gives a related subspace decomposition of the ansatz space
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of di�erentiated functions for weakly singular operators, and vice versa. Both decompositions then
provide the same spectral properties of the corresponding additive Schwarz methods.
Such an easy isomorphism which preserves polynomials on surfaces in R3 is not known. For

example (−4)1=2 and its inverse would be candidates but they are only pseudo-di�erential operators
which in general do not map polynomials onto polynomials. Therefore, on surfaces we use di�erent
tools to analyze Schwarz preconditioners for operators of order one and of order −1.
Let us mention some other approaches for preconditioning linear systems arising from the h-version

of BEM. Im [34,35] norm equivalences are proved for �nite element multilevel splittings both in
H 1=2(�) and H−1=2(�) which yield estimates for multilevel additive Schwarz preconditioners applied
to BEM [32].
Further, we mention the method by Steinbach [39] who uses operators of opposite orders to

construct preconditioners. This method is especially worth being considered when one deals with
systems where all the needed operators occur. Then there is no extra work to construct the needed
sti�ness matrices. In the framework of domain decomposition this approach has also been proposed
by Xu and Zhang, see [51]. Here, the explicit representation of the inverse of the Steklov–Poincar�e
operator by a weakly singular operator, which is well-known in the boundary element literature, see,
e.g., [38], is used to precondition the Steklov–Poincar�e operator which is hypersingular. Finally, we
mention that multiplicative Schwarz methods for the BEM are studied in [12,31].

3. Proof of Theorem 1 for the h-version

We return to the Galerkin scheme (2) and analyze for piecewise linear elements (p=1) its additive
Schwarz preconditioner belonging to (3). But now we use on all subspaces the energy bilinear form
aj(·; ·) = 〈D·; ·〉. For simplicity we restrict our considerations to uniform rectangular meshes �h. The
decomposition of � is given by a uniform rectangular mesh �H which is assumed to be compatible
with �h, i.e., the nodes of �H are also nodes of �h. Then the decomposition (3) becomes

S1h (�) = S1H (�) ∪ S1h;H (�) ∪
J⋃

j=1

S1h (�j): (9)

The spaces S1H (�) and S1h (�) consist of the usual continuous piecewise bilinear functions on the
meshes �H and �h of size H and h on �. S1h;H (�) is the so-called wire basket space which is
spanned by the piecewise bilinear hat functions of S1h (�) which are concentrated at the nodes lying
on the element boundaries of the mesh of size H . The spaces S1h (�j) are spanned by the piecewise
bilinear hat functions concentrated at the nodes interior to the restricted meshes �h|�j=�j;h; j=1; : : : ; J .
We are now in the position to state and prove Theorem 1 which says that the preconditioner

implicitly de�ned by the decomposition (9) is almost optimal for general mesh sizes h and H and
that it is optimal if one �xes the ratio H=h and the polynomial degree.
The following two lemmas present abstract bounds for the minimum and maximum eigenvalues

of the additive Schwarz operator corresponding to the h-version, i.e., we choose

	(�) = S1h (�) = H1 + · · ·+ Hk

according to (9) and we take the energy bilinear form a(u; v) = 〈Du; v〉. The proofs can be found,
e.g., in [33,50].
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Lemma 1. If there exists a constant C1 such that for any ’ ∈ S1h (�) there exist ’j ∈ Hj; j=1; : : : ; k;
satisfying ’=

∑k
j=1 ’j and

k∑
j=1

a(’j; ’j)6C−1
1 a(’; ’);

then

�min(P)¿C1:

Lemma 2. If there exists a constant C2 such that for any ’ ∈ S1h (�) and ’j ∈ Hj; j = 1; : : : ; k;
satisfying ’=

∑k
j=1 ’j and

a(’; ’)6C2
k∑

j=1
a(’j; ’j)

then

�max(P)6C2:

Let us de�ne the Sobolev spaces that are in use. The space H 1(�) is endowed with the usual
norm

|| · ||2H 1(�) = c|| · ||2L2(�) + ||@x1 · ||2L2(�) + ||@x2 · ||2L2(�)
where @x1 and @x2 denote the partial derivatives with respect to the Cartesian coordinates x1 and x2
on �. For �xed domains � or 
 the constant c = 1 is taken. However, if we consider subdomains
of diameter H the constant c = 1=H 2 is taken. This is to ensure appropriate scaling properties of
the norms. The space H 1

0 (�) is the completion of C∞
0 (�) with respect to the norm || · ||H 1(�). For

nonintegral s we use the K-method of the interpolation theory as described in [2]. For two normed
spaces A0 and A1 the interpolation space As = [A0; A1]s (0¡s¡ 1) is equipped with the norm

||a||[A0 ;A1]s :=
(∫ ∞

0

(
t−s inf

a=a0+a1
(||a0||A0 + t||a1||A1)

)2 dt
t

)1=2
:

For 0¡s¡ 1 we de�ne

Hs(�) = [L2(�); H 1(�)]s; H̃
s
(�) = [L2(�); H 1

0 (�)]s:

The spaces H−s(�) and H̃
−s
(�) are the dual spaces with respect to the L2-inner product

H−s(�) = (H̃
s
(�))′; H̃

−s
(�) = (Hs(�))′:

The spaces Hs(�) and H̃
s
(�) for |s|¿ 1 can be de�ned analogously by interpolating between

Hm−1(�) and Hm(�) or Hm
0 (�) for the smallest integer m¿ |s|. The following lemma is used

for estimating the largest eigenvalue of the additive Schwarz operator.

Lemma 3 (Heuer [13, Lemma 4]). Let {�j; j = 1; : : : ; J} be a �nite covering of � by subdomains
�j with Lipschitz boundary;

�� =
J⋃

j=1

��j;
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with a covering constant Jc; i.e.; we can color {�j; j = 1; : : : ; J} using at most Jc colors in such
a way that subdomains of the same color are disjoint. Let ’ =

∑J
j=1 ’j ∈ H̃

s
(�) for real s with

’j ∈ H̃
s
(�j); j = 1; : : : ; J . Then there holds

||’||2H̃ s(�)6Jc
J∑

j=1
||’j||2H̃ s(�j)

:

It is crucial for substructuring techniques to split global norms into norms over subdomains.
This is straightforward for Sobolev norms of integral order. For norms of nonintegral order which
typically appear in the boundary element method for �rst kind integral equations this is not trivial.
The following lemma is used in the proof of the main theorem.

Lemma 4 (Heuer [16, Lemma 3.3]). Let s¿ 0 and ’ ∈ H̃
s
(�) with ’j:=’|�j ∈ H̃

s
(�j), j=1; : : : ; J .

There exist constants C1; C2¿ 0 which are independent of ’ and J such that

C1
J∑

j=1
||’j||2Hs(�j)6||’||2H̃ s(�)6C2

J∑
j=1
||’j||2H̃ s(�j)

:

To bound the maximum eigenvalue of P we take for a given � ∈ S1h (�) an arbitrary representation

�= �H + �h;H +
J∑

j=1
�j;h

according to the decomposition (9) By the triangle inequality and by applying a colouring argument
(Lemma 3) to the third component

∑J
j=1 �j;h we obtain

||�||2
H̃ 1=2(�)

6C

(
||�H ||2H̃ 1=2(�)

+ ||�h;H ||2H̃ 1=2(�)
+

J∑
j=1
||�j;h||2H̃ 1=2(�j)

)
:

Thus, due to Lemma 3, we proved the boundedness of the maximum eigenvalue,

�max(P)6C:

In order to derive a lower bound for the minimum eigenvalue of P we apply Lemma 1 to a speci�c
representation for an arbitrary function � ∈ S1h (�). We choose

�H :=(QHE�)|� ∈ S1H (�);

where QH is the L2-projector onto S1H (
). Here, E is the discretely harmonic extension operator
from � onto 
:=(−H;H)× � (cf. (11)). By the trace theorem, the stability of QH in H 1(
), and
the extension theorem for discretely harmonic functions we obtain

||�H ||2H̃ 1=2(�)
6C|QHE�|2H 1(
)6C|E�|2H 1(
)6C||�||2

H̃ 1=2(�)
: (10)

Here, we made use of the fact that piecewise trilinear functions in 
 with respect to the mesh size
H are discretely harmonic.
Let us use the notation

wh:=�− �H :

To de�ne the component �h;H of � which belongs to S1h;H (�) we need some more notations.
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By W we denote the wire basket of the mesh �H of size H on �, i.e. the union of the edges
of the elements of �H . We neglect the edges which are on the boundary of � since we need zero
boundary conditions for subspaces of H̃

1=2
(�). The nodes of the mesh �h of size h which belong to

the wire basket W are denoted by Wnodes. The nodes of �h which do not belong to the boundary of
� are denoted by �nodes. Of course, these sets depend on the mesh sizes H and h. Now we de�ne
the component �h;H by the following relations:

�h;H ∈ S1h (�); �h;H (x):=

{
wh(x) for all x ∈ Wnodes;

0 for all x ∈ �nodes\Wnodes:

Obviously, the function �h;H belongs to S1h;H (�). Let E�h;H denote the discretely harmonic extension
of �h;H onto 
:=(−H;H)×�. More precisely we embed the mesh �h in the three-dimensional mesh

h of cubes of size h which is de�ned on 
 = (−H;H) × �. We identify � = 
|z=0 and use the
notations 
1:=
|z¡0 and 
2:=
|z¿0. Then we de�ne

E�h;H ∈ S1h (
); E�h;H |� = �h;H ;∫


∇E�h;H∇’ d(x; y; z) = 0 for all ’ ∈ S1h (
i); i = 1; 2:

Using the trace theorem and [7, Lemma 4:7] we deduce

||�h;H ||2H̃ 1=2(�)
6C|E�h;H |2H 1(
)6C||�h;H ||2L2(W ): (11)

Since �h;H = wh on the wire basket W we obtain by again using the discretely harmonic extension
operator E and by [7, Lemma 4:3]

||�h;H ||2L2(Wj)6C
(
1 + log

H
h

)
||Ewh||2H 1(
i; j); i = 1; 2; j = 1; : : : ; J: (12)

Here �
i =
⋃J

j=1
�
i;j is a covering of 
i, i = 1; 2, which is compatible with the decomposition of

� into subdomains �j, j = 1; : : : ; J , and Wj:=@�j. By the approximation property of the projection
operator QH , and by using the identity E((QHE�)|�) = QHE�, there holds

||Ewh||2L2(
i; j) = ||E�− QHE�||2L2(
i; j)6CH 2|E�|2H 1(
i; j);

and by [3, (3:11)] we obtain for discretely harmonic functions ’

|’|2H 1(
i)6C||’||2
H̃ 1=2(@
i)

:

Therefore, together with (10), we obtain
J∑

j=1
||Ewh||2H 1(
i; j) =

J∑
j=1
(H−2||Ewh||2L2(
i; j) + |Ewh|2H 1(
i; j))

6C(|E�|2H 1(
i) + |Ewh|2H 1(
i))

6C(||wh||2H̃ 1=2(�)
+ ||�||2

H̃ 1=2(�)
)6C||�||2

H̃ 1=2(�)
: (13)

Combining (11)–(13) we obtain

||�h;H ||2H̃ 1=2(�)
6C

(
1 + log

H
h

)
||�||2

H̃ 1=2(�)
: (14)
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In the last step we de�ne the components of � belonging to the spaces S1h (�j); j = 1; : : : ; J , by

�j;h:=

{
wh − �h;H on �j;

0 elsewhere:

Since wh = �h;H on the boundaries of the subdomains the functions �j;h are continuous on � and
therefore belong to S1h (�) and the corresponding subspace S1h (�j) as well. Thus we have

�h:=
J∑

j=1
�j;h ∈ S1h (�)⊂ H̃

1=2
(�)

and

�h|�j = �j;h ∈ S1h (�j)⊂ H̃
1=2
(�j); j = 1; : : : ; J:

By Lemma 4 in [24] there holds

||�j;h||H̃ 1=2(�j)
6C

(
1 + log

H
h

)
||wh||H̃ 1=2(�j)

:

Therefore, we obtain by Lemma 4 and (10)

J∑
j=1
||�j;h||2H̃ 1=2(�j)

6C
(
1 + log

H
h

)2
||wh||2H̃ 1=2(�)

6C
(
1 + log

H
h

)2
||�||2

H̃ 1=2(�)
: (15)

Since

�H + �h;H +
J∑

j=1
�j;h=�H + �h;H + wh − �h;H

=�H + �− �H = �

we de�ned a representation of � and using (10), (14) and (15) we proved that

||�H ||2H̃ 1=2(�)
+ ||�h;H ||2H̃ 1=2(�)

+
J∑

j=1
||�j;h||2H̃ 1=2(�)

6C||�||2
H̃ 1=2(�)

+ C
(
1 + log

H
h

)2
||�||2

H̃ 1=2(�)
6C

(
1 + log

H
h

)2
||�||2

H̃ 1=2(�)
:

Therefore, due to Lemma 1,

�min(P)¿C
(
1 + log

H
h

)−2
and

�(P) = �max(P)=�min(P)6C
(
1 + log

H
h

)2
:
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4. Numerical results

To demonstrate the e�ciency of our preconditioning method and to underline the theoretical
estimates we present some experimental results for the extremum eigenvalues and the condition
numbers of the preconditioned systems belonging to the Galerkin p-version for the hypersingular
integral equation (1).
We emphasize that the boundary element method produces sti�ness matrices which are in general

fully occupied which means that even functions with disjoint supports are coupled via the integral
operator. Therefore, when performing a domain decomposition to create a preconditioner, one not
only decouples adjacent subdomains but also neglects the coupling of functions in subdomains which
are not adjacent. The latter coupling is not present in the �nite element method. Therefore, in the
boundary element method, the theoretical bounds for the extremum eigenvalues are most often just
asymptotically obtained and are not as obvious as in the �nite element method from the experimental
results.
Due to Theorem 1 we expect for the uniform and locally uniform methods bounded maximum

eigenvalues and minimum eigenvalues which behave like (1 + logpmaxH=h)−2.
For our model problem we choose the domain � = (−1=2; 1=2)2 × {0} and take a uniform mesh

of squares with length h. For the concrete choice of the trial spaces see [24]. The polylogarithmic
behavior in p of the condition number is checked with Fig. 1. Here we consider the mesh h=1=3 and
H=h=1. Both cases, uniform and locally uniform p-version, as well as the results for the nonuniform
p-version are shown. In the uniform case p=7 corresponds to N =400 number of unknowns. In the
locally uniform case we have only N =202 for p=7 and in the nonuniform example p=7 means
N =82. However, we observe that all curves are quite close which means that the condition number
essentially depends on the maximum polynomial degree. The e�ciency of the preconditioner seems

Fig. 1. Condition numbers for the preconditioned uniform and nonuniform=locally uniform p-version (1=h= 3, H=h= 1).
The results marked by (1) (only the uniform p-version) are obtained by using the original bilinear form instead of the
L2-bilinear form in the de�nition of the preconditioner.
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to be independent of the actual distribution of the polynomial degrees, which is restricted in our
theory. Moreover, in all cases the theoretical bound (1+ logp)2 is numerically ful�lled. Further, let
us note that sometimes it is natural, e.g., when the full sti�ness matrix is available, to use the original
bilinear form instead of the L2-bilinear form on the wire baskets, cf. (5) and (6). This replacement
yields a di�erent preconditioner whose implementation does not require additional inner products.
Although this method is not covered by our theory the results in Fig. 1 for this preconditioner
(indicated by (1)) show the same asymptotic behavior as the theoretically justi�ed method.
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Abstract

Domain decomposition methods are designed to deal with coupled or transmission problems for partial di�erential equa-
tions. Since the original boundary value problem is replaced by local problems in substructures, domain decomposition
methods are well suited for both parallelization and coupling of di�erent discretization schemes. In general, the coupled
problem is reduced to the Schur complement equation on the skeleton of the domain decomposition. Boundary integral
equations are used to describe the local Steklov–Poincar�e operators which are basic for the local Dirichlet–Neumann
maps. Using di�erent representations of the Steklov–Poincar�e operators we formulate and analyze various boundary ele-
ment methods employed in local discretization schemes. We give su�cient conditions for the global stability and derive
corresponding a priori error estimates. For the solution of the resulting linear systems we describe appropriate itera-
tive solution strategies using both local and global preconditioning techniques. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Domain decomposition methods were originally designed to solve boundary value problems in
complicated domains. We mention here only the famous alternating Schwarz method [25]. Since mod-
ern parallel computers are available, these methods have become very useful in the numerical analysis
of partial di�erential equations, in particular, with respect to the development of e�cient algorithms
for the numerical solution of complicated problems, see e.g. [35]. Due to the decomposition into sub-
structures, domain decomposition methods are well suited for the coupling of di�erent discretization
schemes such as �nite and boundary element methods, see e.g. [5,7,11]. In �nite element methods,
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the domain decomposition approach is often applied to construct e�cient preconditioners for parallel
computations. This is mainly based on a splitting of the global trial space into local ones arising from
the domain decomposition. Applying these ideas to boundary integral equations leads to additive
Schwarz methods based on a decomposition of the boundary into overlapping or nonoverlapping
parts, see e.g. [12,19,21,32].
Here we will concentrate our considerations to geometry-based domain decomposition methods

where the original boundary value problem is reduced to local subproblems involving appropriate
coupling conditions. When assuming boundary conditions of either Dirichlet or Neumann type on the
local subdomain boundaries, the solution of the local subproblems de�nes local Dirichlet–Neumann
or Neumann–Dirichlet maps. Hence, in domain decomposition methods we need to �nd the complete
Cauchy data on the skeleton. This results in a variational formulation to �nd either the Dirichlet or
Neumann data on the skeleton, and the remaining data are determined by the local problems and
the coupling conditions. Using boundary integral equations we are able to describe the Dirichlet–
Neumann map by the Steklov–Poincar�e operator which admits di�erent representations. Analyzing
the mapping properties of local boundary integral operators [8,9,34], we get unique solvability of
the resulting boundary integral variational problem. Moreover, applying a standard Galerkin scheme,
we get stability and quasi-optimal a priori error estimates for the approximate solution. However,
boundary integral representations of the Steklov–Poincar�e operator involve inverse integral operators.
Hence we are not able to compute the corresponding sti�ness matrices exactly. Therefore we have
to de�ne suitable boundary element approximations and we need to derive related stability and error
estimates, see e.g. [13,24,28]. Finally, we will discuss the e�cient solution of the resulting linear
systems by appropriate iterative methods in parallel. Here we need local and global preconditioning
matrices.

2. Domain decomposition methods

As a model problem, we consider the Dirichlet boundary value problem

L(x)u(x) = f(x) for x ∈ 
; u(x) = g(x) for x ∈ �: (2.1)

Here 
⊂Rn; n=2 or 3 is a bounded domain with Lipschitz boundary �=@
 and L(·) is a formally
positive elliptic partial di�erential operator of second order. Applications of (2.1) are, for example,
boundary value problems in potential theory and in elastostatics. In domain decomposition methods,
we begin with the decomposition of 
. Let

�
 =
p⋃

i=1

�
i; (2.2)

be a subdivision into p nonoverlapping subdomains 
i. Note that this decomposition can be done
either due to the geometrical form of 
 or due to some properties of the partial di�erential operator
involved in (2.1). In particular, for x ∈ 
i we assume that L(x) = Li is a partial di�erential operator
with constant coe�cients which can be di�erent in di�erent subdomains. Without loss of generality,
we also assume that the local subdomain boundaries �i = @
i are strong Lipschitz. We denote by
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�ij = �i ∩ �j for i; j = 1; : : : ; p local coupling boundaries, and de�ne the skeleton �S of the domain
decomposition (2.2) by

�S =
p⋃

i=1

�i = � ∪
p⋃

i; j=1

�ij: (2.3)

De�ning ui(x)=u(x) for x ∈ 
i, instead of (2.1) we need to consider local boundary value problems

Liui(x) = f(x) for x ∈ 
i; ui(x) = g(x) for x ∈ �i ∩ �: (2.4)

In addition to the boundary conditions in (2.4), we need also appropriate coupling conditions across
all local coupling boundaries �ij. More precisely, let Tiui(x) denote the conormal derivative of ui

de�ned for x ∈ �i almost everywhere. Then, the natural coupling conditions, induced by (2.1), are

ui(x) = uj(x); (Tiui)(x) + (Tjuj)(x) = 0 for x ∈ �ij: (2.5)

As will be seen, the essence of the domain decomposition methods amounts to reduce the solution
of the original boundary value problem (2.1) to the solutions of local boundary value problems
(2.4), (2.5). According to (2.5) we may formulate di�erent domain decomposition methods, additive
and multiplicative Schwarz methods, leading to di�erent discretization techniques as well. In what
follows we will restrict ourselves to the case that the �rst coupling condition in (2.5), ui(x) = uj(x)
for x ∈ �ij is required to be satis�ed pointwise, while the second condition will be required in a
week sense only.
We now need some function spaces. We denote by H 1=2(�S) the trace space of H 1(
) equipped

with the norm

‖u‖H 1=2(�S):=

{ p∑
i=1

‖u|�i‖2H 1=2(�i)

}1=2
: (2.6)

Let u ∈ H 1=2(�S) with u(x) = g(x) for x ∈ �. Then we de�ne the restrictions ui(x) = u(x) for
x ∈ �i which implies that ui(x)= uj(x) for x ∈ �ij. Now we consider local Dirichlet boundary value
problems

Liui(x) = f(x) for x ∈ 
i; ui(x) = u(x) for x ∈ �i (2.7)

and de�ne the corresponding local Dirichlet–Neumann maps

Tiu(x):=(Tiui)(x) for x ∈ �i: (2.8)

The latter implies that the Neumann coupling condition in (2.5) can be rewritten as

Tiu(x) + Tju(x) = 0 for x ∈ �ij: (2.9)

Let g̃ ∈ H 1=2(�S) be an arbitrary but �xed extension of the given Dirichlet data g satisfying g̃(x)=g(x)
for x ∈ �. By de�ning the test function space

W :={v ∈ H 1=2(�S): v(x) = 0 for x ∈ �}; (2.10)

we have the variational formulation of (2.9) to �nd ũ ∈ W such that u= ũ+ g̃ and
p∑

i=1

∫
�i

Tiu(x) · v(x) dsx = 0 for all v ∈ W: (2.11)
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In what follows we will describe a boundary integral approach to express the local Dirichlet–
Neumann maps (2.8) by using boundary integral operators, see e.g. [15,16]. Based on mapping
properties of local boundary integral operators we show unique solvability of (2.11). Note that the
local Dirichlet–Neumann maps can be expressed in terms of local domain bilinear forms for which
the unique solvability of (2.11) follows directly based on the corresponding result of (2.1). In fact,
using domain bilinear forms in some subdomains 
i for i = 1; : : : ; q¡p, leads to a coupled �nite
and boundary element formulation.

3. Boundary integral operators

We now assume that for each subdomain 
i there exists a corresponding fundamental solution
Ui(x; y), see [23, Section 2:3] for a general discussion. Then the solution of the local subproblems
(2.7) is given by the representation formulae

ui(x) =
∫
�i

U i(x; y)(Tiu)(y) dsy −
∫
�i

Ti;yU i(x; y)u(y) dsy

+
∫

i

U i(x; y)f(y) dy for x ∈ 
i: (3.1)

Now we de�ne the standard boundary integral operators locally for x ∈ �i, the single-layer potential
operator

(Viti)(x) =
∫
�i

U i(x; y)ti(y) dsy; (3.2)

the double-layer potential operator

(Kiui)(x) =
∫
�i

TiU i(x; y)ui(y) dsy (3.3)

and the adjoint double-layer potential

(K ′
i ti)(x) =

∫
�i

Ti; xU i(x; y)ti(y) dsy (3.4)

as well as the hypersingular integral operator

(Diui)(x) =−Ti;x

∫
�i

TiU i(x; y)ui(y) dsy: (3.5)

The mapping properties of all local boundary integral operators de�ned above are well known, see
e.g. [8,9]. In particular, the boundary integral operators are bounded for |s|61:

Vi : H−1=2+s(�i) → H 1=2+s(�i);
Di : H 1=2+s(�i) → H−1=2+s(�i);
Ki : H 1=2+s(�i) → H 1=2+s(�i);
K ′

i : H
−1=2+s(�i) → H−1=2+s(�i):
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Moreover, without loss of generality, we assume that the local single layer potentials Vi are
H−1=2(�i)–elliptic satisfying

〈Viwi; wi〉L2(�i)¿c ‖wi‖2H−1=2(�i) for all wi ∈ H−1=2(�i): (3.6)

The local hypersingular integral operators Di are assumed to be H 1=2(�i) semi-elliptic,

〈Diui; ui〉L2(�i)¿c ‖ui‖2H 1=2(�i) for all ui ∈ H 1=2(�i)=Ri : (3.7)

Here, Ri is the solution space of the local homogeneous Neumann boundary value problems de�ned
by Liui = 0 in 
i and Tiui = 0 on �i.
In addition to the boundary integral operators de�ned above we will use the local Newton potentials

given by

(Nif)(x) =
∫

i

U i(x; y)f(y) dy for x ∈ �i: (3.8)

Then, the standard boundary integral equation related to the local partial di�erential equation in (2.7)
is

(Viti)(x) = (12 I + Ki)ui(x)− (Nif)(x) for x ∈ �i: (3.9)

Since the local single-layer potential operators Vi are assumed to be invertible we can describe the
local Dirichlet–Neumann map by

ti(x) = (Siui)(x)− V−1
i (Nif)(x) for x ∈ �i; (3.10)

using the Steklov–Poincar�e operator

(Siui)(x) = V−1
i ( 12 I + Ki)ui(x) (3.11)

= [Di + (12 I + K ′
i )V

−1
i ( 12 I + Ki)]ui(x) (3.12)

= (12 I − K ′
i )

−1Diui(x): (3.13)

Hence, the Dirichlet–Neumann map (2.8) can be written as

Tiu(x) = (Siu)(x)− V−1
i (Nif)(x) for x ∈ �i: (3.14)

Inserting (3.14) into the variational problem (2.11) we get the boundary integral variational formu-
lation: to �nd ũ ∈ W such that

p∑
i=1

∫
�i

(Siũ)(x)v(x) dsx =
p∑

i=1

∫
�i

[V−1
i (Nif)(x)− (Sig̃)(x)]v(x) dsx (3.15)

holds for all v ∈ W .

Theorem 1 (Carstensen et al. [5], Costabel [7], Hsiao et al. [14], Hsiao and Wendland [16]). The
global boundary integral bilinear form

a(v; w) =
p∑

i=1

∫
�i

(Siv)(x)w(x) dsx (3.16)
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is bounded in H 1=2(�S) and W -elliptic; i.e.;

a(v; v)¿cS1 · ‖v‖2H 1=2(�S) for all v ∈ W: (3.17)

Proof. From the mapping properties of the local boundary integral operators we get

‖Siui‖H−1=2(�i)6c‖ui‖H 1=2(�i) for all ui ∈ H 1=2(�i):

Therefore,

|a(u; v)|6
p∑

i=1

|〈Siu|�i ; v|�i〉L2(�i)|6c
p∑

i=1

‖u|�i‖H 1=2(�i)‖v|�i‖H 1=2(�i)

6 c

( p∑
i=1

‖u|�i‖2H 1=2(�i)

)1=2( p∑
i=1

‖v|�i‖2H 1=2(�i)

)1=2

= c ‖u‖H 1=2(�S)‖v‖H 1=2(�S) for all u; v ∈ H 1=2(�S):

For u ∈ W we have u(x) = 0 for x ∈ �. Since there is at least one subdomain boundary �i∗

with �i∗ ∩ � 6= ∅ we conclude u | �i∗∈H 1=2(�i∗)=Ri . We can repeat this argument recursively to get
u | �i ∈H 1=2(�i)=Ri for all i = 1; : : : ; p. Hence we have, using the symmetric representation (3.12),

〈Siu | �i ; u�i〉L2(�i)¿〈Diu | �i ; u | �i〉L2(�i)¿c ‖u | �i‖2H 1=2(�i):

Summation over i = 1; : : : ; p gives (3.17).

With Theorem 1, all assumptions of the Lax–Milgram lemma are satis�ed, hence there exists a
unique solution ũ∈W satisfying the variational problem (3.15).

4. Boundary element methods

Let

Wh:=span{’k}Mk=1⊂W; (4.1)

be a boundary element trial space with piecewise polynomial basis functions ’k of polynomial degree
�. A suitable choice is the use of piecewise linear trial functions with � = 1. For convenience, we
de�ne also local restrictions of Wh onto �i, in particular,

Wh;i = span{’k; i}Mi
k=1: (4.2)

Obviously, for any ’k; i ∈ Wh;i there exists a unique basis function ’k ∈ Wh with ’k; i = ’k | �i . By
using the isomorphisms

u i ∈ RMi ↔ uh; i =
Mi∑
k=1

ui; k’k; i ∈ Wh;i; u ∈ RM ↔ uh =
M∑
k=1

uk’k ∈ Wh;

there exist connectivity matrices Ai ∈ RMi×M such that

u i = Aiu: (4.3)
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We assume that there holds an approximation property of Wh in W ,

inf
vh∈Wh

‖v− vh‖H 1=2(�S)6

( p∑
i=1

h2s−1i ‖v‖2Hs(�i)

)1=2
(4.4)

for all v ∈ W ∩∏p
i=1H

s(�i) and s6�+1 where hi is the local mesh size of the underlying boundary
element mesh on �i.
The Galerkin variational problem of (3.15) is to �nd a boundary element approximation ũ h ∈ Wh

satisfying
p∑

i=1

∫
�i

(Siũ h)(x)vh(x) dsx =
p∑

i=1

∫
�i

[V−1
i (Nif)(x)− (Sig̃)(x)]vh(x) dsx (4.5)

for all test functions vh ∈ Wh. This is equivalent to a system of linear equations, Shũ = f, with a
sti�ness matrix Sh de�ned by

Sh[‘; k] =
p∑

i=1

〈Si’k ; ’‘〉L2(�i) =
p∑

i=1

Sh; i[‘; k] for k; ‘ = 1; : : : ; M: (4.6)

Since the associated bilinear form is W -elliptic, Cea’s lemma provides the quasi-optimal error
estimate

‖ũ− ũ h‖H 1=2(�S)6c inf
vh∈Wh

‖ũ− vh‖H 1=2(�S) (4.7)

and, hence, convergence due to the approximation property of Wh⊂W . In fact, in order to assemble
(4.6) we have to compute the local sti�ness matrices de�ned by

Sh; i[‘; k] = 〈Si’k|�i ; ’‘|�i〉L2(�i); (4.8)

using the de�nition of the local Steklov–Poincar�e operators Si. Note that all of these representations
include a composition of di�erent boundary integral operators including some inverse operators as
well. Hence, the Galerkin scheme (4.5) cannot be realized exactly in general. Instead, we have to
introduce some local approximations S̃ i leading to a computable scheme yielding almost optimal error
estimates as in the exact Galerkin scheme. Therefore we may consider an approximated variational
problem to �nd û h ∈ Wh satisfying

p∑
i=1

∫
�i

(S̃ iû h)(x)vh(x) dsx =
p∑

i=1

∫
�i

[V−1
i (Nif)(x)− (Sig̃)(x)]vh(x) dsx (4.9)

for all test functions vh ∈Wh.

Theorem 2. Let

ã(uh; vh) =
p∑

i=1

∫
�i

(S̃ iuh)(x)vh(x) dsx (4.10)

be bounded in H 1=2(�S) and Wh-elliptic, i.e.

ã(vh; vh)¿c̃ · ‖vh‖2H 1=2(�S) for all vh ∈ Wh:
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Then there exists a unique solution of the approximate variational problem (4:9) satisfying the
error estimate

‖ũ− û h‖H 1=2(�S)6c ·
{
‖ũ− ũ h‖H 1=2(�S) +

p∑
i=1

‖(Si − S̃ i)u‖H 1=2(�S)

}
: (4.11)

Note that Theorem 2 is a variant of the �rst Strang lemma for some perturbation of an elliptic
bilinear form, see [6, Theorem 4.1.1].
To de�ne suitable local approximations S̃ i of the Steklov–Poincar�e operators Si, we �rst de�ne

local trial spaces

Zh; i = span{ i
k̃
}Ni

k̃=1
⊂H−1=2(�i) for i = 1; : : : ; p: (4.12)

Again we may use piecewise polynomial trial functions of polynomial degree �, for example trial
functions with piecewise constant basis functions where � = 0. We assume that for each Zh; i there
holds an approximation property:

inf
�h; i∈Zh; i

‖wi − �h; i‖H−1=2(�i)6ch�+1=2
i ‖wi‖H�(�i) (4.13)

for all wi ∈ H�(�i) with �6�+ 1.

4.1. Symmetric approximation

For an arbitrarily given function ui ∈ H 1=2(�i) the application of the Steklov–Poincar�e operator
can be written, using the symmetric representation (3.12), as

(Siui)(x) = (Diui)(x) + (12 I + K ′
i )wi(x) for x ∈ �i;

where wi satis�es the equation

〈Vwi; �i〉L2(�i) = 〈( 12 I + Ki)ui; �i〉L2(�i) for all �i ∈ H−1=2(�i): (4.14)

This motivates us to de�ne suitable approximations S̃ i of the local Steklov–Poincar�e operators Si as
follows: The Galerkin discretization of (4.14) is to �nd wh; i ∈ Zh; i satisfying

〈Vwh; i; �h; i〉L2(�i) = 〈( 12 I + Ki)ui; �h; i〉L2(�i) for all �h; i ∈ Zh; i: (4.15)

Applying standard arguments we get by Cea’s lemma the quasi-optimal error estimate

‖wi − wh; i‖H−1=2(�i)6ci · inf
�h; i
‖wi − �h; i‖H−1=2(�i); (4.16)

yielding convergence by the approximation property of the trial space Zh; i. Now we can de�ne an
approximate Steklov–Poincar�e operator as

(S̃ iui)(x):=(Diui)(x) + (12 I + K ′
i )wh; i(x) for x ∈ �i: (4.17)

Note that from (4.17) with (4.16) we get

‖(Si − S̃ i)ui‖H−1=2(�i)6‖wi − wi;h‖H−1=2(�i): (4.18)
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In case of the symmetric approximation (4.17) of the local Steklov–Poincar�e operators Si the
following theorem is valid, see also [1,14,24].

Theorem 3. Let the approximated bilinear form (4:10) be de�ned by the use of the symmetric ap-
proximation (4:17) of the local Steklov–Poincar�e operators Si. Then it follows that the assumptions
of Theorem 2 are satis�ed; and in particular; there holds the quasi-optimal error estimate

‖ũ− û h‖H 1=2(�S)6c

{
inf

vh∈Wh

‖ũ− vh‖H 1=2(�S) +
p∑

i=1

inf
�h; i∈Zh; i

‖Siũ i − �h; i‖H−1=2(�i)

}
: (4.19)

Proof. From (4.15) we conclude the stability estimate

‖wh; i‖H−1=2(�i)6c · ‖ui‖H 1=2(�i)

and therefore

‖S̃ iui‖H−1=2(�i)6‖Diui‖H−1=2(�i) + ‖( 12 I + K ′
i )wh; i‖H−1=2(�i)

6c{‖ui‖H 1=2(�i) + ‖wh; i‖H−1=2(�i)}6c‖ui‖H 1=2(�i):

Hence, for u; v ∈ W we have, with the help of the Cauchy–Schwarz inequality,

|ã(u; v)|6
p∑

i=1

|〈S̃ iu; v〉L2(�i)|6
p∑

i=1

‖S̃ iu‖H−1=2(�i)‖v‖H 1=2(�i)

6c
p∑

i=1

‖u‖H 1=2(�i)‖v‖H 1=2(�i)6c‖u‖H 1=2(�S)‖v‖H 1=2(�S)

and therefore the boundedness of ã(·; ·). Since the local single-layer potentials Vi are H−1=2(�i)-elliptic,
this gives with (4.15)

〈S̃ iv; v〉L2(�i) = 〈Div; v〉L2(�i) + 〈( 12 I + K ′
i )wh; i; v〉L2(�i)

= 〈Div; v〉L2(�i) + 〈Vwh; i; wh; i〉L2(�i)¿〈Div; v〉L2(�i)

and therefore

ã(v; v)¿
p∑

i=1

〈Div; v〉L2(�i):

Hence, the W -ellipticity of ã(·; ·) follows from the mapping properties of the assembled local
hypersingular integral operators Di. Now we can apply Theorem 2 to get the error estimate (4.11).
Finally, (4.19) follows from (4.7), (4.18) and (4.16).

Note that in the symmetric approximation case the assumptions of Theorem 2 and therefore
Theorem 3 hold without any restrictions on the de�nition of the trial spaces Wh and Zh; i, only
approximation properties have to be assumed. It turns out, to guarantee an optimal order of con-
vergence, that the polynomial degree of the local trial spaces Zh; i should be chosen one degree less
than the polynomial degree of the global trial space Wh. For example, one may use piecewise linear
basis functions to de�ne Wh while we can take piecewise constant trial functions for describing Zh; i.
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According to the symmetric approximation (4.17) of the local Steklov–Poincar�e operators Si we
de�ne local sti�ness matrices as

Dh; i[‘; k] = 〈Di’k; i; ’‘; i〉L2(�i); Kh; i[‘̃; k] = 〈Ki’k; i;  ‘̃; i〉L2(�i);

Vh; i[‘̃; k̃] = 〈Vi k̃; i;  ‘̃; i〉L2(�i); Mh; i[‘̃; k] = 〈’k; i;  ‘̃; i〉L2(�i)

for k; ‘ = 1; : : : ; Mi and k̃ ; ‘̃ = 1; : : : ; Ni. Then, the Galerkin discretization of the approximate
Steklov–Poincar�e operator S̃ i reads as

S̃h; i = Dh; i + (12M
>
h; i + K>

h; i)V
−1
h; i (

1
2Mh;i + Kh; i) for i = 1; : : : ; p: (4.20)

Hence, the approximated Galerkin formulation (4.9) is equivalent to the system of linear equations
given by

S̃hu:=
p∑

i=1

A>
i S̃h; iAiû=

p∑
i=1

A>
i f i

=:f (4.21)

with the connectivity matrices Ai as introduced in (4.3) and with local vectors f
i
de�ned by

fi;k = 〈V−1
i Nif − Sig̃; ’k; i〉L2(�i) for k = 1; : : : ; Mi; i = 1; : : : ; p:

The sti�ness matrix S̃h in (4.21) is symmetric and positive de�nite, hence we can use a standard
preconditioned conjugate gradient scheme in parallel to solve (4.21) e�ciently. The construction of
appropriate preconditioning techniques will be discussed later in Section 5.
De�ning

Dh =
p∑

i=1

A>
i Dh; iAi; Kh =

p∑
i=1

Kh; iAi;

Vh = diag(Vh; i)
p
i=1; Mh =

p∑
i=1

Mh;iAi;

the linear system (4.21) can be written as a block system of the form(
Vh − 1

2Mh − Kh
1
2M

>
h + K>

h Dh

)(
w
û

)
=
(
0
f

)
: (4.22)

Note that the sti�ness matrix in (4.22) is either block skew–symmetric and positive de�nite, or by
simple manipulations, symmetric but inde�nite. Hence, for the iterative solution of (4.22) one may
use any appropriate solver such as BiCGStab or GMRES applicable to nonsymmetric or inde�nite
systems. Instead, following [3,5] one can transform (4.22) into a symmetric and positive-de�nite
system. Let CV; i be local preconditioning matrices for the discrete single-layer potential operators
satisfying the spectral equivalence inequalities

cVi
1 (CV; iwi; wi)6(Vh; iwi; wi)6cVi

2 (CV; iwi; wi) for all wi ∈ RNi (4.23)

with positive constants cVi
1 and cVi

2 . In addition, we assume cVi
1 ¿ 1. This can be accomplished in

general by some scaling of the preconditioning matrices CV; i. De�ning CV = diag(CVi)
p
i=1 we then
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obtain the spectral equivalence inequalities

cV1 (CVw; w)6(Vhw; w)6cV2 (CVw; w) for all w ∈ RN (4.24)

with N =
∑p

i=1 Ni and positive constants

1¡cV1 := min
16i6p

cVi
1 ; cV2 := max

16i6p
cVi
2 :

Due to the assumption cV1 ¿ 1, instead of (4.22), we may solve the transformed linear system
(

VhC−1
V − I 0

−( 12M>
h + K>

h )C
−1
V I

)(
Vh − 1

2Mh − Kh
1
2M

>
h + K>

h Dh

)(
w
û

)

=
(

VhC−1
V − I 0

−( 12M>
h + K>

h )C
−1
V I

)(
0
f

)
: (4.25)

It turns out, see [3] for details, that the transformed sti�ness matrix in (4.25) is now symmetric
and positve de�nite. Hence we can use the preconditioned conjuate gradient scheme to solve (4.25)
e�ciently.

4.2. Hybrid approximation techniques

Instead of the symmetric approximation (4.17) based on the symmetric representation (3.12) one
may use any other boundary element approximation of the local Steklov–Poincar�e operators Si as
for example, the local representations (3.11) or (3.13). Following [27,33] we will describe a non-
symmetric and a so-called “hybrid” boundary element scheme by discretizing the Steklov–Poincar�e
operator representation (3.11) (see also [10]).
For an arbitrarily given function ui ∈H 1=2(�i), the application of the Steklov–Poincar�e operator Si

in view of (3.11) reads as

(Siui)(x) = wi(x) for x ∈ �i;

where wi is, as in the symmetric approximation, the unique solution of the variational problem (4.14).
As in (4.15) we can de�ne a corresponding Galerkin solution wh; i ∈ Zh; i. Therefore, an approximate
Steklov–Poincar�e operator is here given by

(S̃ui)(x) = wh; i(x) for x ∈ �i; i = 1; : : : ; p: (4.26)

Obviously, the error estimate (4.18) for ‖(S − S̃)ui‖H−1=2(�i) remains valid. As in the proof of
Theorem 3 we can conclude that the bilinear form ã(·; ·) de�ned by the local approximations (4.26)
is bounded in H 1=2(�S).

Theorem 4. Let Hi be the local mesh size of the trial space Wh while hi is the local mesh size of
Zh; i respectively. Let the inverse inequality in Wh be valid locally;

‖wh|�i‖Hs(�i)6c H 1=2−s
i ‖wh; i‖H 1=2(�i): (4.27)

If hi6c0; iHi is satis�ed with positive; su�ciently small constants c0; i61; then the bilinear form
ã(·; ·) de�ned by the approximation (4:26) is Wh-elliptic.
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Proof. For vh ∈ Wh we have by (3.17), (4.18), (4.16) and the inverse inequality, for s6�+ 1,

cSi ‖vh‖2H 1=2(�S)6
p∑

i=1

〈Sivh; vh〉L2(�i)

6
p∑

i=1

〈S̃ ivh; vh〉L2(�i) +
p∑

i=1

〈(Si − S̃ i)vh; vh〉L2(�i)

6
p∑

i=1

〈S̃ ivh; vh〉L2(�i) +
p∑

i=1

‖(Si − S̃ i)vh‖H−1=2(�i)‖vh‖H 1=2(�i)

6
p∑

i=1

〈S̃ ivh; vh〉L2(�i) +
p∑

i=1

cih
s+1=2
i ‖vh‖Hs+1(�i)‖vh‖H 1=2(�i)

6
p∑

i=1

〈S̃ ivh; vh〉L2(�i) +
p∑

i=1

c̃i(hi=Hi)
s+1=2
i ‖vh‖2H 1=2(�i)

Hence, if c̃i(hi=Hi)s+1=26cS1 =2 is satis�ed the theorem is proved.

When using the approximation S̃ i as de�ned in (4.26) then the local Galerkin discretization is
given by

S̃h; i =M>
h; iV

−1
h; i (

1
2Mh;i + Kh; i); (4.28)

while the global system is given as in (4.21) by

S̃hû=
p∑

i=1

A>
i S̃h; iAiû= f: (4.29)

The assembled sti�ness matrix S̃h is still positive de�nite but, in general, not symmetric. Therefore,
we recommend a suitable preconditioned BiCGStab or GMRES algorithm for an e�cient solution
strategy. Moreover, the local sti�ness matrices S̃h; i as given in (4.28) are nonsymmetric perturbations
of an originally symmetric sti�ness matrix Sh; i. To keep the symmetry in the approximation of local
Steklov–Poincar�e operators, which is important when coupling boundary elements with a symmetric
�nite element scheme, one can introduce a modi�ed hybrid discretization scheme [10,28]. That is
again based on the representation (3.11) but on the formulation of the local Steklov–Poincar�e operator
Si as

Si = V−1
i ( 12 I + Ki)ViV−1

i = V−1
i FiV−1

i (4.30)

with the self-adjoint and computable operator

Fi = (12 I + Ki)Vi: (4.31)

As before, we can introduce an appropriate approximation of Si, now based on representation (4.30).
Then, the local Galerkin discretization is given by

S̃h; i =M>
h; iV

−1
h; i Fh; iV−1

h; i Mh; i; (4.32)

which is now a symmetric and positive-de�nite matrix provided Fh; i can be computed accurately.
We remark that the computation of

Fh; i[‘̃; k̃] = 〈Fi k̃; i;  ‘̃; i〉L2(�i)
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Table 1
Errors for the boundary element solution

M Case i Case ii Case iii

N ‖u− uh‖L2 N ‖u− uh‖L2 N ‖u− uh‖L2

32 64 2:04− 2 64 2:19− 2 38 1:74− 2
64 128 5:10− 3 128 5:41− 3 70 4:37− 3
128 256 1:28− 3 256 1:35− 3 134 1:11− 3
256 512 3:20− 4 512 3:36− 4 262 2:79− 4
512 1024 8:02− 5 1024 8:40− 5 518 7:02− 5

for k̃ ; ‘̃=1; : : : ; Ni requires the evaluation of two boundary integral operators per matrix element. To
ensure stability of the hybrid discretization scheme (4.32) we have to assume the stability assumption,

c‖vh; i‖H 1=2(�i)6 sup
wh; i∈Zh; i

|〈vh; i; wh; i〉L2(�i)|
‖wh; i‖H−1=2(�i)

(4.33)

for all vh; i ∈ Wh;i, see [28] for details. In fact, for a local trial space Wh;i we have to de�ne trial
spaces Zh; i in such a way that (4.33) is satis�ed. Note that for a given Wh;i, the construction of Zh; i

is not unique. We will describe three possible choices of Zh; i for the case that Wh;i is spanned by
piecewise linear continuous basis functions, see also [26].

i. Mesh re�nement. As in Theorem 4 we can de�ne Zh; i by using piecewise constant basis functions
with respect to a su�ciently re�ned boundary element mesh compared with the underlying
mesh of Wh;i. In this case we have to assume an inverse inequality, see (4.27). Therefore, this
approach is applicable for quasi-uniform boundary element meshes only. For more details, see
e.g. [14,28,33].

ii. Iso-parametric trial functions. We �rst consider the case Z̃h; i =Wh;i. Then the stability property
(4.33) is strongly related to the stability of the corresponding L2 projection Qh onto Wh;i in
H 1=2(�). The latter holds for a rather large class of nonuniform re�nements based on adaptive
strategies provided that certain local conditions are satis�ed. We refer to [27] for a detailed
discussion. Now we de�ne Zh; i to be the trial space of piecewise linear but discontinuous basis
functions. Obviously, Z̃h; i⊂Zh; i and the stability condition (4.33) remains valid.

iii. Nonmatching boundary meshes. In both cases described above, the de�nition of Zh; i requires
the use of appropriate trial functions satisfying (4.33) which implies a signi�cant growth of
the dimension Ni of the trial space Zh; i. In view of (4.19), the optimal choice seems to be, to
de�ne Zh; i by piecewise constant basis functions where the mesh size of Wh;i and Zh; i is almost
equal. However, it is not possible to de�ne Zh; i with respect to the same boundary element mesh
as Wh;i, since then the corresponding mass matrix Mh;i would become singular. Instead we can
de�ne Zh; i with respect to the mesh dual to that of Wh;i. In this case, (4.33) is satis�ed again,
also for nonuniform boundary element meshes; for a further discussion see [26,29].

For comparison we consider a simple numerical example. Let 
 be an L-shaped domain with bound-
ary �. We solve a mixed boundary value problem in one subdomain by using approximation (4.26).
In Table 1 we give the approximation errors for the boundary element solution according to Theorem
2 while in Table 2 we give the errors of the approximations of the Steklov–Poincar�e operator. In
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Table 2
Errors for the approximation of the Steklov–Poincar�e operator

M Case i Case ii Case iii

N ‖(S − S̃)u‖L2 N ‖(S − S̃)u‖L2 N ‖(S − S̃)u‖L2

32 64 4:24− 1 64 3:20− 1 38 6:41− 1
64 128 1:84− 1 128 9:87− 2 70 3:30− 1
128 256 8:70− 2 256 2:74− 2 134 1:67− 1
256 512 4:27− 2 512 7:33− 3 262 8:42− 2
512 1024 2:13− 2 1024 1:99− 3 518 4:23− 2

both the tables, M is the number of all boundary nodes while N is the degree of freedom needed
for the de�nition of S̃. Note that with respect to both, computational work as well as accuracy, the
approach based on the dual mesh is favourable.

5. Preconditioning techniques

For the iterative solution of linear systems (4.21) or (4.22) resulting from the symmetric approx-
imation or (4.29) in case of the nonsymmetric approximation, we need to use some appropriate
preconditioning techniques to reduce the number of iterations needed. In particular, we assume that
there are given local preconditioning matrices CV; i satisfying the spectral equivalence inequalities

Vi
1 (CV; iwi; wi)6(Vh; iwi; wi)6Vi

2 (CV; iwi; w) for all wi ∈ RNi (5.1)

and i = 1; : : : ; p, as well as a global preconditioning matrix CS satisfying

S1(CSu; u)6(S̃hu; u)6S2(CSu; u) for all u ∈ RM : (5.2)

5.1. Local preconditioners

To de�ne local preconditioners CV; i for the local single-layer potential operators Vi satisfying
(5.1), one can apply di�erent strategies. One approach is based on the use of geometrically similar
and rotational symmetric domains which leads to block circulant matrices which can be used as
local preconditioners [20]. Here, a proper ordering of the degrees of freedom has to be assumed.
A classical approach, as in �nite element methods, is the use of multigrid preconditioners for the
local single-layer potentials, which are operators of order −1 [2]. Another strategy is the use of
multilevel methods such as additive or multiplicative Schwarz methods [19]. However, in both
multigrid and multilevel approaches a suitable mesh hierarchy has to be assumed. Here we will
describe an approach [18,31] which neither requires a proper ordering of the degrees of freedom nor
a given mesh hierarchy. From the mapping properties of the local single-layer potential operators Vi

we get the spectral equivalence inequalities

cVi
1 ‖wi‖2H−1=2(�i)6〈Vwi; wi〉L2(�i)6cVi

2 ‖wi‖2H−1=2(�i) (5.3)

for all wi ∈ H−1=2(�i). On the other hand, there hold the spectral equivalence inequalities

cDi
1 ‖ui‖2H 1=2(�i)6〈Dui; ui〉L2(�i)6cDi

2 ‖ui‖2H 1=2(�i) (5.4)
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for all ui ∈ H 1=2(�i)=Ri . Hence, it follows that

I + Di : H 1=2(�i)→ H−1=2(�i)

is bounded and H 1=2(�i)-elliptic. Therefore, with (5.3), the spectral equivalence inequalities

i1〈(I + Di)−1wi; wi〉L2(�i)6〈Viwi; wi〉L2(�i)6i2〈(I + Di)−1wi; wi〉L2(�i) (5.5)

hold for all wi ∈ H−1=2(�i). For the preconditioning matrix CVi de�ned by

CVi [‘̃; k̃] = 〈(I + Di)−1 k̃; i;  ‘̃; i〉L2(�i) (5.6)

for k̃ ; ‘̃=1; : : : ; Ni, the spectral equivalence inequalities (5.1) then follow from (5.5) with the positive
constants cVi

1 = i1; c
Vi
2 = i2. Similar as for the Steklov–Poincar�e operators Si, in general one is not

able to compute the matrix elements (5.6) directly. Instead we use an approximation

C̃Vi = �M
>
h; i(M̃ h; i + D̃h; i)−1 �Mh;i (5.7)

in terms of the local matrices

D̃h; i[‘̃; k̃] = 〈Di’̃k̃; i; ’̃‘̃; i〉L2(�i);

M̃ h; i[‘̃; k̃] = 〈’̃k̃; i; ’̃‘̃; i〉L2(�i);

�Mh;i[‘̃; k̃] = 〈’̃k̃; i;  ‘̃; i〉L2(�i)

where W̃ h; i:=span{’̃k̃; i}Ni

k̃=1
⊂H 1=2(�i) is an appropriate trial space to be used for the discretization

of the local hypersingular integral operators Di. As it was shown in [31], there holds the upper
estimate

(C̃Viwi; wi)6(CViwi; wi) for all wi ∈ RNi : (5.8)

Theorem 5 (Steinbach and Wendland [31]). Assume the stability condition

c0‖uh; i‖H 1=2(�)i6 sup
wh; i∈Zh; i

|〈wh; i; uh; i〉L2(�i)|
‖wh; i‖H−1=2(�i)

for all uh; i ∈ W̃ h; i: (5.9)

Then;

0(CViwi; wi)6(C̃Viwi; wi) for all wi ∈ RNi : (5.10)

Note that the stability condition (5.9) is similar to the stability condition (4.33) needed in hybrid
discretizations of the Steklov–Poincar�e operators locally. Since (5.9) ensures the invertibility of the
mass matrix �Mh;i, as a consequence we have from (5.7)

C̃
−1
Vi
= �M

−1
h; i (M̃ h; i + D̃h; i) �M

−>
h; i : (5.11)

5.2. Parallel preconditioners

To construct a global preconditioning matrix CS satisfying the spectral equivalence inequalities
(5.2) we �rst note that there hold the spectral equivalence inequalities

cSi1 (Sh; iu i; u i)6(S̃h; iu i; u i)6cSi2 (Sh; iu i; u i) (5.12)
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for all u i ∈ RMi . In case of the symmetric approximation given by (4.20), (5.12) follows from
Theorem 3, since the assumptions of Theorem 2 are satis�ed. When using either the nonsymmet-
ric approximation (4.28) or the hybrid approximation (4.32) we need to assume (4.33) to ensure
(5.12). Hence, instead of (5.2) it is su�cient to construct a global preconditioning matrix CS which
is spectrally equivalent to the global bilinear form (3.16) [17]. Moreover, since the local
Steklov–Poincar�e operators Si are spectrally equivalent to the local hypersingular integral operators
Di, we need only to �nd a preconditioning matrix for the modi�ed bilinear form

ã(u; v):=
p∑

i=1

〈Diu|�i ; v|�i〉L2(�i) for u; v ∈ W: (5.13)

When using the symmetric approximation (4.20), the local Galerkin discretization of the hypersin-
gular integral operators is already computed. Hence, the action of the preconditioner can be de�ned
by the solution v of

p∑
i=1

A>
i Dh; iAiv= r (5.14)

by any available e�cient method, this de�nes an optimal preconditioning strategy. For example, we
can use a standard multigrid scheme as in [22] for the hypersingular integral operator to solve (5.14)
in parallel, see for example [5]. Alternatively, we may solve (5.14) approximately by some suitable
iterative scheme using some appropriate preconditioning strategy for the assembled Galerkin matrix
Dh. Again we can use multigrid or multilevel preconditioners, or some additive Schwarz methods as
described in [4] (for an application of the latter case, see [30]).
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