http://www.courses.fas.harvard.edu/~chem206/

http://evans.harvard.edu/problems/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 1

Introduction to FMO Theory

- General Bonding Considerations

■ The H_{2} Molecule Revisited (Again!)

- Donor \& Acceptor Properties of Bonding \& Antibonding States

■ Hyperconjugation and "Negative" Hyperconjugation

- Anomeric and Related EffectsReading Assignment for week:

Kirby, Stereoelectronic Effects

Carey \& Sundberg: Part A; Chapter 1
Fleming, Chapter 1 \& 2
Fukui,Acc. Chem. Res. 1971, 4, 57. (pdf)
Curnow, J. Chem. Ed. 1998, 75, 910 (pdf)
Alabugin \& Zeidan, JACS 2002, 124, 3175 (pdf)
D. A. Evans

Monday,
September 15, 2003

- Problems of the Day

The molecule illustrated below can react through either Path A or Path B to form salt $\mathbf{1}$ or salt 2. In both instances the carbonyl oxygen functions as the nucleophile in an intramolecular alkylation. What is the preferred reaction path for the transformation in question?

This is a "thought" question posed to me by Prof. Duilo Arigoni at the ETH in Zuerich some years ago
(First hr exam, 1999)
The three phosphites illustrated below exhibit a 750 -fold span in reactivity with a test electrophile (eq 1) (Gorenstein, JACS 1984, 106, 7831).

$$
\begin{equation*}
(\mathrm{RO})_{3} \mathrm{P}+\mathrm{El}(+) \longrightarrow(\mathrm{RO})_{3} \stackrel{+}{\mathrm{P}-\mathrm{El}} \tag{1}
\end{equation*}
$$

A

B

C

Rank the phosphites from the least to the most nucleophilic and provide a concise explanation for your predicted reactivity order.

Universal Effects Governing Chemical Reactions There are three:

- Steric Effects

Nonbonding interactions (Van der Waals repulsion) between substituents within a molecule or between reacting molecules

■ Electronic Effects (Inductive Effects):
The effect of bond and through-space polarization by heteroatom substituents on reaction rates and selectivities

Inductive Effects: Through-bond polarization
Field Effects: Through-space polarization

rate decreases as R becomes more electronegative

Stereoelectronic Effects

Geometrical constraints placed upon ground and transition states by orbital overlap considerations.

Fukui Postulate for reactions:

"During the course of chemical reactions, the interaction of the highest filled (HOMO) and lowest unfilled (antibonding) molecular orbital (LUMO) in reacting species is very important
to the stabilization of the transition structure."

General Reaction Types
Radical Reactions (~10\%): $A \bullet+B \bullet \longrightarrow A-B$
Polar Reactions (90\%): $\mathrm{A}(:)+\mathrm{B}(+) \longrightarrow \mathrm{A}-\mathrm{B}$

FMO concepts extend the donor-acceptor paradigm to non-obvious families of reactions
■ Examples to consider

$$
\begin{aligned}
& \mathrm{H}_{2}+2 \mathrm{Li}(0) \longrightarrow 2 \mathrm{LiH} \\
& \mathrm{CH}_{3}-\mathrm{I}+\mathrm{Mg}(0) \longrightarrow \mathrm{CH}_{3}-\mathrm{MgBr}
\end{aligned}
$$

"Organic chemists are generally unaware of the impact of electronic effects on the stereochemical outcome of reactions."
"The distinction between electronic and stereoelectronic effects is not clear-cut."

- Steric Versus electronic Effects: Some Case Studies

When steric and electronic (stereoelectronic) effects lead to differing stereochemical consequences

Woerpel etal. JACS 1999, 121, 12208.

1-03-Introduction-1a 9/15/03 8:14 AM

Danishefsky et al JOC 1991, 56, 387

only diastereomer

60-94\%

Mehta et al, Acc Chem. Res. 2000, 33, 278-286

The H_{2} Molecule (again!!)

Let's combine two hydrogen atoms to form the hydrogen molecule. Mathematically, linear combinations of the 2 atomic 1s states create two new orbitals, one is bonding, and one antibonding:

- Rule one: A linear combination of n atomic states will create n MOs.

Let's now add the two electrons to the new MO, one from each H atom:

Note that $\Delta \mathrm{E}_{1}$ is greater than $\Delta \mathrm{E}_{2}$. Why?

Linear Combination of Atomic Orbitals (LCAO): Orbital Coefficients

- Rule Two:

Each MO is constructed by taking a linear combination of the individual atomic orbitals (AO):

$$
\text { Bonding MO } \quad \sigma=\mathrm{C}_{1} \psi_{1}+\mathrm{C}_{2} \psi_{2}
$$

Antibonding MO $\quad \sigma^{*}=\mathrm{C}^{\star}{ }_{1} \psi_{1}-\mathrm{C}^{*}{ }_{2} \psi_{2}$
The coefficients, C_{1} and C_{2}, represent the contribution of each AO.

- Rule Three:
$\left(C_{1}\right)^{2}+\left(C_{2}\right)^{2}=1$

The squares of the C -values are a measure of the electron population in neighborhood of atoms in question

- Rule Four: bonding $\left(\mathrm{C}_{1}\right)^{2}+$ antibonding $\left(\mathrm{C}^{*}{ }_{1}\right)^{2}=1$

In LCAO method, both wave functions must each contribute one net orbital

Consider the pi-bond of a $\mathrm{C}=\mathrm{O}$ function: In the ground state pi-C-O is polarized toward Oxygen. Note (Rule 4) that the antibonding MO is polarized in the opposite direction.

Bond strengths (Bond dissociation energies) are composed of a covalent contribution ($\delta E_{\text {cov }}$) and an ionic contribution ($\left.\delta E_{\text {ionic }}\right)$.

Bond Energy $(\mathrm{BDE})=\delta E_{\text {covalent }}+\delta E_{\text {ionic }}$
(Fleming, page 27)
When one compares bond strengths between $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{X}$, where X is some other element such as $\mathrm{O}, \mathrm{N}, \mathrm{F}, \mathrm{Si}$, or S , keep in mind that covalent and ionic contributions vary independently. Hence, the mapping of trends is not a trivial exercise.

Useful generalizations on covalent bonding

- Overlap between orbitals of comparable energy is more effective than overlap between orbitals of differing energy.

For example, consider elements in Group IV, Carbon and Silicon. We know that C-C bonds are considerably stronger by $\mathrm{Ca} .20 \mathrm{kcal} \mathrm{mol}^{-1}$ than C -Si bonds.

This trend is even more dramatic with pi-bonds:

$$
\begin{gathered}
\pi \mathrm{C}-\mathrm{C}=65 \mathrm{kcal} / \mathrm{mol} \quad \pi \mathrm{C}-\mathrm{Si}=36 \mathrm{kcal} / \mathrm{mol} \quad \pi \mathrm{Si}-\mathrm{Si}=23 \mathrm{kcal} / \mathrm{mol} \\
\square \text { Weak bonds will have corresponding low-lying antibonds. }
\end{gathered}
$$

Formation of a weak bond will lead to a corresponding low-lying antibonding orbital. Such structures are reactive as both nucleophiles \& electrophiles

Orbital orientation strongly affects the strength of the resulting bond.

For o Bonds:

For π Bonds:

This is a simple notion with very important consequences. It surfaces in the delocalized bonding which occurs in the competing anti (favored) syn (disfavored) E2 elimination reactions. Review this situation.

An anti orientation of filled and unfilled orbitals leads to better overlap. This is a corrollary to the preceding generalization.

There are two common situations.

Case-1: Anti Nonbonding electron pair \& C-X bond

Case-2: Two anti sigma bonds

Donor Acceptor Properties of C-C \& C-O Bonds
Consider the energy level diagrams for both bonding \& antibonding orbitals for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds.

\square The greater electronegativity of oxygen lowers both the bonding \& antibonding C-O states. Hence:
$\square \sigma \mathrm{C}-\mathrm{C}$ is a better donor orbital than $\sigma \mathrm{C}-\mathrm{O}$
$\square \sigma^{*} \mathrm{C}-\mathrm{O}$ is a better acceptor orbital than $\sigma^{*} \mathrm{C}-\mathrm{C}$
Donor Acceptor Properties of $\mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 3} \& \mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 2}$ Bonds

The greater electronegativity of $\mathrm{C}_{\mathrm{SP} 2}$ lowers both the bonding \& antibonding $\mathrm{C}-\mathrm{C}$ states. Hence:
$\square \sigma \mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 3}$ is a better donor orbital than $\sigma \mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 2}$
$\square \sigma^{*} \mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 2}$ is a better acceptor orbital than $\sigma^{*} \mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 3}$

Hierarchy of Donor \& Acceptor States

Following trends are made on the basis of comparing the bonding and antibonding states for the molecule $\mathrm{CH}_{3}-\mathrm{X}$ where $\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \& \mathrm{H}$.

$$
\text { o-bonding States: }(\mathrm{C}-\mathrm{X})
$$

σ-anti-bonding States: (C-X)
σ-anti-bonding States: (C-X)

The following are trends for the energy levels of nonbonding states of several common molecules. Trend was established by photoelectron spectroscopy.

Electrons in 2S states "see" a greater effective nuclear charge than electrons in 2P states.

This becomes apparent when the radial probability functions for S and P -states are examined: The radial probability functions for the hydrogen atom S \& P states are shown below.

S-states have greater radial penetration due to the nodal properties of the wave function. Electrons in S-states "see" a higher nuclear charge.

Above observation correctly implies that the stability of nonbonding electron pairs is directly proportional to the \% of S-character in the doubly occupied orbital

$$
\begin{aligned}
& \text { Least stable ------------------ Most stable } \\
& \text { 4i } \mathrm{C}_{S P 3} \text { it } \mathrm{C}_{S P 2} \text { 4i } \mathrm{C}_{S P}
\end{aligned}
$$

The above trend indicates that the greater the \% of S-character at a given atom, the greater the electronegativity of that atom.

There is a linear relationship between \%S character \& Pauling electronegativity

There is a direct relationship between \%S character \& hydrocarbon acidity

The interaction of a vicinal bonding orbital with a p-orbital is referred to as hyperconjugation.

This is a traditional vehicle for using valence bond to denote charge delocalization.

The graphic illustrates the fact that the $\mathrm{C}-\mathrm{R}$ bonding electrons can "delocalize" to stabilize the electron deficient carbocationic center.

Note that the general rules of drawing resonance structures still hold: the positions of all atoms must not be changed.

> Stereoelectronic Requirement for Hyperconjugation:
> Syn-planar orientation between interacting orbitals

The Molecular Orbital Description

- $\sigma * C-R$
- $\sigma * C-R$

\square Take a linear combination of $\sigma \mathrm{C}-\mathrm{R}$ and $\mathrm{CSP}_{2} \mathrm{p}$-orbital:
"The new occupied bonding orbital is lower in energy. When you stabilize the electrons is a system you stabilize the system itself."

Physical Evidence for Hyperconjugation

- Bonds participating in the hyperconjugative interaction, e.g. C-R, will be lengthened while the $C(+)-C$ bond will be shortened.

First X-ray Structure of an Aliphatic Carbocation

- Delocalization of nonbonding electron pairs into vicinal antibonding orbitals is also possible

This decloalization is referred to as "Negative" hyperconjugation

Since nonbonding electrons prefer hybrid orbitals rather that P orbitals, this orbital can adopt either a syn or anti relationship to the vicinal $\mathrm{C}-\mathrm{R}$ bond.

The Molecular Orbital Description

Note that $\sigma \mathrm{C}-\mathrm{R}$ is slightly destabilized

The interaction of filled orbitals with adjacent antibonding orbitals can have an ordering effect on the structure which will stabilize a particular geometry. Here are several examples:

Case 1: $\mathrm{N}_{2} \mathrm{~F}_{2} \quad$ This molecule can exist as either cis or trans isomers

There are two logical reasons why the trans isomer should be more stable than the cis isomer.
The nonbonding lone pair orbitals in the cis isomer will be destabilizing due to electron-electron repulsion.

- The individual C-F dipoles are mutually repulsive (pointing in same direction) in the cis isomer.

In fact the cis isomer is favored by $3 \mathrm{kcal} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$.
Let's look at the interaction with the lone pairs with the adjacent $\mathrm{C}-\mathrm{F}$ antibonding orbitals.

\square Note that by taking a linear combination of the nonbonding and antibonding orbitals you generate a more stable bonding situation.

- Note that two such interactions occur in the molecule even though only one has been illustrated.

The trans Isomer

Now carry out the same analysis with the same 2 orbitals present in the trans isomer.

\square In this geometry the "small lobe" of the filled $\mathrm{N}-\mathrm{SP}_{2}$ is required to overlap with the large lobe of the antibonding C-F orbital. Hence, when the new MO's are generated the new bonding orbital is not as stabilizing as for the cis isomer.

Conclusions

Lone pair delocalization appears to override electron-electron and dipole-dipole repulsion in the stabilization of the cis isomer.
\square This HOMO-LUMO delocalization is stronger in the cis isomer due to better orbital overlap.

Important Take-home Lesson

Orbital orientation is important for optimal orbital overlap.

$\bigcirc \mathrm{A} \bigcirc \mathrm{BO}$
forms stronger
sigma-bond than

This is a simple notion with very important consequences. It surfaces in the delocalized bonding which occurs in the competing anti (favored) syn (disfavored) E2 elimination reactions. Review this situation.

The interaction of filled orbitals with adjacent antibonding orbitals can have an ordering effect on the structure which will stabilize a particular conformation. Here are several examples of such a phenomon called the gauche effect:;

Hydrazine

observed HNNH dihedral angle $\mathrm{Ca} 90^{\circ}$
There is a logical reason why the anti isomer should be more stable than the gauche isomer. The nonbonding lone pair orbitals in the gauche isomer should be destabilizing due to electron-electron repulsion.
In fact, the gauche conformation is favored. Hence we have neglected an important stabilization feature in the structure.

HOMO-LUMO Interactions

Orbital overlap between filled (bonding) and antibonding states is best in the anti orientation. HOMO-LUMO delocalization is possible between: (a) N -lone pair $\leftrightarrow \sigma^{*} \mathrm{~N}-\mathrm{H}$; (b) $\sigma \mathrm{N}-\mathrm{H} \leftrightarrow \sigma^{*} \mathrm{~N}-\mathrm{H}$

- Major stabilizing interaction is the delocalization of O-lone pairs into the $\mathrm{C}-\mathrm{H}$ antibonding orbitals (Figure A). Note that there are no such stabilizing interactions in the anti conformation while there are 2 in the

■ Note that you achieve no net stabilization of the system by generating molecular orbitals from two filled states (Figure B).

Problem: Consider the structures $\mathrm{XCH}_{2}-\mathrm{OH}$ where $\mathrm{X}=\mathrm{OCH}_{3}$ and F . What is the most favorable conformation of each molecule? Illustrate the dihedral angle relationship along the $\mathrm{C}-\mathrm{O}$ bond. $\sigma \mathrm{N}-\mathrm{H} \leftrightarrow \sigma * \mathrm{~N}-\mathrm{H}$ delocalization.

- Hence, hydrazine will adopt the gauche conformation where both N -lone pairs will be anti to an antibonding acceptor orbital.

The trend observed for hydrazine holds for oxygen derivatives as well

Hydrogen peroxide

observed HOOH dihedral angle $\mathrm{Ca} 90^{\circ}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ can exist in either gauche or anti conformations (relative to hydrogens). The gauche conformer is prefered.

The closer in energy the HOMO and LUMO the better the resulting stabilization through delocalization.

■ Hence, N -lone pair $\leftrightarrow \sigma^{*} \mathrm{~N}-\mathrm{H}$ delocalization better than
http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 2

Stereoelectronic Effects-2

- Anomeric and Related Effects
- Electrophilic \& Nucleophilic Substitution Reactions
- The $\mathrm{S}_{\mathrm{N}} 2$ Reaction: Stereoelectronic Effects
- Olefin Epoxidation: Stereoelectronic Effects

■ Baeyer-Villiger Reaction: Stereoelectronic Effects

- Hard \& Soft Acid and Bases (Not to be covered in class)

Reading Assignment: Kirby, Chapters 1-3
D. A. Evans

Wednesday, September 17, 2003

Useful LIterature Reviews

Kirby, A. J. (1982). The Anomeric Effect and Related Stereoelectronic Effects at Oxygen. New York, Springer Verlag.
Box, V. G. S. (1990). "The role of lone pair interactions in the chemistry of the monosaccharides. The anomeric effect." Heterocycles 31: 1157.

Box, V. G. S. (1998). "The anomeric effect of monosaccharides and their derivatives. Insights from the new QVBMM molecular mechanics force field." Heterocycles 48(11): 2389-2417.
Graczyk, P. P. and M. Mikolajczyk (1994). "Anomeric effect: origin and consequences." Top. Stereochem. 21: 159-349.
Juaristi, E. and G. Cuevas (1992). "Recent studies on the anomeric effect." Tetrahedron 48: 5019.

Plavec, J., C. Thibaudeau, et al. (1996). "How do the Energetics of the
Stereoelectronic Gauche and Anomeric Effects Modulate the Conformation of Nucleos(t)ides?" Pure Appl. Chem. 68: 2137-44.

Thatcher, G. R. J., Ed. (1993). The Anomeric Effect and Associated
Stereoelectronic Effects. Washington DC, American Chemical Society.

Problem 121

http://evans.harvard.edu/problems/
Sulfonium ions A and Bexhibit remarkable differences in both reactivity and product distribution when treated with nucleophiles such as cyanide ion (eq 1, 2). Please answer the questions posed in the spaces provided below.

$\mathrm{BF}_{4}^{\ominus}$

The Anomeric Effect

It is not unexpected that the methoxyl substituent on a cyclohexane ring prefers to adopt the equatorial conformation.

What is unexpected is that the closely related 2-methoxytetrahydropyran prefers the axial conformation:

That effect which provides the stabilization of the axial OR conformer which overrides the inherent steric bias of the substituent is referred to as the anomeric effect.

Let anomeric effect $=\mathrm{A}$

$$
\begin{aligned}
\Delta G_{p}^{\circ} & =\Delta G_{c}^{\circ}+A \\
A & =\Delta G_{p}^{\circ}-\Delta G_{c}^{\circ}
\end{aligned}
$$

$A=-0.6 \mathrm{kcal} / \mathrm{mol}-0.6 \mathrm{kcal} / \mathrm{mol}=-1.2 \mathrm{kcal} / \mathrm{mol}$

Principal HOMO-LUMO interaction from each conformation is illustrated below:

axial O lone pair $\leftrightarrow \mathbf{\sigma} * \mathbf{C}-\mathrm{H}$ axial O lone pair $\leftrightarrow \sigma *$ C-O

Since the antibonding C-O orbital is a better acceptor orbital than the antibonding $\mathrm{C}-\mathrm{H}$ bond, the axial OMe conformer is better stabilized by this interaction which is worth ca. $1.2 \mathrm{kcal} / \mathrm{mol}$.
Other electronegative substituents such as CI, SR etc also participate in anomeric stabilization.

This conformer preferred by $1.8 \mathrm{kcal} / \mathrm{mol}$
axial O lone pair $\leftrightarrow \sigma * \mathrm{C}-\mathrm{Cl}$

The Exo-Anomeric Effect

- There is also a rotational bias that is imposed on the exocyclic C-OR bond where one of the oxygen lone pairs prevers to be anti to the ring sigma $\mathrm{C}-\mathrm{O}$ bond

\qquad
favored
A. J. Kirby, The Anomeric and Related Stereoelectronic Effects at Oxygen,

Springer-Verlag, 1983
E. Jurasti, G. Cuevas, The Anomeric Effect, CRC Press, 1995

Do the following valence bond resonance structures have meaning?

Prediction: As X becomes more electronegative, the IR frequency should increase

Prediction: As the indicated pi-bonding increases, the $\mathrm{X}-\mathrm{C}-\mathrm{O}$ bond angle should decrease. This distortion improves overlap.

\qquad

Evidence for this distortion has been obtained by X-ray crystallography
Corey, Tetrahedron Lett. 1992, 33, 7103-7106

Aldehyde C-H Infrared Stretching Frequencies

Prediction: The IR C-H stretching frequency for aldehydes is lower than the closely related olefin C-H stretching frequency.

For years this observation has gone unexplained.

$v \mathrm{C}-\mathrm{H}=2730 \mathrm{~cm}^{-1}$
$v \mathrm{C}-\mathrm{H}=3050 \mathrm{~cm}^{-1}$
Sigma conjugation of the lone pair anti to the H will weaken the bond.
This will result in a low frequency shift.
Infrared evidence for lone pair delocalization into vicinal antibonding orbitals.
The N-H stretching frequency of cis-methyl diazene is $200 \mathrm{~cm}^{-1}$ lower than the trans isomer.

■ The low-frequency shift of the cis isomer is a result of $\mathrm{N}-\mathrm{H}$ bond weakening due to the anti lone pair on the adjacent (vicinal) nitrogen which is interacting with the $\mathrm{N}-\mathrm{H}$ antibonding orbital. Note that the orbital overlap is not nearly as good from the trans isomer.
N. C. Craig \& co-workers JACS 1979, 101, 2480.

Observation: C-H bonds anti-periplanar to nitrogen lone pairs are spectroscopically distinct from their equatorial $\mathrm{C}-\mathrm{H}$ bond counterparts

Spectroscopic Evidence for Conjugation
Infrared Bohlmann Bands
Characteristic bands in the IR between 2700 and $2800 \mathrm{~cm}^{-1}$ for $\mathrm{C}-\mathrm{H}_{4}, \mathrm{C}-\mathrm{H}_{6}, \& \mathrm{C}-\mathrm{H}_{10}$ stretch

Bohlmann, Ber. 1958912157
Reviews: McKean, Chem Soc. Rev. 19787399
L. J. Bellamy, D. W. Mayo, J. Phys.

Chem. 1976801271
NMR : Shielding of H antiperiplanar to N lone pair
H_{10} (axial): shifted furthest upfield
$\mathrm{H}_{6}, \mathrm{H}_{4}: \Delta \delta=\delta \mathrm{H}_{\text {axial }}-\delta \mathrm{H}_{\text {equatorial }}=-0.93 \mathrm{ppm}$ Protonation on nitrogen reduces $\Delta \delta$ to -0.5 ppm
H. P. Hamlow et. al., Tet. Lett. 19642553
J. B. Lambert et. al., JACS 1967893761

$\Delta \mathrm{G}^{\circ}=-0.35 \mathrm{kcal} / \mathrm{mol}$
A. R. Katritzky et. al., J. Chemm. Soc. B 1970135

Favored Solution Structure (NMR)

J. E. Anderson, J. D. Roberts, JACS 1967964186

Favored Solid State Structure (X-ray crystallography)

A. R. Katrizky et. al., J. C. S. Perkin // 19801733

Acceptor orbital hierarchy: $\delta^{*} \mathrm{P}-\mathrm{OR}^{*}>\delta^{*} \mathrm{P}-\mathrm{O}^{-}$

Gauche-Gauche conformation affords a better donor-acceptor relationship

The Phospho-Diesters Excised from Crystal Structure

Oxygen lone pairs may establish a simultaneous hyperconjugative relationship with both acceptor orbitals only in the illustrated conformation.

Plavec, et al. (1996). "How do the Energetics of the Stereoelectronic Gauche \& Anomeric Effects Modulate the Conformation of Nucleos(t)ides?
" Pure Appl. Chem. 68: 2137-44

- Conformations: There are 2 planar conformations.
(Z) Conformer
 \longrightarrow

(E) Conformer
Specific Case:
Methyl Formate

$\Delta G^{\circ}=+4.8 \mathrm{kcal} / \mathrm{mol}$

The (E) conformation of both acids and esters is less stable by $3-5 \mathrm{kcal} / \mathrm{mol}$. If this equilibrium were governed only by steric effects one would predict that the (E) conformation of formic acid would be more stable (H smaller than $=\mathrm{O}$). Since this is not the case, there are electronic effects which must also be considered. These effects will be introduced shortly.
\square Rotational Barriers: There is hindered rotation about the $=\mathrm{C}-\mathrm{OR}$ bond.
These resonance structures suggest hindered rotation about $=\mathrm{C}-\mathrm{OR}$ bond. This is indeed observed:

Rotational barriers are $\sim 10-12$ $\mathrm{kcal} / \mathrm{mol}$. This is a measure of the strength of the pi bond.

Lone Pair Conjugation: The oxygen lone pairs conjugate with the $\mathrm{C}=\mathrm{O}$.

The filled oxygen p-orbital interacts with pi (and pi*) $\mathrm{C}=\mathrm{O}$ to form a 3-centered 4-electron bonding system.
SP_{2} Hybridization
■ Oxygen Hybridization: Note that the alkyl oxygen is Sp2. Rehybridization is driven by system to optimize pi-bonding.

- Hyperconjugation: Let us now focus on the oxygen lone pair in the hybrid orbital lying in the sigma framework of the $\mathrm{C}=\mathrm{O}$ plane.

(Z) Conformer

(E) Conformer

In the (E) conformation this lone pair is aligned to overlap with $\sigma^{\star} C-R$.

Since $\sigma^{*} \mathrm{C}-\mathrm{O}$ is a better acceptor than $\sigma^{*} \mathrm{C}-\mathrm{R}$ (where R is a carbon substituent) it follows that the (Z) conformation is stabilized by this interaction.

Esters versus Lactones: Questions to Ponder.

Esters strongly prefer to adopt the (Z) conformation while
small-ring lactones such as 2 are constrained to exist in the (Z) conformation. From the preceding discussion explain the following:

1) Lactone 2 is significantly more susceptible to nucleophilic attack at the carbonyl carbon than 1? Explain.

2) Lactone $\mathbf{2}$ is significantly more prone to enolization than $\mathbf{1}$? In fact the pKa of $\mathbf{2}$ is ~ 25 while ester $\mathbf{1}$ is ~ 30 (DMSO). Explain.
3) In 1985 Burgi, on carefully studying the X-ray structures of a number of lactones, noted that the O-C-C (α) \& $\mathrm{O}-\mathrm{C}-\mathrm{O}(\beta)$ bond angles were not equal.

 Explain the indicated trend in bond angle changes.

$$
\alpha-\beta=12.3^{\circ} \quad \alpha-\beta=6.9^{\circ}
$$

$$
\alpha-\beta=4.5^{\circ}
$$

Consider the linear combination of three atomic orbitals. The resulting molecular orbitals (MOs) usually consist of one bonding, one nonbonding and one antibonding MO.

Note that the more nodes there are in the wave function, the higher its energy.

Case 3: 2 p -Orbitals; 1 s -orbital

Case 4: 2 s-Orbitals; 1 p-orbital

Do this as an exercise

Examples of three-center bonds in organic chemistry
A. H-bonds: (3-center, 4-electron)

B. H-B-H bonds: (3-center, 2 electron)

diborane stabilized by $35 \mathrm{kcal} / \mathrm{mol}$
C. The $\mathrm{S}_{\mathrm{N}} 2$ Transition state: (3-center, 4-electron)

The $\mathrm{S}_{\mathrm{N}} 2$ transition state approximates a case 2
 situation with a central carbon p-orbital
The three orbitals in reactant molecules used are:
1 nonbonding MO from Nucleophile (2 electrons)
1 bonding MO $\sigma \mathrm{C}-\mathrm{Br}$ (2 electrons)
1 antibonding $\mathrm{MO} \sigma^{*} \mathrm{C}-\mathrm{Br}$

Why do $\mathrm{S}_{\mathrm{N}} 2$ Reactions proceed with backside displacement?

Given the fact that the LUMO on the electrophile is the C-X antibonding orblital, Nucleophilic attack could occur with either inversion or retention.

Constructive overlap between $\mathrm{Nu} \& \sigma^{*} \mathrm{C}-\mathrm{X}$

Retention

Nu
Overlap from this geometry results in no net bonding interaction

Expanded view of $\sigma^{*} C-X$

Fleming, page 75-76

Electrophilic substitution at saturated carbon may occur with either inversion of retention

Inversion

Retention

Inversion

Examples

Stereochemistry frequently determined by electrophile structure
See A. Basu, Angew. Chem. Int. Ed. 2002, 41, 717-738

The reaction under discussion:

\square The $\mathrm{Nu}-\mathrm{C}-\mathrm{X}$ bonding interaction is that of a 3-center, 4-electron bond. The frontier orbitals which are involved are the nonbonding orbital from Nu as well as $\sigma C-X$ and $\sigma * C-X$:

Experiments have been designed to probe inherent requirement for achieving a $180^{\circ} \mathrm{Nu}-\mathrm{C}-\mathrm{X}$ bond angle: Here both Nu and leaving group are constrained to be part of the same ring.

The Eschenmoser Experiment (1970): Helv. Chim Acta 1970, 53, 2059

- The reaction illustrated below proceeds exclusively through bimolecular pathway in contrast to the apparent availability of the intramolecular path.

The use of isotope labels to probe mechanism.
1 and 2 containing deuterium labels either on the aromatic ring or on the methyl group were prepared. A 1:1-mixture of 1 and 2 were allowed to react.

■ If the rxn was exclusively intramolecular, the products would only contain only three deuterium atoms:

2
■ If the reaction was exclusively intermolecular, products would only contain differing amounts of D-label depending on which two partners underwent reaction. The deuterium content might be analyzed by mass spectrometry. Here are the possibilities:

$$
\begin{aligned}
& \mathbf{1}+\mathbf{1} \longrightarrow \mathrm{D}_{3} \text {-product } \\
& \mathbf{2}+\mathbf{2} \longrightarrow \mathrm{DD}_{3}-\mathrm{Ar}-\mathrm{Nu}-\mathrm{CH}_{3} \\
& \mathrm{D}_{3} \text {-product } \\
& 2 \mathrm{CH}_{3}-\mathrm{Ar}-\mathrm{Nu}-\mathrm{CD}_{3}
\end{aligned} \begin{array}{ll}
\mathrm{D}_{6} \text {-product } & 1 \mathrm{CD}_{3}-\mathrm{Ar}-\mathrm{Nu}-\mathrm{CD}_{3} \\
\mathrm{D}_{0} \text {-product } & 1 \mathrm{CH}_{3}-\mathrm{Ar}-\mathrm{Nu}-\mathrm{CH}_{3}
\end{array} \text { 2 } \longrightarrow \begin{aligned}
& \text { 2 }
\end{aligned}
$$

Hence, for the strictly intermolecular situation one should see the following ratios

$$
D_{0}: D_{3}: D_{3}^{\prime}: D_{6}=1: 2: 2: 1
$$

The product isotope distribution in the Eschenmoser expt was found to be exclusively that derived from the intermolecular pathway!

Other Cases:

exclusively intermolecular

16\% intramolecular 84\% intermolecular

Hence, the Nu-C-X 180° transition state bond angle must be rigidly maintained for the reaction to take place.

16\% intramolecular; 84\% intermolecular

exclusively intermolecular

- The General Reaction:

\square Reaction rates are governed by olefin nucleophilicity. The rates of epoxidation of the indicated olefin relative to cyclohexene are provided below:

1.0

0.6

0.05

0.4
- The indicated olefin in each of the diolefinic substrates may be oxidized selectively.

- The transition state:

View from below olefin

E. J. Corey, JACS 101, 1586 (1979)

For a more detailed study see P. Beak, JACS 113, 6281 (1991)
For theoretical studies of TS see R. D. Bach, JACS 1991, 113, 2338 R. D. Bach, J. Org. Chem 2000, 65, 6715

The General Reaction:

- Synthesis of the Dioxirane Oxidant

Synthetically Useful Dioxirane Synthesis

Curci, JOC, 1980, 4758 \& 1988, 3890;
JACS 1991, 7654.
Transition State for the Dioxirane Mediated Olefin Epoxidation

stabilizing $\mathrm{O}_{\mathrm{lp}} \rightarrow \pi^{*} \mathrm{C}=\mathrm{C}$
cis olefins react ~ 10 times faster than trans
Houk, JACS, 1997, 12982.

Asymmetric Epoxidation with Chiral Ketones

Review: Frohn \& Shi, Syn Lett 2000, 1979-2000

Question: First hour Exam 2000 (Database Problem 34)

Question 4. (15 points). The useful epoxidation reagent dimethyldioxirane (1) may be prepared from "oxone" ($\mathrm{KO}_{3} \mathrm{SOOH}$) and acetone (eq 1). In an extension of this epoxidation concept, Shi has described a family of chiral fructose-derived ketones such as 2 that, in the presence of "oxone", mediate the asymmetric epoxidation of di- and tri-substituted olefins with excellent enantioselectivities (>90\% ee) (JACS 1997, 119, 11224).

Part A (8 points). Provide a mechanism for the epoxidation of ethylene with
dimethyldioxirane (1). Use three-dimensional representations, where relevant, to illustrate the relative stereochemical aspects of the oxygen transfer step. Clearly identify the frontier orbitals involved in the epoxidation.

Part B (7 points). Now superimpose chiral ketone 2 on to your mechanism proposed above and rationalize the sense of asymmetric induction of the epoxidation of trisubstituted olefins (eq 2). Use three-dimensional representations, where relevant, to illustrate the absolute stereochemical aspects of the oxygen transfer step.

Let R_{L} and R_{S} be Sterically large and small substituents.

The major product is that wherein oxygen has been inserted into the R_{L}-Carbonyl bond.

The important stereoelectronic components to this rearrangement:

1. The $\mathrm{R}_{\mathrm{L}}-\mathrm{C}-\mathrm{O}-\mathrm{O}$ dihedral angle must be 180° due to the HOMO LUMO interaction $\sigma-R_{L}-\mathrm{C} \leftrightarrow \sigma^{*}-\mathrm{O}-\mathrm{O}$.
2. The $\mathrm{C}-\mathrm{O}-\mathrm{O}-\mathrm{C}^{\prime}$ dihedral angle will be ca. 60° due to the gauche effect (O-lone pairs $\leftrightarrow \sigma *-C-O$).

This gauche geometry is probably reinforced by intramolecular hydrogen bonding as illustrated on the opposite page:

Conformer A

Steric effects destabilize Conformer B relative to Conformer A; hence, the reaction is thought to proceed via a transition
state similar to A .
For relevant papers see:
Crudden, Angew. Chem. Int. Ed 2000, 39, 2852-2855 (pdf)
Kishi, JACS 1998, 120, 9392 (pdf)

Conformer A in three dimensions

$2-3$ dihedral angle $\sim 178^{\circ}$ from Chem 3D

Hard and Soft Acids and Bases (HSAB-Principle)
Reading Assignment: Fleming, Chapter 3, p33-46
Pearson, JACS 1963, 85, 3533.
Hard Acids prefer to interact with hard bases Soft acids prefer to interact with soft bases.

Softness: Polarizability; soft nucleophiles have electron clouds, which can be polarized (deformed) easily.

Hardness: Charged species with small ion radii, high charge density.
\rightarrow Qualitative scaling possible:
Table 3-1 Some hard and soft acids (electrophiles) and bases (nucleophiles)

Bases (Nucleophiles)	Acids (Electrophiles)
Hard	Hard
$\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{F}^{-}$	$\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$
$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{SO}_{4}{ }^{2-}$	$\mathrm{Be}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$
$\mathrm{Cl}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{ClO}_{4}{ }^{-}, \mathrm{NO}_{3}{ }^{-}$	$\mathrm{Al}^{3+}, \mathrm{Ga}^{3+}$
$\mathrm{ROH}, \mathrm{RO}^{-}, \mathrm{R}_{2} \mathrm{O}$	$\mathrm{Cr}^{3+}, \mathrm{Co}^{3+}, \mathrm{Fe}^{3+}$
$\mathrm{NH}_{3}, \mathrm{RNH}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{Sn}^{3+} \\ & \mathrm{Si}^{4+} \cdot \mathrm{Ti}^{4+} \end{aligned}$
	$\mathrm{Ce}^{3+}, \mathrm{Sn}^{4+}$
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}^{2+}$
	$\mathrm{BeMe}_{2}, \mathrm{BF}_{3}, \mathrm{~B}(\mathrm{OR})_{3}$
	$\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{AlCl}_{3}, \mathrm{AlH}_{3}$
	$\mathrm{RPO}_{2}{ }^{+}, \mathrm{ROPO}_{2}{ }^{+}$
	$\underset{\mathrm{RSO}_{2}+}{ }{ }^{7+}, \mathrm{ROSO}_{2}^{+}, \mathrm{SO}_{3}$
	$\mathrm{I}^{7+}, \mathrm{I}^{5+}, \mathrm{Cl}^{7+}, \mathrm{Cr}^{6+}$
	$\mathrm{RCO}^{+}, \mathrm{CO}_{2}, \mathrm{NC}^{+}$
	HX (hydrogen bonding molecules)
Borderline	Borderline
$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{~N}_{3}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{2}^{--}, \\ & \mathrm{SO}_{3}^{2-}, \mathrm{N}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Pb}^{2+} \\ & \mathrm{Sn}^{2+}, \mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SO}_{2}, \mathrm{NO}^{+}, \mathrm{R}_{3} \mathrm{C}^{+} \\ & \mathrm{C}_{6} \mathrm{H}_{5}^{+} \end{aligned}$
Soft	Soft
$\mathrm{R}_{2} \mathrm{~S}, \mathrm{RSH}, \mathrm{RS}^{-}$	$\mathrm{Cu}^{+}, \mathrm{Ag}^{+}, \mathrm{Au}^{+}, \mathrm{Tl}^{+}, \mathrm{Hg}^{+}$
$\mathrm{I}^{-}, \mathrm{SCN}^{-}, \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	$\mathrm{Pd}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Pt}^{2+}, \mathrm{Hg}^{2+}, \mathrm{CH}_{3} \mathrm{Hg}^{+}$,
$\mathrm{R}_{3} \mathrm{P}, \mathrm{R}_{3} \mathrm{As},(\mathrm{RO})_{3} \mathrm{P}$	$\mathrm{Co}(\mathrm{CN})_{5}{ }^{2-}$
$\mathrm{CN}^{-}, \mathrm{RNC,CO}$	$\mathrm{Tl}^{3+}, \mathrm{Tl}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{BH}_{3}$
$\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{RS}^{+}, \mathrm{RSe}^{+}, \mathrm{RTe}^{+}$
$\mathrm{H}^{-}, \mathrm{R}^{-}$	$\mathrm{I}^{+}, \mathrm{Br}^{+}, \mathrm{HO}^{+}, \mathrm{RO}^{+}$
	$\mathrm{I}_{2}, \mathrm{Br}_{2}, \mathrm{ICN}$, etc.
	trinitrobenzene, etc.
	chloranil, quinones, etc.
	tetracyanoethylene, etc.
	$\mathrm{O}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{N}, \mathrm{RO}^{\circ}, \mathrm{RO}_{2}{ }^{\text {- }}$
	M^{0} (metal atoms)
	bulk metals
MO HSAB 1 9/20/00 8:30 AM	CH_{2}, carbenes

FMO-Theory and Klopman-Salem equation provide an understanding of this empirical principle:

Hard Acids have usually a positive charge, small ion radii (high charge density), energy rich (high lying) LUMO
Soft Acids are usually uncharged and large (low charge density), they have an energy poor (low lying) LUMO (usually with large MO coefficient)
Hard Bases usually have a negative charge, small ion radii (high charge density), energy poor (low lying) HOMO
Soft Bases are usually uncharged and large (low charge density), energy rich (high lying) HOMO (usually with large MO coefficient).

Molecular Orbital Energies of an
idealized Soft Species

FMO-Theory for interaction:

Soft-Soft

Acid

Significant Energy gain through HOMO/LUMO interaction

idealized Hard Species

Hard-Hard

Only neglectable energy gain through orbital interaction.

Klopman－Salem Equation for the interaction of a Nucleophile N （Lewis－Base）and an Electrophile E（Lewis－Acid）．

$$
\Delta E=-\underbrace{\frac{Q_{N} Q_{E}}{\varepsilon R_{N E}}}_{\text {Coulomb Term }}+\underbrace{\frac{2\left(c_{N} C_{E} \beta\right)^{2}}{E_{H O M O}(N)-E_{L U M O}(E)}}_{\text {Frontier Orbital Term }}
$$

Q：Charge density
ε ：Dielectricity constant
R：distance（ $\mathrm{N}-\mathrm{E}$ ）
c：coefficient of MO
β ：Resonance Integral
E ：Energy of MO

Soft－Soft Interactions：Coulomb term small（low charge density）．Dominant interaction is the frontier orbital interaction because of a small $\Delta \mathrm{E}\left(\mathrm{HOMO}_{N} / \mathrm{LUMO}_{\mathrm{E}}\right)$ ．
\Rightarrow formation of covalent bonds
Hard－Hard Interactions：Frontier orbital term small because of large $\Delta \mathrm{E}\left(\mathrm{HOMO}_{\mathrm{N}} / \mathrm{LUMO}_{\mathrm{E}}\right)$ ．Dominant interaction is described by the Coulomb term（ Q is large for hard species），i．e． electrostatic interaction．
\Rightarrow formation of ionic bonds
Hard－Soft Interactions：Neither energy term provides significant energy gain through interaction．Hence，Hard－Soft interactions are unfavorable．

Table 3－2 Calculated softness character for inorganic nucleophiles and electrophiles

Nucleophile	$\begin{aligned} & \text { HOMO } \\ & E^{\neq}(\mathrm{eV}) \end{aligned}$	Electrophile	LUMO $\mathrm{E}^{\neq}(\mathrm{eV})$
H^{-}	$-7.37 \uparrow$	Al^{3+}	$6 \cdot 01$
I^{-}	－8．31	La^{3+}	4.51
HS^{-}	－8．59	Ti^{4+}	4.35 己
CN^{-}	－8．78 ค	Be^{2+}	3.75 年
Br^{-}	－9．22	Mg ${ }^{+}$	2.42 工
Cl^{-}	－9．94 ⿹ㅡㅈ	Ca^{2+}	2.33
HO^{-}	－10．45 工	Fe^{3+}	$2 \cdot 22$
$\mathrm{H}_{2} \mathrm{O}$	－（10．73）	Sr^{2+}	$2 \cdot 21$
F^{-}	－12．18	Cr^{3+}	2.06
		Ba^{2+}	1.89
		Ga^{3+}	1.45
		Cr^{2+}	0.91
		Fe^{2+}	$0 \cdot 69$
		Li^{+}	0.49
		H^{+}	0.42
		Ni^{2+}	$0 \cdot 29$
		$\mathrm{Na}{ }^{+}$	0
		Cu^{2+}	－0．55
		Tl^{+}	-1.88
		Cd^{2+}	－2．04
		Cu^{+}	-2.30
		Ag^{+}	$-2.82 \stackrel{\square}{0}$
		Tl^{3+}	－3．37 ${ }^{\text {en }}$
		Au^{+}	－4．35
		Hg^{2+}	－4．64 \downarrow

HSAB principle - Application to Chemoselectivity Issues

(a) Enolate Alkylation

(b) 1,2- vs. 1,4-addition to α, β-unsaturated carbonyl compounds

Charge density

Conjugate Addition
(c) $\mathrm{S}_{\mathrm{N}} 2$ vs E 2

(d) Ambident Nucleophiles

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206
Advanced Organic Chemistry

Lecture Number 3

Stereoelectronic Effects-3

"Rules for Ring Closure: Baldwin's Rules"
Kirby, "Stereoelectronic Effects" Chapters 4, 5

Useful Llterature Reviews

Johnson, C. D. (1993). "Stereoelectronic effects in the formation of 5and 6 -membered rings: the role of Baldwin's rules." Acc. Chem. Res. 26: 476-82. (Handout)

Beak, P. (1992). "Determinations of transition-state geometries by the endocyclic restriction test: mechanisms of substitution at nonstereogenic atoms." Acc. Chem. Res. 25: 215. (Handout)
D. A. Evans

Friday,
September 19, 2003

The Primary Literature

Baldwin, J. Chem. Soc., Chem. Comm. 1976, 734, 736.
Baldwin, J. Chem. Soc., Chem. Comm. 1977233.
Baldwin, J. Org. Chem. 1977, 42, 3846.
Baldwin, Tetrahedron 1982, 38, 2939.

- Problems of the Day

Propose mechanisms for the following reactions

Ring Closure and Stereoelectronic Connsiderations An Examination of Baldwin's Rules

"Baldwin's Rules" provides a qualitative set of generalizations on the probability of a given ring closure.

There are circumstances where the "rules" don't apply.

- They do not apply to non-first-row elements participating in the cyclization event. The longer bond lengths and larger atomic radii of 2nd row elements result in relaxed geometrical constraints.

For example, a change in a heteroatom from O to S could result in relaxation of a given geometric constraint.

■ The "rules" do not apply to electrocyclic processes.

Nomenclature

Classes of Ring Closing Processes

A. Exo-cyclization modes identified by the breaking bond being positioned exocyclic to the forming cycle.

B. Endo-cyclization modes identified by the breaking bond being positioned endocyclic to the forming cycle.

N, O
C. Nucleophilic ring closures sub-classified according to hybridization state of electrophilic component:
(tetrahedral $=$ tet; trigonal $=$ trig; digonal $=$ dig)
D. Nucleophilic ring closures further subclassified according to size of the fomed ring. For example:

Required trajectories (Baldwin):

 case later

Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.

Tetrahedral Carbon

All exo cyclization modes are allowed: (n -exo-tet, $\mathrm{n}=3 \rightarrow$)

There are stereoelectronic issues to consider for \mathbf{n}-exo-tet cyclizations
Formation of 3-Membered Rings (3-exo-tet)

Conformational Effects in Epoxide Ring Formation/cleavage

Those stereoelectronic effects that operate in ring cleavage also influence ring formation. Consider a rigid cyclohexene oxide system:

FÜRST-PLATTNER RULE

In this simple model, the transition-state leading to $\mathbf{1}$ involves the diaxial orientation of nucleophile and leaving group. This orientation affords the best overlap of the anti-bonding $\mathrm{C}-\mathrm{Y}$ orbital and the nonbonding electron pairs on the nucleophile O^{-}.

In the formation of the diastereomeric epoxide 2, the proper alignment of orbitals may only be achieved by cyclization through the less-favored boat conformer. Accordingly, while both cyclizations are "allowed", there are large rate differences the the rates of ring closure.

While the FURST-PLATTNER RULE deals wilth the microscopic reverse, in the opening of epoxides by nucleophiles, the stereoelectronic arguments are the same.

Stereoelectronic Effects in Epoxide Ring Cleavage

"The diaxial nucleophilic ring cleavage of epoxides" For more information on epoxide cleavage see Handout 03A.

Tetrahedral Carbon

Endo cyclization modes that are disallowed (n -endo-tet, $\mathrm{n}=3 \rightarrow \sim 9$)

The stereoelectronic requirement for a $180^{\circ} \mathrm{X}-\mathrm{C}-\mathrm{Y}$ bond angle is only met when the endo cyclization ring size reaches 9 or 10 members.

Case 1: Eschenmoser, Helvetica Chim. Acta 1970, 53, 2059.

Cyclization exclusively intermolecular. However the exocyclic analog is exclusively intramolecular

3-03-Baldwin Rules-3 9/18/03 4:07 PM

Case 2: King, J.C.S. Chem. Comm., 1979, 1140.

84\% intermolecular,
16\% intramolecular

Conclusions

Allowed endo cyclization modes will require transition state ring sizes of at least nine members.
Intramolecular epoxidation has also been evaluated
Beak, JACS 1991, 113, 6281.

Beak states that the conclusions made with carbon substitution also hold for oxygen atom transfer.

Beak, P. (1992). "Determinations of transition-state geometries by the endocyclic restriction test: mechanisms of substitution at nonstereogenic atoms." Acc. Chem. Res. 25: 215.

Trigonal Carbon

Endo cyclization modes that are disallowed (3 to 5-endo-trig)

The 5-endo-trig cyclization is a watershed case
Case 1: Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.

however

Second row atom relaxes the cyclization geometrical requirement
Case 2: Baldwin, J. Chem. Soc., Chem. Commun., 1976, 736.

distance from reacting centers: $2.77 \AA$

It is possible that a "nonvertical" trajectory is operational like that suspected in $\mathrm{C}=\mathrm{O}$ addition

Case 2: continued...

Control experiment: Intermolecular reaction favors conjugate addtion.

Case 3:

Does the illustrated ketalization process necessarily violate "the rules"?

Apparent exceptions to disallowed 5-endo-trig cyclization process

Filer, J. Am. Chem. Soc. 1979, 44, 285.

$R^{1}=\operatorname{aryl}, R^{2}=$ aryl, alkyl
Grigg, J. Chem. Soc., Chem. Commun. 1980, 648.

$\mathrm{H}+\| \sqrt{ }$ disfavored ? \mid 5-endo-trig

Johnson, C. D. (1993). "Stereoelectronic effects in the formation of 5- and 6 -membered rings: the role of Baldwin's rules." Acc. Chem. Res. 26: 476-82.

More Exceptions

Chem. Comm 2088, 28
Review: "5-Endo-Trig Radical Cyclizatons" Ishibashi, et al Synthesis 2002, 695-713, PDF on Course Website

3-06-Baldwin Rules-6 9/18/03 5:10 PM

X	Y	Cond	Yield
F	F	DMF, $60{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$	80
F	H	DMF, $80{ }^{\circ} \mathrm{C}, 43 \mathrm{~h}$	17
Cl	Cl	DMF, $60{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$	-
Br	Br	DMF, $60{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	15

Ichikawa, et al Synthesis 2002, 1917-1936, PDF on Course Website

Numerous other cases are provided in this review.

Revisiting Case 2 with Fluorines

Favored
Not Observed

Favored

Trigonal Carbon: Exocyclic Enolate Alkylation

By definition, an exo-tet cyclization, but stereoelectronically behaves as an endo trig.

However:

Baldwin, J. Chem. Soc., Chem. Commun. 1977, 233.
\square Given the failure of the enolate alkylation shown above (eq 1), explain why these two cyclizations are successful.

Favorskii Rearrangement (Carey, Pt B, pp 609-610) Your thoughts on the mechanism

Trigonal Carbon: Intramolecular Aldol Condensations
Baldwin, Tetrahedron 1982, 38, 2939

Favored: 6-7-(enolendo)-exo-trig
Disfavored: 3-5-(enolendo)-exo-trig

Favored: 3-7-(enolexo)-exo-trig

Statistical Distribution, $(\mathbf{I}+\mathrm{II}) / I I I=2: 1$ Experimental Distribution, $\quad=0: 100$
($\mathrm{KOH}, \mathrm{MeOH}$, r.t., $5 \mathrm{~min}, 77 \% \mathrm{y}$.)

Caution: Baldwin's conclusions assume that the RDS is ring closure; however, it is well known (by some!) that the rate determining step is dehydration in a base-catalyzed aldol condensation.

Digonal Carbon: Cyclizations on to Acetylenes

DIGONAL: Angle of approach for attack on triple bonds

Nu^{-}	Baldwin:
120°	- 3 and 4-Exo-dig are disfavored
$\overline{=120^{\circ}}$	- 5 to 7-Exo-dig are favored
! 120	- 3 to 7-Endo-dig are favored

Ab initio SCF 4-31G calculations for the interaction of hydride with acetylene:

Crystal Structures do not support Baldwin

J. Dunitz and J. Wallis J. C. S. Chem. Comm. 1984, 671

Endo Digonal versus Endo Trigonal Cyclizations

5-endo-trig

In-plane approach; nucleophile lone pair is orthogonal to π^{*}

Out-of-plane approach; nucleophile lone pair can't achieve Bürgi-Dunitz angle

5-endo-dig

Allowed due to in-plane pi orbitals

For an opposing viewpoint to Baldwin's view of nucleophile trajectories, see Menger's article on directionality in solution organic chemistry: Tetrahedron 1983, 39, 1013.

$\mathrm{R}=\mathrm{H}, \mathrm{OMe}$
however, the acid catalyzed version does cyclize Baldwin, J. Chem. Soc., Chem. Commun., 1976, 736.

Indole synthesis:

Saegusa, J. Am. Chem. Soc. 1977, 99, 3532.

Developing negative charge on the central allenic carbon is in the same plane as the OMe group

Magnus, J. Am. Chem. Soc. 1978, 100, 7746.

Digonal Cyclizations: Interesting Examples

\square Trost, J. Am. Chem. Soc., 1979, 101, 1284.
Proposes E-olefin geometry, E/Z > 95:5

Conclusions and Caveats

Works for varying ring sizes and R groups; acylnitrilium ion can also work as an electophile in a Friedel-Crafts type of reaction

5-endo-dig

Baldwin's Rules are an effective first line of analysis in evaluating the stereoelectronics of a given ring closure

- Baldwin's Rules have provided an important foundation for the study of reaction mechanism
- Competition studies between different modes of cyclization only give information about relative rates, and are not an absolute indicator of whether a process is "favored" or "disfavored"
\square Structural modifications can dramatically affect the cyclization mode; beware of imines and epoxides

	ExO			ENDO		
	Tet	Trig	Dig	Tet	Trig	Dig
3	\checkmark	\checkmark	X		x	\checkmark
4	\checkmark	\checkmark	x		x	\checkmark
5	\checkmark	\checkmark	\checkmark	x	x	\checkmark
6	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark
7	\checkmark	$\sqrt{ }$	\checkmark	x	\checkmark	\checkmark

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 4

Acyclic Conformational Analysis-1

- Ethane, Propane, Butane \& Pentane Conformations
- Simple Alkene Conformations
- Reading Assignment for week
A. Carey \& Sundberg: Part A; Chapters 2 \& 3
R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 2000, 39, 2054-2070 Conformation Design of Open-Chain Compounds (handout)

The Ethane Barrtier Problem
F. Weinhold, Nature 2001, 411, 539-541
"A New Twist on Molecular Shape" (handout)
F. M. Bickemhaupt \& E. J. Baerends, Angew. Chem. Int. Ed. 2003, 42, 4183-4188, "The Case for Steric Repulsion Causing the Staggered Conformation in Ethane" (handout)
F. Weinhold,, Angew. Chem. Int. Ed. 2003, 42, 4188-4194, "Rebuttal of the Bikelhaupt-Baerends Case for Steric Repulsion Causing the staggered Connformation of Ethane" (handout)
D. A. Evans

Monday, September 22, 2003

Professor Frank Weinhold

Univ. of Wisconsin, Dept of Chemistry
B.A. 1962, University of Colorado, Boulder
A.M. 1964, Harvard University

Ph.D. 1967, Harvard University
Physical and Theoretical Chemistry.

Useful Llterature Reviews

Eliel, E. L., S. H. Wilen, et al. (1994). Stereochemistry of Organic Compounds. New York, Wiley.

Juaristi, E. (1991). Introduction to Stereochemistry and Conformational Analysis. New York, Wiley.

Juaristi, E., Ed. (1995). Conformational Behavior of Six-Membered Rings: Analysis,
Dynamics and Stereochemical Effects. (Series: Methods in Stereochemical
Analysis). Weinheim, Germany, VCH.
Schweizer, W. B. (1994). Conformational Analysis. Structure Correlation, Vol
1 and 2. H. B. Burgi and J. D. Dunitz. Weinheim, Germany, V C H Verlagsgesellschaft: 369-404.

Kleinpeter, E. (1997). "Conformational Analysis of Saturated Six-Membered
Oxygen-Containing Heterocyclic Rings." Adv. Heterocycl. Chem. 69: 217-69.
Glass, R. R., Ed. (1988). Conformational Analysis of Medium-Sized Ring Heterocycles. Weinheim, VCH.

Bucourt, R. (1973). "The Torsion Angle Concept in Conformational Analysis." Top. Stereochem. 8: 159.

Problems of the Day

Predict the most stable conformation of the indicated dioxospiran?

The following discussion is intended to provide a general

 overview of acyclic conformational analysis
Ethane \& Propane

The conformational isomerism in these 2 structures reveals a gratifying level of internal consistency.

Van derWaals radii of vicinal hydrogens do not overlap in ethane

In propane there is a discernable interaction

For purposes of analysis, each eclipsed conformer may be broken up into its component destabilizing interactions.

Incremental Contributions to the Barrier.

Structure	Eclipsed atoms	$\delta{\mathrm{E}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)}^{-1}$
ethane	$3(\mathrm{H} \leftrightarrow \mathrm{H})$	$+1.0 \mathrm{kcal} \mathrm{mol}^{-1}$
propane	$\begin{cases}2(\mathrm{H} \leftrightarrow \mathrm{H}) & +1.0 \mathrm{kcal} \mathrm{mol}^{-1} \\ 1(\mathrm{H} \leftrightarrow \mathrm{Me}) & +1.4 \mathrm{kcal} \mathrm{mol}^{-1}\end{cases}$	

4-01-introduction 9/22/03 8:28 AM

Ethane Rotational Barrier: The FMO View

F. Weinhold, Angew. nature 2001, 411, 539-541 "A New Twist on Molecular Shape"

One can see from the space-filling models that the Van der Waals radii of the hydrogens do not overlap in the eclipsed ethane conformation. This makes the steric argument for the barrier untenable.

One explanation for the rotational barrier in ethane is that better overlap is possible in the staggered conformation than in the eclipsed conformation as shown below.

In the staggered conformation there are 3 anti-periplanar $\mathrm{C}-\mathrm{H}$ Bonds

In the eclipsed conformation there are 3 syn-periplanar $\mathrm{C}-\mathrm{H}$ Bonds

Following this argument one might conclude that:
The staggered conformer has a better orbital match between bonding and antibonding states.

- The staggered conformer can form more delocalized molecular orbitals.
J. P. Lowe was the first to propose this explanation
"A Simple Molecuar Orbital Explanation for the Barrier to Internal Rotation in Ethane and Other Molecules" J. P. Lowe, JACS 1970, 92, 3799

Calculate the the rotational barrier about the C1-C2 bond in isobutane

The 1,2-Dihaloethanes

Observation: While the anti conformers are favored for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, the gauche conformation is prefered for 1,2-difluroethane. Explain.

Discuss with class the origin of the gauche stabiliation of the difluoro anaolg.
Recent Article: Chem. Commun 2002, 1226-1227 (handout)

Relationship between $\Delta \mathrm{G}$ and Keq and pKa

Recall that:

$$
\Delta G^{\circ}=-R T \operatorname{Ln~K}
$$

or

$$
\Delta \mathrm{G}^{\circ}=-2.3 \mathrm{RT} \log _{10} \mathrm{~K}
$$

At $298 \mathrm{~K}: \quad 2.3 \mathrm{RT}=1.4\left(\Delta \mathrm{G}\right.$ in $\left.\mathrm{kcal} \mathrm{Mol}{ }^{-1}\right)$

$$
\Delta \mathrm{G}^{\circ}{ }_{298}=-1.4 \mathrm{Log}_{10} \mathrm{Keq}
$$

Since

$$
\text { pKeq }=-\log _{10} \mathrm{Keq}
$$

$$
\Delta \mathrm{G}^{\circ}{ }_{298}=1.4 \mathrm{pKeq}
$$

Hence, pK is proportional to the free energy change

Keq	pKeq	ΔG°
1.0	0	0
10	-1	-1.4
100	-2	$-2.8 \mathrm{kcal} / \mathrm{mol}$

4-02-introduction-2 9/22/03 8:33 AM

Butane

Using the eclipsing interactions extracted from propane \& ethane we should be able to estimate all but one of the eclipsed butane conformations

The estimated value of +3.8 agrees quite well with the value of +3.6 reported by Allinger (J. Comp. Chem. 1980, 1, 181-184)
n-Butane Torsional Energy Profile

Butane continued

From the torsional energy profile established by Allinger, we should be able to extract the contribution of the $\mathrm{Me} \leftrightarrow \mathrm{Me}$ eclipsing interaction to the barrier:

Let's extract out the magnitide of the $\mathrm{Me}-\mathrm{Me}$ interaction

$$
\begin{aligned}
& 2(\mathrm{H} \leftrightarrow \mathrm{H})+1(\mathrm{Me} \leftrightarrow \mathrm{Me})=+5.1 \\
& 1(\mathrm{Me} \leftrightarrow \mathrm{Me})=+5.1-2(\mathrm{H} \leftrightarrow \mathrm{H}) \\
& 1(\mathrm{Me} \leftrightarrow \mathrm{Me})=+3.1
\end{aligned}
$$

Incremental Contributions to the Barrier.

Eclipsed atoms	$\delta E\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$2(\mathrm{H} \leftrightarrow \mathrm{H})$	+2.0
$1(\mathrm{Me} \leftrightarrow \mathrm{Me})$	+3.1

Eclipsed Butane conformation
From the energy profiles of ethane, propane, and n-butane, one may extract the useful eclipsing interactions summarized below:

Hierarchy of Eclipsing Interactions		
χ	$X-Y$	$\delta \mathrm{E} \mathrm{kcal} \mathrm{mol}^{-1}$
${ }^{x}$ Y ${ }^{\text {c }}$	$\mathrm{H}-\mathrm{H}$	+1.0
$\mathrm{H}^{\cdots} \mathrm{C}-\mathrm{C} \cdot \cdots \mathrm{H}$	$\mathrm{H}-\mathrm{Me}$	+1.4
	$\mathrm{Me}-\mathrm{Me}$	+3.1

4-03-butane 9/26/03 1:51 PM

Nomenclature for staggered conformers:	Me or or (anti)	gauche(+) or g
Conformer population at 29 K:	70%	15%

General nomenclature for diastereomers resulting from rotation about a single bond

		Torsion angle	Designation	Symbol ${ }^{\text {Co}}$	n-Butane Conformer
Energy Maxima Energy Minima	\longrightarrow	$0 \pm 30^{\circ}$	\pm syn periplanar	$\pm \mathrm{sp}$	E_{2}
	\rightarrow	$+60 \pm 30^{\circ}$	+ syn-clinal	+ sc (g+)	G
	\longrightarrow	$+120 \pm 30^{\circ}$	+ anti-clinal	+ ac	E_{1}
	\rightarrow	$180 \pm 30^{\circ}$	antiperiplanar	ap (anti or t)) A
	\longrightarrow	$-120 \pm 30^{\circ}$	- anti-clinal	- ac	E_{1}
	$-{ }^{-}$	$-60 \pm 30^{\circ}$	- syn-clinal	- sc (g-)	G

n-Pentane

Rotation about both the $\mathrm{C}_{2}-\mathrm{C}_{3}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ bonds in either direction (+ or -):

tg+

g-g+

Anti(2,3)-Anti(3,4)

Gauche(2,3)-Gauche'(3,4) double gauche pentane

$2\left(\mathrm{~g}^{+} \mathrm{t}\right)$

Gauche(2,3)-Gauche(3,4)

From prior discussion, you should be able to estimate energies of $\mathbf{2} \& \mathbf{3}$ (relative to $\mathbf{1}$). On the other hand, the least stable conformer 4 requires additional data before is relative energy can be evaluated.

The double-gauche pentane conformation

The new high-energy conformation: $\left(\mathbf{g}^{\mathbf{+}} \mathbf{g}^{-}\right)$

Estimate of 1,3-Dimethyl Eclipsing Interaction

$\Delta \mathrm{G}^{\circ}=+5.5 \mathrm{kcal} \mathrm{mol}^{-1}$

$\Delta G^{\circ}=X+2 Y$ where:
$X=1,3(\mathrm{Me} \leftrightarrow M e) \& Y=1,3(\mathrm{Me} \leftrightarrow H)$
$1,3(\mathrm{Me} \leftrightarrow \mathrm{H})=$ Skew-butane $=0.88 \mathrm{kcal} \mathrm{mol}^{-1}$
$1,3(\mathrm{Me} \leftrightarrow \mathrm{Me})=\Delta \mathrm{G}^{\circ}-2 \mathrm{Y}=5.5-1.76=+3.7 \mathrm{kcal} \mathrm{mol}^{-1}$

$$
1,3(\mathrm{Me} \leftrightarrow \mathrm{Me})=+3.7 \mathrm{kcal} \mathrm{~mol}^{-}
$$

Estimates of In-Plane 1,2 \& 1,3-Dimethyl Eclipsing Interactions

3.1

$$
\sim 3.7
$$

~3.9

~ 7.6

It may be concluded that in-plane $1,3(\mathrm{Me} \leftrightarrow \mathrm{Me})$ interactions are $\mathrm{Ca}+4$ $\mathrm{kcal} / \mathrm{mol}$ while $1,2(\mathrm{Me} \leftrightarrow \mathrm{Me})$ interactions are destabliizing by $\mathrm{Ca} 2.2 \mathrm{kcal} / \mathrm{mol}$.

The syn-Pentane Interaction - Consequences

R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 2000, 39, 2054-2070 Conformation Design of Open-Chain Compounds (handout)

\equiv

t
or

g^{-6}

\equiv

tg
or

gt

Consequences for the preferred conformation of polyketide natural products Analyze the conformation found in the crystal state of a bourgeanic acid derivative!

Lactol \& Ketol Polyether Antibioitics

The conformation of these structures are strongly influenced by the acyclic stereocenters

Ferensimycin B, R = Me Lysocellin, $\mathrm{R}=\mathrm{H}$

The conformation of these structures are strongly influenced by the acyclic stereocenters and internal H-bonding

Alborixin R = Me; X-206 R = H

Internal H-Bonding

Metal ion ligation sites ($\mathrm{M}=\mathrm{Ag}, \mathrm{K}$)

X-ray of lonophore X-206 $\cdot \mathrm{H}_{2} \mathrm{O}$
Internal H-Bonding

"The Total Synthesis of the Polyether Antibiotic X-206". Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, 110, 2506-2526.

X-ray of Ionophore $\mathrm{X}-206$ - Ag^{+}- Complex

Metal ion ligation sites $(M=A g, K)$

4-07-X-206 overlay 9/19/01 11:57 AM

Simple olefins exhibit unusal conformational properties relative to their saturated counterparts

Propane versus Propene

Hybridilzation change opens up the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angle

New destabilizing effect

K. Wiberg, JACS 1985, 107, 5035-5041
K. Houk, JACS 1987, 109, 6591-6600

Butane versus 1-Butene

eclipsed conformation

Conforms to ab initio (3-21G) values:
Wiberg, K. B.; Martin, E. J. Am. Chem. Soc. 1985, 107, 5035.

- Acetaldehyde exhibits a similar conformational bias

The low-energy conformation in each of above cases is eclisped

Useful Destabilizing Interactions to Remember

Hierarchy of Vicinal Eclipsing Interactions

	$\mathrm{X}-\mathrm{Y}$	$\delta \mathrm{E} \mathrm{kcal} \mathrm{mol}^{-1}$
${ }^{x} \text { (}$	$\mathrm{H}-\mathrm{H}$	+1.0
$\mathrm{H} \cdot \cdots \mathrm{C}-\mathrm{C} \cdots \cdots \mathrm{H}$	$\mathrm{H}-\mathrm{Me}$	+1.4
$\begin{array}{ll}\mathrm{H} & \mathrm{H}\end{array}$	$\mathrm{Me}-\mathrm{Me}$	+3.1

Estimates of In-Plane 1,2 \&1,3-Dimethyl Eclipsing Interactions

~ 3.1
~ 3.7
~3.9
~ 7.6

It may be concluded that in-plane $1,3(\mathrm{Me} \leftrightarrow \mathrm{Me})$ interactions are $\mathrm{Ca}+4$ $\mathrm{kcal} / \mathrm{mol}$ while $1,2(\mathrm{Me} \leftrightarrow \mathrm{Me})$ interactions are destabliizing by $\mathrm{Ca}+3 \mathrm{kcal} / \mathrm{mol}$.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 5

Acyclic Conformational Analysis-2

- Conformations of Simple Olefinic Substrates
- Introduction to Allylic Strain
- Introduction to Allylic Strain-2: Amides and Enolates
- Reading Assignment for week

A. Carey \& Sundberg: Part A; Chapters 2 \& 3

R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 2000, 39, 2054-2070 Conformation Design of Open-Chain Compounds (handout)
R. W. Hoffmann, Chem. Rev. 1989, 89, 1841-1860

Allylic 1-3-Strain as a Controlling Element in Stereoselective Transformations (handout)
F. Weinhold, Nature 2001, 411, 539-541
"A New Twist on Molecular Shape" (handout)

Wednesday, September 24, 2001

- Problems of the Day:

Can you predict the stereochemical outcome of this reaction?

D. Kim \& Co-workers, Tetrahedron Lett. 1986, 27, 943.

diastereoselection 8:1
Y. Kishi \& Co-workers, J. Am. Chem. Soc. 1979, 101, 259.

A. Kozikowski \& Co-workers, Tetrahedron Lett. 1982, 23, 2081.

Simple olefins exhibit unusal conformational properties relative to their saturated counterparts

Propane versus Propene

Hybridilzation change opens up the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angle

New destabilizing effect

K. Wiberg, JACS 1985, 107, 5035-5041
K. Houk, JACS 1987, 109, 6591-6600

Butane versus 1-Butene

eclipsed conformation

Conforms to ab initio (3-21G) values:
Wiberg, K. B.; Martin, E. J. Am. Chem. Soc. 1985, 107, 5035.

- Acetaldehyde exhibits a similar conformational bias

The low-energy conformation in each of above cases is eclisped

Conforms to ab initio (3-21G) values:
Wiberg, K. B.; Martin, E. J. Am. Chem. Soc. 1985, 107, 5035.

Values calculated using MM2 (molecular mechanics) force fields via the Macromodel multiconformation search.

The Torsional Energy Profile

Review: Hoffman, R. W. Chem. Rev. 1989, 89, 1841.

The Torsional Energy Profile

5-05-z-2-hydroxy-3-pentene 9/23/03 6:22 PM

$4.6 \mathrm{kcal} / \mathrm{mol}$
 $0.3-0.4 \mathrm{kcal} / \mathrm{mol}$

Lowest energy conformer

$2.7 \mathrm{kcal} / \mathrm{mol}$

A(1,3) interaction $4.0 \mathrm{kcal} / \mathrm{mol}$

A(1,2) interaction $2.7 \mathrm{kcal} / \mathrm{mol}(\mathrm{MM} 2)$

The Definition of Allylic Strain

F. Johnson, Chem. Rev. 1968, 68, 375; Allylic Strain in Six-Membered Rings R. W. Hoffmann, Chem. Rev. 1989, 89, 1841-1860 (handout)

Allylic 1-3-Strain as a Controlling Element in Stereoselective Transformations
Houk, Hoffmann JACS 1991, 113, 5006
Consider the illustrated general structure where $X \& Y$ are permutations of C, N, and O :

Typical examples:

In the above examples, the resident allylic stereocenter ($*$) and its associated substituents frequently impart a pronounced bias towards reactions occuring at the pi-bond.
Nonbonding interactions between the allylic substituents (Riarge, Rsmall) \& substituents at the 2- \& 3-positions play a critical role in defining the stereochemical course of such reactions

$A(1,2)$

interaction

Representative Reactions controlled by Allylic Strain Interactions

diastereoselection 10:1
M. Isobe \& Co-workers, Tetrahedron Lett. 1985, 26, 5199.

A(1,3)

Can you predict the stereochemical outcome of this reaction?
D. Kim \& Co-workers, Tetrahedron Lett. 1986, 27, 943.

\square Relevant enolate conformations

D. Kim \& Co-workers, Tetrahedron Lett. 1986, 27, 943.

G. Stork \& Co-workers, Tetrahedron Lett. 1987, 28, 2088

T. Money \& Co-workers, Chem. Commun. 1986, 288.

I. Fleming \& Co-workers, Chem. Commun. 1984, 28.

I. Fleming \& Co-workers, Chem. Commun. 1985, 318
Y. Yamamoto \& Co-workers, Chem. Commun. 1984, 904.

I. Fleming \& Co-workers, Chem. Commun. 1986, 1198.

diastereoselection >95\%
T. Mukaiyama \& Co-workers, Chem. Letters 1986, 637

K. Koga \& Co-workers, Tetrahedron Letters 1985, 26, 3031.

Y. Yamaguchi \& Co-workers, Tetrahedron Letters 1985, 26,1723.

- The basic process

\square Response to steric effects: Here is a good calibration system:

- Acyclic hydroboration can be controlled by $\mathrm{A}(1,3)$ interactions:

5-07a-A-strain hydroboration 9/24/03 9:45 AM

Hydroborations dominated by $A(1,3)$ Strain

Y. Kishi \& Co-workers, J. Am. Chem. Soc. 1979, 101, 259.

C. H. Heathcock et. al. Tetrahedron Lett 198425243.

Still, W.C.; Barrish, J. C. J. Am. Chem. Soc. 1983, 105, 2487.

Consider the resonance structures of an amide:

$A(1,3)$ interactions between the "allylic substituent" and the R1 moiety will strongly influence the torsion angle between N \& C1.

Chow
Can. J. Chem. 1968, 46, 2821

strongly favored

published X-ray structure of this amide shows chair diaxial conformation

Quick, J. Org. Chem. 1978, 43, 2705
Problem: Predict the stereochemical outcome of this cyclization.
D. Hart, JACS 1980, 102, 397

diastereoselection >95\%

The selection of amide protecting group may be done with the knowledge that altered conformational preferences may result:

A(1,3) interaction between the C2 \& amide substituents will strongly influence the torsion angle between C1 \& C2.

As a result, amides afford (Z) enolates under all conditions

A $(1,3)$ Strain and Chiral Enolate Design

enolization geometry

- In the enolate alkylation process product epimerization is a serious problem. Allylic strain suppresses product enolization through the
intervention of allylic strain

While conformers \mathbf{B} and \mathbf{C} meet the stereoelectronic requirement for enolization, they are much higher in energy than conformer A. Further, as deprotonation is initiated, $A(1,3)$ destabilization contributes significantly to reducing the kinetic acidity of the system

These allylic strain attributes are an integral part of the design criteria of chiral amide and imide-based enolate systems

Evans
Tetr Lett. 1977, 29, 2495 JACS 1982,104, 1737.

Myers JACS 1997, 119, 6496

Polypropionate Biosynthesis: The Acylation Event

First laboratory analogue of the acylation event

with M. Ennis JACS 1984, 106, 1154.
Diastereoselection ~ 97 : 3

Why does'nt the acylation product rapidy epimerize at the exocyclic stereocenter??

- immunosuppressive activity
- potent microtubule-stabilizing agent
(antitumor activity similar to that of taxol)

The epimers at C16 and C17 have no or almost no biological activity.

The conformation about C16 and C17 is critical to discodermolide's biological activity.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 6

Conformational Analysis-3

- Conformational Analysis of $\mathrm{C}_{4} \rightarrow \mathrm{C}_{6}$ Rings

■ Reading Assignment for week
A. Carey \& Sundberg: Part A; Chapter 3

Eliel \& Wilen, "Stereochemistry of Organic Compounds, "Chapter 11, Configuration and Conformation of Cyclic Molecules, Wiley, 1994

Ribeiro \& Rittner, "The Role of Hyperconjugation in the Conformational Analysis of Methylcyclohexane and Methylheterocyclohexanes" J. Org. Chem., 2003, 68, 6780-6787 (handout)
de Meijere, "Bonding Properties of Cyclopropane \& their Chemical Characteristics"
Angew Chem. Int. Ed. 1979, 18, 809-826

Friday,
D. A. Evans

September 26, 2003

Conformational Analysis of Cyclic Systems

Three Types of Strain:

Prelog Strain: van der Waals interactions
Baeyer Strain: bond angle distortion away from the ideal
Pitzer Strain: torsional rotation about a sigma bond

Baeyer Strain for selected ring sizes

size of ring	Ht of Combustion $(\mathrm{kcal} / \mathrm{mol})$	Total StrainStrain per CH_{2} $(\mathrm{kcal} / \mathrm{mol})$	"angle strain" (kcal.mol)	deviation from $109^{\circ} \mathbf{2 8}^{\prime}$
3	499.8	27.5	9.17	$24^{\circ} 44^{\prime}$
4	656.1	26.3	6.58	$9^{\circ} 44^{\prime}$
5	793.5	6.2	1.24	$0^{\circ} 44^{\prime}$
6	944.8	0.1	0.02	$-5^{\circ} 16^{\prime}$
7	1108.3	6.2	0.89	
8	1269.2	9.7	1.21	
9	1429.6	12.6	1.40	
10	1586.8	12.4	1.24	
11	1743.1	11.3	1.02	
12	1893.4	4.1	0.34	
13	2051.9	5.2	0.40	
14	2206.1	1.9	0.14	
15	2363.5	1.9	0.13	

Eliel, E. L., Wilen, S. H. Stereochemistry of Organic Compounds Chapter 11, John Wiley \& Sons, 1994.

■ Baeyer "angle strain" is calculated from the deviation of the planar bond angles from the ideal tetrahedral bond angle.

Discrepancies between calculated strain/ CH_{2} and the "angle strain" results from puckering to minimize van der Waals or eclipsing torsional strain between vicinal hydrogens.
\square Why is there an increase in strain for medium sized rings even though they also can access puckered conformations free of angle strain? The answer is transannular strain- van der Waals interactions between hydrogens across the ring.

Cyclopropane

Walsh Model for Strained Rings:

■ Rather than σ and $\sigma^{*} c$-c bonds, cyclopropane has sp^{2} and p-type

de Meijere, "Bonding Properties of Cyclopropane \& their Chemical Characteristics" Angew Chem. Int. Ed. 1979, 18, 809-826 (handout)
de Meijere, A.; Wessjohann, L. "Tailoring the Reactivity of Small Ring Building Blocks for Organic Synthesis." Synlett 1990, 20.

Carbocation Stabilization via CyclopropyIgroups

X-ray Structures support this orientation

R. F. Childs, JACS 1986, 108, 1692

Methylenecyclopentane and Cyclopentene

Strain trends:

■ Decrease in eclipsing strain more than compensates for the increase in angle strain.

Relative to cyclohexane derivatives, those of cyclopentane prefer an sp^{2} center in the ring to minimize eclipsing interactions.
"Reactions will proceed in such a manner as to favor the formation or retention of an exo double bond in the 5-ring and to avoid the formation or retention of the exo double bond in the 6 -ring systems." Brown, H. C., Brewster, J. H.;

Shechter, H. J. Am. Chem. Soc. 1954, 76, 467.

Examples

Brown, H. C.; Ichikawa, K. Tetrahedron 1957, 1, 221.

Conan, J-Y.; Natat, A.; Priolet, D. Bull. Soc. Chim., Fr. 1976, 1935.

Brown, H. C., Brewster, J. H.; Shechter, H. JACS 1954, 76, 467.

[^0]
Cyclohexane Energy Profile (kcal/mol)

$\Delta E=+6.5-7.0$
$\Delta E=+5.5$

Monosubstituted Cyclohexanes: A Values

Me-axial has 2 gauche butane interactions more than Me-equatorial. Expected destabilization: $\approx 2(0.88) \mathrm{kcal} / \mathrm{mol}=\sim 1.8 \mathrm{kcal} / \mathrm{mol}$;

Observed: $1.74 \mathrm{kcal} / \mathrm{mol}$

- The A-Value, or $-\Delta \mathrm{G}^{\circ}$, is the preference of the substituent for the equatorial position.
Table 3.6. Conformational Free Energies ($-\Delta G^{\circ}$) for Substituent Groups

Substituent	$-\Delta G^{\circ}(\mathrm{kcal} / \mathrm{mol})$	Ref.
-F	0.24-0.28	a
$-\mathrm{Cl}$	0.53	a
$-\mathrm{Br}$	0.48	a
-1	0.47	a
$-\mathrm{CH}_{3}$	1.8	b
$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	1.8	b
$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	2.1	b
$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	>4.5	c
$-\mathrm{CH}=\mathrm{CH}_{2}$	1.7	d
$-\mathrm{C} \equiv \mathrm{CH}$	0.5	e
$-\mathrm{C}_{6} \mathrm{H}_{5}$	2.9	d
-CN	0.15-0.25	a
$-\mathrm{O}_{2} \mathrm{CCH}_{3}$	0.71	a
$-\mathrm{CO}_{2} \mathrm{H}$	1.35	c
$-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	1.1-1.2	c
-OH (aprotic solvents)	0.52	c
- OH (protic solvents)	0.87	c
$-\mathrm{OCH}_{3}$	0.60	c
$-\mathrm{NO}_{2}$	1.16	a
$-\mathrm{HgBr}$	0	a

[^1]6-04-Conform/cyclic-4 9/25/03 7:59 PM

A Values depend on the relative size of the particular substituent.

A-Value
1.74

1.80

2.15

5.0

The "relative size" of a substituent and the associated A-value may not correlate. For example, consider the $-\mathrm{CMe}_{3}$ and $-\mathrm{SiMe}_{3}$ substituents. While the $-\mathrm{SiMe}_{3}$ substituent has a larger covalent radius, it has a smaller A-value:

A-Value
4.5-5.0
2.5

1.1

Can you explain these observations?

- The impact of double bonds on A-values:

Lambert, Accts. Chem. Res. 1987, 20, 454

substituent	$-\Delta \mathrm{G}^{\circ}$	A-value (cyclohexane)
$\mathrm{R}=\mathrm{Me}$	0.8	1.74
$\mathrm{R}=\mathrm{OMe}$	0.8	0.6
$\mathrm{R}=\mathrm{OAc}$	0.6	0.71

The Me substituent appears to respond strictly to the decrease in nonbonding interactions in axial conformer. With the more polar substituents, electrostatic effects due to the trigonal ring carbon offset the decreased steric environment.

Rigberio \& Rittner, "The Role of Hyperconjugation in the Conformational Analysis of Methylcyclohexane and Methylheterocyclohexanes" JOC 2003, 68, 6780

Commentary by Ken Houk University of California, Los Angeles
Department of Chemistry
Dear David,
"The calculations in the Ribeiro article look fine, but I am not convinced by the interpretation. It does seem to work pretty well for many systems, but not obviously for the isomeric 1,3-dioxane cases they note early on. There seems no explanation of why $\mathrm{C}-\mathrm{H}$ hyperconjugates better than $\mathrm{C}-\mathrm{C}$. Further, the results with alkyls larger than methyl still require traditional steric arguments. I would say that the equatorial methyl preference has been attributed in part to hyperconjugative effects that occur when the CH bonds are anti-periplanar. But I would not yet go much beyond that!

Best regards,

(b. 1943) A.B. 1964, Ph.D. 1968, Harvard University; Assistant-Full Professor, Louisiana State University, 1968-1980; Alfred P. Sloan Fellow, 1975-1977; Camille and Henry Dreyfus Teacher-Scholar, 1972-1977; LSU Distinguished Research Master, 1978; Professor, University of Pittsburgh, 1980-1985; Alexander von Humboldt Senior U.S. Scientist Award, 1982; Akron Section, American Chemical Society Award, 1983; Arthur C. Cope Scholar Award, 1988; Director, Chemistry Division, National Science Foundation, 1988-1990; James Flack Norris Award in Physical Organic Chemistry, 1991; Schrödinger Medal, World Association of Theoretically Oriented Chemists, 1998; Tolman Medal, Southern California Section, American Chemical Society, 1999; Fellow of the American Academy of Arts and Sciences, 2002; American Chemical Society Award for Computers in Chemical and Pharmaceutical Research, 2003; International Academy of Quantum Molecular Science, 2003.

Chem 3D Pro (Verson 5.0)

The impact of trigonal Carbon

- Let's now compare look at the carbonyl analog in the 3-position

$$
\Delta \mathrm{G}^{\circ}=-1.36 \mathrm{kcal} / \mathrm{mol}
$$

$$
\text { versus }-1.74 \text { for cyclohexane }
$$

Let's now compare look at the carbonyl analog in the 2-position

$\Delta G^{\circ}=-1.56 \mathrm{kcal} / \mathrm{mol}$
versus -1.74 for cyclohexane

However, the larger alkyl groups do not follow the expected trend. Can you explain? (see Eliel, page 732)

$$
\Delta G^{\circ}=-0.59 \mathrm{kcal} / \mathrm{mol}
$$

versus -2.15 for cyclohexane

$\Delta \mathrm{G}^{\circ}=-1.62 \mathrm{kcal} / \mathrm{mol}$ versus -5.0 for cyclohexane

Polysubstituted Cyclohexane A Values

As long as the substituents on the ring do not interact in either conformation, their A-values are roughly additive

1,4 Disubstitution: A Values are roughly additive.

$$
\Delta \mathrm{G}^{\circ}=-2(1.74)=-3.48 \mathrm{kcal} / \mathrm{mol}
$$

1,3 Disubstitution: A Values are only additive in the trans diastereomer

For $X=M e$

Let's now consider geminal substitution

$$
\begin{array}{ll}
\text { The prediction: } & \Delta G^{\circ}=A(P h)-A(\mathrm{Me}) \\
& \Delta G^{\circ}=+2.8-1.7=+1.1 \mathrm{kcal} / \mathrm{mol} \\
\text { Observed: } & \Delta G^{\circ}=-0.32 \mathrm{kcal} / \mathrm{mol}
\end{array}
$$

Hence, when the two substituents are mutually interacting you can predict neither the magnitude or the direction of the equilibrium. Let's analyze this case.
Allinger, Tet. Lett. 1971, 3259

A

B

$$
\Delta G^{\circ}=-0.32
$$

Note the difference in the Ph substituent in $\mathbf{A} \& \mathbf{B}$.

Let's now consider vicinal substitution

Case 1:

The prediction: $\quad \Delta G^{\circ}=1$ gauche butane $-2 A(\mathrm{Me})$

$$
\Delta \mathrm{G}^{\circ}=+0.88-2(1.74)=+2.6 \mathrm{kcal} / \mathrm{mol}
$$

Observed: $\quad \Delta G^{\circ}=+2.74 \mathrm{kcal} / \mathrm{mol}$
If the added gauche butane destabilization in the di-equatorial conformer had not been added, the estimate would have been off.

Case 2:

The conformer which places the isopropyl group equatorial is much more strongly preferred than would be suggested by A-Values. This is due to a syn pentane $\mathrm{OH} / \mathrm{Me}$ interaction.

Problem:
Can you rationalize the stereochemical outcome of this reaction?

diastereoselection 89:11
D. Kim \& Co-workers, Tetrahedron Lett. 1986, 27, 943.

Heteroatom-Substituted 6-Membered Rings

- A-values at the 2-position in both the O \& N heterocycles are larger than expected. This is due to the shorter $\mathrm{C}-\mathrm{O}(1.43 \AA)$, and $\mathrm{C}-\mathrm{N}(1.47 \AA)$ bond lengths relative to carbon ($\mathrm{C}-\mathrm{C} ; 1.53 \AA$). The combination of bond length and bond angle change increases the indicated 1,3-diaxial interaction (see eq 1, 4).

(1)

(2)

(3)

(4)

$-\Delta G^{\circ}=2.5 \mathrm{kcal} / \mathrm{mol}$
(5)

$-\Delta G^{\circ}=1.6 \mathrm{kcal} / \mathrm{mol}$
(6)

$-\Delta G^{\circ}=1.9 \mathrm{kcal} / \mathrm{mol}$

A-Values for N -Substituents in Piperidine

- Hydrogen is "bigger" than the N-lone Pair.
- The A-value of N -substituents is slightly larger than the corresponding cyclohexane value. Rationalize

- The indicated distance is $2.05 \AA$. The analogous $\mathrm{H}-\mathrm{H}$ distance in Cyclohexane is $2.45 \AA$

Conformations of Bicyclic Ring Systems

The steroid nucleus provided the stimulation for the development of conformational analysis, particularly of polycyclic ring systems. D. H. R. Barton was awarded a Nobel prize in 1969 for his contributions in this area.

Decalin Ring System (6/6)

mobile

 rigid

$0 \quad$ Relative ΔG°

Let's identify the destabilizing gauche butane interactions in the cis isomer

Estimate the energy difference between the two methyl-decalins shown below.

高

see Elier, p 780

Hydrindane Ring System (6/5)
 rigid
\square The turnover to favor the cis fusion results from the entropic preference for the less ordered cis isomer.

The 5-5 Ring System

favored

A/B Trans

Rationalize the conformational flexibility of a A / B Trans vs. A / B Cis Steroid!

Different reactivity for axial and equatorial substituents
Axial substituents are more hindered, thus less reactive in many transformations

- Acetylation with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}$

$\mathrm{k}_{\text {rel }}$
1

- Acid-catalyzed esterification

k rel
1

- Ester Saponification

$k_{\text {rel }}$
20
1
For a more detailed discussion of this topic see:
Eliel, E. L., S. H. Wilen, et al. (1994). Stereochemistry of Organic Compounds pp 720-726
- $\mathrm{S}_{\mathrm{N}} 2$ Reactions (Displacement with $\mathrm{Ph}-\mathrm{S}^{-}$)

The axial diastereomer is not always slower reacting:

- Alcohol Oxidation with $\mathrm{Cr}(6+$)

k rel
1
3.2
$\mathrm{k}_{\text {rel }}$

1

3.36

The rate-determining step is breakdown of the chromate ester. This is an apparent case of strain acceleration

Steric Hindrance and Steric Assistance

Observation:
Relative enolate stability correlates to ring junction stereochemistry

House, JOC 1965, 30, 1341
Observation:
Relative enolate stability seems to be correlated to position of $\mathrm{C}=\mathrm{C}$

How do we explain the experimental observations shown above?

Readings: Velluz etal, Angew. Chemie, Int Ed. 1965, 4, 181-270

Let Φ be defined as the torsion or dihedral angle for butane

Let's now consider cyclohexane

$C C C \angle 109^{\circ} 28^{\prime} \quad C C C \angle 111^{\circ}$

Given cyclohexane with an identified torsion angle ΦR, if ΦR either increases or decreases wht effects in angle change are transmitted to $\Phi О, \Phi М$, and ΦP ?

Operation:

Hence, relative to cyclohexane, the following notation for torsion angle change may be denoted:

For Φ_{P}

For Φ_{M}

Operation:

Operation:

Simple Application: Reinforcing Torsional Effects

Which $\mathrm{C}=\mathrm{C}$ bond isomer is more stable?

1) $C=C$ will open up ring $=B$ torsion angle
2) Ring B will resist increase in its ring fusion torsion angle
3) Therefore torsion effects are opposed

4) $C=C$ will close down ring= B torsion angle
5) Ring B will accomodate decrease in its ring fusion torsion angle
6) Therefore torsion effects are reinforcing

Question: Which is the more stable $\mathrm{C}=\mathrm{C}$ isomer in the two THC structures?

R. W. Kierstead, JACS 1967, 89, 5934

Question: Which enol acetate is more stable?

Chair ($2.16 \mathrm{kcal} / \mathrm{mol}$)

Boat ($3.02 \mathrm{kcal} / \mathrm{mol}$)

Twist-Chair (0 kcal/mol)

Twist-Boat ($2.49 \mathrm{kcal} / \mathrm{mol}$)
Hendrickson, J. B. JACS 1961, 83, 4537.
See Eliel, page 762+
Olefins are preferentially orientated to eliminate eclipsing interactions.

Cyclooctane continued...
Chair-Boat (BC) Lowest-energy conformation

Transannular strain between $\mathrm{C}_{3} \& \mathrm{C}_{7}$

Cyclooctane derivatives

Carbonyl is positioned at C_{3} or C_{7}

Olefin is positioned at $\mathrm{C}_{3}-\mathrm{C}_{4}$ or $\mathrm{C}_{6}-\mathrm{C}_{7}$

Disubstitution occurs at C_{4} or C_{6}

$\mathrm{S}_{\mathrm{N}} 2$ occurs at C_{1} and C_{5}

$$
\text { Still, W. C.; Galynker, I. Tetrahedron 1981, 37, } 1981 .
$$

Chair-Boat (CB) conformation reference structure

Chair-Chair (CC) conformation (+1-1.6 kcal/mol)

Boat-Boat (BB) conformation

$$
(>+8 \mathrm{kcal} / \mathrm{mol})
$$

Predict stereochemistry

 stereochemistry

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 7

Conformational Analysis-4

- Ground State Torsional Effects (Conformational Transmission)
- Conformational Analysis of $\mathrm{C}_{6} \rightarrow \mathrm{C}_{8}$ Rings continued
- Transition State Torsional Effects
- Curtin-Hammett Principle (Will not cover in lecture)
- Reading Assignment for week

Eliel \& Wilen, Stereochemistry of Carbon Compounds" Chapter 11
Configuration and Conformation of Cyclic Molecules (handout)
A. Carey \& Sundberg: Part A; Chapter 4
"Study \& Descrption of Reaction Mechanisms"
K. Houk, Science. 1986, 231, 1108-1117

Theory \& Modeling of Stereoselective Organic Reactions (Handout)
D. A. Evans

Monday, September 29, 2003

- Other Reading Material

The Curtin-Hammett Principle

Leading References:

J. I. Seeman, J. Chem. Ed. 1986, 63, 42-48.
J. I. Seeman, Chem Rev. 1983, 83, 83-134.
Eliel, pp. 647-655
Carey \& Sundberg,Part A, CH 4, pp 187-250

- Problems of the Day: (To be discussed)

Predict the stereochemical outcome of this reaction. The diastereoselection is 99:1

Martinelli, et.al. Tett. Lett. 1989, 30, 3935

Rationalize the stereochemical outcome of this reaction.

Ladner, et.al. Angew. Chemie, Int. Ed 1982, 21, 449-450

Observation:
Relative enolate stability correlates to ring junction stereochemistry

House, JOC 1965, 30, 1341
Observation:
Relative enolate stability seems to be correlated to position of $\mathrm{C}=\mathrm{C}$

How do we explain the experimental observations shown above?

Readings: Velluz etal, Angew. Chemie, Int Ed. 1965, 4, 181-270

Let Φ be defined as the torsion or dihedral angle for butane

Let's now consider cyclohexane

$C C C \angle 109^{\circ} 28^{\prime} \quad C C C \angle 111^{\circ}$

Given cyclohexane with an identified torsion angle ΦR, if ΦR either increases or decreases wht effects in angle change are transmitted to $\Phi \mathcal{}, \Phi \mathrm{M}$, and ΦP ?

Operation:

Hence, relative to cyclohexane, the following notation for torsion angle change may be denoted:

For Φ_{P}

For Φ_{M}

Operation:

Operation:

Simple Application: Reinforcing Torsional Effects

Which $\mathrm{C}=\mathrm{C}$ bond isomer is more stable?

1) $C=C$ will open up ring $=B$ torsion angle
2) Ring B will resist increase in its ring fusion torsion angle
3) Therefore torsion effects are opposed

4) $C=C$ will close down ring $=B$ torsion angle
5) Ring B will accomodate decrease in its ring fusion torsion angle
6) Therefore torsion effects are reinforcing

Question: Which is the more stable $\mathrm{C}=\mathrm{C}$ isomer in the two THC structures?

R. W. Kierstead, JACS 1967, 89, 5934

Question: Which enol acetate is more stable?

Chair ($2.16 \mathrm{kcal} / \mathrm{mol}$)

Boat ($3.02 \mathrm{kcal} / \mathrm{mol}$)

Twist-Chair (0 kcal/mol)

Twist-Boat ($2.49 \mathrm{kcal} / \mathrm{mol}$)

Hendrickson, J. B. JACS 1961, 83, 4537.
See Eliel, page 762+
Olefins are preferentially orientated to eliminate eclipsing interactions.

Ring strain originates in eclipsing interactions and transannular van der Waals interactions

Methyl position (pseudoeqatorial) ΔG $($ pseudoaxial) (kcal/mol)	1.8	2	3	4	5
	2.8	>4.5	-0.3	6.1	

Underside view of boat-chair C3 \& C7 eclipsing interactions

Cyclooctane continued...
Chair-Boat (BC) Lowest-energy conformation

Transannular strain between $\mathrm{C}_{3} \& \mathrm{C}_{7}$

Cyclooctane derivatives

Carbonyl is positioned at C_{3} or C_{7}

Olefin is positioned at $\mathrm{C}_{3}-\mathrm{C}_{4}$ or $\mathrm{C}_{6}-\mathrm{C}_{7}$

Disubstitution occurs at C_{4} or C_{6}

$\mathrm{S}_{\mathrm{N}} 2$ occurs at C_{1} and C_{5}

Chair-Boat (CB) conformation reference structure

Chair-Chair (CC) conformation (+1-1.6 kcal/mol)

Boat-Boat (BB) conformation

$$
(>+8 \mathrm{kcal} / \mathrm{mol})
$$

Predict stereochemistry

 stereochemistry

Torsional Effects

Torsional Strain: the resistance to rotation about a bond
Torsional energy: the energy required to obtain rotation about a bond Torsional Angle: also known as dihedral angle

Torsional steering: Stereoselectivity originating from transition state torsional energy considerations

Wiberg K. B.; Martin, E. J. Amer. Chem. Soc. 1985, 107, 5035-5041.

See Lecture 4 for previous discussion

Relevant Orbital Interactions:

σ C-H \& π electrons are destabilizing
σ C-H's properly aligned for $\pi *$ overlap hence better delocalization

Dorigo, A. E.; Pratt, D. W.; Houk, K. N. JACS 1987, 109, 6591-6600.

Conformational Preferences: Acetaldehyde

A

B

The eclipsed conformation (conformation \mathbf{A}) is preferred.
Polarization of the carbonyl decreases the 4 electron destabilizing Rotational barrier: $1.14 \mathrm{kcal} / \mathrm{mol}$
Houk, JACS 1983, 105, 5980-5988.
Conformational Preferences

$$
\text { 1-Butene }\left(\mathrm{X}=\mathrm{CH}_{2}\right) \text {; Propanal }(\mathrm{X}=\mathrm{O})
$$

A

B

Conformation A is preferred. There is little steric repulsion between the methyl and the X -group in conformation A .

Houk: "Torsional effects in transition states are more important than in ground states"

■ Olefin Addition Reactions: Case one
How do we account for the high exo selectivities in addition reactions to norbornene?

Highly exo selective for electrophilic, nucleophilic and cycloaddition reactions

Rate enhancement due to strain

The Controversy over origin of high exoselectivities
Steric effects
Least nuclear motion
Orbital distortion
Schleyer: torsional steering

Schleyer, P. R. J. Amer. Chem. Soc. 1967, 89, 701.

Addition from exo face avoids eclipsing A \& B hydrogens (better hyperconjugative stabilization of transition state)

Olefin Addition Reactions: Case two

How do we account for the high selectilvities in the oxidation of the indicated olefin?

Nitrogen protecting group does not affect selectivities

Martinelli, et.al. Tett. Lett. 1989, 30, 3935

Addition from indicated olefin face avoids eclipsing A \& B H's
(better hyperconjugative stabilization of transition state)
Martinelli has carried out further studies on related structures.

Martinelli: Torsional steering important in selectivity

Authors propose that diastereoselection controlled by TS torsional effects

Martinelli \& Houk, J. Org. Chem. 1994, 59, 2204.

Observation: Increasingly bulky hydride reagents prefer to attack from the equatorial $\mathrm{C}=\mathrm{O}$ face.

The most stereoselective Reductions

The steric hindrance encountered by Nu-attack from the axial $\mathrm{C}=\mathrm{O}$ face by the axial ring substituents (hydrogens in this case) at the 3-positions is more severe than the steric hinderance encountered from Nu-attack from the equatorial $\mathrm{C}=\mathrm{O}$ face.

Steric Effects: Attack across equatorial $\mathrm{C}=\mathrm{O}$ face sterically more favorable.
Torsional Effects: However, attack across the axial face of the $\mathrm{C}=\mathrm{O}$ group avoids development of eclipsing interactions in the transition state. (Note the dihedral angle sign changes between reactants \& products shown above). These "torsional effects" favor axial attack.

```
Prediction
```

For "small" hydride reagents such as LiAlH_{4}, torsional effects are felt to be dominant and this explains the predisposition for axial attack.

Prediction

For "large" hydride reagents such as $\mathrm{H}-\mathrm{BR}_{4}$, steric effects now are dominant and this explains the predisposition for equatorial attack.

$$
\begin{array}{ll}
\text { Leading References: } \quad \begin{array}{l}
\text { J. I. Seeman, J. Chem. Ed. 1986, 63, 42-48. } \\
\\
\\
\\
\\
\text { J. I. Seeman, Chem Rev. 1983, 83, 83-134. } \\
\text { See also Eliel, pp. 647-655 }
\end{array}
\end{array}
$$

How does the conformation of a molecule effect its reactivity?

Consider the following example

Do the two different conformers react at the same rate, or different rates? What factors determine the product distribution?

The situation:

Consider two interconverting conformers, A and B, each of which can undergo a reaction resulting in two different products, P_{A} and P_{B}.

We'll consider two limiting cases:
(1) The rate of reaction is faster than the rate of conformational interconversion
(2) The rate of reaction is slower than the rate of conformational interconversion

If the rates of conformationall interconversion and reaction are comparable, the reactants are not in equilibrium during the course of the reaction and complex mathmatical solutions are necessary. See Seeman, Chem. Rev. 1983, 83-144 for analytical solutions.

Case 1: "Kinetic Quench"

$\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}} \gg \mathbf{k}_{\mathbf{A}}, \mathbf{k}_{\mathbf{B}}$: If the rates of reaction are faster than the rate of interconversion, A and B cannot equilibrate during the course of the reaction, and the product distribution ($\mathrm{P}_{\mathrm{B}} / \mathrm{P}_{\mathrm{A}}$) will reflect the initial composition.

In this case, the product distribution depends solely on the initial ratio of the two conformers.

While enolate conformers can be equilibrated at higher temperatures, the products of alkylation at $-78^{\circ} \mathrm{C}$ always reflect the initial ratio of enloate isomers.

Padwa, JACS 19974565

Case 2: Curtin-Hammett Conditons

$\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}} \ll \mathbf{k}_{\mathbf{A}}, \mathbf{k}_{\mathbf{B}}$: If the rates of reaction are much slower than the rate of interconversion, $\left(\Delta G_{A B}{ }^{\ddagger}\right.$ is small relative to $\Delta G_{1}{ }^{\ddagger}$ and $\left.\Delta G_{2}{ }^{\ddagger}\right)$, then the ratio of A to B is constant throughout the course of the reaction.

The Derivation:

Using the rate equations $\frac{d\left[P_{A}\right]}{d t}=k_{1}[A]$ and $\frac{d\left[P_{B}\right]}{d t}=k_{2}[B]$ we can write:

$$
\begin{equation*}
\frac{\mathrm{d}\left[\mathrm{P}_{\mathrm{B}}\right]}{\mathrm{d}\left[\mathrm{P}_{\mathrm{A}}\right]}=\frac{\mathrm{k}_{2}[\mathrm{~B}]}{\mathrm{k}_{1}[\mathrm{~A}]} \quad \text { or } \quad \mathrm{d}\left[\mathrm{P}_{\mathrm{B}}\right]=\frac{\mathrm{k}_{2}[\mathrm{~B}]}{\mathrm{k}_{1}[\mathrm{~A}]} \mathrm{d}\left[\mathrm{P}_{\mathrm{A}}\right] \tag{2}
\end{equation*}
$$

Since A and B are in equilibrium, we can substitute $K_{e q}=\frac{[B]}{[A]}$

$$
\begin{equation*}
\int \mathrm{d}\left[\mathrm{P}_{\mathrm{B}}\right]=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}} \mathrm{~K}_{\mathrm{eq}} \int \mathrm{~d}\left[\mathrm{P}_{\mathrm{A}}\right] \quad \text { Integrating, we get } \frac{\left[\mathrm{P}_{\mathrm{B}}\right]}{\left[\mathrm{P}_{\mathrm{A}}\right]}=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}} \mathrm{~K}_{\mathrm{eq}} \tag{3}
\end{equation*}
$$

When A and B are in rapid equilibrium, we must consider the rates of reaction of the conformers as well as the equilibrium constant when analyzing the product ratio.

To relate this quantity to ΔG values, recall that $\Delta G^{0}=-R T \ln K_{e q}$ or $K_{e q}=$ $e^{-\Delta G^{\circ} / R T}, k_{1}=e^{-\Delta G_{1}} \ddagger / R T$, and $k_{2}=e^{-\Delta G_{2} \neq / R T}$. Substituting this into the above equation:

$$
\begin{equation*}
\frac{\left[P_{B}\right]}{\left[P_{A}\right]}=\frac{k_{2}}{k_{1}} K_{e q}=\frac{e^{-\Delta G_{2}^{\ddagger} / R T}}{e^{-\Delta \Delta_{1}^{\ddagger} / R T}}\left(e^{-\Delta G^{\circ} / R T}\right)=e^{-\Delta G_{2}^{\ddagger} / R T} e^{-\Delta G^{\circ} / R T} e^{\Delta G_{1}^{\ddagger} / R T} \tag{4}
\end{equation*}
$$

Combining terms:

$$
\frac{\left[\mathrm{P}_{\mathrm{B}}\right]}{\left[\mathrm{P}_{\mathrm{A}}\right]}=e^{-\left(\Delta \mathrm{G}_{2}^{\ddagger}+\Delta \mathrm{G}^{0}-\Delta \mathrm{G}_{1}\right) / R T} \quad \text { or } \quad \frac{\left[\mathrm{P}_{\mathrm{B}}\right]}{\left[\mathrm{P}_{\mathrm{A}}\right]}=e^{-\Delta \Delta \mathrm{G}^{\ddagger} / R T}
$$

Where $\Delta \Delta \mathrm{G}^{\ddagger}=\Delta \mathrm{G}_{2}^{\ddagger}+\Delta \mathrm{G}^{\circ}-\Delta \mathrm{G}_{1}^{\ddagger}$
Curtin - Hammett Principle: The product composition is not solely dependent on relative proportions of the conformational isomers in the substrate; it is controlled by the difference in standard Gibbs energies of the respective transition states.

Within these limits, we can envision three scenarios:

- If both conformers react at the same rate, the product distribution will be the same as the ratio of conformers at equilibrium.
- If the major conformer is also the faster reacting conformer, the product from the major conformer should prevail, and will not reflect the equilibrium distribution.
- If the minor conformer is the faster reacting conformer, the product ratio will depend on all three variables in eq (2), and the observed product distribution will not reflect the equilibrium distribution.

This derivation implies that you could potentially isolate a product which is derived from a conformer that you can't even observe in the ground state!

Tropane alkylation is a well-known example.

The less stable conformer reacts much faster than the more stable conformer, resulting in an unexpected major product!

JOC 1974319

Oxidation of piperidines:

less stable
 more stable

Ratio: 5 : 95
major product

When the equilibrium constant is known, the Curtin-Hammett derivation can be used to calculate the relative rates of reaction of the two conformers. Substituting the above data into $\left[\mathrm{P}_{\mathrm{B}}\right] /\left[\mathrm{P}_{\mathrm{A}}\right]=\mathrm{k}_{2} \mathrm{~K} / \mathrm{k}_{1}$, the ratio $\mathrm{k}_{2} / \mathrm{k}_{1} \sim 2$.

Note that in this case, the more stable conformer is also the faster reacting conformer!

7-12-Simple C-H examples 9/29/03 8:38 AM

Enantioselective Lithiation:

Enantioselectivities are the same, regardless of whether or not the starting material is chiral, even at low temperatures. Further, reaction in the absence of (-)-sparteine results in racemic product

Note that the two alkyllithium complexes MUST be in equilibrium, as the enantioselectivity is the same over the course of the reaction. If they were not equilibrating, the enantioselectivity should be higher at lower conversions.

This is a case of Dynamic Kinetic Resolution: Two enantiomeric alkyl lithium complexes are equilibrating during the course of a reaction with an electrophile.

Beak, Acc. Chem. Res, 1996, 552

The asymmetric hydrogenation of prochiral olefins catalyzed by Rhodium is an important catalytic process.

Enantioselectivities are generally very high when the ligand is a chelating diphosphine. (ee's are given for S,S-CHIRAPHOS)

When a chiral ligand is used, there are two diastereomeric complexes which may be formed:

Observations:

- Complex 2 is the only diasteromer observed for the catalyst-substrate complex (1HNMR, X-Ray crystallography) in the absence of hydrogen
- The enantioselectivity is strongly dependant on the pressure of H_{2}, and degrades rapidly at higher hydrogen pressures
- The observed enantiomer is exclusively derived from the minor complex 2

These observations may be explained using the Curtin - Hammett Principle

hydrogen
addition

migration $\quad+S$

$$
\begin{gathered}
\mathrm{MeO}_{2} \mathrm{C} \\
>8 \mathrm{Ph} \\
>95 \% \text { ee }
\end{gathered}
$$

slower
hydrogen addition

+S migration

$-\mathrm{L}_{2} \mathrm{RhS}_{2} \quad \begin{gathered}\text { reductive } \\ \text { elimination }\end{gathered}$

Halpern, Science, 217, 1982, 401

The Curtin-Hammett treatment can be extended to ANY case where different products are formed from two rapidly intereconverting starting materials, whether they are conformers, tautomers or isomers.

Stannylene ketals provide an efficient way to acylate the more hindered site of 1,2-diols

The two stannyl esters are in equilibrium at room temperature, and the more stable isomer is initially formed more slowly. The stannyl esters are allowed to equilibrate before quenching with TMS-Cl, which reacts more rapidly with the less hindered primary alkoxystannane.
"It was pointed out by Professor L. P. Hammett in 1950 (private communication) that ..."

David Y. Curtin, 1954
" Because Curtin is very generous in attributing credit, this is sometimes referrred to as the Curtin-Hammett principle rather than the Curtin principle."

Louis Plack Hammett, 1970

Curtin - Hammett Principle: The product composition is not solely dependent on relative proportions of the conformational isomers in the substrate; it is controlled by the difference in standard Gibbs energies of the respective transition states.

THE TAKE-HOME LESSON:

Never assume that the most stable conformation of a compound is the most reactive. It may be, but then again, it may not.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 8

Olefin Addition Reactions-1

- Hydroboration
- Epoxidation \& Directed Epoxidation
- Reading Assignment for week
A. Carey \& Sundberg: Part B; Chapter 4 "Electrophilic Additions to C-C Multilple Bonds"
K. Houk, Science. 1986, 231, 1108-1117

Theory \& Modeling of Stereoselective Organic Reactions (Handout)
K. Houk, Tetrahedron. 1984, 40, 2257-2274

Theoretical Studies of Stereoselective Hydroboration Reactions (Handout)
Hoveyda, Evans, Fu, Chem Rev. 1993, 93, 1307-1370
Substrate-Directable Chemical Reactions
(Electronic Handout)
E. Vedejs, JACS 2003, 125, 10502-3

A Mechanistic Alternative for the Intramolecular Hydroboration of Homoallylic Amine and Phosphine Borane Complexes
(Electronic Handout)
D. A. Evans

Wednesday,
October 1, 2003

Problems of the Day: (To be discussed)

Rationalize the stereochemical outcome of these reactions.

diastereoselection 24:1
W. C. Still \& J. C. Barrish, J. Am. Chem. Soc. 1983, 105, 2487.

Roush, J. Org. Chem. 1987, 52, 5127. Diastereoselection = $95: 5$

Web Problem 163: The following is an idea that has been proposed to you by a fellow student. The proposal is based on the fact that borane-methyl sulfide complex is an effective hydroboration reagent (eq 1). It is proposed that homoallylic sulfides such as that illustrated below should be capable of "directing" the hydroboration process from this substituent through the borane-substrate complex.

$\mathrm{Me}_{2} \mathrm{~S}-\mathrm{BH}_{3}$

Part A. In order to begin your critique, you must possess a good working knowledge of the details of the hydroboration of olefins with borane-methyl sulfide. Provide a clear depiction of the transition state for the hydroboration process using ethylene as the olefinic substrate and borane-methyl sulfide as the hydroborating agent.

Part B. Now, based on your knowledge of the hydroboration reaction and the principles learned thus far in Chem 206, critique the idea proposed in Eq 2. You must concisely state the logic upon which you base your assessment. Pictures speak a thousand words.

Representative Cis-Addition Processes

- Hydrometallation

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{H}}=\mathrm{C}=\mathrm{C}-\mathrm{R} \\
& \begin{array}{c}
+\quad M-H \\
M=B, A l, \text { etc }
\end{array}
\end{aligned}
$$

- Hydrogenation

■ Group Transfer (epoxidation)

$$
\underset{\mathrm{H}^{2}}{\mathrm{R}_{-}=\mathrm{C}=\mathrm{C}_{-}^{-\mathrm{R}}}+\mathrm{RO}_{2} \mathrm{H} \xrightarrow[-\mathrm{ROH}]{\substack{\mathrm{O} \\ \mathrm{H}}}
$$

G Group Transfer (dihydroxylation)

- Group Transfer (cyclopropanation)

- Cycloadditions (one of many!)

$$
\stackrel{R}{\mathrm{H}}_{\mathrm{H}}=\mathrm{C}=\mathrm{C}_{-\mathrm{H}}^{-\mathrm{R}}
$$

Attributes:
Each process adds to the $\mathrm{C}=\mathrm{C}$ via a stereospecific process Intermediates may be involved in some of the indicated reactions

Representative Trans-Addition Processes

- Halogenation

- Oxy-metallation ($\mathrm{M}=\mathrm{Hg}(\mathrm{II}), \mathrm{Tl}(\mathrm{III})$

■ Oxy-sulfenation (M = S(II), Se(II)

Attributes:

Each process may proceed via an bridged intermediate where X is the initiating electrophile

Olefin substitution may disrupt bridging

- Addition of hydrogen halides

Attributes:

Process may proceed via an bridged intermediate where $\mathrm{H}+$ is the initiating electrophile

Olefin substitution, reaction conditions as well as

halide type may disrupt bridging

The basic process

Response to steric effects: Here is a good calibration system:
(A)

Oxidant	Ratio, A:E	Reference
MCPBA	$69: 31$	JOC, 1967, 32, 1363
$\mathrm{BH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$	$34: 66$	JOC, 1970, 35, 2654

Acyclic hydroboration can be controlled by $\mathbf{A}(1,3)$ interactions:

control elements
A $(1,3)$ allylic strain
Steric effects; R_{L} vs R_{M}
Staggered transition states
major

minor

Houk, "Theoretical Studies of Stereoselective Hydroboration Reactions" Tetrahedron 1984, 40, 2257 (Handout)

Hydroborations dominated by $A(1,3)$ Strain

Y. Kishi \& Co-workers, J. Am. Chem. Soc. 1979, 101, 259.

C. H. Heathcock et. al. Tetrahedron Lett 198425243.

Still, W.C.; Barrish, J. C. J. Am. Chem. Soc. 1983, 105, 2487.

Hydroborations dominated by $A(1,2)$ Strain

Houk's rules: Orient R_{L} anti-periplanar to incoming reagents to avoid $T S$ eclipsing:

■ Case I: Borane H

8-03-hydroboration-2 10/1/03 8:17 AM

■ Case II: Dialkylboranes

Midland finds that TS_{1} favored for $\mathrm{R}_{2} \mathrm{BH}$ reagents, but $\mathrm{TS}_{1} \sim \mathrm{TS}_{2}$ for $B H_{3}$
Others have found that TS_{1} favored over TS_{2} for BH_{3}

Representative Examples

M. M. Midland \& Co-workers, J. Am. Chem. Soc. 1983, 105, $3725 .$.

Model is consistent if you presume $\mathrm{HO}=R_{M}: R=R_{L}$
W. C. Still \& J. C. Barrish, J. Am. Chem. Soc. 1983, 105, 2487.

For each of the examples shown below, attempt to rationalize the stereochemical outcome of the reaction in terms of one of the models presented in the discussion.

"one isomer"
Y. Kishi \& Co-workers, J. Am. Chem. Soc. 1978, 100, 2933.

Mori, K
Tetrahedron 1976, 32, 1979

Okawa t. at
Tetrahedron Lett. 1983, 19, 1987 $R=O B n$ Diastereoselection $=6.6: 1$

Wolinsky, J. Eustace E J J. Org. Chem. 1972, 37, 3376.

Wolinsky, J.; Nelson, D Tetrahedron. 1968, 25, 3767.

Helv. Chim Acta 1967, 50, 153

Diastereoselection $=4.6: 1$

Diastereoselection $=$ 2.4:1

Y. Senda et. al.

Tetrahedron 1977, 33, 2933

Diastereoselection $=$ 4.9:1 (Compare with H.C. Brown's case, with 9-BBN; 1.5:1)

B. Fraser-Reid et. al.
J. Am. Chem. Soc. 1984, 106, 731

Sallay, S. I.
J. Am. Chem. Soc. 1967, 89, 6762. 90\% yield, no diastereoselection given

Ley, S. et.al.
J. Chem. Soc. Chem. Commun. 1983630.

55\% yield with the diastereomeric alcohol produced in an unspecified amount Recycling of the minor isomer further provided 15% of the desired material

McMurry, J. E.
J. Am. Chem. Soc. 1968, 90, 6321.

Minor diastereomer not detected

Stereochemical Control Elements for all reactions

- Steric \& Electronic Factors

■ Stereoelectronic Considerations
■ Associative Substrate-Reagent Interactions

- Steric control:

Nonbonding Interactions disfavor the syn diastereoface

Directed Reactions

Review: Hoveyda, Evans, Fu Chem. Reviews 1993, 93, 1307
■ Associative Substrate-Reagent Interactions

8-07-Directed Rxns/intro 10/1/03 8:19 AM

Heteroatom-directed Reactions

Mechanism-based: (HO \& C=C must be allylic)

via Reagent Ligation

Hydroxyl-directed Reactions

95, 6136, (1973

(Ir^{+}) Stork JACS 105, 1072 (1983)
(Rh ${ }^{+}$) Evans JACS 106, 3866 (1984)

Orientation of the Directing Group

Orientation of directing group is not the same for all reactions

Reagent	Selectivity	Φ Estimate
$\mathrm{t}-\mathrm{BuO}_{2} \mathrm{H}, \mathrm{V}^{+5}$	$71: 29$	$\sim 50^{\circ}$
$\mathrm{RCO}_{3} \mathrm{H}$	$95: 5$	$\sim 120^{\circ}$
$\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{Zn}-\mathrm{Cu}$	$>99: 1$	$?$

The transition state bite angles for the above reactions are either not known or have been only crudely estimated.

The "best guesses" are provided.

Peracid Epoxidation

A. Rao in Comprehensive Organic Synthesis, Trost, Ed., 1992, Vol 7, Chapter 3.1

- General Reaction:

- Transition state: What about lone pairs. [Consider to be Sp^{2} hybridized].

HOMO $\pi \mathrm{C}-\mathrm{C}$ LUMO: $\sigma * O-O$

HOMO: O lone pair LUMO: $\pi * C-C$

- Reaction rates governed by olefin nucleophilicity. The rates of epoxidation of the indicated olefin relative to cyclohexene are provided below:

1.0

0.6

0.05

0.4
- The indicated olefin in each of the diolefinic substrates may be oxidized selectively.

Stereoelectronic Implications of intramolecular Peracid Epoxidation

■ Per-arachidonic acid Epoxidation: Corey, JACS 101, 1586 (1979)

8-09-peracid epoxid-2 9/29/03 12:52 PM

The Directed Peracid Epoxidation

- Transition State Hydrogen Bonding: Substrate as H-bond donor (Henbest)

■ Transition State Hydrogen Bonding: Peracid as H-bond donor (Ganem)

require more acidic peracid both allylic alcohols and ethers OK

Epoxidation of Cyclic Olefins with Amide \&Urethane Directing Groups
Substrate

a. $\mathrm{R}=\mathrm{NH}_{2}$
b. $\mathrm{R}=\mathrm{NHBn}$
c. $\mathrm{R}=\mathrm{NMe}_{2}$

10 :

a. $\mathrm{R}=\mathrm{OCONHBn}$
b. $\mathrm{R}=\mathrm{OCONMe}$
>20:1
$>20: 1$

a. $\mathrm{R}=\mathrm{CONH}_{2}$

6:1
b. $\mathrm{R}=\mathrm{CONHBn}$
>10: 1
2:1
Conditions: Perbenzoic acid, or meta-chlorobenzoic acid in benzene
(Table 11, p1316, from the Evans, Hoveyda, Fu review article)

Epoxidation of Cyclic Homoallylic Alcohols

Substrate	Major Product	Selectivity

"highly selective"

$16: 1$

1:1

21:1

5:1

Conditions: Perbenzoic acid, or meta-chloroperbenzoic acid
in benzene or cyclopentane.
(Table 14, p1318, from the Evans, Hoveyda, Fu review article)

The Sharpless Epoxidation

Aldrichimica Acta, 12, 63 (1979)

Chem 3D Transition State

8-11-Sharpless-1 9/29/03 1:07 PM

■ The literature precedent: Sheng, Zajecek, J. Org. Chem. 1970, 35, 1839

■ Next step: Sharpless, Michaelson JACS 1973, 95, 6136

Regioselection 20:1

Relative Rates (Diastereoselectivities) for the Epoxidation of Cyclohexene Derivatives JACS 1973, 95, 6136

Substrate	$\mathrm{k}_{\text {rel }}{ }^{\text {a,b }}$ (diastereoselectivity $^{\text {c }}$)		
	peracid	$\mathrm{Mo}(\mathrm{CO})_{6}$	$\mathrm{VO}(\mathrm{acac})_{2}$
	1.00	1.00	1.00
	0.55 (92 : 8)	4.5 (98:2)	>200 (98:2)

$0.046(37: 63) \quad 0.07(40: 60) \quad-$

$0.42(60: 40) \quad 11.0(98: 2) \quad 10.0(98: 2)$
a, b The relative rate data apply only to a given column.
Values in parenthesis refer to the ratio of syn:anti epoxide
Values in parenthesis refer to the ratio of syn:anti epoxide.

- Allylic Alcohols:

■ $\mathrm{RCO}_{3} \mathrm{H}$ Transition States: $\Phi \sim 120^{\circ}$

■ V(+) Transition States: $\Phi \sim 45^{\circ}$

$$
\mathrm{TS}_{\text {major }}
$$

8-12-Acyclic substrates 9/29/03 1:01 PM

Oshima, Tetrahedron Lett. 1982, 23, 3387.

R_{1}	R_{2}	Yield	Ratio
H	Bu	84%	$99: 1$
$\mathrm{C}_{5} \mathrm{H}_{11}$	Me	70%	$99: 1$

Depezay, Tetrahedron Lett. 1978, 19, 2869.

Roush, J. Org. Chem. 1987, 52, 5127.
Diastereoselection $=95: 5$

Homoallylic Alcohols (Mihelich, JACS 1981, 103, 7690)

Prediction

Anti diastereomer
maseleotriet

Anti should be more diastereoselective than syn

Syn diastereomer

Anti diastereomer

$+$

R_{1}	R_{2}	Yield	Ratio
$\mathrm{C}_{6} \mathrm{H}_{13}$	Me	92%	$104: 1$
Me	$i-\mathrm{Pr}$	97%	$>400: 1$

$+$

R_{1}	R_{2}	Yield	Ratio
$\mathrm{C}_{6} \mathrm{H}_{13}$	Me	73%	$70: 1$
Me	Me	70%	$85: 1$
Me	$\mathrm{C}_{5} \mathrm{H}_{11}$	81%	$16: 1$

E. D. Mihelich \& Coworkers

Diastereoselection = $211: 1$
J. Am. Chem. Soc. 1981, 103, 7690.

Epoxidation of Homoallylic Alcohols with TBHP, VO(acac) 2

Bishomoallylic Alcohols (Kishi, Tet. Lett. 1978, 19, 2741)

8-14-Bishomoallylic ROHs 9/29/03 1:04 PM

Epoxidation \& Cyclization of Bishomoallylic Alcohols

The Kishi Lasalocid Synthesis (JACS 1978, 100, 2933)

Evans X-206 Synthesis JACS 1988, 110, 2506.

diastereoselection 20:1
(89 \%)

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 9

Olefin Addition Reactions-2

- Epoxidation \& Directed Epoxidation
- Hydrogenation
- Olefin Bromination
- Reading Assignment for week
A. Carey \& Sundberg: Part B; Chapter 4 "Electrophilic Additions to C-C Multilple Bonds"

Hoveyda, Evans, \& Fu (1993). Substrate-directable chemical reactions. Chem. Rev. 93: 1307-70 (Handout)
J. M. Brown, Angew. Chem. Int. Edit. 26, 190-203 (1987) (Handout)

Investigation of the early Steps in Electrophilic Bromination through the Study of the Reaction of Sterically Encumbered Olefins
R. S. Brown, Accts. Chem. Res. 1997, 30, 131 (handout)

Bromoniun lons or β-Bromocarbocations in Olefin Bromination. A Kinetic Approach to Product Selectivities M-F. Ruasse, Accts. Chem. Res. 1990, 23, 87 (handout)

Friday,
D. A. Evans

October 3, 2003

- Problems of the Day: (To be discussed)

Predict the stereochemical outcome of the indicated reaction.

Kinetic Control: 3 eq. $\mathrm{I}_{2}, \mathrm{MeCN}, \mathrm{NaHCO}_{3}, 0^{\circ} \mathrm{C}$
diastereoselection: 20:1

Bartlett, P. A.; Richardson, D.; Myerson, J. Tetrahedron 1984, 12, 2317

Rationalize the stereochemical outcome of the indicated reaction.

The Hydrogenation Reaction

Relevant Review articles: J. M. Brown, Angew. Chem. Int. Edit. 26, 190-203 (1987).

- General Mechanism

Historically, primary stereochemical control designed around analysis of steric environment in vicinity of $\mathrm{C}=\mathrm{C}$.

However, the influence of polar effects was documented

LiAlH_{4}

$$
\mathrm{Pd}(0) \rightleftharpoons \operatorname{Pd}(\mathrm{II})
$$

trans: cis 85:15

Thompson, J.Org. Chem. 36, 2577 (1971)

trans : cis

 5:95Polar functional groups may play a role in controlling the diastereoselectivity of the hydrogenation process;
however, the control elements were not well-defined.

only isomer
however

trans:cis $=55: 45$
J. E. McMurry \& Co-workers, Tetrahedron Lett.. 3731 (1970)

Y. Kishi \& Co-workers, J. Am. Chem. Soc. 102, 7156 (1980)

The first rational attempt to identify those FGs which will direct the reaction

10

R	cis : trans
$\mathrm{CH}_{2} \mathrm{OH}$	$95: 5$
CHO	$93: 7$
CN	$75: 25$
COONa	$55: 45$
COOH	$18: 82$
COOMe	$15: 85$
COMe^{2}	$14: 86$
CONH_{2}	$10: 90$

H. Thompson \& Co-workers, J. Am. Chem. Soc. 95, 838 (1973)

The first rational attempt to associate catalyst with substrate:

Thompson \& Coworkers, J. Am. Chem. Soc. 97, 6232 (1974)

Schrock \& Osborne,
J. Am. Chem. Soc. 91, 2816 (1969)

Rh(+1): d8

Mechanism of Hydrogenation Cationic Rhodium-(I) Catalysts.

$S=$ solvent

Reductive Elimination $\xlongequal[(+\mathrm{S})]{ } \mathrm{CH}_{3}-\mathrm{CH}_{3} \quad \begin{gathered}\mathrm{H}_{2} \\ (-\mathrm{S}) \\ \downarrow\end{gathered}$ Oxidative Addition

Mechanism of Hydrogenation Cationic Rhodium-(I) Catalysts.

A potential stereoelectronic effect

That H atom lying paralle to the pi-system $\left(\mathrm{H}_{\mathrm{A}}\right)$ should migrate preferentially if the dihydride is an intermediate.

9-03-cationic H2 mech 10/2/03 3:25 PM
D. A. Evans \& M. M. Morrissey JACS 106, 3866 (1984)

THF is important to success of rxn to buffer the Lewis acidity of the catalyst which causes elimination of ROH under normal conditions

Polar functional groups other than OH may also direct the process

diastereoselection 91:9

 diastereoselection 89:11

diastereoselection >99:1
J.M. Brown and S.A. Hall, J. Organomet. Chem., 1985, 285, 333.

A.G. Schultz and P.J. McCloskey, J. Org. Chem., 1985, 50, 5907.

A.G. Schultz and P.J. McCloskey, J. Org. Chem., 1985, 50, 5907.

R.H. Crabtree and M.W. Davis, J. Org. Chem., 1986, 51, 2655.

A.G. Schultz and P.J. McCloskey, J. Org. Chem., 1985, 50, 5907.

The Premonensin Synthesis

Evans, DiMare, JACS, 1986, 108, 2476)

The Ionomycin Synthesis

Diastereoselection: 94 : 6 (93\%)
with Dow, Shih, Zahler, Takacs, JACS 1990, 112, 5290

Introduction

- Reaction is first order in alkene

At low concentrations of Br_{2}, rxn is also first order in Br_{2}
At higher concentrations of Br_{2} in nonpolar solvents rxn is second order in Br_{2}.
\square Substituent Effects on Bromination Rates

Alkene	krel
$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	1
$\mathrm{CH} 3_{3} \mathrm{CH}=\mathrm{CH}_{2}$	61
n- $\mathrm{PrCH}=\mathrm{CH}_{2}$	70
i-PrCH=CH2	57
t-BuCH $=\mathrm{CH}_{2}$	27
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$	5470
cis-CH3 $\mathrm{CH}_{3}=\mathrm{CHCH}_{3}$	2620
trans-CH3 CH=CHCH	1700
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}$	130,000
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$1,800,000$

- Stereochemical outcome versus structure (Br_{2} in $\mathrm{HOAc} @ 25^{\circ}$)
Alkene

[^2]- Bromonium ion origin of the anti (trans) selectivity first suggested by Roberts, JACS 1937, 59, 947

■ First X-ray Structure of a bromonuium ion: Brown, JACS 1985, 107, 4504

X-ray structure

- Calculated Geometries of Substituted Bromonium Ions

Ruasse, Chem Commun. 1990, 898
More recent calculations: Sigalas, Tetrahedron 2003, 59, 4749

Note; the $\mathrm{C}-\mathrm{Br}$ bond lengths in previous X -ray structure are 2.116 A .

- Bromonium lons undergo fast exchange with olefins

Brown, Accts. Chem. Res. 1997, 30, 131
Unprecedented until 1991 (Bennet, JACS 1991, 113, 8532)

There is an intermediate in the halogen transfer (ab initio calcs):

9-08-Bromination-2 10/3/03 8:46 AM

Bromination of Cyclohexene Derivatives Pasto, JACS 1970, 92, 7480

Diaxial opening of bromonium ions may be viewed as an extension of the Furst-Plattner Rule for epoxide ring opening (Lecture-3).

It appears that bromine attack from both olefin faces occurs wilth near equal probability.

Bromination of Cyclohexene Derivatives Pasto, JACS 1970, 92, 7480

Diaxial opening of bromonium ions may be viewed as an extension of the Furst-Plattner Rule for epoxide ring opening. (Lecture-2)

Case B

not observed
syn-Unreactive
From Case A, one assumes that both bromonium ions are formed; however, for the syn isomer to react, ring opeing must proceed against the polarization due to Methyl substituent.

9-09-Bromination-3 10/3/03 8:47 AM

Representative Examples of Diastereoselective Bromination

House 2nd Ed, pg 424

(70\%)

How to generate either epoxide from a conformationaly biased olefin

Epoxidation controlled by steric effects imposed by cis-fused ring

How do we construct the other epoxide diastereomer??

both bromohydrins afford same product

Oxymercuration Pasto, JACS 1970, 92, 7480

The basic process:

Kinetics: Halpern, JACS 1967, 89, 6427 Reduction: Pasto, JACS 199, 91, 719 Overview: B rown, JOC 1981, 46, 3810.

Oxy-Mercuration \& bromination follow identical pathways (Pasto)

$\mathrm{R}=\mathrm{H} \quad 41 \% \quad 48 \%$
$R=M e \quad 100 \%$

syn-Unreactive

Reduction of the $\mathrm{Hg}-\mathrm{C}$ bond

9-10-oxymercuration-1 10/3/03 8:21 AM

Bromination of Cyclohexene Derivatives Pasto, JACS 1970, 92, 7480

Diaxial opening of bromonium ions may be viewed as an extension of the Furst-Plattner Rule for epoxide ring opening. (Lecture-2)

Case B

From Case A, one assumes that both bromonium ions are formed; however, for the syn isomer to react, ring opeing must proceed against the polarization due to Methyl substituent.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206
Advanced Organic Chemistry

Lecture Number 10

Olefin Addition Reactions-3

- Olefin Oxymercuration
- Halolactonization
- Simmons-Smith Reaction
- Reading Assignment for week
A. Carey \& Sundberg: Part B; Chapter 4 "Electrophilic Additions to C-C Multilple Bonds"

Hoveyda, Evans, \& Fu (1993). Substrate-Directable Chemical Reactions. Chem. Rev. 93: 1307-70 (Handout)
D. A. Evans

Monday,
October 3, 2003

Bromoniun lons or β-Bromocarbocations in Olefin Bromination. A Kinetic Approach to Product Selectivities
M-F. Ruasse, Accts. Chem. Res. 1990, 23, 87 (handout)

Investigation of the early Steps in Electrophilic Bromination through the
Study of the Reaction of Sterically Encumbered Olefins
R. S. Brown, Accts. Chem. Res. 1997, 30, 131 (handout)

- Predict stereochemical outcome

X-206 Synthesis (with S. Bender, JACS 1988, 110, 2506)

99\%, single diastereomer

Ionomycin Synthesis
(with Dow \& Shih, JACS 1990, 112, 5290)

Oxymercuration Pasto, JACS 1970, 92, 7480

The basic process:

Kinetics: Halpern, JACS 1967, 89, 6427 Reduction: Pasto, JACS 199, 91, 719 Overview: B rown, JOC 1981, 46, 3810.

Oxy-Mercuration \& bromination follow identical pathways (Pasto)

Reduction of the $\mathrm{Hg}-\mathrm{C}$ bond

10-01-oxymercuration-1 10/5/03 11:20 AM

Bromination of Cyclohexene Derivatives Pasto, JACS 1970, 92, 7480

Diaxial opening of bromonium ions may be viewed as an extension of the Furst-Plattner Rule for epoxide ring opening. (Lecture-2)

Case B

From Case A, one assumes that both bromonium ions are formed; however, for the syn isomer to react, ring opeing must proceed against the polarization due to Methyl substituent.

Diastereoselective ring closures via oxymercuration

Mukaiyama, Chem. Lett. 1981, 683

Sinay, Tet. Lett. 1984, 25, 3071

Isobe, Tet. Lett. 1985, 26, 5199

- Kinetic vs Thermodynamic control:

Harding, JOC 1984, 49, 2838
$\mathrm{Hg}(\mathrm{OAc})_{2}$: short rxn times : $40: 60$
$\mathrm{Hg}(\mathrm{OTFA})_{2}$: longer rxn times : $2: 98$

With more electrophilic Hg(II) salt, more polar solvents, and longer rxn times, the rxn may be rendered reversible.

- Acyclic allylic alcohols:

Giese, Tet. Lett. 1985, 26, 1197

R	R'OH	Ratio	yield
- Et	HOH	$76: 24$	65%
- Et	MeOH	$93: 07$	72%
-Ph	HOH	$88: 12$	66%
-tBu	HOH	$98: 02$	70%

HOH

Chamberlin, Tetrahedron 1984, 40, 2297

O-acetate participation will turn over the stereochemical course of the rxn

Oxymercuration via Hemiketals \& Hemiacetals

J. L. Leighton et. al, Org. Lett. 2000, 2, 3197-3199

General Reaction: diastereoselection $>10: 1$

$+\underset{\mathrm{H}^{-1}}{\stackrel{\mathrm{O}}{\mathrm{R}^{\prime}}} \xrightarrow[5 \% \mathrm{Yb}(\mathrm{OYt})_{3}]{\mathrm{HgClOAc}}$

 HgCl

Mechanistic Observations:

~1:1-mixture of diastereomers Product formed in low yield. much recovered starting material
Lewis acid addends were surveyed. the logic for this step was two-fold:
(A) Lewis acid would promote the formation of the putative hemiketal imtermediate.
(B) Lewis acid would promote reversability of the oxymercuration process

$$
\xrightarrow[\substack{\mathrm{HgClOAc} \\ \text { acetone, } 2 \mathrm{~min} \\ 0^{\circ} \mathrm{C}}]{5 \% \mathrm{Yb}(\mathrm{OYt})_{3}}
$$

Me
~1:1-mixture of diastereomers

10-03-oxymercuration-3 10/5/03 11:22 AM

Proposed Mechanism

- Lewis acid catalyzes formation of hemiketal

- The Oxymercuration Step (Kinetic Phase)

Leighton presumes that mercurium ion formation is rate-determining under kinetic conditions.
At higher temperatures and longer reaction times the products are shown to interconvert.

X-206 Synthesis (with S. Bender, JACS 1988, 110, 2506)

Assemblage strategy for Ring A:

10-04-oxymerc/lono 10/5/03 5:22 PM

Ionomycin Synthesis (with Dow \& Shih, JACS 1990, 112, 5290)

Other electrophilic olefin addition reactions afford the same stereochemical outcome

Chamberlin, Tetrahedron 1984, 40, 2297
This is an exceptional approach to the creation of either syn or anti 1,3-dioxygen relationships

Evans, Kaldor, Jones, J. Am. Chem. Soc. 1990, 112, 7001.
 alternative which was evaluated first
diastereoselection 96 : 4

lodine-induced lactonization is also highly stereoselective

■ Chamberlin (JACS 1983, 105, 5819)

As we have seen before, gauche B is more destabilizing than gauche A

$\left\lvert\, \begin{aligned} & \mathrm{K}_{2} \mathrm{CO}_{3} \\ & \mathrm{MeOH}\end{aligned}\right.$

- Other cases:

Lactonization Ratio $=96: 4$ Epoxidation Ratio $=3: 97$

R = H: 77 : 23 (74\%) $\mathrm{R}=\mathrm{Me}: 42$: 58 (81%)

Halogen-induced heterocyclization in the synthesis of monensin

The Kishi Ring D Construction:

Hypothesis-A: Stereocontrol through A(1,3) Strain??

10-06-Monensin examps 10/5/03 5:34 PM

Hypothesis-B: Stereocontrol through Reversal of Bromonium Ion Intermediate

- The Still Ring E Construction:

$\mathrm{El}(+)$-induced \longrightarrow Cardillo, Tetrahedron 1990, 46, 3321-3408
heterocyclization \leadsto Bartlett, Asymmetric Synthesis 1984, 3, Chap 6, 411-454
- A complete turnover in olefin diastereofacial selectivity is observed when adding internal and external nucleophiles

General Observation:

For electrophiles that react via onium intermediates $\left(\mathrm{l}_{2}, \mathrm{Br}_{2}, \mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{PhSeCl}\right)$, the major diastereomer from electrophile-induced cyclization is opposite to that observed in the analogous intermolecular electrophilic addition.

For a review of elctrophilic induced olefin cyclization reactions see:
G. Cardillo \& M. Orena, Tetrahedron 1990, 46, 3321.

Chamberlin \& Hehre's Rationalization

- "Facial preferences in electrophilic addition reactions are not invariant with respect to the location of the transition state along the reaction coordinate."
■ Change in diastereoselectivity is a consequence of a change in the rate-limiting step
- Addition reactions: Formation of an onium ion intermediate (subsequently trapped by a Nu from the medium)
- Cyclization reactions: Intramolecular attack on a $\boldsymbol{\pi}$-complex (not an onium ion)
- Analysis of the stereoselectivity of electrophilic addition to chiral olefins:

1. Relative abundances of conformational minima
2. Relative reactivities of the available forms
3. Stereoselectivies of the individual conformers

Chamberlin \& Hehre, J. Am. Chem. Soc. 1987, 109, 672-677.

Houk: Argument for the "inside alkoxy effect" in π-complex formation

- π-complex cyclizes if R contains a Nu and its formation is rate determining
- Onium ion formation is rate determing in the addition reactions
- "The presence or absence of an internal nucleophile acts to determine the stereochemical outcome of the reaction by modifying the nature (timing) of transition state.

For a recent general review of the Simmons-Smith reaction see: Charette \& Beauchemin, Organic Reactions, 58, 1-415 (2001)

>99:1
S. Winstein, JACS 1959, 81, 6523; 1961, 83, 3235; 1969, 91, 6892

A large rate acceleration relative to simple olefins was observed.

Absolute control of stereochemistry is possible through chiral ketal auxiliaries

Yamamoto, JACS, 1985, 107, 8254
Mash, JACS, 1985, 107, 8256
Yamamoto, Tetrahedron, 1986, 42, 6458

The classical mechanism

$$
\mathrm{CH}_{2} \mathrm{I}_{2}+\mathrm{Zn} \longrightarrow \mathrm{ICH}_{2} \mathrm{ZnI}
$$

- Enantioselective Simmons-Smith Variants: Kobayashi, Tet. Let. 1992, 33, 2575

These results suggest that the transition state might be binuclear.

Construct a reasonable transition structure which accomdates the data

■ Low-valent Samarium Variants: Molander,JOC 1987, 52, 3942

Radical Lead Tetraacetate Mechanism

$$
\begin{aligned}
\mathrm{ROH}+\mathrm{Pb}(\mathrm{OAc})_{4} & \longrightarrow \mathrm{ROPb}(\mathrm{OAc})_{3}+{ }^{-} \mathrm{OAc} \\
\mathrm{ROPb}(\mathrm{OAc})_{3} & \longrightarrow \mathrm{RO}+\cdot \mathrm{Pb}(\mathrm{OAc})_{3} \\
\mathrm{RO} \cdot+\mathrm{R}^{\prime} \mathrm{H} & \longrightarrow \mathrm{ROH}+\mathrm{R}^{\prime} \cdot \\
\mathrm{R}^{\prime} \cdot+\mathrm{Pb}(\mathrm{OAc})_{4} & \longrightarrow \mathrm{R}^{\prime} \mathrm{OAc}+\cdot \mathrm{Pb}(\mathrm{OAc})_{3}
\end{aligned}
$$

Immer, Helv. Chim. Acta 1962, 45, 753.

Haynes, JOC, 1866,31, 3067.

$\xrightarrow[\mathrm{PhH}, \mathrm{RT}]{\mathrm{LTA}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}}$ 86\%
$\stackrel{H}{H}$

10-09-REDOX-Thallium. 1 10/6/03 8:36 AM

Vinyl and Aryl C-H Oxidations

Thallium

Phenolic Oxidations:
 For a review of oxidative aryl couplings, see: Dinsmore, C. Evening Seminar, February 1993.

Coombs, Chem. Ind., 1972, 169.

Taylor, JACS, 1981, 103, 6856.

Romeo, Tet., 1972, 28, 5337.

Oxythallation of Double and Triple Bonds

JACS, 1973, 95, 3635

Jones, JACS, 1976, 98, 8476.
 Inoue, Bull. Chem. Soc.
Jpn. 197, 51, 2439.

Oxidative Rearrangements of Styrenes

$\mathrm{TTN}=\mathrm{Tl}\left(\mathrm{NO}_{3}\right)_{3}$

95\% McKillop and Taylor, JACS, 1973, 95, 3635

McKillop and Taylor, TL, 1977, 1827

1) $\mathrm{TTN}, \mathrm{MeOH}$

100\%
McKillop and Taylor, TL, 1977, 1827

Oxidative Rearrangements of Chalcones

R and R' alkyl or aryl, yields 82-95\% McKillop and Taylor, JACS 1971, 93, 4918.

R and R^{\prime} alkyl or aryl, yields 72-96\% McKillop and Taylor, JACS 1971, 93, 4918.

Oxidation of Sulfur Compounds

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 11

Pericyclic Reactions-1

- Introduction to Pericyclic Reactions
- Electrocyclic Reactions
- Sigmatropic Reactions

■ Cycloaddition Reactions
■ Reading Assignment for week:
Carey \& Sundberg: Part A; Chapter 11 Concerted Pericyclic Reactions

Fleming: Chapter 4 Thermal Pericyclic Reactions

Travis Dunn
Wednesday, October 7, 2003

- Other Reading Material:
- Woodward-Hoffmann Theory
R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, Weinheim, 1970.
- Frontier Molecular Orbital Theory
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John-Wiley and Sons, New York, 1976.
- Dewar-Zimmerman Theory
T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd Ed., Harper \& Row, New York, 1987.

■ General Reference
R. E. Lehr and A. P. Marchand, Orbital Symmetry: A Problem Solving Approach, Academic Press, New York, 1972.

■ Problems of the Day:
Predict the stereochemical outcome of this reaction.

Suggest a mechanism for the following reaction.

Bloomfield, $T L$, 1969, 3719.

Pericyclic Reactions - Introduction/Definitions

A pericyclic reaction is characterized as a change in bonding relationships that takes place as a continuous, concerted reorganization of electrons.
The term "concerted" specifies that there is one single transition state and therefore no intermediates are involved in the process. To maintain continuous electron flow, pericyclic reactions occur through cyclic transition states.
More precisely: The cyclic transition state must correspond to an arrangement of the participating orbitals which has to maintain a bonding interaction between the reaction components throughout the course of the reaction.

Some factors to consider in our analysis:

The number of electrons involved has a profound influence on reactivity:$\stackrel{\text { heat }}{\text { rarely }}$
observed
4 electrons

observed
6 electrons

Pericyclic reactions are stereospecific:

Reactions behave differently depending on the conditions used (i.e. thermal versus photochemical conditions):

$\stackrel{\text { heat }}{\longleftarrow}$

11-01-Peri 10/11/00 7:53 AM

The Theories:

Three theories are commonly used to explain and predict pericyclic reactions. We will only concern ourselves with two of these theories.

1) Fukui: Frontier Molecular Orbital Interactions
\square Much easier to use than the original orbital symmetry arguments

- HOMO/LUMO interactions

2) Dewar-Zimmerman: Aromatic Transition States

- The easiest to apply for all reaction types, but it is not as easy to understand why it it valid
\square Aromatic or antiaromatic transition states

3) Woodward-Hoffmann: Conservation of Orbital Symmetry
\square First theory to explain and predict the outcome of many reactions

- Correlation diagrams

On the three methods:
"There are several ways of applying the orbital-symmetry principle to cycloaddition reactions, three of which are used more frequently than others. Of these three, we will discuss two: the frontier-orbital method and the Möbius-Hückel method. The third, called the correlation diagram method, is less convenient to apply than the other two." Jerry March in "Advanced Organic Chemistry"

The Five Major Categories of Pericyclic Reactions

(1) ELECTROCYCLIC RING CLOSURE/RING OPENING:

An electrocyclic ring closure is the creation of a new sigma bond at the expense of the terminal p orbitals of a conjugated pi system. There is a corresponding reorganization of the conjugated pi system. We usually classify the reaction according to the number of electrons involved.
Examples:

A 4 e $^{-}$electrocyclic reaction

Cyclobutene

Butadiene

A 6 e- electrocyclic reaction

1,3,5-Hexatriene

(2) CYCLOADDITION REACTIONS/CYCLOREVERSION REACTIONS:

A cycloaddition reaction is the union of two smaller, independent pi systems. Sigma bonds are created at the expense of pi bonds. A cycloaddition can occur in an intramolecular sense, but it must be between two independent pi systems Cycloaddition reactions are referred to as $[\mathbf{m}+\mathbf{n}]$ additions when a system of \mathbf{m} conjugated atoms combines with a system of \mathbf{n} conjugated atoms. A cycloreversion is simply the reverse of a cycloaddition.

Examples:

(3) CHELETROPIC REACTIONS:

Cheletropic reactions are a special group of cycloaddition/cycloreversion reactions. Two bonds are formed or broken at a single atom. The nomenclature for cheletropic reactions is the same as for cycloadditions.

Examples:

11-02-Peri 10/11/00 7:55 AM

(4) SIGMATROPIC REARRANGEMENTS:

A sigmatropic rearrangement is the migration of a sigma bond from one position in a conjugated system to another position in the system, accompanied by reorganization of the connecting pi bonds. The number of pi and sigma bonds remains constant. The rearrangement is an [m, n] shift when the sigma bond migrates across \mathbf{m} atoms of one system and \mathbf{n} atoms of the second system.
Examples:

(5) GROUP TRANSFER REACTIONS:

In a group transfer reaction one or more groups get transferred to a second reaction partner.

Examples:
Hydrogen
Transfer:

Ene Reaction:

ELECTROCYCLIC RING CLOSURE/RING OPENING:

The Stereochemical issues:
Ring closure can occur in two distinct ways. This has consequences with regard to:

- The orbital lobes that interact
- The disposition of substituents on the termini

Conrotatory Closure: The termini rotate in the same direction

Disrotatory Closure: The termini rotate in opposite directions

Empirical Observations:

It was noted that butadienes undergo conrotatory closure under thermal conditions, while hexatrienes undergo disrotatory closure under thermal conditions. The microscopic reverse reactions also occur with the same rotational sense (i.e. cyclobutenes open in a conrotatory sense when heated, and cyclohexadienes open in a disrotatory sense when heated.)

Butadiene to cyclobutene: A 4-electron (4q) system

Hextriene to cyclohexadiene: A 6-electron $(4 q+2)$ system

It was also noted that changing the "reagent" from heat to light reversed this reactivity pattern. Under photochemical conditions 4 electron systems undergo disrotatory motion, while 6 electron systems undergo conrotatory motion.

\square

nonbonding

■ FMO Treatment of Electrocyclic reactions.

- Examine the interactions that occur in the HOMO as the reaction proceeds.
- If the overlap is constructive (i.e. of the same phase) then the
reaction is "allowed."
- If the overlap is destructive (i.e. of different phases) then the reaction is "forbidden."

Thermal Activation:
Conrotatory Closure: (Allowed and observed)
Constructive

Ψ_{2} (diene HOMO)

Disrotatory Closure: (Forbidden and not observed)

Ψ_{2} (diene HOMO)
Destructive
overlap

A similar analysis for the hexatriene system proves that under thermal conditions, disrotation is allowed and conrotation is forbidden.

Photochemical Activation:

When light is used to initiate an electrocyclic reaction, an electron is excited from Ψ_{2} to Ψ_{3}. Treating Ψ_{3} as the HOMO now shows that disrotatory closure is allowed and conrotatory closure is forbidden.

Disrotatory Closure: (Allowed and observed)

Conrotatory Closure: (Forbidden and not observed)

We have so far proven which ring closures are allowed and which are forbidden. Do we now have to go back and examine all the ring openings?

NO!

The principle of microscopic reversiblity says that if the reaction is allowed in one direction, it must be allowed in the other direction.

The Dewar-Zimmerman analysis is based on identifying transition states as aromatic or antiaromatic. We will not go into the theory behind why this treatment works, but it will give the same predictions as FMO or Orbital Symmetry treatments, and is fundamentally equivalent to them.

Using the Dewar-Zimmerman model:

■ Choose a basis set of $2 p$ atomic orbitals for all atoms involved (1s for hydrogen atoms).

■ Assign phases to the orbitals. Any phases will suffice. It is not important to identify this basis set with any molecular orbital.

■ Connect the orbitals that interact in the starting material, before the reaction begins.

■ Allow the reaction to proceed according to the geometry postulated. Connect those lobes that begin to interact that were not interacting in the starting materials.

■ Count the number of phase inversions that occur as the electrons flow around the circuit. Note that a phase inversion within an orbital is not counted.

■ Based on the phase inversions, identify the topology of the system.
Odd number of phase inversions: Möbius topology
Even number of phase inversions:
Hückel topology

■ Assign the transition state as aromatic or antiaromatic, based on the number of electrons present.

$\frac{\text { System }}{\text { Hückel }}$	$\frac{\text { Aromatic }}{}$	
Möbius	$4 q$	
Antiaromatic		
	$4 q$	$4 q+2$

- If the transition state is aromatic, then the reaction will be allowed thermally. If the transition state is antiaromatic, then the reaction will be allowed photochemically.

Zero Phase Inversions
\therefore Hückel Topology
4 electrons in system
\therefore Antiaromatic and
Forbidden

Note that I can change the phase of an abitrary orbital and the analysis

One Phase Inversion
\therefore Möbius Topology
4 electrons in system
\therefore Aromatic and
Allowed

Two Phase Inversions
\therefore Hückel Topology
4 electrons in system
\therefore Antiaromatic and
Forbidden

Three Phase Inversions
\therefore Möbius Topology
4 electrons in system
\therefore Aromatic and
Allowed

The Stereochemical issues:

The migrating group can migrate across the conjugated pi system in one of two ways. If the group migrates on the same side of the system, it is said to migrate suprafacially with respect to that system. If the group migrates from one side of the pi system to the other, it is said to migrate antarafacially with respect to that system.

Suprafacial migration: The group moves across the same face.

Antarafacial migration: The group moves from one face to the other.

■ Sigmatropic Rearrangements: FMO Analysis
■ Imagine the two pieces fragmenting into a cation/anion pair, (or a pair of radicals) and examine the HOMO/LUMO interaction.

- If the overlap is constructive at both termini then the reaction is allowed. If the overlap is destructive at either terminus then the reaction is forbidden.
- If the migrating atom is carbon, then we can also entertain the possiblity of the alkyl group migrating with inversion of configuration (antarafacial on the single atom).
- If the migrating atom is hydrogen, then it cannot migrate with inversion.

■ [1,3] Sigmatropic Rearrangements (H migration)

- Construct TS by considering an allyl anion and the proton (or radical pair):

- The analysis works if you consider the other ionic reaction, or consider a radical reaction. In each case it is the same pair of orbitals interacting.
- The suprafacial migration is forbidden and the bridging distance too great for the antarafacial migration. Hence, $[1,3]$ hydrogen migrations are not observed under thermal conditions.
- Under photochemical conditions, the [1,3] rearrangement is allowed suprafacially. How would you predict this using FMO?

■ [1,3] Sigmatropic Rearrangements (C migration)

■ Construct TS by considering an allyl anion and the methyl cation:

Inversion at carbon

Suprafacial on allyl fragment
Suprafacial on allyl fragment

■ The analysis works if you consider the other ionic reaction, or consider a radical reaction. In each case it is the same pair of orbitals interacting.

- Under photochemical conditions, the $[1,3]$ rearrangement is allowed suprafacially with retention of stereochemistry.
- The stereochemical constraints on the migration of carbon with inversion of configuration is highly disfavored on the basis of strain. Such rearrangements are rare and usually only occur in highly strained systems.

Using a similar analysis, one can prove that [1,5] hydrogen and alkyl shifts should be allowed when suprafacial on the pi component and proceeding with retention. Please refer to Fleming for more applications of FMO theory to $[1, \mathrm{n}]$ sigmatropic shifts.

- Sigmatropic Rearrangements: Dewar-Zimmerman

Dewar-Zimmerman also predicts the $[1,3]$ suprafacial migration to be forbidden.

The basis set of s and p orbitals with arbitrary phase:

Orbital interactions in the parent system

Completing the circuit across the bottom face

The [1,5] shift of a hydrogen atom across a diene.

Two Phase Inversions Hückel Topology Four Electrons Forbidden thermally

Completing the circuit across the bottom face

[3,3] Rearrangements:

A thermally allowed reaction in either of two geometries, the "chair" or the "boat" geometry. Depicted below is the "chair" geometry. You should be able to work out the details of the "boat" geometry yourself.

The FMO Analysis:
Bring two Allyl radicals together to access for a possible bonding interaction between termini.

The Dewar-Zimmerman Analysis:

Two Phase Inversions
Hückel Topology
Six Electrons
Allowed Thermally

■ The Toggle Algorithm:

The toggle algorithm is a simple way to take one reaction of each class that you remember is allowed (or forbidden) and derive if the reaction is allowed or forbidden under new conditions.

How does it work?

All of the various parameters of the pericyclic reaction are the input variables, the "switches."
The output is either "allowed" or "forbidden."
Write out all the relevant parameters of a reaction together with the known result.
Each time you change a parameter by one incremental value ("toggle a switch"), the output will switch.
This is the prediction of the reaction under the new parameters.

- So it's nothing really new, is it?

No, its just a convenient way to rederive predictions without memorizing a table of selection rules.
An Example:
Take the $[1,3]$ sigmatropic rearrangement of an alkyl group. We know this is forbidden under thermal conditions in a supra-supra manner, and so we make it the first entry in the table.

Rearrangement	Conditions	Component 1 Component 2	Output
[1,3]	Heat	Suprafacial Suprafacial	Forbidden
[1,3]	Hea	Antarafacial 2 Suprafacial	Allowed
[1,	Light	Antarafacial Suprafacial	Forbidden
$[1,5]$ ¢	Heat 2	Suprafacial Suprafacial	?

Each incremental change in the "input" registers changes the "output" register by one. Multiple changes simply toggle the output back and forth. What is the prediction in the last line?

The Stereochemical issues:
In a cycloaddition, a pi system may be attacked in one of two distinct ways. If the pi system is attacked from the same face, then the reaction is suprafacial on that component. If the system is attacked from opposite faces, then the reaction is antarafacial on that component.
 attack

Antarafacial
attack

The [2+2] Cycloaddition: FMO Analysis
For the [2+2] cycloaddition two different geometries have to be considered.

The simplest approach (Supra/Supra) is forbidden under thermal activation. The less obvious approach (Antara/Supra) is allowed thermally but geometrically rather congested. It is believed to occur in some very specific cases (e.g. ketenes) where the steric congestion is reduced.

The [4+2] Cycloaddition: Dewar-Zimmerman

The most well known cycloaddition is the Diels-Alder reaction between a four pi component (the diene) and a two pi component (the dienophile). An exhaustive examination of this reaction is forthcoming, so we will limit ourselves to a simple examination.

Zero Phase Inversions Hückel Topology
Six Electrons Allowed thermally

Summary:

■ There are three fundamentally equivalent methods of analyzing pericyclic reactions: Two are much simpler than the third.

- Fukui Frontier Molecular Orbital Theory
- Dewar-Zimmerman Hückel-Möbius Aromatic Transition States

■ Woodward-Hoffmann Correlation Diagrams

- Some methods are easier to use than others, but all are equally correct and no one is superior to another. Conclusions drawn from the correct application of one theory will not be contradicted by another theory.
- The principle of microscopic reversibility allows us to look at a reaction from either the forward direction or the reverse direction.
- There is a general trend that reactions will behave fundamentally different under thermal conditions and photochemical conditions.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 12

Pericyclic Reactions-2

- Electrocyclic Reactions
- Cheletropic Reactions
- Reading Assignment for week:

Carey \& Sundberg: Part A; Chapter 11 Concerted Pericyclic Reactions

Fleming: Chapter 4 Thermal Pericyclic Reactions

Monday,
D. A. Evans

October 12, 2003

- Other Reading Material:
C. Palomo, "Asymmetric Synthesis of β-Lactams by Stauginger Ketene-Imine Cycloaddition Reaction, Eur. J. Org. Chem. 1999, 3223-3235.

- Problems of the Day:

Predict the stereochemical outcome of this reaction.

Suggest a mechanism for the following reaction.

Electrocyclic Reaction - Selection Rules

Controtation $\boldsymbol{\Psi}_{1}$ and $\boldsymbol{\Psi}_{2}$ on to the indicated bonding and anti-bonding orbitals of cyclobutene:

Activation Energy (kcal/mol) for electrocyclic ring opening

42
45

29
27

Criegee, Chem. Ber. 1968, 101, 102.

Huisgen, TL, 1964, 3381.

Torquoselectivilty is defined as the predisposition of a given R substituent for a given conrotatory motion

Houk et al. Acc. Chem. Res 1996, 29, 471

Examples:
Donor substituents prefer con-out mode Pi acceptor substituents prefer con-in mode

How do we explain?
Donor substituents prefer con-out mode Pi acceptor substituents prefer con-in mode

View the 2 conrotatory modes by looking at the breaking sigma bond from this perspective

Outward Motion

LUMO + p

$\mathrm{HOMO}+\mathrm{p}$

As conrotation begins the energy of the breaking sigma bond rises steeply. Hyperconjugation with a pi* orbital, while possible in both $\mathbf{A} \& B$, is better in B. (Houk)

Inward Motion

B
$\mathrm{HOMO}+\mathrm{p}$
destabilizing 4 electron interation for donor substituents
stabilizing 2 electron interation for acceptor substituents

Three-Atom Electrocyclizations (2 electrons)

Note that there are two disrotatory modes

Solvolysis of Cyclopropyl Derivatives

Does solvolysis proceed via cation 1 followed by rearrangement to 2 (Case 1), or does it proceed directly to 2 (Case 2)?

Case 1

Case 2

relative rate

LUMO

LUMO

Solvolysis Summary

dis-in	dis-out
Unfavorable	favorable

Ring-fused Cyclopropyl Systems

When the cis substiltutents on the cyclopropyl ring are tied together in a ring the following observsations have been made

Revisiting the Favorski rearrangement: (Carey, Part A, pp 506-8)

Five-Atom Electrocyclizations (4 electrons)

nonbonding \qquad $4 \downarrow$

$\frac{A \downarrow}{\text { Anion }}$
Pentadienyl Cation

Pentadienyl Anion

Denmark, S. E. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5; pp 751.

Eight-Atom Electrocyclizations (8 electrons)

Let's use the "Ready" shortcut to find the homo: Nodes will appear at single bonds

Closure should be conrotatory

CHELETROPIC REACTIONS: [n+1] Cycloadditions (or Cycloreversions)
Concerted processes in which 2σ-bonds are made (or broken) which terminate at a single atom.

General

2 + 1 CheletropicReaction: Olefins + Singlet Carbene

Linear Approach: 2 HOMO-LUMO Interactions

LUMO

Nonlinear Approach: 2 HOMO-LUMO Interactions

LUMO
HOMO

Carry out the analysis of the indicated hypothetical transformation

predict approach geometry of carbene

Let's now consider SO_{2} as the one-atom component

$4 \mathrm{e}-$ in pi system

Ψ_{1} filled

Ψ_{2} filled

Ψ_{3} empty

HOMO

reactions are: stereospecific \& reversible

Key step in the Ramberg Bäcklund Rearrangement

Clough, J. M. The Ramberg-Backlund Rearrangement.; Trost, B. M. and Fleming, I., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, pp 861.
"The Ramberg-Backlund Rearrangement.", Paquette, L. A. Org. React. (N. Y.) 1977, 25, 1.

Analysis of the Suprafacial SO_{2} Extrusion (nonlinear)

HOMO
Ψ_{3} empty (LUMO)

LUMO

Ψ_{1} filled
Similar to carbene geometry

Sigmatropic rearrangements are those reactions in which a sigma bond (\& associated substituent) interchanges termini on a conjugated pi system

- Examples:
[1,3] Sigmatropic rearrangement
[2,3] Sigmatropic rearrangement
$[3,3]$ Sigmatropic rearrangement
 $\xrightarrow{\Delta}$

[1,5] Sigmatropic rearrangement

■ [1,3] Sigmatropic Rearrangements (H migration)
consider the 1,3-migration of H

■ Construct TS by uniting an allyl and H radical:

Suprafacial Geometry

Antarafacial Geometry

Bridging distance too great for antarafacial migration.

- [1,3] Sigmatropic Rearrangements (C migration)
consider the 1,3-migration of Carbon

Consider the orbitals needed to contruct the transition state (TS).

ㄱ Construct TS by uniting an allyl and Me radicals:

Retention at carbon

Suprafacial on allyl fragment
Sychronous bonding to both termini cannot be achieved from this geometry

Inversion at carbon

Suprafacial on allyl fragment
Sychronous bonding to both termini is possible from this geometry
\square The stereochemical constraints on the suprafacial migration of carbon with inversion of configuration is highly disfavored on the basis of strain.

[1,3]-Sigmatropic rearrangements are not common

no observed scrambling of labels

These rearrangements are only seen in systems that are highly strained, an attribute that lowers the activation for rearrangement.

SIGMATROPIC REACTIONS - FMO-Analysis

- [1,5] Sigmatropic Rearrangements (H migration)

View as cycloadditon between following species:

either, or
$+$

pentadienyl radical Ψ_{3}

pentadienyl radical Ψ_{3}
[1,5] Sigmatropic Rearrangements (C migration)

_- [1s,5s] alkyl shift \Rightarrow RETENTION
---- [1a,5a] alkyl shift \Rightarrow INVERSION disfavored

- [1,5] (C migration): Stereochemical Evaluation

Dewar-Zimmerman Analysis: Retention

■ [1,2] Sigmatropic Rearrangements: Carbon
$[1,2]$ Concerted sigmatropic rearrangements to cationic centers allowed

consider as cycloaddition
\int C-R homoylsis

\qquad

transition state
[1,2] Concerted sigmatropic rearrangements to carbanionic centers not observed

consider as cycloaddition

$$
\sqrt{ } \mathrm{C}-\mathrm{R} \text { homoylsis }
$$

olefin radical anion

transition state

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206
Advanced Organic Chemistry

Lecture Number 13

Pericyclic Reactions-3

- Introduction to Sigmatropic Rearrangements
- $[2,3]$ Sigmatropic Rearrangements
- Reading Assignment for week:

Carey \& Sundberg: Part A; Chapter 11
Concerted Pericyclic Reactions
Fleming: Chapter 4
Thermal Pericyclic Reactions
D. A. Evans

Wednesday,
October 14, 2003

- Other Reading Material:

[2,3] Sigmatropic Rearrangements

Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapter 4.6:
Nakai, T.; Mikami, K. Org. React. (N.Y.) 1994, 46, 105-209.
Hoffmann, Angew. Chem. Int. Ed. 1979, 18, 563-572 (Stereochemistry of)
Nakai, Chem. Rev. 1986, 86, 885-902 (Wittig Rearrangement)
Evans, Accts. Chem. Res. 1974, 7, 147-55 (Sulfoxide Rearrangement)
Vedejs, Accts. Chem. Res. 1984, 17, 358-364 (Sulfur Ylilde Rearrangements)

[3,3] Sigmatropic Rearrangements

Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 5,
Chapter 7.1: (Cope, oxy-Cope, Anionic oxy-Cope)
Chapter 7.2, Claisen
S. J. Rhoades, Organic Reactions 1974, 22, 1 (Cope, Claisen)
S. R. Wilson, Organic Reactions 1993, 43, 93 (oxy-Cope)
T. S. Ho, Tandem Organic Reactions 1992, Chapter 12 (Cope, Claisen)

Paquette, L. A. (1990). "Stereocontrolled construction of complex cyclic ketones by oxy-Cope rearrangement." Angew. Chem., Int. Ed. Engl. 29: 609.

■ Problems of the Day:
Provide a mechanism for this transformation.

For study on this [2,3] rxn See Baldwin JACS 1971, 93, 6307

Sigmatropic rearrangements are those reactions in which a sigma bond (\& associated substituent) interchanges termini on a conjugated pi system

- Examples:
$[1,3]$ Sigmatropic rearrangement
[2,3] Sigmatropic rearrangement
[3,3] Sigmatropic rearrangement

,
 $\xrightarrow{\Delta}$

[1,5] Sigmatropic rearrangement
 $\xrightarrow{\Delta}$

$\square[1,3]$ Sigmatropic Rearrangements (H migration) consider the 1,3-migration of H

- Construct TS by uniting an allyl and H radical:

Suprafacial Geometry

Antarafacial Geometry

Bridging distance too great for antarafacial migration.

13-01-Sigmatropic-1 10/15/03 8:53 AM

- [1,3] Sigmatropic Rearrangements (C migration)

consider the 1,3-migration of Carbon

Consider the orbitals needed to contruct the transition state (TS).

ㄱ Construct TS by uniting an allyl and Me radicals:

Retention at carbon

Suprafacial on allyl fragment
Sychronous bonding to both termini cannot be achieved from this geometry

Suprafacial on allyl fragment
Sychronous bonding to both termini is possible from this geometry
\square The stereochemical constraints on the suprafacial migration of carbon with inversion of configuration is highly disfavored on the basis of strain.

[1,3]-Sigmatropic rearrangements are not common

These rearrangements are only seen in systems that are highly strained, an attribute that lowers the activation for rearrangement.

SIGMATROPIC REACTIONS - FMO-Analysis

- [1,5] Sigmatropic Rearrangements (H migration)

View as cycloadditon between following species:

(R)

either, or
pentadienyl radical Ψ_{3}
the transiton structure

[1,5] Sigmatropic Rearrangements (C migration)

_ [1s,5s] alkyl shift \Rightarrow RETENTION
--- [1a,5a] alkyl shift \Rightarrow INVERSION disfavored

- [1,5] (C migration): Stereochemical Evaluation

Dewar-Zimmerman Analysis: Retention

[1,2] Sigmatropic Rearrangements: Carbon
[1,2]-Sigmatropic rearrangements to cationic centers allowed. Wagner-Meerwein Rearrangement

consider as cycloaddition
FMO analysis

olefin radical cation

[1,2]-Sigmatropic rearr to carbanionic centers not observed

consider as cycloaddition

The Wittig Rearrangement [1,2]

"[2,3]-Wittig Sigmatropic Rearrangements in Organic Synthesis.", Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885.

Marshall, J. A. The Wittig Rearrangement.; Trost, B. M. and Fleming, I.,
Ed.; Pergamon Press: Oxford, 1991; Vol. 3, pp 975.

The Wittig Rearrangement [2,3]

Allyl radical

FMO analysis

transition state

The $\Delta \Delta G^{\ddagger}$ between concerted and non-concerted pathways can be quite small

[2,3] Sigmatropic Rearrangements

- The basic process:

$X \& Y=$ permutations of $C, N, O, S, S e, P$; however X is usually a heteroatom

Attributes: Stereoselective olefin construction \& chirality transfer

- Representative X-Y Pairs:
$\mathrm{N}-\mathrm{O}$ (amine oxides)
S-C (sulfur ylids)
O-C (Wittig rearrangement)
$\mathrm{N}-\mathrm{C}$ (nitrogen ylids)
S-S (disulfides)
An important early paper: Baldwin, J. Chem. Soc., Chem. Comm. 1970, 576
■ General Reviews:
Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapter 4.6:
Nakai, T.; Mikami, K. Org. React. (N.Y.) 1994, 46, 105-209.
Hoffmann, Angew. Chem. Int. Ed. 1979, 18, 563-572 (Stereochemistry of)
Nakai, Chem. Rev. 1986, 86, 885-902 (Wittig Rearrangement)
Evans, Accts. Chem. Res. 1974, 7, 147-55 (sulfoxide Rearrangement)
Vedejs, Accts. Chem. Res. 1984, 17, 358-364 (Sulfur Ylilde Rearrangements)
- X - O, Y = C; Wittig Rearrangement:

13-04-[2,3] introduction 10/15/03 8:55 AM

■ X - S, Y = C; Sulfonium Ylide Rearrangement:

Lythgoe, Chem Commum 1972, 757
■ $\mathrm{X}-\mathrm{N}, \mathrm{Y}=\mathrm{C}$; Ammonium Ylide Rearrangement:

Sommelet-Hauser:

Review, Pines, Org. Rxns 1970, 18, 416

Modern versions of Stevens:

Buchi, JACS 1974, 96, 7573
Mander, JOC 1973, 38, 2915
important extension lacking CN FG; Sato, JACS 1990, 112, 1999

■ $\mathrm{X}-\mathrm{O}, \mathrm{Y}=\mathrm{C}$; Wittig-like Rearrangements

Buchi, JACS 1974, 96, 5563

In thinking about this rearrangement, also consider the carbenoid resonance form as well

■ $\mathrm{X}-\mathrm{O}, \mathrm{Y}=\mathrm{C}$; An all-carbon Rearrangement

■ X $-\mathrm{N}, \mathrm{Y}=\mathrm{O}$; Meisenheimer Rearrangement

Tanabe, Tet Let. 1975, 3005

- $\mathrm{X}-\mathrm{S}, \mathrm{Y}=\mathrm{O}$; Sulfoxide Rearrangement

Evans, Accts. Chem. Res. 1974, 7, 147

■ X - Se, $\mathrm{Y}=\mathrm{N}$; Related Rearrangement

■ X-S, Y=N; Related Rearrangement

Dolle, Tet Let. 1989, 30, 4723 Hopkins, JOC 1985, 50, 417

■ 1,2-Disubstitution: Good Trans Olefin Selectivity
Starting olefin: Trans

$R_{a} \& R_{b}$ prefer to orient in pseudo-equatorial positions during rearrangement; nevertheless, this is a delicately balanced situation

Starting olefin: Cis

Conclusions

\square Olefin geometry dictates sense of asymmetric induction in rearrangement
$\square(Z)$ Olefin rearrangements might exhibit higher levels of 1,3 induction
\square Product olefin geometry can be either (E) or (Z) from (E) starting material \square Product olefin geometry will be (E) from (Z) starting material

The preceeding transition state models do not explain some of the results:
\square Cis selectivity has been observed: Still JACS 1978, 100, 1927.

However, Cis selectivity is dependent on starting olefin geometry

Several theoretical studies have been published: Good reading

Houk JOC 1991, 56, 5657 (Sulfur ylide transition states)
Houk JOC 1990, 55, 1421 (Wittig transition states)

- Starting olefin: (E) Trisubstituted

$R_{1}-M e$ interaction can destabilize the (E) transition state while (Z) TS might be destabilized by R_{1} interactions with both $X-Y$ and allyl moiety.

- Olefin geometry dictates sense of asymmetric induction in rearrangement $\square(Z)$ Olefin rearrangements might exhibit higher levels of 1,3 induction \square Product olefin geometry can be either (E) or (Z) from (E) starting material \square Product olefin geometry will be (E) from (Z) starting material

■ (Z) selectivity has been observed: Still JACS 1978, 100, 1927.

Still says that the TS is early, so that the 1,2 interactions in the TS are most important.

■ (Z) selectivity has also been observed by others: Sato JACS 1990, 112, 1999

Trisubstituted olefins via [2,3]-rearrangement of sulfoxides:

- In contrast to the previous cases exhibiting (Z) selectivity rearrangements (E)-selective rearrangments has been observed:

$\alpha / \gamma=90: 10(95 \%)$
Accts. Chem. Res. 1974, 7, 147-55

(E):(Z) > 97:3 (80-85\%)

$25^{\circ} \mathrm{C}$

is operationally equivalent to:

${ }^{\mathrm{Me}}$
- Trisubstituted olefins via [2,3]-rearrangement of sulfonium ylides:

Grieco, JOC 1973, 38, 2572
(E):(Z) > 90:10 (70\%)

A general procedure for the direct synthesis of sulfur ylides:

$$
\begin{aligned}
& \text { pKa~18 (DMSO }
\end{aligned}
$$

- Trisubstituted olefins via Wittig [2,3]-rearrangement:

However, this reaction is not general:

(E):(Z) $31: 69$

Nakai, Tet Let 1986, 27, 4511

■ Trisubstituted olefins via [2,3]-rearrangement:

One might project that the (E) path will be moderately favored with selectivity depending on size difference between $R_{L} \& R_{M}$

Rautenstrauch, Helv. Chim Acta 1971, 54, 739

$(E):(Z)=3: 2$

Buchi, JACS 1974, 96, 5563

poorly selective

An elegant squalene synthesis Ollis, Chem. Commun 1969, 99

For study on this $[2,3]$ rxn See Baldwin JACS 1971, 93, 6307
[2,3] heat

$\downarrow \mathrm{PPh}_{3} \rightarrow \mathrm{~S}=\mathrm{PPh}_{3}$

This rxn is probably not as stereoselective as advertised
[2,3]
For related $[2,3]$ rxns See Baldwin JACS 1968, 90, 4758 Baldwin JACS 1969, 91, 3646

$\mathrm{Li}^{2} / \mathrm{NH}_{3}$
"gave one major product in high yield"

[2,3] Sulfur Ylide Rearrangement Using a Chiral Auxiliary

Kurth JOC 1990, 55, 2286 and TL 1991, 32, 335

66\%, 94:4

Chiral Auxiliaries can also be used in the Wittig Rearrangement

Internal Relay of Stereochemistry in C-C Constructions

$\xrightarrow{\text { n-BuLi, THF, }-78^{\circ} \mathrm{C}}$

Kallmerten TL 1988, 29, 6901.
diastereoselection > 100:1 (64\%)
See these papers for other applications $\left\{\begin{array}{l}\text { Kallmerten TL 1993, 34, } 753 . \\ \text { Kallmerten TL 1993, 34, } 749 . \\ \text { Kallmerten SynLet 1992, } 845 .\end{array}\right.$

Internal Relay of Stereochemistry in C-O Constructions
Tandem [4+2] \& [2,3] Process: Evans, Bryan, Sims J. Am. Chem. Soc. 1972, 2891.

Taber J. Am. Chem. Soc. 1977, 99, 3513. Kondo Tet. Lett. 1978, 3927.

Cases where the chirality is exocyclic to the rearrangement

A Felkin analysis predicts the major product

Bruckner, Angew. Chem. Int. Ed. 1988, 27, 278

Allylic Ethers to Make Three Contiguous Stereocenters

Can you rationalize the stereochemical outcome of this reaction?

The Synthesis of Bakkenolide-A (Evans JACS 1977, 99, 5453)

- Candidate processes:

- The synthesis:

Note that rearrangement is not required to proceed via the carbenoid. propose altenate mechanism

Bakkenolide-A

65% (no other isomer)

[2,3] Sigmatropic rearrangements respond to subtile steric effects

Evans, JACS, 1972, 94, 3672

 selectivity: 90:10

- The comparison of analogous $[2,3] \&[3,3]$ rearrangements:

selectivity: 52:48

 selectivity: 75:25

House, JOC 1975, 40, 86

Ring expansion reactions have been investigated

Methods based on sulfur ylides: (review) Vedejs, Accts. Chem. Res. 1984, 17, 358

Methynolide has been synthesized by Vedejs using this ring-expansion methodology Vedejs, JACS 1989, 111, 8430

An early ring expansion using the Sommelet-Hauser Rearrangement

13-13-applications-4 10/15/03 8:58 AM

A ring contraction using the Wittig Rearrangement

Aristolactone

Marshall, JACS 1988, 110, 2925

A ring contraction using the Stevens Rearrangement

Both rearrangements afford a single isomer
Stevenson, Tet. Lett 1990, 31, 4351
http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 14

Pericyclic Reactions-4

- [3,3] Sigmatropic Rearrangements: Introduction
- Cope Rearrangements \& Variants
- Claisen Rearrangements \& Variants
- Reading Assignment for week:

Carey \& Sundberg: Part A; Chapter 11 Concerted Pericyclic Reactions
Fleming: Chapter 4: Thermal Pericyclic Reactions
K. Houk, Transition Structures of Hydrocarbon Pericyclic Rxns Angew Chem. Int. Ed. Engl. 1992, 31, 682-708
K. Houk, Pericyclic Reaction Transition States: Passions \& Punctilios, Accts. Chem. Res. 1995, 28, 81-90
Angew Chem. Int. Ed. Engl. 1992, 31, 682-708
D. A. Evans

Friday,
October 16, 2003

- Other Reading Material:
[3,3] Sigmatropic Rearrangements
Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 5,
Chapter 7.1: (Cope, oxy-Cope, Anionic oxy-Cope)
Chapter 7.2, Claisen
S. J. Rhoades, Organic Reactions 1974, 22, 1 (Cope, Claisen)
S. R. Wilson, Organic Reactions 1993, 43, 93 (oxy-Cope)
T. S. Ho, Tandem Organic Reactions 1992, Chapter 12 (Cope, Claisen)

Paquette, L. A. (1990). "Stereocontrolled construction of complex cyclic ketones by oxy-Cope rearrangement." Angew. Chem., Int. Ed. Engl. 29: 609.

- Problems of the Day:

Predict the stereochemical outcome of this Claisen rearrangement

Provide a mechanism for the indicated fransformation

Schreiber, JACS 1984, 106, 4038

General Reviews:
S. J. Rhoades, Organic Reactions 1974, 22, 1 (Cope, Claisen)
S. R. Wilson, Organic Reactions 1993, 43, 93 (oxy-Cope)
T. S. Ho, Tandem Organic Reactions 1992, Chapter 12 (Cope, Claisen)

Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 5,
Chapter 7.1: (Cope, oxy-Cope, Anionic oxy-Cope)
Chapter 7.2, Claisen

Cope Rearrangement, Ea = $33.5 \mathrm{kcal} / \mathrm{mol}$
Claisen Rearrangement Ea $=30.6 \mathrm{kcal} / \mathrm{mol}$

The Reaction Energetics Goldstein, JACS 1972, 94, 7147

The CopeTransition States

The Boat and Chair geometries for these transition structures are well defined.

The FMO Analysis (Fleming page 101)

Bring two allyl radicals together to access for a possible bonding interaction between termini.

It is evident that synchronous bonding is possible in this rearrangement

Doering/Roth Experiments: Tetrahedron 18, 67, (1962):

The Geometry of the transItion state (boat vs chair) can be analyzed via the rearrangement of substituted 1,5-dienes:

Threo isomer

Miso isomer
■ Measure product composition from rearrangement of each dene isomer

trans-trans

Predictions: Threo isomer

cis-cis

disfavored

trans-cis

Predictions Peso isomer

favored
 Me trans-trans

The Results

trans-trans: 90\%

Results: Threo isomer

 cis-cis 10\%

Results:

trans-cis: 99.7\% ^ $\Delta \Delta G^{\ddagger}$ Mess isomer

$\xrightarrow{\text { favored }}$
 $\downarrow \sim 5.7 \mathrm{kcal} / \mathrm{mol}$ trans-trans: 0.3%

Ring Strain can be employed to drive the Cope process:

Brown Chem. Commun. 1973, 319

Reese Chem. Common. 1970, 1519

Ring Strain can be employed to drive the Cope process:

W. von E. Doering's Bullvalene

Bullvalene: $\mathrm{Ea}=13.9 \mathrm{kcal} / \mathrm{mol}$
At $100^{\circ} \mathrm{C}$ one carbon is observed in nmr spectrum
Carey, Vol 1, page 630-630

- Position of Equilibrium dictated by ring strain issues:

Vogel Angew. Chem. Int. Ed 1963, 2, 739

Wharton J. Org. Chem. 1973, 38, 4117

However, tautomerism can shift the equilibrium:
 tautomerization give you?
$\Delta \mathrm{G}=1.4(\mathrm{pKeq})=1.4 \mathrm{X}(-5)=-7 \mathrm{kcal} / \mathrm{mmol}$
14-03-Strain Acceleration 10/15/03 12:03 PM

- Ring extension via divinylcyclopropane rearrangement

Piers, Can J. Chem. 1983, 61, 1226, 1239

Marino, J. Org. Chem. 1974, 39, 3175
Accelerated Cope Rearrangements

Evans, Golob, JACS 1975, 97, 4765.
Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 5,
Chapter 7.1: (Cope, oxy-Cope, Anionic oxy-Cope)
"Recent applications of anionic oxy-Cope rearrangements."
Paquette, L. A. Tetrahedron 1997, 53, 13971-14020

The Aborted Oxy-Cope Reaction (circa 1969)

- The basic reaction

- Actual case studied:

Prediction of Substituent Effect (circa 1969)

$$
\begin{aligned}
& \Delta G^{\ddagger} O_{-}=\Delta G^{\ddagger} O H^{+} 2.3 R T\left[p k a_{\mathrm{TS}}-\mathrm{pka} \mathrm{SM}\right] \\
& \Delta \mathrm{G}^{\ddagger} \mathrm{O}=\Delta \mathrm{G}^{\ddagger} \mathrm{OH}+2.3 R T[18-29] \quad \text { (in DMSO) } \\
& \Delta \mathrm{G}^{\ddagger} \mathrm{O}_{-}=\Delta \mathrm{G}^{\ddagger} \mathrm{OH}+1.4[-11] \\
& \Delta \mathrm{G}^{\ddagger} \mathrm{O}_{-}=\Delta \mathrm{G}^{\ddagger} \mathrm{OH}-15 \mathrm{kcal} / \mathrm{mol} \text { at } 298 \mathrm{~K} \text { (in DMSO) }
\end{aligned}
$$

Documentation of Alkoxy Substituent Effect

with A. M. Golob, JACS. 1975, 97, 4765.

Origin of the Rate Effect

Effect probably comes from both reactant destabilization \&
transition state stabilization
$\Delta-\Phi \sim 15 \mathrm{kcal} / \mathrm{mol}$

Substituent Effects in Bond Homolysis

$D_{I}-D_{I I}=2.3 R T[p k a(A)-$ pka $(B)]$

In DMSO: $\Delta \mathrm{D}=2.3 \mathrm{RT}[29-\mathrm{pka} \mathrm{18}]=\sim 15 \mathrm{kcal} / \mathrm{mol}$
■ Substituent Effect based on ab initio calculations
(Evans, Goddard, JACS 1979, 101, 1994)

Related papers: Evans, Baillargeon, Tet Lett. 1978, 36, 3315, 3319

Substituent Effects in Molecular Rearrangements

14-06-Oxy-Cope appl 10/15/03 12:04 PM

Synthesis of (+)-CP-263,114: Shair, JACS 2000, 122, 7424-7425.

Propose a synthesis of α-amorphene using 1-methyl-1,3-cyclohexadiene.

α-amorphene

Gregson, R. P.; Mirrington, R. N. J. Chem. Soc., Chem. Commun. 1973, 598.

By incorporating a carbonyl group into this structure generate all possible oxy-Cope retrons.
Which is (are) the most reasonable?
Bérubé, G.; Fallis, A. G. Tetrahedron Lett. 1989, 30, 4045.

By incorporating a double bond into this structure generate all possible oxy-Cope retrons.
Which is (are) the most reasonable?

By incorporating a double bond into this structure generate all possible oxy-Cope retrons. Which is (are) the most reasonable?

Paquette, L. A. et al. Tetrahedron Lett. 1987, 28, 31.
 \longmapsto

Propose a synthesis of \mathbf{A} using the illustrated dihydropyran synthon. Oplinger, J. A.; Paquette, L. A. Tetrahedron Lett. 1987, 28, 5441.

[^3]

Propose a three step synthesis of \mathbf{B} from \mathbf{A}.
Koreeda, et al. J. Org. Chem. 1980, 45, 1172.

51\%

Propose detailed mechanisms for these reactions.
Rationalize the different behavior of these enol ether isomers.
Paquette, L. A.; Reagan, J.; Schreiber, S. L.; Teleha, C. A.
J. Am. Chem. Soc. 1989, 111, 2331-2332.

■ General Reviews:
S. J. Rhoades, Organic Reactions 1974, 22, 1 (Cope, Claisen)

Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 5, Ch 7.2
Ziegler, Accts. Chem. Res. 1977, 10, 227 (Claisen)
Bennett, Synthesis 1977, 589 (Claisen)
Blechert, Synthesis 1989, 71 (HeteroCope)
R. K. Hill, Asymmetric Synthesis vol 3, Ch 8, p503 (chirality transfer)

Ziegler, Chem Rev. 1989, 89, 1423 (Claisen)

- The Reaction:

There is good thermodynamic driving force for this reaction.
Bonds Broken: $\mathrm{C}-\mathrm{C}_{\pi}\left(65 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$ \& $\mathrm{C}-\mathrm{O}_{\sigma}\left(85 \mathrm{kcal} \mathrm{mol}^{-1}\right)$
Bonds Made: $\mathrm{C}-\mathrm{O}_{\pi}\left(85 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and $\mathrm{C}-\mathrm{C}_{\sigma}\left(85 \mathrm{kcal} \mathrm{mol}-{ }^{-1}\right)$

- Themodynamics of Claisen Variants:

Heteroatom substitution at the indicated position increases exothermicity as well as reaction rate
14-08-Claisen-1 10/16/03 7:22 PM

Recognition Pattern for Organic Synthesis: An Enforced SN2'

Stereochemical outcome is syn and controlled by hydroxyl stereocenter

Rearrangements of Aryl Allyl Ethers: Traditional Applications

Stereoelectronic \& steric constraints

■ Endocyclic Olefins: Ireland, JOC 1983, 48, 1829

for endocyclic olefins, overlap between developing sigma and pi bonds required. Best overlap for forming chair geometry. As shown below, bring a radical up to either face of the allylic radical. As the bond is formed, overlap must be maintained. Parh A evolves into a chair conformation while Path B evolved into a boat conformation.

■ Exocyclic Olefins: House, JOC 1975, 40, 86

for exoocyclic olefins, overlap between developing sigma and pi bonds is equally good from either olefin diastereoface. In this instance, steric effects dominate \& this system shows a modest preference for "equatorial attack." A related case is provided below.

Synthesis of Allyl Vinyl Ethers

Watanabe, Conlon, JACS 1957, 79, 2828 Bronsted acids can also serve as catalysts

Use of Tebbe's Reagent: Evans, Grubbs, J. Am. Chem. Soc. 1980, 102, 3272. (review) S. H. Pines, Organic Reactions 1993, 43, 1

The Ireland approach to the bicyclic acid A: JOC 1962, 27, 1118

The new stereocenter ($*$) introduced via the rearrangement had
the wrong configuration!

Claisen Rearrangement as vehicle for stereoselective olefin synthesis Consider the following rearrangement:

Faulkner \& Perrin (Tet. Lett. 2783 (1969) have made the correlation between $\Delta \Delta G^{\ddagger}$ for rearrangement $\& \Delta G^{\circ}$ for the corrresponding cyclohexane ${ }^{\#}$ equilibria:

\#Note: The A-value of 2-methyl-tetrahydropyran is $+2.86 \mathrm{kcal} / \mathrm{mol}$ (LectureNo. 6)

They then suggest that there is a good correlation between cyclohexane "A-values" \& $\Delta \Delta G^{\ddagger}$ for the rearrangement process. Their case is fortified by the following expamples:

Faulkner, JACS 1973, 95, 553

Faulkner suggests that the installation of other substituents on Claisen transition states will lead to enhanced reaction diastereoselection:

The $R_{2} \leftrightarrow X$ interaction should destabilize a^{\ddagger} as X gets progressively larger.

X	$(\mathrm{E}):(\mathrm{Z})$ found		
$\mathrm{H}-$	$90: 10$		
$\mathrm{Me}-$	$>99: 1$		Faulkner, Tet Let 1969, 3243
$\mathrm{MeO}-$	$>99: 1$		Faulkner, JACS 1973, 95, 553
$\mathrm{Me}_{2} \mathrm{~N}-$	$>98: 2$		

- Another comparison: (DAE) M. DiMare, Ph. D. Harvard University, 1988

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 15

Pericyclic Reactions-5

- Claisen Rearrangements \& Variants
- Reading Assignment for week:

Carey \& Sundberg: Part A; Chapter 11 Concerted Pericyclic Reactions

Carey \& Sundberg: Part B; Chapter 6 Cycloadditions, Unimolecular Rearrangements

Thermal Eliminations
Fleming: Chapter 4
Thermal Pericyclic Reactions
Wipf, P. Claisen Rearrangements.; Trost, B. M. and Fleming, I., Ed.; Pergamon Press: Oxford, 1991; Vol. 5, pp 827.

New Aspects of the Ireland and Related Rearrangements, Tetrahedron 2002, 58, 2905-2928 (handout)
D. A. Evans

Wednesday,
October 20, 2003

- Other Reading Material:

Enders, D.; Knopp, M.; Schiffers, R. "Asymmetric [3.3]-sigmatropic rearrangements in organic synthesis."
Tetrahedron: Asymmetry 1996, 7, 1847-1882
Ziegler, F. E. "The Thermal Aliphatic Claisen Rearrangement." Chem. Rev. 1988, 88, 1423.
Gajewski, J. J. "The Claisen rearrangement. Response to solvents and substituents: The case for both hydrophobic and hydrogen bond acceleration in water and for a variable transition state." Acc. Chem. Res. 1997, 30, 219-225.
Tietze, L. F. "Domino reactions in organic synthesis." Chem. Rev. 1996, 96, 115-136.
Parsons, P. J.; Penkett, C. S.; Shell, A. J. "Tandem reactions in organic synthesis: Novel strategies for natural product elaboration and the development of new synthetic methodology." Chem. Rev. 1996, 96, 195-206.
Pereira, S.; Srebnik, M. "The Ireland-Claisen rearrangement." Aldrichimica Acta 1993, 26, 17.

- Problems of the Day:

Propose a mechanism for this transformation

Predict the stereochemical outcome of this reaction

Kurth, JOC 1985, 50, 1840

■ General Reviews:
S. J. Rhoades, Organic Reactions 1974, 22, 1 (Cope, Claisen)

Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 5, Ch 7.2
Ziegler, Accts. Chem. Res. 1977, 10, 227 (Claisen)
Bennett, Synthesis 1977, 589 (Claisen)
Blechert, Synthesis 1989, 71 (HeteroCope)
R. K. Hill, Asymmetric Synthesis vol 3, Ch 8, p503 (chirality transfer)

Ziegler, Chem Rev. 1989, 89, 1423 (Claisen)

- The Reaction:

There is good thermodynamic driving force for this reaction.
Bonds Broken: $\mathrm{C}-\mathrm{C}_{\pi}\left(65 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$ \& $\mathrm{C}-\mathrm{O}_{\sigma}\left(85 \mathrm{kcal} \mathrm{mol}^{-1}\right)$
Bonds Made: $\mathrm{C}-\mathrm{O}_{\pi}\left(85 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and $\mathrm{C}-\mathrm{C}_{\sigma}\left(85 \mathrm{kcal} \mathrm{mol}-{ }^{-1}\right)$

Themodynamics of Claisen Variants:

Heteroatom substitution at the indicated position increases exothermicity as well as reaction rate
15-01-Claisen-1 10/19/03 5:47 PM

Recognition Pattern for Organic Synthesis: An Enforced SN2

Stereochemical outcome is syn and controlled by hydroxyl stereocenter

Rearrangements of Aryl Allyl Ethers: Traditional Applications

Stereoelectronic \& steric constraints

■ Endocyclic Olefins: Ireland, JOC 1983, 48, 1829

for endocyclic olefins, overlap between developing sigma and pi bonds required. Best overlap for forming chair geometry. As shown below, bring a radical up to either face of the allylic radical. As the bond is formed, overlap must be maintained. Parh A evolves into a chair conformation while Path B evolved into a boat conformation.

■ Exocyclic Olefins: House, JOC 1975, 40, 86

for exoocyclic olefins, overlap between developing sigma and pi bonds is equally good from either olefin diastereoface. In this instance, steric effects dominate \& this system shows a modest preference for "equatorial attack." A related case is provided below.

Synthesis of Allyl Vinyl Ethers

Watanabe, Conlon, JACS 1957, 79, 2828 Bronsted acids can also serve as catalysts

Use of Tebbe's Reagent: Evans, Grubbs, J. Am. Chem. Soc. 1980, 102, 3272. (review) S. H. Pines, Organic Reactions 1993, 43, 1

The Ireland approach to the bicyclic acid A: JOC 1962, 27, 1118

The new stereocenter ($*$) introduced via the rearrangement had
the wrong configuration!

Claisen Rearrangement as vehicle for stereoselective olefin synthesis

Consider the following rearrangement:

Faulkner \& Perrin (Tet. Lett. 2783 (1969) have made the correlation between $\Delta \Delta G^{\ddagger}$ for rearrangement $\& \Delta G^{\circ}$ for the corrresponding cyclohexane ${ }^{\#}$ equilibria:

\#Note: The A-value of 2-methyl-tetrahydropyran is $+2.86 \mathrm{kcal} / \mathrm{mol}$ (Lecture No. 6)

They then suggest that there is a good correlation between cyclohexane "A-values" \& $\Delta \Delta G^{\ddagger}$ for the rearrangement process. Their case is fortified by the following expamples:

Faulkner, JACS 1973, 95, 553

Faulkner suggests that the installation of other substituents on Claisen transition states will lead to enhanced reaction diastereoselection:

The $R_{2} \leftrightarrow X$ interaction should destabilize a^{\ddagger} as X gets progressively larger.

X	$(\mathrm{E}):(\mathrm{Z})$ found		
$\mathrm{H}-$	$90: 10$		
$\mathrm{Me}-$	$>99: 1$		Faulkner, Tet Let 1969, 3243
$\mathrm{MeO}-$	$>99: 1$		Faulkner, JACS 1973, 95,553
$\mathrm{Me}_{2} \mathrm{~N}-$	$>98: 2$		

- Another comparison: (DAE) M. DiMare, Ph. D. Harvard University, 1988

Johnson Orthoester Claisen

■ Lead paper: Johnson, Faulkner, Peterson, JACS 1970, 92, 741

- Compare the two variants:
 $60 \% \downarrow \mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{EVE}$

The Saucy Marbet Alternative

Saucy, Marbet, Helv. Chim. Acta 1967, 50, 2091,2095

15-04-Johnson/Eschenm 10/19/03 5:52 PM

Eschenmoser-Claisen

Eschenmoser, A. Helv. Chem. Acta 1964, 47, 2425; Helv. Chim.Acta 1969, 52, 1030.

Synthesis of Amide Acetals

Reactions to ponder:

Ireland-Enolate Claisen

Reviews New Aspects of the Ireland and Re;ated Rearrangements, Tetrahedron 2002, 58, 2905-2928 (handout)

Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868

Enolization: Amide Bases \& Ireland Enollization Model
Stereoelectronic Requirements: $\alpha-\mathrm{C}-\mathrm{H}$ bond must be able to overlap with $\pi * \mathrm{C}-\mathrm{O}$

The Ireland Model (JACS 1976, 98, 2868); Narula, Tetrahedron Lett. 1981, 22, 4119; more recent study: Ireland, JOC 1991, 56, 650

For a recent study on the effect of amide base structure on (E)/(Z) selectivity in the cont3ext of the Ireland enolization model see: JOC 1997, 62, 7516.

Substituted enolates afford an additional stereocenter

key study: Ireland, JOC 1991, 56, 650 and earlier cited papers

Double Claisen Rearrangements are also possible

Paterson, Tet Lett 1991, 32, 7601

Recent studies on controlling enolization condiltions have apeared Yamamoto, JOC 1993, 58, 5301

Chelating substituents on α-carbon afford (Z)-enolates
Fujisawa, Tet Lett 1983, 24, 729

These Chelating substituents can be benzyl ethers as well
Kalmerton, Tet Lett 1993, 34, 1103

A Problem to consider Predict the stereochemical outcome of this reaction

Johnson Squalene Synthesis: JACS 1970, 92, 741

Observations: Molecule contains an obvious symmetry plane The trisubstituted $\mathrm{C}=\mathrm{C}$'s are the issue

$\underset{\mathrm{Me}}{\mathrm{Me}} \underset{\mathrm{Me}}{\mathrm{Me}} \mathrm{PPh}_{3}^{+}$

Isomeric purity is Ca 95\%

Faulkner Juvenile Hormone Synthesis: JACS 1973, 95, 553

nonselective $[\mathrm{H}$

Chirality transfer via the Claisen rxn is an integral aspect of the general utility of process
R. K. Hill, Asymmetric Synthesis vol 3, Ch 8, p503 (chirality transfer)

Such chirality permutation processes are only as stereoselective as the energy difference between diastereomeric chair transiltion states

Note that chirality transfer is coupled to olefin geometry in product. Prior arguments (Faulkner) imply that the X substituent will play significant role in promoting selectivity.

68\% enantiomerically pure
Uskokovic, JACS 1979, 101, 6742

Heathcock JOC 1988, 53, 1922

Sense of Asymmetric induction may be controlled by olefin geometry

Since stereoselection in reduction of acetylenes is $>98 \%$, either product accessible
tocopherol (Vitamin E) Cohen JOC 1976, 41, 3497

50%
\square

$(Z):(E)=98: 2$
|92\%

(E):(Z) $=>99: 1$

diastereoselection ~ 99\% from both routes

Boat transition states more accessible in Claisen than in Cope rearrangements

■ A case where the chair-boat preference depends on enol geometry

Factors controlling diastereoselection
Enolate geometry
Chair vs Boat transition states
Bartlett, JOC 1981, 46, 3896
Ireland, JACS 1991, 56, 3572

Ireland study supports Bartlett's conclusions

- In this case the boat geometry is preferred from either enol geometry

15-09-Boat geometries 10/19/03 5:56 PM

- The analysis:

Ireland, JACS 1991, 56, 3572

Chair (E)-enolate
Boat (E)-enolate

- A further example:

It appears that both of the indicated interactions contribute to the destabilization of chair geometry

- In this case the chair geometry is preferred from either enol geometry

- In this case the boat geometry is preferred from either enol geometry

- Summary:

chair-preferred TS from either geometry boat/chair TS dependant on enol geometry 15-10-Boat geometries-2 10/19/03 5:57 PM

The Claisen Rearrangement has been used in fragment coupling

Ireland, J. Org. Chem. 1986, 51, 635
Ireland, J. Org. Chem. 1981, 46, 4863

In the initial approaches to the synthesis, the Schlosser-Wittig was unsuccessfully attempted for the fragment coupling process.

key paper for decarboxylation: Ireland, JACS 1985, 107, 3285

The Ireland lasalocid synthesis: JACS 1983, 105, 1988

- Here is another potential Claisen construction

15-11-lasalocid 10/19/03 5:59 PM

- The relevant rearrangements:

The Ireland monensin synthesis:

Consider the prostaglandin nucleus

Claisen retrons $\sqrt{\square}$

\prod Claisen

\rrbracket Claisen

- Unrealized plan to generate the required enolate

An Application PGA $_{1}$: Ireland JOC 1976, 41, 986; Aldrichimica Acta 1988, 21, 59

Prostaglandin A_{2} Synthesis, G. Stork, JACS 1976, 98, 1583

C-8 center can be controlled
by equilibration

via erythrose

$\mathrm{MeO}_{2} \mathrm{C}\left(\mathrm{CH}_{2}\right.$

set in this rxn

■ The previous cases were derived from a connection between $R_{2} \& R_{3}$

■ Consider consequence of connecting $R_{1} \& R_{2}$

see also Danishefsky, JACS 1980, 102, 6889, 6891

[^4]The Indanomycin Synthesis,
Burke, Tet. Lett. 1985, 26, 1163; ibid, 1986, 27, 6295

H Et
"Right wing"

- The Left Wing: Tet. Lett. 1985, 26, 1163

- The Right Wing: Tet. Lett. 1986, 27, 6295

The "apparent" Claisen process is more complicated than anticipated.

The FK 506 application
Schreiber Synthesis JACS 1990, 112, 5583

- The Schreiber Route:

Claisen disconnection

- Now connect $R_{1} \& R_{3}^{R_{1}}$

■ Examples: Funk, JACS 1982, 104, 4030

81%

89\%

- The previous cases were derived from a connection between $R_{2} \& R_{3}$
\square and $R_{1} \& R_{2}$

15-14-cyclic enolates-2 10/19/03 6:01 PM

■ Recent improvments: Funk, JACS 1993, 115, 8847

chrysanthemic acid application

Exocyclic Stereochemical Issues

These rearrangements present many of the same issues which were encountered during our discussion of carbonyl addition with regrad to assymmetric induction.

■ Chelate Control: β-Hydroxy ester enolates: Kurth, JOC 1985, 50, 1840

We again see the consequence of chelate-organized asymmetric induction

- Felkin Control ?: Cha, Tet. Lett. 1984, 25, 5263

75:25

Takano, Tet. Lett. 1985, 26, 865

N-Allylketene-N-O-Acetals: Kurth, JACS 1985, 107, 443

diastereoselection 94:6

The Claisen Rearrangement is subject to acid catalysis

BF_{3}-HOAc: Bryusova, J. Gen. Chem. (USSR) 1941, 11, 722
BCl_{3} : Gerrard, Proc. Chem. Soc. 1957, 19;
Schmid, Helv. Chem. Acta 1973. 56, 14
$\mathrm{Et}_{2} \mathrm{AICI}$: Sonnenberg, J. Org. Chem. 1970, 35, 3166
TiCl_{4} : Mukaiyama, Chem. Lett. 1975, 35, 1041
$(\mathrm{RO})_{2} \mathrm{AIMe}:$ Yamamoto, JACS. 1988, 110, 7922
$(\mathrm{RO})_{2} A \mathrm{AlMe}:$ Yamamoto, Tet. Lett. 1989, 30, 1265

LiClO_{4} : Reetz, Tetrahedron. 1993, 49, 6025

Catalyzed Claisen Rearrangement of Allyl-phenyl Ethers
(RO) ${ }_{2}$ AlMe: Yamamoto, Tet. Lett. 1990, 31, 377

The Lewis Acid (LA)

$\xrightarrow{\text { heat }}$

Me
 \longrightarrow

A

B

The hindered Lewis acid will alter the partitioning of the Claisen process to the two ortho positions

15-16-catalysis-1 10/19/03 6:02 PM

Catalyzed Claisen Rearrangement of Allyl-vinyl Ethers

$(\mathrm{RO})_{2} \mathrm{AlMe}:$ Yamamoto, JACS. 1990, 112, 316

- The thermal process

- The catalyzed process

Chiral Lewis Acid Promoted Claisen Rearrangements Yamamoto, JACS. 1990, 112, 7791
Yamamoto, Tet. Asymmetry 1991, 2, 647-662

(R)-1

$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}]{(\mathrm{R})-1(1.1-2 \text { equiv.) }}$ 76-95\%

\mathbf{R}	\% ee
Ph	88%
$\mathrm{C}_{6} \mathrm{H}_{11}$	71%

\mathbf{R}	\% ee
$\mathrm{SiMe}_{2} \mathrm{Ph}$	90%
GeMe_{3}	93%

Enantioselective Claisen Rearrangements: Metal-Centered Chirality Corey, JACS. 1991, 113, 4026

\qquad

8 cases reported

Allylic rearrangements may be included as a subset of other sigmatropic processes:

■ $\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{S}$ Faulkner, Synthesis 1971175 (see pg 183)

(E) selectivity: 96.5%

■ A stereochemically related case Johnson, JACS 1970 92, 735

- $\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{N}$

Roberts, JACS 1960 82, 1950 Hill, JOC 1968 33, 1111

- $\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{N}$:

The Trichloroacetimidate Rearrangement, Overman, JACS 1974, 96, 597

This reaction is also catalyzed by Hg (II) ion

For an excellent review see: Overman, Angew. Chem. Int. Ed. 1984, 23, 579

15-18-ALLYLIC rearr 10/19/03 6:03 PM

- The "Burgess Reagent" is normally used for alcohol dehydration

A new approach to the synthesis of α-amino acids

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206
Advanced Organic Chemistry

Lecture Number 16

Cycloaddition Reactions-1

■ Cycloadditions: Introduction

- Ketene Cycloadditions
- The Diels-Alder Reaction

Reading Assignment for week:

Carey \& Sundberg: Part A; Chapter 11 Concerted Pericyclic Reactions

Carey \& Sundberg: Part B; Chapter 6 Cycloadditions, Unimolecular Rearrangements

Thermal Eliminations
Fleming: Chapter 4
Thermal Pericyclic Reactions

Wednesday,
D. A. Evans

October 22, 2003

The Diels-Alder Cycloaddition Reactions

"Diels-Alder Reactions". Evans, D. A.; Johnson J. S. In Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.; and Yamamoto, H. Editors; Springer Verlag: Heidelberg, 1999; Vol III, 1178-1235 (electronic handout)

The Diels-Alder Reaction in Total Synthesis, K. C. Nicolaou, Angew Chem. Int. Ed. 2002, 41, 1668-1698 (electronic handout)

Catalytic Enantioselective Diels-Alder Reactions: Methods,
Mechanistic Fundamentals, Pathways, and Applications, E. J.
Corey, Angew Chem. Int. Ed. 2002, 41, 1650-1667 (electronic handout)

Chemistry and Biology of Biosynthetic Diels-Alder Reactions Emily M. Stocking and Robert M. Williams, Angew Chem. Int. Ed. 2003, 42, 3078-3115 (electronic handout)

Problem of the Day:

Rationalize the sense of asymmetric induction for this Diels-Alder Reaction reported by MacMillan, JACS, 2000, 122, 4243. (pdf)

Why does maleic anhydride react easily with 1,3-butadiene, but not with ethylene? So what are the "rules"?

\square The related reaction of 2 ethylenes is nonconcerted: [2+2] cycloaddition

We also know that the photochemical variant is concerted
The frontier orbitals of the reacting species must have the proper symmetries

Using this nomenclature, the Diels-Alder reaction is a $\pi 4 s+\pi 2 s$ cycloaddition
■ Consider [2+2] cycloaddition: Thermal activation $[\pi 2 s+\pi 2 s]$

\square Consider [2 + 2] cycloaddition: Photochemical activation [$\pi 2 s+\pi 2 s]$

$\pi \xlongequal{4 \downarrow} 00$

[2+2] Cycloaddition - Examples

Quadricyclane Dauben, Tet. 1961, 15, 197.

Dewarbenzene-Derivative

Schäfer, $A C$ 1967, 79, 54.

Prismane-Der.

must be antarafical for indicated stereochem

$$
\text { TL 1967, 4357, } 4723 .
$$

[^5]Summary of Ketene Cycloadditions

or

Alkene

Ketene Preparation
 $\mathrm{X}=\mathrm{Cl}, \mathrm{Ts}, \mathrm{AcO}, \mathrm{DCC}$, etc...

$$
\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}+\mathrm{AcOH}
$$

$\mathrm{RCH}_{2} \mathrm{CO}_{2} \mathrm{Ar} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{-\mathrm{OH}}$

16-02-Cycloaddition intro-2 10/22/03 8:16 AM

FMO Analysis

[2+2]: Stepwise Versus Concerted

Stepwise

- Very large polar effects
- E olefins yield a mixture of cis and trans products
- Solvent effects observed, but it could merely be a ground state effect
- KIE seen for many reactions support stepwise mechanism
- Calculations (Wang and Houk) show a highly asynchronus transition state in the gas phase
reaction
- All stereochemical outcomes can be
rationalized assuming a stepwise mechanism

Solvent Effects

X	Solvent	endo/exo	X	Solvent	endo /exo
Cl	hexane	$4.3 / 1$	Br	hexane	$0.71 / 1$
Cl	$\mathrm{Et}_{3} \mathrm{~N}$	$2.2 / 1$	Br	$\mathrm{Et}_{3} \mathrm{~N}$	$0.28 / 1$
Cl	CHCl_{3}	$1.6 / 1$	Br	$\mathrm{CH}_{3} \mathrm{CN}$	$0.14 / 1$
Cl	$\mathrm{CH}_{3} \mathrm{CN}$	$0.59 / 1$			

- Solvent effects implicate a zwitterionic intermediate

Brady,et. al, JACS 1970, 92, 146-148.

Ketene-Alkene [2+2]

Frey, H. M.; Isaacs, N. J. J. Chem Soc. B, 1970, 830-832.

Mechanism and Origin of Stereoselectivity in Lewis Acid Catalyzed [2 2]
Cycloadditions of Ketenes with Aldehydes, Singleton, Angew. Chem. Int. Ed. 2002,
41, 1572

Transformations of β-Lactones

Vederas et al JACS 1987, 107, 4649.

$$
\mathrm{Nu}=\mathrm{OH}_{2}, \mathrm{ROH}, \mathrm{R}_{2} \mathrm{NH}
$$

JOC 1982, 47, 3470.

The Staudinger Reaction

In this process, the illustrated ketene, generated in situ from an acid chloride, undergoes reaction with the indicated substrates to form β-lactams in a stereoselective process. When the azo-methine (RN=CHR) geometry in the reactant is (Z) the product stereochemistry is trans (eq 1). In a complementary fashion, the (E) imine affords the cis-substituted product (eq 2). While this transformatlion could be viewed as a [2s+2a] cycloaddition, it is felt that this reaction is stepwise.

The stepwise mechanism

Ther are two contortaory modes. If you control the conrotatory mode, you control the absolute stereochemistry of the reaction:

Evans, SjogrenTet. Lett. 1985, 26, 3783, 3787.
See also Evans, Williams, Tet. Lett. 1988, 29, 5065.
diastereoselection $>95: 5$
80-90\% yields
"[2+2] photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products.", Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003.
"Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis.", Bach, T. Synthesis 1998, 683.

Enantioselective Ketene-Aldehyde Cycloaddiitons

entry	Aldehyde 2 (R)	$\begin{gathered} \text { catalyst } \\ {\left[\text { time }(\mathrm{h}) \text {, temp }\left({ }^{\circ} \mathrm{C}\right)\right. \text {] }} \end{gathered}$	\% yield	$\begin{gathered} \% \text { ee } 3 \\ \text { (configuration) } \end{gathered}$
a	$\mathrm{BnOCH}_{2}-$	5b (8, -40)	91	92 (R)
b	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}-$	$5 \mathrm{a}(16,-50)$	93	92 (S)
	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}-$	$5 \mathrm{a}(72,-78)$	89	95 (S)
c	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8}-$	$5 \mathbf{b}(16,-50)$	91	91 (S)
d	$\mathrm{Me}_{2} \mathrm{CHCH}_{2}-$	$5 \mathrm{a}(24,-50)$	80	93 (S)
e	$\mathrm{BnOCH}_{2} \mathrm{CH}_{2}-$	$\mathbf{5 b}$ (16, -40)	90	91 (S)
f	TBDPSOCH ${ }_{2}$ -	$\mathbf{5 b}(16,-40)$	74	89 (R)
g	$\mathrm{BnOCH}_{2}=$	$5 \mathrm{a}(16,-50)$	86	93 (R)
h	$\mathrm{Me}_{3} \mathrm{C}=$	$5 \mathrm{a}(16,-50)$	91	85 (R)
i	$\mathrm{C}_{6} \mathrm{H}_{11}-$	5b (24, -40)	56	54 (R)

Nelson, S. G.; Peelen, T. J.; Wan, Z. JACS, 1999, 121, 9742-9743

3: $>99 \%$ yield, 92% ee

Articles and monographs of Significance

Comprehensive Organic Synthesis, Vol. 5, Trost, Ed. 1991
4.1 Intermolecular Diels-Alder Reactions, W. Oppolzer
4.2 Heterodienophile Additions to Dienes, S. M. Weinreb
4.3 Heterodiene Additions, D. L. Boger
4.4 Intramolecular Diels-Alder Reactions, W. R. Roush
4.5 Retrogade Diels-Alder Reactions, R. W. Sweger, A. W. Czarnik

The Diels-Alder Reaction in Total Synthesis, K. C. Nicolaou, Angew Chem. Int. Ed. 2002, 41, 1668-1698 (handout)
Catalytic Enantioselective Diels-Alder Reactions: Methods, Mechanistic Fundamentals, Pathways, and Applications, E. J. Corey, Angew Chem. Int. Ed. 2002, 41, 1650-1667 (handout)

Hetero Diels-Alder Methodology in Organic Synthesis
Boger, D.L. and Weinreb, S.N., Academic Press, 1987
Natural Products Synthesis Through Pericyclic Reactions
Desimoni, Tacconi, Barco, Polini, ACS Monograph 180, 1983, Chapter 5,
Asymmetric Diels-Alder Reactions with Chiral Enoates as Dienophiles Modern Synthetic Methods 1986, Scheffold, Ed. Springer-Verlag,

Intramolecular Diels-Alder and Alder Ene Rxns, D. F. Taber, Springer-Verlag, 1984
Synthetic Aspects of D-A Cycloadditions with Heterodienophiles Weinreb, Tetrahedron, 1982, 38, 3087-3128
The Intramolecular DA Rxn: recent advances and synthetic applications Fallis, Can. J. Chem., 1984, 62, 183-234

Intramolecular [4 +2] \& [3 + 2] Cycloadditions in Organic Synthesis Oppolzer, Angew. Chem. Int. Ed., 1977, 16, 10-23
Preparation \& DA Reactions of Heterosubstituted 1, 3-Dienes
Petrzilka, Synthesis, 1981, 753-786
DA Reactions of Azadienes
Boger, Tetrahedron, 1983, 39, 2869-2939
Silyloxydienes in Organic Synthesis
Danishefsky, Acct. Chem. Res., 1981, 14, 400-406
DA Reactions Part I: New Preparative Aspects
Sauer, Angew. Chem. Int. Ed., 1966, 5, 211-230
DA Reactions Part II: The Reaction Mechanism
Sauer, Angew. Chem. Int. Ed., 1967, 6, 16-33
Mechanistic Aspects of Diels-Alder Reactions: A Critical Survey Sauer, Angew. Chem. Int. Ed., 1980, 19, 779-807

- The Reaction:

- Representative natural products displaying the Diels-Alder retron:

These natural products could well have incorporated the DA rxn into the biosynthesis

JACS, 1993, 115, 4497

(Biosynthesis) JACS 1985, 107, 3694
Clive, JACS 1988, 110, 6914 Kozikowski, JOC 1987, 52, 3541

Keck, JOC 1986, 51, 2487
Grieco, JACS 1986, 108, 5908 Heathcock, JACS 1985, 107, 3731
Girotra, Tet. Let. 1983, 24, 3687 Hirama, JACS 1982, 104, 4251

X-14547A
H Ét
Roush JOC 1984, 49, 3429
Nicolaou JOC 1985, 50, 1440
Ley Chem. Commun. 1983, 630

Endiandric Acid C

Endiandric Acid B
(Syntheses)
Nicolaou, JACS 1982, 104, 5555-5562

The Alder Endo Rule
The following observation illustrates an example of the Alder Rule which will be defined below.

Observation: The endo Diels-Alder adduct is formed faster even though the exo product is more stable. There is thus some special stabilization in the transition state leading to the endo product which is lacking the exo transition state.

■ Of the two possible transition states, the one having the "greatest accumulation of interacting double bonds will be preferred" (the Alder Endo Rule).
Secondary orbital overlap is noted below.

Exo TS ${ }^{\ddagger}$

Endo TS ${ }^{\ddagger}$

Orbital Symmetry Considerations for Diels Alder Reaction

If the symmetries of the frontier MO's of reacting partners are "properly matched" the reaction is referred to as "symmetry-allowed". The Diels-Alder reaction is such a case. As illustrated, the HOMO and LUMO of both the diene and dienophile, which in this case are the same, will constructively overlap as indicated in formation of both sigma bonds.

- Primary orbital overlap leads directly to the formation of new chemical bonds.

Frontier MO Explanation for the Endo Rule

Secondary (transient) orbital overlap can also occcur in the stabilization of certain transition state geometries. Such a transient stabilizing interaction can occur in the endo, but not exo, transition state:

The Other Dimerization Possibility for Butadiene

Does the possibility for the following concerted dimerization exist?

- Note that the termini only match at one end for the HOMO-LUMO pairing. Hence we say that the symmetry requirements for the reaction in question are not met. This does not mean that the reaction will not occur, only that the reaction will not be concerted. Such reactions are called "symmetry-forbidden".

Additional Reading: Lowry \& Richardson,
Chapter 10, theory of Pericyclic Rxns pp 839-900

Transition State Modelling is Coming of Age

\square The lengths of the forming $\mathrm{C}-\mathrm{C}$ bonds are Ca .1 .5 times the normal bond distance. This factor comes out of the ab initio work of Jorgensen \& Houk leading references: Jorgensen, JACS 1993, 115, 2936-2942 Houk, Jorgensen, JACS 1989, 111, 9172

Transition Structures of Hydrocarbon Pericyclic Reactions Houk Angew. chem. Int. Ed. 1992, 31, 682-708
\square Bond formation is not synchronus with substituted dienophiles (Jorgensen)

- Diene Reactivity as measured against Maleic anhydride

$\log k=4.96$

$\log k=2.36$
$\log k=2.36 \log k=2.19$

$\log k=2.12$
$\log k=1.83$

Sauer, Angew. Chem. Int. Ed., 1980, 19, 779-807

- The closer the two orbitals are in energy, the better they interact
- As $\Delta \mathrm{E}$ decreases for the relevant ground state FMOs , rxn rates increase

Ethylene \& Butadiene Vs Butadiene \& Acrolein

$$
\Delta \mathrm{E}\left(\mathrm{LUMO}_{3}-\mathrm{HOMO}_{1}\right)<\Delta \mathrm{E}\left(\mathrm{LUMO}_{2}-\mathrm{HOMO}_{1}\right) \Longrightarrow \text { Rate Acceleration }
$$

Lewis acid catalysis not only dramatically increases rates by ca 10^{+6} it also improves reaction regiochemistry \& endo diastereoselectivity

Orientation of Reacting Partners

4.5:01@100 ${ }^{\circ} \mathrm{C}$

Lewis acid catalysis improves orientation

$$
\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{SnCl}_{4}, 25^{\circ} \mathrm{C} \quad 96: 04
$$

In general, 1-substituted dienes are more regioselective than their 2-substituted counterparts: Sauer, Angew. Chem. Int. Ed., 1967, 6, 16-33

Lewis acid catalysis improves endo diastereoselection

$$
\begin{array}{ll}
\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} & 80: 20 \\
\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{SnCl}_{4}, 25^{\circ} \mathrm{C} & 95: 05
\end{array}
$$

DA Reactions Part II: The Reaction Mechanism, Sauer, Angew. Chem. Int. Ed., 1967, 6, 16-33

Here is an interesting problem in reaction design

By employing a removable substituent, it is possible to access the normally disfavored product diastereomer

Danishefsky, JACS 1978, 100, 2918: The $\mathrm{NO}_{2} \mathrm{FG}$ completely dominates directivity

It then can be removed by elimination

or by reduction Ono, Tet. 1985, 4013

Ono, Chem. Commun. 1982, 33-34

mixture of ring-fusion

Instructive Issues of Regiocontrol with Quinone Dienophiles

Orientation of Reacting Partners controlled by Lewis acid structure
Reusch JOC 1980, 45, 5013

Conditions
Ratio
thermal (100°) $50: 50$
$\mathrm{BF}_{3}{ }^{\circ} \mathrm{OEt}_{2}\left(-20^{\circ}\right)$
80: 20
$\mathrm{SnCl}_{4}\left(-20^{\circ}\right)$
<5:95

selection >95:5

Similar results provided by Stoodley Chem. Comm. 1982, 929

Kelly Tet. Let. 1978, 4311

16-10-DA regiochem-2 10/22/03 7:01 AM

Diels-Alder Reactions with Chiral Dienes

Comprehensive Organic Synthesis, Vol. 5, Trost, Ed. 1991
4.1 Intermolecular Diels-Alder Reactions, W. Oppolzer, See page 347

Franck, Tet. Lett. 1985, 26, 3187
Franck, JACS 1988,110, 3257

Comments on the Transition State
■ Avoid Eclipsing allylic substituents

- better donor (Me) anti to forming bond
- avoid gauche OR interaction

$\mathrm{R}=\mathrm{Me}$: Ratio; 83 : 17
$R=\mathrm{Me}_{3} \mathrm{Si}$: Ratio; 88 : 12

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206
Advanced Organic Chemistry

Lecture Number 17

Cycloaddition Reactions-2

- The Diels-Alder Reaction
- Reading Assignment for week:

Carey \& Sundberg: Part A; Chapter 11 Concerted Pericyclic Reactions

Carey \& Sundberg: Part B; Chapter 6 Cycloadditions, Unimolecular Rearrangements Thermal Eliminations
Fleming: Chapter 4 Thermal Pericyclic Reactions
D. A. Evans

October 24, 2003

The Diels-Alder Cycloaddition Reactions

"Diels-Alder Reactions". Evans, D. A.; Johnson J. S. In
Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.; and Yamamoto, H. Editors; Springer Verlag: Heidelberg, 1999; Vol III, 1178-1235 (pdf)
"Chiral Bis(oxazoline) Copper (II) Complexes: Versatile Catalysts for Enantioselective Cycloaddition, Adol, Michael and Carbonyl Ene Reactions". Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325-335. (pdf)
"New Strategies for Organic Catalysis: The first Highly Selective Organocatalytic Diels-alder Reaction", MacMillan, JACS, 2000, 122, 4243. (pdf)
"New Strategies for Organic Catalysis: The first Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition", MacMillan, JACS, 2000, 122, 9874. (pdf)

- Problem of the Day:

Review: Oppolzer in Comprehensive Organic Synthesis 1992, Vol. 4, 315-399.

■ Ester-Type Chiral Auxiliaries Corey JACS 1975, 97, 6908.

Chem 3D model

17-01-Aux-control/DA 10/23/03 4:12 PM

Non-Chelate Ester-Type Chiral Auxiliaries

Lewis Acid-Ester Complex Conformation Dictates Diastereoselection

Representative η_{1}-titanium complexes with organic compounds

Side view of in-plane Ti coordination: Ti-O-C-C $=2.86^{\circ}$
 $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ angle $=152^{\circ}$

Representative η_{1}-titanium complexes with organic compounds

Narasaka JACS, 1989, 111, 5340
A. Jorgensen, JACS, 1995, 117, 4435

X-ray structure

Ester-Type Chiral Auxiliaries: Chelating Dienophiles

Helmchen Tetrahedron Lett. 1984, 25, 2191.
ACIEE 1985, 24, 112.
Tetrahedron Lett. 1985, 26, 3095.

17-03-Aux-control/DA-2 10/23/03 4:11 PM

Chelating Imide-type Chiral Auxiliaries
Evans JACS, 1984, 106, 4261.
Metal ion Dependent Diastereoselection
Evans JACS, 1988, 110, 1238.

Exo-1 $+$ Exo-2
Endo-1

A Case for Π-Stacking: Angew Chem, Int Ed. 1987, 26, 1184
Compare the alkylation rxn which is dominated by steric effects with the DA rxn which may be controlled by both steric and electronic effects

$\Delta \Delta \mathrm{G}^{\ddagger}=2.3 \mathrm{RT} \log \mathrm{P}_{1} / \mathrm{P}_{2}$
PLOT $\Delta \Delta G^{\ddagger}$ FOR EACH RXN AS A FUNCTION OF THE SUBST., R.

Steric effects correlate well for the two reactions Added electronic effects from Bn group enhance facial bias

The control experiment with no chiral auxiliary:

Type I intramolecular Diels-Alder Reaction:

Type II intramolecular Diels-Alder Reaction:

Fukuyama et al JACS 2000, 122, 7825-7826.
The concept: Evans, et al Angew. Chem. Int. Engl. 1997, 36, 2119-2121.
A Type I Intramolecular Diels-Alder:

Roush, Sciotti J. Am. Chem. Soc. 1998, 120, 7411-7419.

Some Intramolecular Diels-Alder Reviews:

Shea Angew. Chem. Int. Ed. 2001, 40, 820
Fallis Acc. Chem. Res. 1999, 32, 464-474.

Articles and monographs of Significance
"Diels-Alder Reactions". Evans, D. A.; Johnson J. S. In Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.; and Yamamoto, H. Editors; Springer Verlag: Heidelberg, 1999; Vol III, 1178-1235.

Review: Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007-1019
Comprehensive Organic Synthesis, Vol. 5, Trost, Ed. 1991
4.1 Intermolecular Diels-Alder Reactions, W. Oppolzer
4.2 Heterodienophile Additions to Dienes, S. M. Weinreb
4.3 Heterodiene Additions, D. L. Boger
4.4 Intramolecular Diels-Alder Reactions, W. R. Roush
4.5 Retrogade Diels-Alder Reactions, R. W. Sweger, A. W. Czarnik

Catalytic Asymmetric Synthesis, I. Ojima, Ed. 1993
Chapter 9, Asymmetric Rxns with Chiral Lewis Acid Catalysts
Chiral Lewis Acids in Catalytic Asymmetric Reactions
Narasaka, Synthesis, 1991, 1-11
(Carbonyl-Lewis Acid Complexes)
Schreiber, Angew. Chem. Int. Ed., 1990, 29, 256-272
Rotational barriers in Aldehydes \& Ketones Coordinated to Neutral Lewis Acids Wiberg, JACS, 1988, 110, 6642

Theoretical Studies on Conformations of Acrolein, Acrylic Acid, Methyl Acrylate \& their Lewis Acid Complexes Houk, JACS, 1987, 109, 14-23
C_{2} Symmetry and Asymmetric Induction, Whitesell, Chem. Rev., 1989, 89, 1581-1590

The Design of Enantioselective Diels-Alder Catalysts

chiral Lewis acid

The conformation of the dienophile is also an issue

The S-cis versus S-trans dienophile conformation is coupled to the geometry of the Lewis acid-dienophile complex \& both issues determine face selection

Theoretical Studies on Conformations of Acrolein \& Methyl
Acrylate \& their Lewis Acid Complexes
Houk, JACS, 1987, 109, 14-23
Stereoelectronic Effects (?) in Lewis acid-C=O Complexes

Let X be the most electronegative ligand in the Lewis acid
The stabilizing hyperconjugative interaction between the O-lone pair and $\sigma^{*} \mathrm{M}-\mathrm{X}$ will provide a stabilizing interaction for the illustrated conformation.
J. M. Goodman, Tet. Lett. 1992, 33, 7219

However, there is no evidence for this orienting effect in this X-ray structure reported by Reetz, JACS, 1986, 108, 2405

However pi-bonding to coordinated $\mathrm{C}=\mathrm{O}-\mathrm{Al}$ complexes has been reported Barron, JACS, 1990, 112, 3446, JACS, 1990, 112, 2950

Theory predicts a small rotational barrier about B-O bond: Wiberg JACS, 1988, 110, 6642

Boron-Based Catalysts: Hawkins JACS 1991, 113, 7794

Titanium-Based Catalysts: Narasaka JACS 1989, 111, 5340.

Mg(2+)-Based Catalysts: Corey Tetrahedron Lett. 1992, 33, 6807.

Stereochemical Model:

Limitations: Scope limited to illustrated reaction
$\mathrm{Cu}(2+)$-Based Catalysts: $\begin{gathered}\text { Evans, Miller, Lectka JACS 1993, 115, } 6460 . \\ \text { Angew. Chem. Int. Engl. 1995, 34, 798-800. }\end{gathered}$

$$
\begin{aligned}
& \text { JACS 1999, 121, 7559-7573. } \\
& \text { JACS 1999 121 7580-7594 }
\end{aligned}
$$

JACS 1999, 121, 7582-7594

R	temp	endo ee	yield
$\mathrm{R}=\mathrm{Me}$	$25^{\circ} \mathrm{C}$	94% ee	89%
$\mathrm{R}=\mathrm{Ph}$	$-20^{\circ} \mathrm{C}$	97% ee	95%
$\mathrm{R}=\mathrm{OAc}$	$0^{\circ} \mathrm{C}$	97% ee	100%

$\mathrm{Cu}(\mathrm{box})$ and $\mathrm{Cu}(p y b o x)$ catalyst-substrate complexes implicated in enantioselective reactions.

"Chiral Bis(oxazoline) Copper (II) Complexes: Versatile Catalysts for Enantioselective Cycloaddition, Adol, Michael and Carbonyl Ene Reactions". Johnson, Evans, Acc. Chem. Res. 2000, 33, 325-335. (pdf)

Cycloaddition Reactions Michael Reactions

Enol Amination Reactons

Hetero Diels-Alder Reactions

Michael Reactions

$R=H$, Cycloaddition Reactions Ene Reactions
$R=$ Alkyl, Cycloaddition Reactions Aldol Reactions

Aldol Reactions

Diels-Alder Reactions

"Chiral Bis(oxazoline) Copper (II) Complexes: Versatile Catalysts for Enantioselective Cycloaddition, Adol, Michael and Carbonyl Ene Reactions". Johnson, Evans, Acc. Chem. Res. 2000, 33, 325-335. (electronic pdf)
(A)
(B)
(C)
(D)
(E)

 $\xrightarrow[3 \AA \text { mol. sieves }]{\text { cat. } \mathbf{2 a}}$
$-40^{\circ} \mathrm{C}$: 99% ee $25^{\circ} \mathrm{C}: 94 \%$ ee

$-78^{\circ} \mathrm{C}: 99 \%$ ee $25^{\circ} \mathrm{C}: 96 \%$ ee

"Inverse-Electron Demand" Diels-Alder Reactions

17-11-IED-diels alder 10/22/01 8:08 AM
"Inverse-Electron Demand" Hetero-Diels-Alder Reactions

■ Lewis Acid Catalysis of the reaction is possible:

-Heteroatom-substituted reactions are also possible:

$\stackrel{\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}}{ }$

Evans, Scheidt, Johnston, Willis J. Am. Chem. Soc. 2001, 123, 4480.

Evans, Johnson, Olhava J. Am. Chem. Soc. 2000, 122, 1635.
17-12-Hetero DA 10/23/03 4:51 PM

Chiral Copper Lewis Acids:

Endo T.S.

Jorgensen J. Am. Chem. Soc. 1998, 120, 8599.

Evans, Johnson J. Org. Chem. 1997, 62, 786-787.

Structures of FR182877 \& Hexacyclinic acid

(-)-FR182877

Hexacyclinic Acid

Sato, B. J. Antibiot. 2000, 123, 204, 615. Corrected Structure: J. Antibiot. 2002, C-1. Hofs, R., et al. Angew. Chem. Int. Ed. 2000, 39, 3258

Hypothesis: A Transannular Diels-Alder Cycloaddition Cascade

FR182877
Evans \& Starr, JACS, 2003, 125, ASAP
Sorensen et al, JACS, 2003, 125, 5393

The Transannular Diels-Alder Step

$\mathrm{C}_{18} \& \mathrm{C}_{19}$ stereocenters exert complete control over the first cycloaddition (Evans)
(natural configuration)

- Problem of the Day:

Fallis J. Org. Chem. 1993, 58, 2186.

17-14-Fallis Longifolene 10/22/01 8:06 AM

Chemistry 206

Advanced Organic Chemistry

Lecture Number 17

Dipolar cycloaddition Reactions

- Reading Assignment for week:

Carey \& Sundberg: Part A; Chapter 11, p 647-648
Concerted Pericyclic Reactions

Carruthers, W. Cycloaddition Reactions in Organic Synthesis.; Pergamon: Elmsford, NY, 1990.pp 294-331 (Handout)
D. Ripin, W. Use of Isoxazoles as 1,3-Dicarbonyl equivalents in Organic synthesis; Evans Group
Seminar 1997 (ElectronicHandout)

Dipolar Cycloaddition Reactions

General References

Carruthers, W. Cycloaddition Reactions in Organic Synthesis.;
Pergamon: Elmsford, NY, 1990.
Padwa, A. 1,3-Dipolar Cycloaddition Chemistry, John Wiley, 1984, Volumes 1 \& 2,

Jorgensen, Asymmetric 1,3-Dipolar cycloadditions, Chem Rev. 1998, 98, 863-909

Padwa, A. Generation and utilization of carbonyl ylides via the tandem cyclization-cycloaddition method." Acc. Chem. Res. 1991, 24, 22. (handout)

Confalone, P. N.; Huie, E. M. The [3+2] Nitrone-Olefin Cycloaddition Reaction Org. React. (N.Y.) 1988, 36, 1.
S. Kanemasa, Metal Assisted 1,3-Dipolar Cycloaddition Reactions,

SynLett 2002, 1371-1387 (handout)

Problem of the Day

Provide a plausible mechanism for this transformation in the space below. In attacking this question, it is important that you are aware of the transformation that transpires when terminal acetylenes are treated with $\mathrm{Cu}(\mathrm{I})$ or $\mathrm{Ag}(\mathrm{I})$ in the presence of an amine base.

In 1995 Miura and co-workers reported the remarkable reaction illlustrated below (J. Org. Chem. 1995, 60, 4999). Recently, Fu has reported an enantioselective variant of this transformation (J. Am. Chem. Soc. 2002, 124, 4572). In most instances, the cis adduct is formed in large excess ($>90 \%$). There is really no thoughtful mechanism in the literature for this transformation. You will be graded on "reasonability"

The General Reaction Family

The specific set of reaction partners, will define the dominant frontier orbitals

Reaction Stereospecificity: The Dipolariphile (Padwa, Vol 1, pp 61-90)

Rinehart, JACS 1962, 84, 3736
 \longrightarrow
nitrone

Fumarate gives trans cycloadduct

Huisgen, Chem. Ber. 1969, 102, 736

Classification of 1,3-Dipoles Containing C, N, \& O Atoms

Nitrile ylides

- Nitrile Imines
- Nitrile Oxides
- Diazoalkanes
- Azides

Nitrous oxide

Azomethine imines

- Nitrones

Azimes

Azoxy compounds
Nitro compounds

Carbonyl ylides

Carbonyl imines
Carbonyl oxides

Nitrosimines

Nitrosoxides
Ozone

$$
\begin{aligned}
& -\mathrm{C} \equiv \stackrel{+}{\mathrm{N}}-\overline{\mathrm{C}}<\longleftrightarrow-\overline{\mathrm{C}}=\stackrel{+}{\mathrm{N}}=\mathrm{C}= \\
& -\mathrm{C} \equiv \stackrel{+}{\mathrm{N}}-\dot{\mathrm{N}} \mathrm{~N} \longleftrightarrow-\dot{\mathrm{C}}=\stackrel{+}{\mathrm{N}}=\mathrm{N} \\
& -\mathrm{C} \equiv \stackrel{+}{\mathrm{N}}-\dot{\mathrm{O}} \quad \longleftrightarrow \quad-\dot{\mathrm{C}}=\stackrel{+}{\mathrm{N}}=\mathrm{O} \\
& \mathrm{~N} \equiv \stackrel{+}{\mathrm{N}}-\dot{\mathrm{C}}\llcorner\quad \longleftrightarrow \quad \dot{\mathrm{~N}}=\stackrel{+}{\mathrm{N}}=\mathrm{C} \\
& \mathrm{N}=\stackrel{+}{\mathrm{N}}-\stackrel{\mathrm{N}}{\mathrm{~N}}-\quad \longleftrightarrow \quad \dot{\mathrm{N}}=\stackrel{+}{\mathrm{N}}=\mathrm{N}- \\
& \mathrm{N} \equiv \stackrel{+}{\mathrm{N}}-\dot{\mathrm{O}} \quad \longleftrightarrow \quad \dot{\mathrm{~N}}=\stackrel{+}{\mathrm{N}}=\mathrm{O}
\end{aligned}
$$

Allyl Type

$$
\begin{aligned}
& \succ \mathrm{C}=\stackrel{+}{\mathrm{N}}-\dot{\mathrm{C}}-\quad \longleftrightarrow \quad-\dot{\mathrm{C}}-\stackrel{+}{\mathrm{N}}=\mathrm{C} \\
& =\mathrm{C}=\stackrel{+}{\mathrm{N}}-\mathrm{N}-\longleftrightarrow \quad \longleftrightarrow \dot{\mathrm{C}}-\stackrel{+}{\mathrm{N}}=\mathrm{N}- \\
& =\mathrm{C}=\stackrel{+}{\mathrm{N}}-\dot{O} \quad \longleftrightarrow \quad-\dot{\mathrm{C}}-\stackrel{+}{\mathrm{N}}=0 \\
& -\mathrm{N}=\stackrel{+}{\mathrm{N}}-\mathrm{N}-\longleftrightarrow \quad-\dot{\mathrm{N}}-\mathrm{N}=\mathrm{N}- \\
& -\mathrm{N}=\stackrel{+}{\mathrm{N}}-\dot{\mathrm{O}} \quad \longleftrightarrow \quad-\stackrel{\mathrm{N}}{\mathrm{~N}}-\stackrel{+}{\mathrm{N}}=\mathrm{O} \\
& \mathrm{O}=\stackrel{+}{\mathrm{N}}-\dot{\mathrm{O}} \quad \longleftrightarrow \quad \stackrel{\mathrm{O}}{\mathrm{O}}-\stackrel{+}{\mathrm{N}}=\mathrm{O} \\
& \geq \mathrm{C}=\stackrel{+}{\mathrm{O}}-\dot{\mathrm{C}}=\longleftrightarrow \underset{\mathrm{C}}{\mathrm{C}}-\stackrel{+}{\mathrm{O}}=\mathrm{c}= \\
& \geq \mathrm{C}=\stackrel{+}{\mathrm{O}}-\dot{\mathrm{N}}-\longleftrightarrow \quad \stackrel{\dot{\mathrm{C}}-\stackrel{+}{\mathrm{O}}=\mathrm{N}-}{ } \\
& \text { 二C }=\stackrel{+}{\mathrm{O}}-\dot{O} \quad \longleftrightarrow \quad \overline{\mathrm{C}}-\stackrel{+}{\mathrm{O}}=\mathrm{O} \\
& -\mathrm{N}=\stackrel{+}{\mathrm{O}}-\stackrel{\mathrm{N}}{ }-\longleftrightarrow-\dot{\mathrm{N}}-\stackrel{+}{\mathrm{O}}=\mathrm{N}- \\
& -\mathrm{N}=\stackrel{+}{\mathrm{O}}-\stackrel{+}{\mathrm{O}} \longleftrightarrow-\stackrel{\mathrm{N}}{\mathrm{~N}}-\stackrel{+}{\mathrm{O}}=\mathrm{O} \\
& \mathrm{O}=\stackrel{+}{\mathrm{O}}-\dot{\mathrm{O}} \quad \longleftrightarrow \quad \dot{\mathrm{O}}-\stackrel{+}{\mathrm{O}}=\mathrm{O}
\end{aligned}
$$

(After R.Huisgen, J.Org.Chem., 1976, 41, 403.)

Reaction Stereospecificity: Dipolariphile continued

We will return to the other stereochemical element of this reaction shortly
Reaction Regiochemistry (Padwa, Vol 1, pp 135)

The specific set of reaction partners, will define the dominant frontier orbitals

Steric Effects will frequently alter regioselectivity (Padwa, Vol 1, pp 144)

Steric effects are also important considerations in reaction regiochemistry

Rng strain factors may control regioselectivity

H
heat in toluene

Here is an elegant example of regiochemical control.
While the authors offer no explanation for the
outcome, it appears that the reaction is being governed by transition state steric strain factors

Oppolzer, JACS 1978, 98, 6722

Reaction Diastereoselectivity Huisgen et al, Angew.Chem. Int. Ed. 1969, 8, 604

conrotation
$\mathrm{MeO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{Me}$

Relative Orientation of Reaction Partners
DeShong, JOC 1985, 50, 2309; Tet. Lett. 1986, 27, 3979

The above analysis is clouded by the fact that the geometry of the 1, 3-dipole is not fixed.

Monosubstituted Olefins.
In the following study, 1,3-dipole isomerism is not an issue

Diastereoselection appears to be dictated by steric effects
Tufariello, Accounts. Chem. Res. 1979, 12, 396-1403

18-03-Introduction-3 10/27/03 9:01 AM

Cis Disubstituted Olefins.

The preceding trend appears to be reinforced by cis disubstitution
I. Washita et al, Chem lett 1979, 1337

Intramolecular Reaction Variants N. LeBel et al, JACS 1964, 86, 3759

Orientation probably driven by ring strain as in Oppolzer case (previous page)
"highly diastereoselective"

Intramolecular Reaction Variants P. Confalone et al, Tet. Lett. 1984, 25, 4613

Conclusions on Reaction Diastereoselection

In general reaction diastereoselection appears to be dictated by
steric and torsional rather than electronic factors

The Basic Reactions

Padwa, A. 1,3-Dipolar Cycloaddition Chemistry, John Wiley, 1984, Vol 1, Chapter 3

Methods of Generation

Method A

Stability Nitrile oxides are usually prepared in the presence of the olefin or acetylene acceptor. These intermediates are generall unstable and will dimerize if not given an alternative reaction course

Regioselectivity Nitrile oxide cycloadditions with olefins and acetylenes are usually quite regioselective and in the direction as illustrated above.

DeShong, JOC 1985, 50, 2309; Tet. Lett. 1986, 27, 3979

Reactions with olefins are stereospecific

Carruthers, W. Cycloaddition Reactions in Organic Synthesis.; Pergamon: Elmsford, NY 1990.Chapter 6, pp2 69-298

Oxazoline Cleavage

1,3-dicarbonyls

Preferred method for reducing oxazoles and oxazolines:
Nittta et al, Chem. Comm. 1982, 877-878: $\mathrm{Mo}(\mathrm{CO})_{6} \mathrm{MeCN}$

Miyakolide Synthesis: with David Ripin \& David Halstead, JACS 1999, 121, 6816-6826

Competing olefin chlorination eliminated this approach to the nitrile oxide precursor

18-05-Nitrile oxide Appl-1 10/26/03 9:01 PM
Transannular Aldol

Transanular Aldol

Development of Directed Cycloadditions

Kanemasa at al, JACS 1994, 116, 2324-2339 (electronic handout)
Kanemasa at al, Metal-Assisted Stereocontrol of 1,3-Dipolar Cycloaddition Reactions SynLett 2002, 1371-1387 (electronic handout)

conditions; no cat, $\mathrm{Znl}_{2}, \mathrm{Ti}(\mathrm{OiPr})_{4}$
While lewis acid activation is known, no change in regiochemistry was noted under above connditions

Magnesium alkoxides found to effect regiochemical control

18-06-Nitrile oxides/Kanemasa 10/27/03 9:20 AM

Reaction Diastereoselectivities

Stereochemical Rational

Anti produc

Rate acceleratons

Applications in Polypropionate Synthesis

Carreira at al, Angew. Chem. Int. Ed. 2001, 40, 2082-2085

a, Oxime Chlorination: t-BuOCl; b, 3 Equiv EtMgBr, room temp, 12 h

Oxazoline Reduction
 syn-anti

Lit Conditions: Curran, JACS 1983, 105, 5826; JOC 1984, 49, 3474

Applications to the Synthesis of Epothilones A, B

Carreira \& Bode JACS 2001, 123, 2082-2085

LiCl, DBU
Oxidation

The Basic Reactions

Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263-309. Padwa, A.; Krumpe, K. E. Tetrahedron. 1992, 48, 5385-5483. Padwa, A. Acc. Chem. Res. 1991, 24, 22-28.

Stabilized (Isolable) Carbonyl Ylides

Arduengo, A. J., III; Janulis, E. P., Jr. J. Am. Chem. Soc. 1983, 105, 5929-5930

Hamaguchi, M.; Ibata, T. Tetrahedron Lett. 1974, 4475-4476.

quantitative

Hamaguchi, M.; Ibata, T. Chem. Lett. 1975, 499-502

Carbenes Plus Carbonyl Groups

Tandem Intramolecular Cyclization-Intermolecular Cycloaddition

Padwa, A.; Hornbuckle, S. F.; Fryxell, G. E.; Stull, P. D. J. Org. Chem. 1989, 54, 817-824.

Intramolecular Variants

Can make 5-7 membered rings

Carbonyl Ylide Cycloadditions of Diazoimides

Maier, M. E.; Evertz, K. Tetrahedron Lett. 1988, 29, 1677-1680.

73\%

Hertzog, D. L.; Austin, D. J.; Nadler, W. R.; Padwa, A. Tetrahedron Lett. 1992, 33, 4731-4734.

Cycloadditions with Oxidopyrylium Ylides

Sammes, P. G.; Street, L. J. J. Chem. Soc., Chem. Commun. 1982, 1056-1057

Cyclizations with 5-Hydroxy-4-Pyrones

$\mathrm{Z}=\mathrm{CO}_{2} \mathrm{Me}$

Garst, M. E.; McBride, B. J.; Douglass, J. G. III. Tetrahedron Lett. 1983, 24, 1675-1678.

Phorbol: The Hydroxypyrone Approach

Wender, P. A.; McDonald, F. E. J. Am. Chem. Soc. 1990, 112, 4956-4958

Problem 53. Williams recently reported an approach to the synthesis of quinocarcinamide (1) (J. Org. Chem. 1995, 60, 6791). The pivotal process that establishes the tetracyclic nucleus is the two-step transformation shown below (eq 1).

Devise a strategy for transforming A into B and clearly illustrate your answer in the space below. Full credit will be awarded to concise answers.

Problem 55. The following transformation was recently reported by Heathcock during studies directed toward the synthesis of sarain A
(Tetrahedron Lett. 1995, 6, 2381). From your knowledge of the functionality present in the starting material, deduce the structure (including stereochemistry) of the reaction product which has the same molecular weight as the starting material. Hint. the 1H NMR spectrum of the product reveals that the olefinic resonances have disappeared.

Your mechanism for the transformation
product structure
Problem 65. The following stereoselective nitrile oxide cycloaddition has been reported by Kozikowski (Tetrahedron Lett. 1982, 23, 2081;
J. Org. Chem. 1984, 49, 2762). Provide the stereostructure of the major product and rationalize the stereochemical outcome as indicated in the directions.

Problem 87. The illustrated transformation has been utilized by Coldham (Chem. Commun. 1999, 1757) to construct the core ring system of the manzamines.

"one diastereomer"

Problem 90. Padwa and co-workers recently disclosed the illustrated multistep polycyclisation as a possible route to the strychnine core (Org. Lett. 2001, ASAP)

In the space below, provide a mechanism for the indicated transformation. Hint: The management suggests that a carefull bidirectional analysis might help you to arrive at a sollution of this question.

Problem 136. A recent paper by Harwood and Park highlights the rapidity which whch one may assemble complex architecture in a single chemical operation (Tetrahedron Lett. 1999, 40, 2907 and earlier cited references). The transformation in question is illustrated below. You are asked to address two aspects of this transformation.

Part A. Provide a concise mechanism for the indicated transformation. For now, ignore the stereochemical aspects of the reaction.
Part B. Predict the stereochemical outcome of the reaction at the three new stereocenters, and provide a three-dimensional drawing of the transition state wherein these centers are produced.

Problem 171. A recent paper by Dolle (Tetrahedron Lett. 1999, 40, 2907) highlights the rapidity which whch one may assemmble complex architecture in a single chemical operation. The transformation in question is illustrated below.

Provide a concise mechanism for the indicated transformation. In that step where the complex stereochemical relationships are established, a carefully rendered three dimensional illustration is requested.

Problem 189. This question is taken from recent work reported by Jack Baldwin (Org. Lett., 1999, 1933 and 1937). Provide a mechanism for the conversion of I to II.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 19

Acid-Base Properties of Organic Molecules

- Bronsted Acidity Concepts in the Activation of Organic Structures
- Medium Effects on Bronsted Acidity
- Substituent \& Hybridization Effects on Bronsted Acidity
- Kinetic \& Thermodynamic Acidity of Ketones
- Kinetic Acidity: Carbon vs. Oxygen Acids

■ Tabulation of Acid Dissociation Constants in DMSO
\square Reading Assignment for this Lecture:
Carey \& Sundberg: Part A; Chapter 7 Carbanions \& Other Nucleophilic Carbon Species
"Equilibrium acidities in DMSO Solution", F. G. Bordwell. Acc. Chem. Res. 1988, 21, 456-463. (handout)
$\begin{array}{ll} & \text { Wednesday, } \\ \text { D. A. Evans } & \text { October 29, } 2003\end{array}$

Articles on the Acidities of Organic Molecules
Lowry \& Richardson: 3rd Edition, Chapter 3 Acids and Bases

Here is a web site containing Brodwell pKa data http://www.chem.wisc.edu/areas/reich/pkatable/index.htm

- Problems of the Day:

Explain why $\mathbf{1}$ and $\mathbf{3}$ are ~ 4 pKa units more acidic than their acyclic counterparts 2 and 4. (J. Org. Chem. 1994, 59, 6456)

1

2

3

4

The thermodynamic acidities of phenol and nitromethane are both ~ 10; however, using a common base, phenol is deprotonated 10^{+6} times as fast. Rationalize

Activation of Organic Molecules

- Base Activation

Nucleophile
$\mathrm{pK}_{\mathbf{a}}$, describes quantitatively a molecule's propensity to act as an acid, i.e. to release a proton.

> - Medium effects
> - Structural effects (influence of substituents R_{1})

- Acid Activation

- The Aldol Example

Definition of Ka

Let $\mathrm{H}-\mathrm{X}$ be any Bronsted acid. In water ionization takes place:

$$
\begin{gather*}
\mathrm{H}-\mathrm{X}+\mathrm{HOH} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{X}- \\
\text { where } \quad \mathrm{Keq}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{H}-\mathrm{X}][\mathrm{HOH}]} \quad \text { where }[\mathrm{HOH}]=55.5 \mathrm{~mol} \mathrm{~L}^{-1} \tag{A}
\end{gather*}
$$

Since $[\mathrm{HOH}]$ is, for all practical purposes, a constant value, the acid dissociation constant K_{a} is defined wilthout regard to this entity. e.g.

$$
\mathrm{H}-\mathrm{X} \rightleftharpoons \mathrm{H}^{+}+\mathrm{X}-\quad \text { where } \mathrm{H}^{+}=\mathrm{H}_{3} \mathrm{O}^{+}
$$

Hence

$$
\begin{equation*}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{H}-\mathrm{X}]} \tag{B}
\end{equation*}
$$

From the above definitions, K_{a} is related to K_{eq} by the relation:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{a}}(\mathrm{H}-\mathrm{X})=55.5 \mathrm{~K}_{\mathrm{eq}}(\mathrm{H}-\mathrm{X}) \tag{C}
\end{equation*}
$$

Autoionization of water

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\mathrm{HOH}+\mathrm{HOH} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HO}^{-} \\
& \mathrm{K}_{\mathrm{eq}}=3.3 \times 10^{-18} \\
\text { From Eq C: } & \mathrm{K}_{\mathrm{a}}=55.5 \mathrm{~K}_{\mathrm{eq}}=55.5\left(3.3 \times 10^{-18}\right) \\
\text { Hence } & \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-16}
\end{array}
\end{aligned}
$$

Since pK_{a} is defined in the following equation:

$$
\mathrm{pK}_{\mathrm{a}}=-\log _{10}\left[\mathrm{~K}_{\mathrm{a}}\right] \quad \text { The } \mathrm{pK}_{\mathrm{a}} \text { of } \mathrm{HOH} \text { is }+15.7
$$

Keep in mind that the strongest base that can exist in water is HO^{-}.

Lets now calculate the acid dissociation constant for hydronium ion.

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& \text { obviously: } \quad \mathrm{K}_{\text {eq }}=1 \\
& \mathrm{~K}_{\mathrm{a}}=[\mathrm{HOH}] \times \mathrm{K}_{\text {eq }} \text { hence } \mathrm{K}_{\mathrm{a}}=55.5 \\
& \mathrm{pK}_{\mathrm{a}}=-\log _{10} \mathrm{~K}_{\mathrm{a}}=-1.7
\end{aligned}
$$

The strongest acid that can exist in water is $\mathrm{H}_{3} \mathrm{O}^{+}$.

- The Gibbs Relationship

$$
\begin{array}{ll}
\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{~K} & 2.3 \mathrm{RT}=1.4 \\
\text { or } \quad \Delta \mathrm{G}^{\circ}=-2.3 \mathrm{RT} \log _{10} \mathrm{~K} & \text { at } \mathrm{T}=298 \mathrm{~K}
\end{array}
$$

$$
\Delta \mathrm{G}^{\circ}{ }_{298}=-1.4 \log _{10} \mathrm{~K}_{\mathrm{eq}}
$$

$$
\Delta \mathrm{G}_{298}^{\circ}=1.4 \mathrm{pK}_{\mathrm{eq}} \approx 1.4 \mathrm{pK}_{\mathrm{a}}
$$

$$
\text { with } \mathrm{pK}=-\log _{10} \mathrm{~K}
$$

Hence, pK_{a} is proportional to the free energy change

K_{eq}	$\mathrm{pK}_{\mathrm{eq}}$	$\Delta \mathrm{G}^{\circ}$
1	0	0
10	-1	-1.4
100	-2	$-2.8 \mathrm{kcal} / \mathrm{mol}$

- Medium Effects

Consider the ionization process:
$\mathrm{H}-\mathrm{A}+$ solvent $\rightleftharpoons \mathrm{A}^{-}+\operatorname{solvent}\left(\mathrm{H}^{+}\right)$
In the ionization of an acid in solution, the acid donates a proton to the medium. The more basic the medium, the larger the dissociation equilibrium. The ability of the medium to stabilize the conjugate base also plays an important role in the promotion of ionization. Let us consider two solvents, HOH and DMSO and the performance of these solvents in the ionization process.

The Protonated Solvent Conjug. Base Stabiliz.

As shown above, although HOH can stabilize anions via H -bonding, DMSO cannot Hence, a given acid will show a greater propensity to dissociate in HOH . As illustrated below the acidity constants of water in $\mathrm{HOH}, \mathrm{DMSO}$ and in a vacuum dramatically reflect this trend.

$$
\begin{aligned}
& \text { Water } \xrightarrow[(\underset{\mathrm{H}}{\mathrm{H}}+\underset{\mathrm{H}}{\mathrm{H}}]{\mathrm{H}} \\
& \xrightarrow[H^{\prime}]{\mathrm{O}-\mathrm{H}---\mathrm{A} \Theta} \\
& \text { DMSO } \begin{array}{r}
\mathrm{HO}-\mathrm{Se}_{\mathrm{S}}^{\mathrm{C}}+ \\
\mathrm{Me}
\end{array} \\
& \text { No H-bonding Capacity }
\end{aligned}
$$

- Medium Effects on the pKa of HOH
** The gas phase ionization of HOH is endothermic by $391 \mathrm{kcal} / \mathrm{mol}$!!!

HOH pKa	Medium
15.7	HOH
31	DMSO
279 (est)	Vacuum

■ Representative pKa Data

Substrate	DMSO	HOH	$\Delta \mathrm{pKa}$
HOH	31.2	15.7	15.5
HSH	14.7	7.0	7.7
MeOH	29.0	15.3	13.7
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	18.0	9.9	8.1
$\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{3}$ O $\mathrm{Ph}-\mathrm{CH}_{3}$ $\mathrm{17.2}$	10.0	7.2	

The change in pKa in going from water to DMSO is increasingly diminished as the conjugate base becomes resonance stabilized (Internal solvation!).
Substrate

Substituent Effects

Electronegativity e.g. Compare Carboxylic Acids vs. Ketones

$\left(\mathrm{H}_{2} \mathrm{O}\right) \quad \mathrm{pK}_{\mathrm{A}}=4.8$

$\mathrm{pK}_{\mathrm{A}} \approx 19$
(DMSO) $\mathrm{pK}_{\mathrm{A}}=12.3$
$\mathrm{pK}_{\mathrm{A}} \approx 26.5$

Hybridization

- S-character of carbon hybridization

Remember:
sp^{3}-orbitals 25% s-character sp ${ }^{2}$-orbitals 33% s-character sp-orbitals 50\% s-character

Carbon Acids

	$\mathrm{R}=\mathrm{H}$			
Hybridzation	sp	$s p^{2}$	$\approx \mathrm{sp}^{2}$	sp^{3}
Bond Angle	180°	120°	≈ 120	109°
$\mathrm{pK}_{\mathrm{a}}(\mathrm{DMSO})$	23	≈ 44	≈ 39	≈ 60

Electrons in 2S states "see" a greater effective nuclear charge than electrons in 2P states.

This becomes apparent when the radial probability functions for S and P-states are examined: The radial probability functions for the hydrogen atom $S \& P$ states are shown below.

3 P Orbital \square

S-states have greater radial penetration due to the nodal properties of the wave function. Electrons in s states see a higher nuclear charge. The above observation correctly implies that the stability of nonbonding electron pairs is directly proportional to the \% of S-character in the doubly occupied orbital.

The above trends indicate that the greater the \% of S-character at a given atom, the greater the electronegativity of that atom.

Hybridization vs Electronegativity
There is a linear relationship between \%S character \&
Pauling electronegativity

There is a direct relationship between \%S character \&

19-04-Acidity Concepts-4 10/27/03 12:56 PM

Substituent Effects

Alkyl Substituents on Localized Carbanions are Destabilizilng:
Steric hinderance of anion solvation
Compare:
(JACS 1975, 97, 190)

	pK_{A} (DMSO)	-S H	pK_{A} (DMSO)
	29		31.1
	31		38.3

■ Heteroatom-Substituents: - 1st row elements of periodic table
pK_{A} (DMSO)

■ Heteroatom-Substituents: - 2nd row elements of periodic table
Strong carbanion stabilizing effect

	pK_{A} (DMSO)		pK_{A} (DMSO)
	29		12.2
	20.5		220.5

■ Carbanion Stabilization by 2rd-Row Atoms: $\mathrm{SR}, \mathrm{SO}_{2} \mathrm{R}, \mathrm{PR}_{3}$ etc

18.2 (DMSO)

22.5

The accepted explanation for carbanion stabilization in 3rd row elements is delocalization into vicinal antibonding orbitals

This argument suggests a specific orientation requirement. This has been noted:

Anti (or syn) periplanar orientation of Carbanion-orbital and σ^{*} orbital mandatory for efficient orbital overlap.

Rates for deprotonation with n-BuLi

19-05-Acidity Concepts-5 10/24/01 8:13 AM
\square Conjugative Stabilization of Conjugate Base

For efficient conjugative stabilization, rehybridization of carbanion orbital from $\mathrm{n}_{\mathrm{sp} 3}$ to n_{p} is required for efficient overlap with low-lying π^{*}-orbital of stabilizing group. However, the cost of rehybridization must be considered.

Stereoelectronic Requirement for Carbanion Overlap: Enolization of Carbonyl Compounds

Stereoelectronic Requirements: The $\alpha-\mathrm{C}-\mathrm{H}$ bond must be able to overlap with $\pi * \mathrm{C}-\mathrm{O}$

Phenol Acidity:

This topic has a number of take-home lessons. Most importantly, is is a useful construct on which to discuss the role of FG's in influencing the acidity of this oxygen acid.
How does one analyze the impact of structure on pKa of a weak acid ($\mathrm{pKa}>0$) ?

■ The Approach:

For equilibria such as that presented above, analyze the effect of stabilizing (or destabilizing) interactions on the more energetic constituent which in this case is the conjugate base.

■ Why is phenol so much more acidic than cyclohexanol?

Loudon (pg 730): "The enhanced acidity of phenol is due largely to stabilization of its conjugate base by resonance."

from previous discussion, $\Delta \mathrm{G}^{\circ}{ }_{298}=-1.4 \log _{10} \mathrm{Keq}=1.4 \mathrm{pKeq}$ $\Delta \mathrm{G}^{\circ}(\mathrm{stab})=1.4\left(\mathrm{Pka}_{\text {phenol }}-\mathrm{pKa}_{\text {cyclohenanol }}\right)=1.4(-7)=9.8 \mathrm{kcal} / \mathrm{mol}$ 19-06-Phenol acidity 10/27/03 12:58 PM

- Is the benzene ring somehow special. i.e "larger resonance space."
- Acetone enol:

The surprising facts is that the acetone enol has nearly the same pKa as phenol. Hence, the answer to the above question is no!
\square How important are inductive effects in the stabilization of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$?
Consider the following general oxygen acid $\mathrm{X}-\mathrm{OH}$ where X can only stabilize the conjugate base through induction:

$\mathrm{X}-\mathrm{OH} \longrightarrow \sim \mathrm{X}-\mathrm{O}-+$	H^{+}	$\mathrm{X}-\mathrm{OH}$	$\mathrm{pKa}\left(\mathrm{H}_{2} \mathrm{O}\right)$
		$\mathrm{CH}_{3}-\mathrm{OH}$	15.5
As the electronegativity of X increases the acidity of $\mathrm{X}-\mathrm{OH}$ increases.		$\mathrm{CF}_{3} \mathrm{CH}_{2}-\mathrm{OH}$	12.4
		$\mathrm{Cl}-\mathrm{OH}$	7.5

If you take the calculated electronegativity of an SP_{2} carbon (2.75) you can see that there is a linear correlation between the electronegativity of X and the pKa of $\mathrm{X}-\mathrm{OH}$.
This argument suggests that the acidity of acetone enol is largely due to inductive stabilization, not resonance.

\square The General Reaction: Ionization of a weak acid ($\mathrm{pKa}>0$)

Variables:
$\mathrm{X}=\mathrm{O}$ (carboxylic acid)
$\mathrm{X}=\mathrm{NH}$ (amide)
$\mathrm{X}=\mathrm{CH}_{2}$ (Ketone/ester)
$\mathrm{R}=\mathrm{CR}_{3}$
$\mathrm{R}=\mathrm{OR}$
$\mathrm{R}=\mathrm{NR}_{2}$
-O

■ The Question: How does one analyze the impact of structure on pKa?

- The Approach:

For equilibria such as that presented above, analyze the effect of stabilizing (or destabilizing) interactions on the more energetic constituent which in this case is the conjugate base.

Case I: Carboxylic Acids: Inductive Effects

Case II: Carboxylic Acids: Inductive Effects \& Carbon Hybridization

19-07 Weak Acids/Gen anal 10/24/01 8:16 AM

Case III: Carboxylic Acids vs Ketones:

Case IV: Carboxylic Acids, Esters, Amides \& Ketones:

pKa ~ 26	pKa ~ 30	pKa ~ 34	pKa $>34<40$

The Analysis:
In this series of compounds, there are two variables to consider:

■ Inductive Effect: $\mathrm{OEt}>\mathrm{Me}_{2} \mathrm{~N}>\mathrm{H}_{3} \mathrm{C}$ but (O-?)

- Resonance Effect:

The degree to which substituent X : "contributes" electron density into enolate
 represents a destabilizing interaction:

$$
\text { Trend: } \mathrm{O}->\mathrm{Me}_{2} \mathrm{~N}>\mathrm{OEt}
$$

- Resonance donation dominates inductive electron withdrawal as indicated by the data.

Substituents on the α-carbon: Stabilization by either resonance, induction, or both is observed:

[^6]\square Conformations: There are 2 planar conformations.
(Z) Conformer

(E) Conformer
Specific Case:
Formic Acid

\qquad

$\Delta G^{\circ}=+2 \mathrm{kcal} / \mathrm{mol}$

The (E) conformation of both acids and esters is less stable by $2-3 \mathrm{kcal} / \mathrm{mol}$. If this equilibrium were governed only by steric effects one would predict that the (E) conformation of formic acid would be more stable (H smaller than $=\mathrm{O}$). Since this is not the case, there are electronic effects which must also be considered. These effects will be introduced shortly.
\square Rotational Barriers: There is hindered rotation about the $=\mathrm{C}-\mathrm{OR}$ bond.
These resonance structures suggest hindered rotation about $=\mathrm{C}-\mathrm{OR}$ bond. This is indeed observed:

Rotational barriers are $\sim 10 \mathrm{kcal} / \mathrm{mol}$ This is a measure of the strength of the pi bond.

- Lone Pair Conjugation: The oxygen lone pairs conjugate with the $\mathrm{C}=\mathrm{O}$.

The filled oxygen p -orbital interacts with pi (and pi^{*}) $\mathrm{C}=\mathrm{O}$ to form a 3-centered 4-electron bonding system.
SP_{2} Hybridization

■ Oxygen Hybridization: Note that the alkyl oxygen is Sp2. Rehybridization is driven by system to optimize pi-bonding.

Hyperconjugation: Let us now focus on the oxygen lone pair in the hybrid orbital lying in the sigma framework of the $\mathrm{C}=\mathrm{O}$ plane.

(Z) Conformer

(E) Conformer

In the (E) conformation this lone pair is aligned to overlap with $\sigma^{\star} C-R$.

Since $\sigma^{*} \mathrm{C}-\mathrm{O}$ is a better acceptor than $\sigma^{*} \mathrm{C}-\mathrm{R}$ (where R is a carbon substituent) it follows that the (Z) conformation is stabilized by this interaction.

Lone pair orientation \& Impact on pKa (DMSO)
See Bordwell, J. Org. Chem. 1994, 59, 6456-6458

$\mathrm{pKa}=24.5$

$$
\mathrm{pKa}=20.6
$$

Houk, JACS 1988, 110, 1870 supports the dipole argument

pKa $=20.6$

Is this a dipole effect? See Bordwel

$\mathrm{E}(\mathrm{rel})=0$
$\mathrm{E}(\mathrm{rel})=+3.8 \mathrm{kcal}$

■ Kinetic Acidity: Rates of proton removal
Consider enolization of the illustrated ketone under non-equilibrating conditions:

Reaction Coordinate
Kinetic acidity refers to the rate of proton removal. e.g. k_{A} vs k_{B}. For example, in reading the above energy diagram you would say that H_{A} has a lower kinetic acidity than H_{B}. As such, the structure of the base (hindered vs unhindered) employed plays a role in determining the magnitude of k_{A} and k_{B}. For the case shown above, $\Delta \mathrm{G}^{\ddagger} \mathrm{A}$ will increase more than $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{B}}$ as the base becomes more hindered since the proton H_{A} resides in a more sterically hindered environment. The example shown below shows the high level of selectivity which may be achieved with the sterically hindered base lithium diisopropylamide (LDA).

Kinetic Ratio 99:1
Equilibrium Ratio 10 : 90

Kinetic \& Equilibrium Ratios of Enolates Resulting from Enolization with LDA \& Subsequent Equilibration

■ Note that alkyl substitution stabilizes the enolate (Why??). This effect shows up in the equilibrium ratios shown above.

- Hence, enolization under "kinetic control with LDA allows you to produce the less-substituted enolate while subsequent equilibration by simply heating the enolate mixture allows equilibration to the more substituted enolate.
- Kinetic Acidity

Observation: The thermodynamic acidities of phenol and nitromethane are both approximately 10; however, using a common base, phenol is deprotonated 10^{+6} times as fast.

Proton transfers from C-H Bonds are slow.
■ Why???
Most carbon acids are stabilized by resonance. Hence significant structural reorganization must accompany deprotonation.

electron density
now resides here, and nuclei have moved to accomodate rehybridization.

The greater the structural reorganization during deprotonation, the lower the kinetic acidity

- Kinetic Acidity vs. Leaving Group Ability: E1cb Elimination Reactions Stirling, Chem. Commun. 1975, 940

krel $=1$
pKa HX 10

$\mathrm{krel}=10^{+4}$

krel $=<10^{-8}$
9.5

The greater the structural reorganization of the leaving group during E1cb elimination, the slower the rate of elimination.

- Protonation of Conjugate bases

Kinetic product

Jack Hine: Least Motion Principle (Adv. Phys. Org. Chem. 1977, 15, 1) Lowry \& Richardson, 3rd Edition, pp 205-206

Those elementary reactions that involve the least change in atomic posiitons will be favored

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 20

Carbonyl and Azomethine Electrophiles-1

		${\underset{R}{R}}_{R_{C}^{\prime}=N^{\prime}}^{R}$	

■ Reactivity Trends

- C=X Stereoelectronic Effects
- Carbonyl Addition: Theoretical Models
- The Felkin-Anh-Eisenstein Model for $\mathrm{C}=\mathrm{O}$ Addition
- Diastereoselective Ketone Reduction

■ Reading Assignment for this Week:
Carey \& Sundberg: Part A; Chapter 8 Reactions of Carbonyl Compounds
Carey \& Sundberg: Part B; Chapter 2
Reactions of Carbon Nucleophiles with Carbonyl Compounds
Carey \& Sundberg: Part B; Chapter 5
Reduction of Carbonyl \& Other Functional Groups
Friday,
D. A. Evans

October 31, 2003

Additional Reading Material Provided

Additions to 5-\& 6-Membered oxocarbenium Ions:
Woerpel etal. JACS 1999, 121, 12208 (Handout)
Woerpel etal. JACS 2000, 122, 168 (Handout)
Woerpel etal. JACS 2003, 125, ASAP (Handout)
"From Crystal Statics to Chemical Dynamics", Accounts Chem.
Research 1983, 16, 153. (Electronic Handout)
"Theoretical Interpretation of 1,2-Asymmetric Induction. The Importance of Antiperiplanarity", N. T. Anh, O. Eisenstein Nouv. J. Chem. 1977, 1, 61-70. (Handout)
"Around and Beyond Cram's Rule" A. Mengel \& O. Reiser, Chem Rev. 1999, 99, 1191-1223 (Electronic Handout)

■ Relevant Dunitz Articles
"Geometrical Reaction Coordinates. II. Nucleophilic Addition to a Carbonyl Group", JACS 1973, 95, 5065.
"Stereochemistry of Reaction Paths at Carbonyl Centers", Tetrahedron 1974, 30, 1563
"From Crystal Statics to Chemical Dynamics", Accounts Chem. Research 1983, 16, 153. (Electronic Handout)
"Stereochemistry of Reaction Paths as Determined from Crystal Structure Data. A Relationship Between Structure and Energy.", Burgi, H.-B. Angew. Chem., Int. Ed. Engl. 1975, 14, 460.

Chemistry Reviews Issue on Diastereoselection in $\mathrm{C}=\mathrm{O}$ Addition

Chem Rev. 1999, 99, (5), 1069-1480

Mengel, A. and O. Reiser, "Around and beyond Cram's rule." Chem. Rev. 1999, 1191-1223.

Reetz, M. T., "Synthesis and diastereoselective reactions of N,N-dibenzylamino aldehydes and related compounds." Chem. Rev. 1999,1121-1162.

Dannenberg, J. J., "Using perturbation and frontier molecular orbital theory to predict diastereofacial selectivity." Chem. Rev. 1999, 1225-1241.

Tomoda, S., "The exterior frontier orbital extension model." Chem. Rev. 1999,1243-1263.

Cieplak, A. S., "Inductive and resonance effects of substituents on pi-face selection." Chem. Rev. 1999,1265-1336.

Ohwada, T., "Orbital-controlled stereoselections in sterically unbiased cyclic systems." Chem. Rev. 1999,1337-1375.

Gung, B. W., "Structure distortions in heteroatom-substituted cyclohexanones, adamantanones, and adamantanes: Origin of diastereofacial selectivity." Chem. Rev. 1999,1377-1386.

Kaselj, M., W. S. Chung, et al., "Face selection in addition and elimination in sterically unbiased systems." Chem. Rev. 1999, 1387-1413.

Adcock, W. and N. A. Trout, "Nature of the electronic factor governing diastereofacial selectivity in some reactions of rigid saturated model substrates." Chem. Rev. 1999,1415-1435.

Mehta, G. and J. Chandrasekhar, "Electronic control of facial selection in additions to sterically unbiased ketones and olefins." Chem. Rev. 1999,1437-1467.

Wipf, P. and J. K. Jung, "Nucleophilic additions to 4,4-disubstituted 2,5-cyclohexadienones: Can dipole effects control facial selectivity?." Chem. Rev. 1999,1469-1480.

- The Set of Functional Groups:

Aldehyde
Ketone

Oxocarbenium
ion

Aldimine Ketimine (Imine)

Iminium
ion

These functional groups are among the most versatile sources of electrophilic carbon in both synthesis and biosynthesis. The ensuing discussion is aimed at providing a more advanced discussion of this topic.

- $\mathbf{C = X}$ Polarization

\longleftrightarrow

Partial Charge: As the familiar polar resonance structure above indicates, the carbonyl carbon supports a partial positive charge due to the polarization of the sigma and pi system by the more electronegative heteroatom. The partial charges for this family of functional groups derived from molecular orbital calclulations (ab initio, 3-21(G)*, HF) are illustrated below:

$\delta+0.33$

$\delta+0.51$
electrophilic reactivity \qquad

- Proton Activation of $\mathrm{C}=\mathrm{X}$ Functional groups

The electrophilic potential of the C=O FG may be greatly increased by either Lewis acid coordination of by protonation. The magnitide of this increase in reactivity is $\sim 10^{+6}$. Among the weakest Bronsted acids that may be used for $\mathrm{C}=\mathrm{O}$ actilvation (ketalization) is pyridinium ion $(\mathrm{pKa}=5)$. Hence, the Keq below, while quite low, is still functional.

pka $=+5$
$\mathrm{pka}=-6$

Stereoelectronic Considerations for $\mathrm{C}=\mathrm{O}$ Addition

What about $\mathrm{C}=\mathrm{O}$ vs $\mathrm{C}=\mathrm{O}-\mathrm{R}(+)$?

The LUMO coefficient on carbon for \mathbf{B} will be considerably larger than for A. Does this mean that there is a lower constraint on the approach angle for the attacking nucleophile? There is no experimental proof for this question; however, it is worthy of consideration
\square What was the basis for the Dunitz-Burgi analysis?

■ Relevant Dunitz Articles
"Geometrical Reaction Coordinates. II. Nucleophilic Addition to a Carbonyl Group", JACS 1973, 95, 5065.
"Stereochemistry of Reaction Paths at Carbonyl Centers", Tetrahedron 1974, 30, 1563
"From Crystal Statics to Chemical Dynamics", Accounts Chem. Research 1983, 16, 153.
"Stereochemistry of Reaction Paths as Determined from Crystal Structure Data. A Relationship Between Structure and Energy.", Burgi, H.-B.
Angew. Chem., Int. Ed. Engl. 1975, 14, 460.

- Dunitz Method of Analysis

A series of organic structures containing both $\mathrm{C}=\mathrm{O}$ and Nu FG's disposed in a geometry for mutual interaction were designed. These structures positioned the interacting FGs an increasingly closer distances. The X-ray structures of these structures were determined to ascertain the direction of $\mathrm{C}=\mathrm{O}$ distortion. The two families of structures that were evaluated are shown below.

1,8-Disubstituted Naphthalenes. Substituent located at these positions are strongly interacting as illustrated by the MM2 minimized di-methyl-naphthalene structure shown below.

20-02-Dunitz-Burgi 10/29/03 4:38 PM

In this structure (A), at $2.56 \AA$ the $\mathrm{C}=\mathrm{O}$ is starting to pyramidalize
Cyclic aminoketones. Medium-ring ketones of various ring sizes were analyzed for the interaction of amine an $\mathrm{C}=\mathrm{O}$ FaGs. One example is shown below.

Analysis of distortion of $\mathrm{C}=\mathrm{O}$ in this and related structures formed the basis of the 107° attack angle. This value should be taken as

Sekirkine Birnbaum JACS 1974, 966165

Cyclic aminoketones. Medium-ring ketones of various ring sizes were analyzed for the interaction of amine an $\mathrm{C}=\mathrm{O}$ FGs. Two examples are shown below.

Sekirkine Birnbaum JACS 1974, 966165

Should these crystallographic date be relevant to the addition to complexed $\mathrm{C}=\mathrm{O}$ \& Iminium lons?

$\delta+0.33$

$\delta+0.51$

$\delta+0.54$

$$
\begin{aligned}
& \delta+0.61(\mathrm{R}=\mathrm{H}) \\
& \delta+0.63(\mathrm{R}=\mathrm{Me}
\end{aligned}
$$

$$
\delta+0.63(\mathrm{R}=\mathrm{Me})
$$

$\xrightarrow{\text { Energy }}$

■ Pivotal Articles

R. V. Stevens in

"Strategies and Tactics in Organic Synthesis", Vol. 1.
On the Stereochemistry of Nucleophilic Additions to Tetrahydropyridinium Salts: a Powerful Heuristic Principle for the Stereorationale Design of Alkaloid Synthesis.; Lindberg, T., Ed.; Academic Press, 1984;

Eliel etal. , JACS 1969, 91, 536
Kishi etal. , JACS 1982, 104, 4976-8

■ The Proposal for Oxo-carbenium Ions (Eliel, Kishi)

■ The Proposal for Iminium lons (Stevens)

It was proposed that chair-axial addition would be preferred as a consequence of the intervention of a transition state anomeric effect (Path A). Attack through Path B would necessitate the generation of the twist-boat kinetic product conformation thus destabilizing attack from the equatorial diastereoface. While Stevens espoused this concept for iminium ions in the late 70's, his untimely death at the age of 42 significantly delayed his cited publication.

■ An early example from Eliel; JACS 1969, 91, 536

Eliel was the first to attibute stereoelectronic factors to the addition of nucleophiles to cyclic oxo-carbenium ions.

■ Kishi Examples; JACS 1982, 104, 4976-8

stereoselection 10:1 (55\%)

stereoselection 10:1 (55\%)
Chair-aixal attack on oxo-carbenium ion occurs for both carbon and hydride nucleophiles

■ Iminium lons (Stevens) cited reference

5-Membered oxocarbenium lons: Woerpel etal. JACS 1999, 121, 12208.

These cases provide dramatic evidence for the importance of electrostatic effects in controlling face selecticity.

6-Membered oxocarbenium lons: Woerpel etal. JACS 2000, 122, 168.

This analysis presumes that only pseudo-chair transition states need be considered.

Woerpel's model states that axial attack from the most stable chair conformer predicts the major product.

20-05-cyclic onium addns-2 10/26/01 8:17 AM

These cases provide dramatic evidence for the importance of electrostatic effects in controlling face selecticity.

Are the preceding addition reactions somehow related to the apparently
contrasteric reactions shown below??

Tet. Lett. 1988, 29, 6593

JOC 1991, 56, 387

Phorboxazole B

Evans, Fitch, Smith, Cee, JACS 2000, 122, 10033

Stereochemical analogies:
Kishi et. al.: JACS 1982, 104, 4976-8

A: The C-11 Reduction

20-06-phorboxazole cases 10/25/01 5:06 PM

B: The C-22 Reduction

C: The C-9 C-C Bond Construction

Diastereoselection 89:11

- 4- vs 6-Membered Transition Structures for C=O Addition Consider carbonyl hydration:

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{O}+\mathrm{nHOH} \longrightarrow \mathrm{H}_{2} \mathrm{C}(\mathrm{OH})_{2}+(\mathrm{n}-1) \mathrm{HOH}
$$

Overall Process: The valure of the proton shuttle

Transiton structure $\mathrm{T}_{2} \sim 40 \mathrm{kcal} / \mathrm{mol}$ more stable than transition structure T_{1}. 20-07-C=O addn TS-1 10/30/03 12:25 PM

- Do these results relate to "real" reactions? Yes!

Observation: catalytic amounts of $\mathbf{Z n l}_{2}$ dramatically catalyze addition process

bimetallic transition state

- 4- Versus 6-Center Transition States for Boron 4-Centered

6-Centered

favored

6-Centered

Carbonyl Addition:

4- Versus 6-Center Transition States for Aluminum

The Bimetallic Transition States are preferred

4-Centered

6-Centered Boat

6-Centered Chair

Bicyclic TS

Swain JACS 1951, 73, 870 Ashby JACS 1974, 89, 1967

Grignard Reagents:

The molecularity and transition structure for this reaction have not been carefully elucidated. The fact that the Grignard reagent is not a single species in solution greatly complicates the kinetic analysis.

The Schlenk Equilibrium

Solution structure of $\mathrm{R}-\mathrm{MgBr}$ is in dynamic eqkuilibrium through Schlenck equilik
The Bimetallic (Binuclear) Mechanism for C=O Addition
Recent theoretical study: Yamazaki \& Yambe, J. Org. Chem. 2002, 67, 9346

The Mononuclear) Mechanism is now in disfavor

Mengel, A. and O. Reiser, "Around and Beyond Cram's Rule." Chem. Rev. 1999, 1191-1223

\square Product Development \& Steric Approach Control:
Dauben, JACS 1956, 78, 2579

\% Axial Diastereomer \longrightarrow

Observation: Increasingly bulky hydride reagents prefer to attack from the equatorial $\mathrm{C}=\mathrm{O}$ face.
Assumption: Hindered reagents react through more highly developed transition states than unhindered reagents

Carbonyl Addition: Evolution of Acyclic Models

Cram
JACS 1952, 74, 5828

Karabatsos JACS 1967, 89, 1367

' Nu:
Felkin
TL. 1968, 2199-2208

Assumptions in Felkin Model:

- Transition states are all reactant-like rather than product-like.
\square Torsional strain considerations are dominant.
Staggered TS conformations preferred
- The principal steric interactions are between Nu \& R.

destabilizing interaction

The flaw in the Felkin model: A problem with aldehydes!!

Stereoelectronic Effect:

The HOMO-LUMO interaction dictates the following reaction geometry:

The Dunitz-Bürgi Angle
attack angle greater than 90°; estimates place it in the $100-110^{\circ}$ range
Burgi, Dunitz, Acc. Chem. Res. 1983, 16, 153-161

The flaw in the Felkin model: A problem with aldehydes!!

destabilizing
interaction

Anh \& Eisenstein Noveau J. Chim. 1977, 1, 61-70
Anh Topics in Current Chemistry. 1980, No 88, 146-162

New Additions to Felkin Model:

- Dunitz-Bürgi $\mathrm{C}=\mathrm{O}-\mathrm{Nu}$ orientation applied to Felkin model.
- The antiperiplanar effect:

Hyperconjugative interactions between $\mathrm{C}-\mathrm{R}_{\mathrm{L}}$ which will lower $\pi^{*} \mathrm{C}=\mathrm{O}$ will stablize the transition state.

Theoretical Support for Staggered Transition states (Lecture 7)
(Read this) Houk, JACS 1982, 104, 7162-6
(Read this) Houk, Science 1986, 231, 1108-17

Houk:

"The tendency for the staggering of partially formed vicinal bonds is greater than for fully formed bonds" Lecture-7

Lets begin with ground state effects: Ethane Rotational Barrier

$\stackrel{\Longrightarrow}{\Delta \mathrm{G}=+3 \mathrm{kcal} \mathrm{mol}^{-1}}$

One explanation for the rotational barrier in ethane is that better overlap is achieved in the staggered conformation than in the eclipsed conformation.

In the staggered conformation there are 3 anti-periplanar $\mathrm{C}-\mathrm{H}$ Bonds

In the eclipsed conformation there are 3 syn-periplanar C-H Bonds

H	H
C	

Following this argument one might conclude that:

- The staggered conformer has a better orbital match between bonding and antibonding states.
- The staggered conformer can form more delocalized molecular orbitals.

The tendency for the staggering of partially formed vicinal bonds is greater than for fully formed bonds

Best acceptor σ^{*} orbital is oriented anti periplanar to forming bond

- Theoretical support:

Padden-Row, Chem. Commun. 1990, 456; ibid 1991, 327

$$
\text { Houk, J. Am. Chem. Soc. 1991, 113, } 5018
$$

Frenking \& Reetz, Tetrahedron 1991, 47, 8091

Hierarchy of Donor \& Acceptor States

The following trends are made on the basis of comparing the bonding and antibonding states for the molecule $\mathrm{CH}_{3}-\mathrm{X}$ where $\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}$, and H .

The following are trends for the energy levels of nonbonding states of several common molecules. The trend was established by photoelectron spectroscopy.

Addition of Enolate \& Enol Nucleophiles

$\mathrm{Nu}:$

(Felkin) favored

Trend-1:
For Li enolates, increased steric hindrance at enolate carbon results in enhanced selectivity

L. Flippin \& Co-workers, Tetrahedron Lett.. 1985, 26, 973.

L. Flippin \& Co-workers,

Tetrahedron Lett.. 1985, 26, 973

$$
\begin{array}{cr}
\text { Ketone (R) } & \text { Ratio } \\
\hline \mathrm{R}=\mathrm{Ph} & >200: 1 \\
\mathrm{R}=\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} & 9: 1
\end{array}
$$

- This trend carries over to organometallic reagents as well

+ Anti-Felkin Isomer

Reagent	Ratio
$\mathrm{CIMg}-\mathrm{C} \equiv \mathrm{CEt}$	$1: 1$
$2: 1$	

+ Anti-Felkin Isomer
M. Reetz \& Co-workers,

Angew Chemie Int. Ed.. 1982, 21, 135
($\mathrm{R}-\mathrm{MgX}$ gives Ca 3:1 ratios)

R-Titanium	Ratio
$R=\mathrm{Me}$	$>90: 10$
$R=\mathrm{n}-\mathrm{Bu}$	$>90: 10$

Trend-2: Lewis acid catalyzed reactions are more diastereoselective

Ketone $\left(\mathrm{R}_{1}\right)$	Enolate $\left(\mathrm{R}_{2}\right)$	Ratio	Ratio Li enolate
$\mathrm{R}=\mathrm{Ph}$	$\mathrm{R}=\mathrm{Me}$	$10: 1$	$3: 1$
$\mathrm{R}=\mathrm{Ph}$	$\mathrm{R}=\mathrm{t}-\mathrm{Bu}$	$24: 1$	
$\mathrm{R}=\mathrm{Ph}$	$\mathrm{R}=\mathrm{OMe}$	$15: 1$	
$\mathrm{R}=\mathrm{Ph}$	$\mathrm{R}=\mathrm{Ot}-\mathrm{Bu}$	$36: 1$	$4: 1$
$\mathrm{R}=\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$	$\mathrm{R}=\mathrm{Ot}-\mathrm{Bu}$	$16: 1$	

C. Heathcock \& L. Flippin J. Am. Chem. Soc. 1983, 105, 1667.

Addition of Hydride Nucleophiles

20-14-C=O Cram reductions 10/30/03 1:58 PM

Note: Borane reducing agents do not follow the normal trend

Transition States for $\mathrm{C}=\mathrm{O}$-Borane Reductions

Nonspherical nucleophiles are unreliable in the Felkin Analysis Exercise: Draw the analogous bis $\left(\mathrm{R}_{2} \mathrm{BH}\right)_{2}$ transition structures

Are there cases not handled by the Anh-Eisenstein Model?

Anh-Eisenstein:
"Best acceptor σ^{*} orbital is oriented anti periplanar to forming bond."
$\sigma * C_{S P 3}-C_{S P 2}$ is lower in energy than $\sigma * C_{S P 3}-C_{S P 3}$ bond.

—— $\sigma *$ C—Cyclohexyl
$-\sigma * \mathrm{C}-\mathrm{Ph}$
情
o C-Cyclohexyl

Felkin-Anh analysis predicts B for R = electronegative substituent.

A

B
(Felkin-Anh Prediction)
G. Mehta, JACS 1990, 112, 6140
(R) Substituent

(R) Substituent	A/B Ratio
O	$>90: 10$
$-\mathrm{C}-\mathrm{OMe}$	$34: 66$
$-\mathrm{CH}_{2} \mathrm{OMe}$	$27: 73$
$-\mathrm{CH}=\mathrm{CH}_{2}$	$17: 83$
$\mathrm{CH}_{2}-\mathrm{CH}_{3}$	

Case I:

ectronegative $-\mathrm{CO}_{2} \mathrm{Me}$ substituent
will stabilize both C-C bonding \& antibonding states

Felkin-Anh analysis predicts B

20-15-C=O cases not handled 10/30/03 2:02 PM

G. Mehta, Chem. Commun. 1992, 1711-2:
"These results can be reconciled in terms of the Cieplak model."

Case II: The Le Noble Examples Le Noble, JACS 1992, 114, 1916

Felkin-Anh Ratio, $\geq 95: 5$ Prediction

Pyramidally distorted $C=O$ ruled out from inspection of X-ray structures.

$20-16-\mathrm{C}=\mathrm{O}$ cases not handled 10/30/00 8:06 AM

Cieplak Model for $\mathrm{C}=\mathrm{O}$ Addition

Cieplak, JACS 1981, 103, 4540; Cieplak/Johnson, JACS 1989, 111, 8447

Point A: TS is stabilized by antiperiplanar allylic bond, but....

Point B: Nature of the stabilizing secondary orbital interactions differ:

 —— $\sigma * C--N u$

Nú
\longleftarrow

$-\sigma * C-X$

Felkin Anh

$\sigma \mathrm{C}-\mathrm{X}$

Point C: C-X Electron donating ability follows the order:
$\mathrm{C}-\mathrm{H}>\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{N}>\mathrm{C}-\mathrm{O}$
(Houk disputes the ordering of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}$)
Point D: Importance of torsional effects
(Felkin, Anh, Houk, Padden-Row) disputed.
"Structures are stabilized by stabilizing their highest energy filled states. This is one of the fundamendal assumptions in frontier molecular orbital theory." The Cieplak hypothesis is nonsense."
"Just because a hypothesis correlates a set of observations doesn't make that hypothesis correct."

The management

Quotes for the Day

"Every generation of scientists starts where the previous generation left off, and the most advanced discoveries of one age constitute elementary axioms of the next."

Aldous Huxley
"It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts."
(Sherlock Holmes, A Scandal in Bohemia)
http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 21

Carbonyl and Azomethine Electrophiles-2
${\underset{R}{R}}_{R^{\prime}=0}^{c}$

- Breakdown in the Felkin-Anh Model
- Cyclohexanone Revisited

■ Diastereoselective Additions to Cyclic Ketones

- Chelate Controlled Carbonyl Additions

■ Reading Assignment for this Week:
Carey \& Sundberg: Part A; Chapter 8 Reactions of Carbonyl Compounds
Carey \& Sundberg: Part B; Chapter 2
Reactions of Carbon Nucleophiles with Carbonyl Compounds
Carey \& Sundberg: Part B; Chapter 5
Reduction of Carbonyl \& Other Functional Groups
D. A. Evans

Monday,
November 3, 2003

1. "Theoretical Interpretation of 1,2-Asymmetric Induction. The Importance of Antiperiplanarity", N. T. Anh, O. Eisenstein Nouv. J. Chem. 1977, 1, 61-70. (pdf)
2. "Structural, mechanistic, and theoretical aspects of chelation controlled carbonyl addition reactions."Reetz, Acc. Chem. Res. 1993 26: 462. (pdf)
3. "A Stereochemical Model for Merged 1,2- and 1,3-Asymmetric Induction in Diastereoselective Mukaiyama Aldol Addition Reactions and Related Processes." Evans, et. al. JACS 1996, 118, 4322-4343. (pdf)
4. "The Exceptional Chelating Ability of Dimethylaluminum Chloride and Methylaluminum Dichloride. The Merged Stereochemical Impact of α - and β Stereocenters in Chelate-Controlled Carbonyl Addition Reactions with Enolsilane and Hydride Nucleophiles". Evans, Allison, Yang, Masse, 2001, 123, 10840-10852. (pdf)
$\mathrm{Me}_{2} \mathrm{AICI}$ is the most powerful chelating Lewis acid yet documented

"Asymmetric Diels-Alder Cycloaddition Reactions with Chiral α, β-Unsaturated- N Acyloxazolidinones". Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238-1256.

Syn Diastereomer: $\alpha \& \beta$ Centers Reinforcing

Anti Diastereomer: $\alpha \& \beta$ Centers Opposing

Are there cases not handled by the Anh-Eisenstein Model?

Anh-Eisenstein:
"Best acceptor σ^{*} orbital is oriented anti periplanar to forming bond."
$\sigma * \mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 2}$ is lower in energy than $\sigma * \mathrm{C}_{\mathrm{SP} 3}-\mathrm{C}_{\mathrm{SP} 3}$ bond.

—— $\sigma *$ C—Cyclohexyl
$-\sigma * \mathrm{C}-\mathrm{Ph}$
$\uparrow \downarrow$ $\xlongequal{\uparrow \downarrow} \sigma \mathrm{C}-\mathrm{Ph}$

Case I:

A

Electronegative $-\mathrm{CO}_{2} \mathrm{Me}$ substituent
will stabilize both C-C bonding \& antibonding states

Felkin-Anh analysis predicts B

Felkin-Anh analysis predicts \mathbf{B} for $\mathrm{R}=$ electronegative substituent.

A

B
(Felkin-Anh Prediction)
G. Mehta, JACS 1990, 112, 6140
(R) Substituent

(R) Substituent	A/B Ratio
O	$>90: 10$
$-\mathrm{C}-\mathrm{OMe}$	$34: 66$
$-\mathrm{CH}_{2} \mathrm{OMe}$	$27: 73$
$-\mathrm{CH}=\mathrm{CH}_{2}$	$17: 83$
$-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	

70: 30

NaBH_{4}
39: 61
$\mathrm{Me}-\mathrm{Li}$
34: 66
G. Mehta, Chem. Commun. 1992, 1711-2:
"These results can be reconciled in terms of the Cieplak model."

Case II: The Le Noble Examples Le Noble, JACS 1992, 114, 1916

Felkin-Anh Ratio, $\geq 95: 5$ Prediction

Pyramidally distorted $C=O$ ruled out from inspection of X-ray structures.

Cieplak Model for $\mathrm{C}=\mathrm{O}$ Addition

Cieplak, JACS 1981, 103, 4540; Cieplak/Johnson, JACS 1989, 111, 8447

Point A: TS is stabilized by antiperiplanar allylic bond, but....

Point B: Nature of the stabilizing secondary orbital interactions differ:

 $\sigma * C--N u$

Nú

Point C: $\mathrm{C}-\mathrm{X}$ Electron donating ability follows the order:

$$
\mathrm{C}-\mathrm{H}>\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{N}>\mathrm{C}-\mathrm{O}
$$

(Houk disputes the ordering of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}$)
Point D: Importance of torsional effects
(Felkin, Anh, Houk, Padden-Row) disputed.
"Structures are stabilized by stabilizing their highest energy filled states. This one of the fundamendal assumptions in frontier molecular orbital theory." The Cieplak hypothesis is nonsense."
"Just because a hypothesis correlates a set of observations doesn't make that hypothesis correct." The management
"It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts."
(Sherlock Holmes, A Scandal in Bohemia)

Observation As R becomes more electronegative, percentage of axial attack increases.

	$\%$ Axial Attack	
(R) Substituent	$\mathrm{Me}-\mathrm{Li}$	$\mathrm{Me}_{2} \mathrm{Cu}-\mathrm{Li}$
$\mathrm{R}=\mathrm{H}$	21%	6%
$\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$	34%	21%
$\mathrm{R}=\mathrm{CF}_{3}$	50%	42%

Felkin-Anh predicts opposite trend.
Cieplak argument consistent with results.

The Frenking Position:

- Cieplak stabilizing interaction is "dubious." Why not stabilize the forming sigma bond?
- Enhanced rate of axial Nu attack on cyclohexanone is caused by better electrostatic interactions of the ketone with the attacking reagent and not by torsional considerations.
- Nonequivalence of the $\pi^{*} \mathrm{C}=\mathrm{O}$ LUMO with a greater extension on the axial face dictates stereoselection (Klein, 1973).
"Since interactions between the $\pi \mathrm{C}=\mathrm{O} \& \pi * \mathrm{C}=\mathrm{O}$ and the bonding \& anti-bonding $(\beta) \mathrm{C}-\mathrm{H} \&(\beta) \mathrm{C}-\mathrm{C}$ orbitals are all symmetry allowed, it is difficult to predict a priori which interactions are dominant without carrying out quantum mechanical calculations."

Frenking \& Reetz, Angew. Chem. Int. Ed. 1991, 30, 1146

Houk: Electrostatic rather than covalent considerations may be dominant.
"Equatorial electronegative substituents should interact more strongly with the $C(2-3)$ and $C(9-10)$ bonds than axial substituents."

"If nucleophilic addition occurs anti to the better donor bond (Cieplak), the equatorial isomers should have considerably more axial attack than the parent while the axial isomers should have only a slight increase in axial attack."

"Exactly the opposite is observed."

(R) Substituent

Product Ratio

$\mathrm{R}=\mathrm{OAc}$	$83: 17$
$\mathrm{R}=\mathrm{Cl}$	$88: 12$

Axial 4-substituents favor axial attack for electrostatic reasons:
"Disfavored"

(DAE: Bimetallic transition states were not considered)
K. Houk \& Co-workers, J. Am. Chem. Soc. 1991, 113, 5018

Are there electronic effects in the reaction?
Several cases have already been presented which may be relevant
L. Flippin \& Co-workers, Tetrahedron Lett.. 1985, 26, 973.

The molecular volume occupied by cyclohexyl acknowledged to be larger than that for phenyl. Because of shape phenyl "can get out of the way."

- Anh-Eisenstein Explanation based on HOMO-LUMO Analysis:
"Best acceptor σ^{*} orbital is oriented anti periplanar to forming bond." $\sigma * C_{S P 3}-C_{S P 2}$ is lower in energy than $\sigma * C_{S P 3}-C_{S P 3}$ bond.

Nú

Nú
—— $\sigma * \mathrm{C}$ —Cyclohexyl
\square o C-Cyclohexy
$\sigma \mathrm{C}-\mathrm{Ph}$

The Polar Felkin-Anh Model

Premise: Transition state hyperconjugation between forming bond (HOMO) and best antiperiplanar acceptor ($\sigma^{*} \mathbf{C}-\mathbf{X}$, LUMO). Steric effects alre also considered; $X=$ Halogen, OR, SR etc

Modified Cornforth Model

Premise: Transition State dipole minimization between polar $\mathrm{C}-\mathrm{X}$ substituent and the transforming carbonyl function dictate preferred TS geometrics. Steric effects alre also considered; $X=$ Halogen, OR, SR etc

Both models lead to the same stereochemical prediction.

Chelate organization also provides a powerful control element in carbonyl addition reactions

Chelation model

(OR)	Acid	Solv.	Ratio
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{OBn}$	MgBr_{2}	$\mathrm{THF}\left(0^{\circ}\right)$	$20: 80$
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{OBn}$	MgBr_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-20^{\circ}\right)$	$>99: 1$
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{OBn}$	TiCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-78^{\circ}\right)$	$>99: 1$
$\mathrm{R}=\mathrm{SiMe}_{2}(\mathrm{t}) \mathrm{Bu}$	$\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-78^{\circ}\right)$	$5: 95$

G. Keck \& Co-workers, Tetrahedron Lett. 1984, 25, 265

W. C. Still \& Co-workers,

Tetrahedron Lett. 1980, 21, 1031

Y. Kishi \& Co-workers,

Tetrahedron Lett. 1978, 19, 2745
diastereoselection >100: 1

"only one isomer"
Chelate Model

Chelate organization provides a powerful control element in carbonyl addition reactions

Overman
Tet Lett. 1982, 23, 2355

(OR)	Solv.	Ratio	Model
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{OBn}$	THF	$30: 70$	Chelate
$\mathrm{R}=\mathrm{CH}_{2} \mathrm{OBn}$	$\mathrm{Et}_{2} \mathrm{O}$	$2: 98$	Chelate
$\mathrm{R}=\mathrm{SiPh}_{\mathbf{2}}(\mathrm{t}) \mathrm{Bu}$	THF	$95: 5$	F-A: $\mathbf{R}_{\mathrm{L}}=\mathbf{O R}$

Degree of chelate organization may be regulated by choice of solvent and protecting group. Note that $\mathrm{SiPh}_{2}(\mathrm{t}) \mathrm{Bu}$ group prevents chelation.

Case Study

21-06-Chelation VS PFA-2 11/2/03 8:57 PM

diastereoselection 95:5
(Chelation)

diastereoselection 93:7
(Felkin)

See Lecture 17 slide 03 for this Lewis acid

$\mathrm{Me}_{2} \mathrm{AlCl}_{2}{ }^{-}$

diastereoselection 97:3
(Chelation)
$\mathrm{Me}_{2} \mathrm{AICl} \& \mathrm{MeAICl}_{2}$ only Lewis acids that will chelate strongly to OSiR_{3} Groups. Evans, Allison, Yang,Masse, JACS 2001, 123, 10840-10852

Kinetic Evidence for Chelate-Controlled C=O Additon

Substrates which can participate in $\mathrm{C}=\mathrm{O}$ chelation will be more reactive since the effective concentration of chelated intermediate will be higher.

Eliel, Frye, JACS 1992, 114, 1778-84 (read)
However, these trends are not transmitted strongly to β-chelation

Hence, organization through

Alpha-Versus Beta-Chelation

W. C. Still \& Co-workers,

Tetrahedron Lett. 1980, 21, 1031
diastereoselection 50 :

M. T. Reetz \& Co-workers
J. Am. Chem. Soc.. 1983, 105, 4833.

Other nucleophiles reported

R-M	Solv.	Ratio
$\mathrm{Me}-\mathrm{MgCl}$	THF	$40: 60$
$\mathrm{Me}-\mathrm{TiCl}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$90: 10$

M. T. Reetz \& Co-workers

Tetrahedron Lett. 1984, 25, 729.

Acid	Ratio
TiCl_{4}	$95: 5$
SnCl_{4}	$95: 5$
$\mathrm{BF}_{3}-\mathrm{OEt}_{2}$	$85: 15$

- Note that beta chelation can be developed as a control element by varying solvent \& Nu.
- Note BF_{3} gives "apparent" chelate control

1,3-Stereoinduction Models for Chelate \& non-Chelate Rxns

1,3-Stereoinduction Polar Model:
Evans, Dart, Duffy,Yang, JACS 1996, 118, 4322-4343

1,3-Stereoinduction Chelate Model:
Evans, Allison, Yang,Masse, JACS 2001, 123, 10840-10852

1,3-Anti Relationship is favored by either polar or chelate models

diastereoselection 92:8

$\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$

diastereoselection 81:19

1,3-Stereoinduction Polar Model:

 $1 \mathrm{P}=$ $2 \mathrm{P}=$					
entry	R	$\begin{gathered} 3: 4 \\ (\mathrm{P}=\mathrm{PMB}) \end{gathered}$	(\%)	$\begin{gathered} 5: 6 \\ (P=T B S) \end{gathered}$	(\%)
A	t-Bu	89:11	(82)	84:16	(79)
B	i-Pr	92:08	(91)	80:20	(84)
C	Me	91:09	(89)	93:07	(87)

Steric effects appear to play a minor role in stereoinduction:

1,3-Anti

entry	conditions	$(\mathrm{P}=\mathrm{Bn})$ anti $:$ syn	$(\mathrm{P}=\mathrm{MOM})$ anti $:$ syn
A	$\mathrm{SiMe}_{3} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$85: 15$	-
B	$\mathrm{SnPh}_{3} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$79: 29$	-
C	$\mathrm{SnMe}_{3} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	-	$70: 30$

1,3-Stereoinduction Polar Model

Evans, Dart, Duffy, Yang, JACS 1996, 118, 4322-4343
Can one develop a Rational model for $\alpha \& \beta$ Stereocenters?

Which of the two stereochemical representations is reinforcing? Non-reinforcing?

Integration of 1,3- Polar Model \& Felkin-Anh Model

21-09-Merged Model-1 11/2/03 5:52 PM

The Anti Diastereomer

 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

$13 P=P M B$
$14 P=T B S$
Felkin
15
16

entry	R	$\mathbf{1 5}: \mathbf{1 6}$ $(P=P M B)$	$\mathbf{1 7}: \mathbf{1 8}$ $(P=T B S)$
A	$\mathrm{t}-\mathrm{Bu}$	$99: 01$	$99: 01$
B	$\mathrm{i}-\mathrm{Pr}$	$98: 02$	$95: 05$
C	Me	$97: 03$	$71: 29$

The Syn Diastereomer

Conclusions

A: Anti diastereomer is reinforcing. Both models integrate.
B: Syn diastereomer transitions from Felkin control (Large Nu) to 1,3-control (Small Nu).

The Anti Diastereomer: Both Centers Reinforcing

The Syn Diastereomer: Stereocenters are Non-reinforcing

In this example, the OR substituent is the dominant stereo-control element

Diastereoselection > 99 : 1

${ }^{\mathrm{a}}$ The third unpictured product is the Felkin-3,4-anti diastereomer.

The Syn Diastereomer: Stereocenters are Non-reinforcing

Beta Chelation with Organometals

diastereoselection > 95 : 5

diastereoselection > 95 : 5

W.C. Still \& Co-workers,
diastereoselection 50:50
Tetrahedron Lett. 1980, 21, 1035.

diastereoselection >92 \%
Tetrahedron Lett. 1984, 25, 729.

Beta Chelate-Controlled Reduction

+ isomer
. Oishi \& Co-workers
Chem. Pharm Bull. 1984, 32, 1411.

J. Org. Chem. 1985, 50, 4052

G. R. Brown \& Co-workers Chem. Commun. 1985, 455.

$\mathrm{M}-\mathrm{H}$	Ratio
$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} \mathrm{Et}_{2} \mathrm{O}$	$100: 0$
$\mathrm{LiAlH}_{4} \mathrm{THF}$	$0: 100$

M. Yamaguchi \& Co-workers

Tetrahedron Lett. 1985, 26, 4643.
T. Oishi \& Co-workers

Tetrahedron Lett. 1980, 21, 1641
($\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ on esters.

$\mathrm{M}-\mathrm{H}$	Ratio
$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} \mathrm{Et}_{2} \mathrm{O}$	$100: 0$
$\mathrm{KBH}_{3} \mathrm{H}$ THF	$0: 100$

K. Narasaka \& Co-workers

Chem. Lett. 1980, 1415.

21-12-Chelation beta-3 11/1/00 9:00 AM

Directed reductions of β-hydroxyketones

Evans, Chapman, Carreira, JACS 110, 3560 (1988)

$\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}$

 + isomer
diastereoselection 98:2

Propose a mechanism for tihs highly diastereoselective transformation, Evans, Hoveyda JACS 112, 6447 (1990)

21-13-C=O ADDN (REMOTE-OR) 10/31/00 9:00 PM

R. Frenette \& Co-workers J. Org. Chem. 52, 304 (1987)

Solvent	Ratio
THF	$50: 50$
$\mathrm{C}_{6} \mathrm{H}_{6}$	$70: 30$

+ Isomer

G. Tsuchihashi \& Co-workers Tetrahedron Lett. 1987,28, 6335.	Reagent	Solvent	Ratio
	MeLi	$\mathrm{Et}_{2} \mathrm{O}$	1.7:1
	MeMgBr	THF	1.3:1
	$\mathrm{Me}_{3} \mathrm{Al}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.1:1
	MeTiCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8.4:1
	$\mathrm{MeTi}(\mathrm{O}-\mathrm{Prop})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12:1

$\mathrm{R}=\mathrm{Me}, \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$

Ratio 4-5.5:1

Quote for the Day

Richard P. Feynman (as an undergraduate) in Surely you're Joking Mr. Feynman

"When I was an undergraduate student at MIT I loved it. I thought it was a great place, and I wanted to go to graduate school there too of course. But when I went to Professor Slater and told him of my intentions, he said,
'We won't let you in here.'
I said, "what"?
Slater asked, 'Why do you think that you should go to graduate school at MIT'?
"Because it is the best school for science in the country."
'You think that'?
"Yeah."
'That's why you should go to some other school. You should find out how the rest of the world is.'

Experimental Support for Cornforth or Felkin-Anh Models

Polar Felkin-Anh Model

I
syn-pentane

Cornforth Model

III

matched for polar Felkin-Anh Model

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 22

Enantioselective Carbonyl Addition

- Enantioselective addition of $\mathrm{R}_{2} \mathrm{Zn}$ to aldehydes
- Enantioselective Reduction of Ketones \& Imines
- Introduction to Enolate-based Nucleophiles

■ Reading Assignment for this Week:

Carey \& Sundberg: Part A; Chapter 8
Reactions of Carbonyl Compounds
Carey \& Sundberg: Part B; Chapter 2 Reactions of Carbon Nucleophiles with Carbonyl Compounds

Carey \& Sundberg: Part B; Chapter 5 Reduction of Carbonyl \& Other Functional Groups

Enantioselective Carbonyl Reduction: Corey Angew. Chem. Int Ed. 1998, 37, 1986-2012 (handout)

Enantioselective Carbonyl Addition ($\mathbf{R}_{\mathbf{2}} \mathbf{Z n}$): Noyori Angew. Chem. Int Ed. 1991, 30, 49-69 (handout)
D. A. Evans

Wednesday,
November 5, 2003

Relevant Problems:

Database Problem 27: Chiral amino alcohol 1 efficiently mediates the addition of diethylzinc to aromatic aldehydes. While a number of other amino alcohols are also effective in controlling the absolute course of the addition process, this amino alcohol has been the focus of a recent computational investigation that addresses the preferred transition state geometry for this addition process (Pericas, et al. J. Org. Chem. 2000, 65, 7303 and references cited therein). It should be noted that, while $\mathbf{1}$ is not the actual catalyst, it is modified under the reaction conditions to the competent catalytic agent. Provide a detailed mechanism for the overall transformation. Use 3 -dimensional representations to illustrate the absolute stereochemical aspects of the indicated transformation.

97\% ee

Cume Question, 2000: Corey's introduction of chiral oxazaborolidine catalysts $\mathbf{1}$ in the borane-mediated enantioselective reduction of ketones represents an important advance in asymmetric synthesis (Corey \& Helal, Angew. Chem. Int. Ed. 1998, 37, 1986-2012) Provide a detailed mechanism for the overall transformation. Use 3-dimensional representations to illustrate the absolute stereochemical aspects of the indicated transformation.

Database Problem 151: The following stereoselective transformation has been reported by Fujisawa (Chem.Lett. 1991, 1555). Given the structure of the product, rationalize the stereochemical outcome of the process.

Catalytic Asymmetric Carbonyl Addition

Noyori \& co-workers, J. Am. Chem. Soc. 1986, 108, 6072.
J. Am. Chem. Soc. 1989, 111, 4028

Review: Noyori Angew. Chem. Int. Ed. 1991, 30, 49 Review: L. Pu, Chem. Reviews 2001, 101, 757-824

(DAIB-Zn)

- The method is catalytic in aminoalcohol.
- Two zinc species per aldehyde are involved in the alkylation step.

The Catalytic Cycle

- Catalyst must be sterically hindered so that association is precluded

- Product is taken out of the picture by aggregation

Explanation for Nonlinearity of DAIB Catalyst

Other Catalysts for the $R_{2} Z n$ Addition Process

97\% e.e. (S)

100% e.e. (R)

90\% e.e. (R)

95\% e.e. (S)

90\% e.e. (R)
(Results are cited for the reaction of benzaldehyde and $\mathrm{Et}_{2} \mathrm{Zn}$)
Problem: Rationalize the stereochemical course of each of the catalysts

- Non-linear effects observed with the Noyori Catalyst (DAIB-Zn)

(S, S) dimer

(S) catalyst

(R, R) dimer

(R) catalyst
(S, R) dimer

Observations

- (S,S) dimer dissociates upon addition of RCHO \& effects catalysis
- (S,R) dimer is overwhelmingly more stable than (S,S) homodimer
- (S,R) dimer is ineffective as a catalyst

Scope of the DAIB Catalyst

(S) catalyst

 98% ee

 91\% ee

Review: Noyori Angew. Chem. Int. Ed. 1991, 30, 49

Improved Selectivity with Aliphatic Aldehydes

Soai, J. Org. Chem. 1991, 56, 4264

88\% ee

Lepicidin Application: The reaction functions in complex systems

Evans, Black, JACS 1993, 115, 44974513

Discovery of a Catalytic Process

Enantioselective Carbonyl Reduction: Corey Angew. Chem. Int Ed. 1998, 37, 1986-2012 (handout)

■ The Stoichiometric Process: Itsuno, 1983-1985

Chiral
Boron Hydride
$\left(\mathrm{H}-\mathrm{BX}_{\mathrm{C}}\right)$

$R=M e, \quad 94 \%$ ee $R=E t, \quad 94$ \% ee $R=n-B u \quad 100 \%$ ee

Itsuno, Chem. Commun. 1983, 469
Itsuno, J. Org. Chem. 1984, 49, 555
Itsuno, J. Chem. Soc. Perkin Trans I. 1985, 2615

■ The Catalytic Process: Corey, 1987

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{Ph}, & 97 \% \text { ee } \\
\mathrm{R}=\mathrm{t}-\mathrm{Bu}, & 97 \% \mathrm{ee} \\
\mathrm{R}=\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} & 91 \% \mathrm{ee}
\end{array}
$$

But how does it really work ?

The Catalytic Cycle

Corey, JACS 1987, 109, 5551
Corey, JACS 1987, 109, 7925
Corey, JOC 1988, 53, 2861
Catalyst X-ray, Corey, Tet. Let 1992, 33, 3429
Mathre, JOC 1993, 58, 2880
catalyst prep: Mathre, JOC 1993, 58, 799
(Review) Martens, Tertrahedron Asymmetry 1992, 3, 1475
Improved version

Mathre, JOC 1991, 56, 751
Asymmetry 1992, 3, 1475

22-05-Corey Cat 11/3/03 1:51 PM

22-06-Corey Cat-2 10/31/01 7:43 AM

Fluoxetine (Prozac®) Synthesis

An α-Amino Acid Synthesis

Enantioselective Reducing Agents

(R)-Alpine Borane

(S)-BINAL-H

N-Methylephedrine, $\mathrm{LiAlH}_{4},(3,5-x y l e n o l)_{2}$ [LiAl(lig)(OAr)2H]

Darvon alcohol, LiAlH_{4} $\left[\mathrm{LiAl}(\mathrm{lig})_{2} \mathrm{H}\right]$

Reviews: Midland, Asymmetric Synthesis, Vol 2, p 45-
Granbois, Asymmetric Synthesis, Vol 2, p 71-
Brown, Accts. Chem. Res. 1992, 25, 16-24
Singh, Synthesis 1992, 605-617

Reductions of Representative Carbonyl Compounds

Reagent			
Alpine-Borane	72-92\% e.e.	59-89\% e.e.	$\begin{aligned} & 78 \% \text { e.e. } \mathrm{R}=\mathrm{Me} \\ & 90 \% \text { e.e. } \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} \end{aligned}$
BINAL-H	$\begin{aligned} & 84-96 \% \text { e.e. } \\ & \text { (57\% ee, R=i-Pr) } \end{aligned}$	>95\% e.e.	$\begin{aligned} & 95-100 \% \text { e.e. } \\ & (71 \% \text { ee, R=i-Pr) } \end{aligned}$
Darvon-LiAlH ${ }_{4}$	34-90\% e.e.	25\% e.e.	15-75\% e.e.

N-Methylephedrine- 75-90\% e.e. LiAlH_{4}

78-98\% e.e.
(cyclic ketones)

Stoichiometric Chloroborane Reducing Agents

Less hindered aliphatic ketones are not reduced with useful levels of enantioselectivity

Brown, J. Org. Chem. 1985, 50, 5446
Brown, J. Org. Chem. 1986, 51, 3394 Brown, J. Org. Chem. 1988, 53, 2916

Important References

"Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures"
D. Seebach Angew. Chem. Int. Ed. Engl., 27, 1624 (1983).
"Stereoselective Alkylation Reactions of Chiral Metal Enolates". D. A. Evans Asymmetric Synthesis, 3, 1 (1984).
"Generation of Simple Enols in Solution". B. Capon, B.-Z. Guo, F. C. Kwok, A. K. Siddhanta, and C. Zucco Acc. Chem. Res. 21, 121 (1988).
"pKa and Keto-Enol Equilibrium Constant of Acetone in Aqueous Solution". Y. Chiang, A. J. Kresge, and Y. S. Tang J. Am. Chem. Soc. 106, 460 (1984).

Enols \& Enolates are the most important nucleophiles in organic \& biological chemistry.

Enamines \& metalloenamines, their nitrogen counterparts, are equally important.

metalloenamine

22-08-Enolates/intro 11/5/03 8:57 AM

Tautomers: Structural isomers generated as a consequence of the 1,3-shift of a proton adjacent to a $X=Y$ bond. for example:

Keto-Enol Tautomers: Tautomerism may be catalyzed by either acids or bases
base catalysis:

Acidity of Keto and Enol Tautomers: Consider Acetone:

On the origin of the acidity of enols: Wiberg, JACS 1996, 118, 8291-8299

Tautomeric Equilibria: Ketones vs. Imines

The enamine content in an analogous imine is invariably higher than its carbonyl counterpart. In the case above, ring conjugation now stabilizes the enamine tautomer as the major tautomer in solution.

The Ireland Model (J. Am. Chem. Soc. 1976, 98, 2868)
Narula, Tetrahedron Lett. 1981, 22, 4119
more recent study: Ireland, JOC 1991, 56, 650
For the latest word on this subject see: Xie, JOC 1997, 62, 7516-9
Stereoelectronic Requirements: The $\alpha-\mathrm{C}-\mathrm{H}$ bond must be able to overlap with
 $\pi * \mathrm{C}-\mathrm{O}$

22-09-Enolates/intro-2 11/3/03 2:03 PM

Stereochemistry

Base	R-Substituent	Ratio, (E):(Z)
LDA (THF)	$-\mathrm{OMe}, \mathrm{O}-\mathrm{t}-\mathrm{Bu}$	$95: 5$
LDA (THF)	$-\mathrm{S}-\mathrm{t}-\mathrm{Bu}$	$95: 5$
LDA (THF)	-Et	$77: 23$
LDA (THF)	$-\mathrm{CHMe}_{2}$	$40: 60$
LDA (THF)	$-\mathrm{CMe}_{3}$	$0: 100$
LDA (THF)	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$0: 100$
LDA (THF)	$-\mathrm{NEt}_{2}$	$0: 100$
s-BuLi (THF)	$-\mathrm{NEt}_{2}$	$25: 75$

Solvent

Base	R-Substituent	Ratio, (E):(Z)
LDA (THF)	-OMe	$95: 5$
LDA (THF, HMPA)	-OMe	$16: 84$

Base Structure Masamune (J.Am. Chem. Soc. 1982, 104, 5526)

Base	$\mathrm{R}=\mathrm{Et},(\mathrm{E}):(\mathrm{Z})$	$\mathrm{R}=\mathrm{Cy},(\mathrm{E}):(\mathrm{Z})$
$\mathrm{Li}-\mathrm{N}(\mathrm{i}-\mathrm{Pr})_{2}$	$70: 30$	$39: 61$
$\mathrm{Li}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$	$30: 70$	$15: 85$
$\mathrm{Li}-\mathrm{N}\left(\mathrm{SiEt}_{3}\right)_{2}$	$1: 99$	$4: 96$
$\mathrm{Li}-\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)_{2}$	$0: 100$	$0: 100$
at equilibrium	$16: 84$	-

Base Structure Corey \& Co-workers, Tetrahedron Lett. 1984, 25, 491, 495

$\mathrm{Li}-\mathrm{N}(\mathrm{i}-\mathrm{Pr})_{2}$
(LDA) 77 : 23

(LiTMP) $86: 14$

Lithium Halide Effects Collum (J. Am. Chem. Soc. 1991, 113, 9572)
Collum (J. Am. Chem. Soc. 1991, 113, 9575)
Collum (J. Am. Chem. Soc. 1991, 113, 5053)
For the latest in the series of Column papers see: JACS 2000, 122, 2452-2458

	Ratio, (E):(Z)
LiTMP	$86: 14$
LiTMP, $10 \% \mathrm{LiBr}$	$98: 2$

Enolization in Non-Ethereal Solvents Collum (JACS 2003, 125, ASAP)

Reaction kinetics suggest $\left(\mathrm{TMS}_{2} \mathbf{N L i}\right)_{\mathbf{2}}\left(\mathrm{R}_{3} \mathrm{~N}\right)(\text { Ketone })^{\ddagger}$

Regioselective Enolization

A: Alkyl groups stabilize metal enolate
A: As M-O bond becomes more ionic A is attenuated
Kinetic Selection sensitive to structure

Unsaturated Ketones

[^7] extensive compilation of cases.

Kinetic Selection sensitive to structure

14:86

$\xrightarrow{\text { LDA }}$

LDA

 LDA

~83:17

Kinetic Selection in Enolization of Unsaturated Ketones

only enolate

Quote for the Day

Professor Robert Milikan (1928), Nobel Laureate in Chemistry

"There is no likelihood man can ever tap the power of the atom.
The glib supposition of utilizing atomic energy when our coal has run out is a completely unscientific Utopian dream, a childish
bug-a-boo. Nature has introduced a few foolproof devices into the great majority of elements that constitute the bulk of the world, and they have no energy to give up in the process of disintegration."

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 23

Enolates \mathcal{E} Metalloenamines-1

- Tautomerism in $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{NR}$ Systems
- $\mathrm{C}=\mathrm{O}$ Enolization with Metal Amide Bases
- $\mathrm{C}=\mathrm{O}$ Enolization: Kinetic Acidities
- Mild Methods for Enolate Generation
- Enolate Structure: A Survey of X-ray Structures
- Metallo-Enamine X-ray Structures

■ Reading Assignment for this Week:
Carey \& Sundberg: Part A; Chapter 7 Carbanions \& Other Nucleophilic Carbon Species

Carey \& Sundberg: Part B; Chapter 2
Reactions of Carbon Nucleophiles with Carbonyl Compounds
Friday,
D. A. Evans

November 7, 2003

Assigned Journal Articles

"Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures".
D. Seebach Angew. Chem. Int. Ed. Engl., 27, 1624 (1983). (handout)
"Stereoselective Alkylation Reactions of Chiral Metal Enolates".

$$
\text { D. A. Evans Asymmetric Synthesis, 3, } 1 \text { (1984). (handout) }
$$

- Other Useful References
"Recent Advances in Dianion Chemistry". C. M. Thompson and D. L. C. Green Tetrahedron, 47, 4223 (1991).

The Reactions of Dianions of Carboxylic Acids and Ester Enolates". N. Petragnani and M. Yonashiro Synthesis, 521 (1982).
"Generation of Simple Enols in Solution". Capon, Guo, Kwok, Siddhanta, and Zucco Acc. Chem. Res. 21, 121 (1988).
"Keto-Enol Equilibrium Constants of Simple Monofunctional Aldehydes and Ketones in Aqueous Solution". Keeffe, Kresge, and Schepp JACS, 112, 4862 (1990).
"pKa and Keto-Enol Equilibrium Constant of Acetone in Aqueous Solution". Chiang, Kresge, and Tang JACS 106, 460 (1984).

■ Database Problem 314

Kawabata and co-workers recently reported the remarkable enolate alkylation illustrated below (JACS 2003, 125, 13012). When the indicated α-aminoacid ester is treated with KHMDS in DMF at $-60^{\circ} \mathrm{C}$, the derived cyclic amino acid ester is formed in high yield and enantioselectivity. The stereochemical outcome represents a formal retention of configuration. This reaction exhibits some generality as the 4-5-, 6-, and 7-membered lactams may be obtained in high ee.

[^8]
Important References

"Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures".
D. Seebach Angew. Chem. Int. Ed. Engl., 27, 1624 (1983).
"Stereoselective Alkylation Reactions of Chiral Metal Enolates". D. A. Evans Asymmetric Synthesis, 3, 1 (1984).
"Generation of Simple Enols in Solution". B. Capon, B.-Z. Guo, F. C. Kwok, A. K. Siddhanta, and C. Zucco Acc. Chem. Res. 21, 121 (1988).
"pKa and Keto-Enol Equilibrium Constant of Acetone in Aqueous Solution". Y. Chiang, A. J. Kresge, and Y. S. Tang J. Am. Chem. Soc. 106, 460 (1984).

Enols \& Enolates are the most important nucleophiles in organic \& biological chemistry.

Enamines \& metalloenamines, their nitrogen counterparts, are equally important.

23-01-Enolates/intro 11/7/03 8:16 AM

Tautomers: Structural isomers generated as a consequence of the 1,3-shift of a proton adjacent to a $\mathrm{X}=\mathrm{Y}$ bond. for example:

Keto-Enol Tautomers: Tautomerism may be catalyzed by either acids or bases:
base catalysis:

Acidity of Keto and Enol Tautomers: Consider Acetone:

On the origin of the acidity of enols: Wiberg, JACS 1996, 118, 8291-8299

Tautomeric Equilibria: Ketones vs. Imines

The enamine content in an analogous imine is invariably higher than its carbonyl counterpart. In the case above, ring conjugation now stabilizes the enamine tautomer as the major tautomer in solution.

The Ireland Model (J. Am. Chem. Soc. 1976, 98, 2868)
Narula, Tetrahedron Lett. 1981, 22, 4119
more recent study: Ireland, JOC 1991, 56, 650
For the latest word on this subject see: Xie, JOC 1997, 62, 7516-9
Stereoelectronic Requirements: The $\alpha-\mathrm{C}-\mathrm{H}$ bond must be able to overlap with
 $\pi * \mathrm{C}-\mathrm{O}$

23-02-Enolates/intro-2 11/7/03 8:16 AM

Stereochemistry

Base	R-Substituent	Ratio, (E):(Z)
LDA (THF)	$-\mathrm{OMe}, \mathrm{O}-\mathrm{t}-\mathrm{Bu}$	$95: 5$
LDA (THF)	$-\mathrm{S}-\mathrm{t}-\mathrm{Bu}$	$95: 5$
LDA (THF)	-Et	$77: 23$
LDA (THF)	$-\mathrm{CHMe}_{2}$	$40: 60$
LDA (THF)	$-\mathrm{CMe}_{3}$	$0: 100$
LDA (THF)	$-\mathrm{C}_{6} \mathrm{H}_{5}$	$0: 100$
LDA (THF)	$-\mathrm{NEt}_{2}$	$0: 100$
s-BuLi (THF)	$-\mathrm{NEt}_{2}$	$25: 75$

Solvent

Base	R-Substituent	Ratio, (E):(Z)
LDA (THF)	-OMe	$95: 5$
LDA (THF, HMPA)	-OMe	$16: 84$

Base Structure Masamune (J.Am. Chem. Soc. 1982, 104, 5526)

Base	$R=E t,(E):(Z)$	$R=C y,(E):(Z)$
$\mathrm{Li}-\mathrm{N}(\mathrm{i}-\mathrm{Pr})_{2}$	$70: 30$	$39: 61$
$\mathrm{Li}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$	$30: 70$	$15: 85$
$\mathrm{Li}-\mathrm{N}\left(\mathrm{SiEt}_{3}\right)_{2}$	$1: 99$	$4: 96$
$\mathrm{Li}-\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)_{2}$	$0: 100$	$0: 100$
at equilibrium	$16: 84$	-

Base Structure Corey \& Co-workers, Tetrahedron Lett. 1984, 25, 491, 495

$\mathrm{Li}-\mathrm{N}(\mathrm{i}-\mathrm{Pr})_{2}$
(LDA) 77 : 23

(LiTMP) $86: 14$

Lithium Halide Effects Collum (J. Am. Chem. Soc. 1991, 113, 9572)
Collum (J. Am. Chem. Soc. 1991, 113, 9575)
Collum (J. Am. Chem. Soc. 1991, 113, 5053)
For the latest in the series of Column papers see: JACS 2000, 122, 2452-2458

	Ratio, (E):(Z)
LiTMP	$86: 14$
LiTMP, 10\% LiBr	$98: 2$

Enolization in Non-Ethereal Solvents Collum (JACS 2003, 125, ASAP)

Reaction kinetics suggest $\left(\mathrm{TMS}_{2} \mathrm{NLi}\right)_{2}\left(\mathrm{R}_{3} \mathrm{~N}\right)(\text { Ketone })^{\ddagger}$

Regioselective Enolization

Base	temp	control	Ratio $(\mathrm{A}: \mathrm{B})$
$\mathrm{LiN}(\mathrm{i}-\mathrm{Pr})_{2}$	-78°	kinetic	$99: 1$
$\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$	-78°	kinetic	$95: 5$
$\mathrm{Ph}_{3} \mathrm{C}-\mathrm{Li}$	-78°	kinetic	$90: 10$
$\mathrm{Ph}_{3} \mathrm{C}-\mathrm{Li}$	heat	thermo	$10: 90$
$\mathrm{Na}-\mathrm{H}$	heat	thermo	$26: 74$
$\mathrm{~K}-\mathrm{H}$	heat	thermo	$38: 62$

A: Alkyl groups stabilize metal enolate
A: As $\mathrm{M}-\mathrm{O}$ bond becomes more ionic A is attenuated
Kinetic Selection sensitive to structure

Unsaturated Ketones
 extensive compilation of cases.

Kinetic Selection sensitive to structure

99:1

14:86

$\xrightarrow{\text { LDA }}$

$\xrightarrow{\text { LDA }}$

~90:10

$\xrightarrow{\text { LDA }}$

~83:17

Kinetic Selection in Enolization of Unsaturated Ketones

only enolate

Metal Tautomerism

For alkali metal enolates ($\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ etc.) the O -metal tautomer is strongly favored. This generalization holds for most alkaline earth enolates $\left(\mathrm{Mg}^{+2}\right)$ as well. These are the generally useful enolate nucleophiles

For certain metal enolates from heavy metals such as $\mathrm{M}=\mathrm{Hg}^{+2}$ the C-metal tautomer is sometimes favored.

Resonance Structures
O^{-}resonance structure

C^{-}resonance structure

Since enolates usually function as carbon nucleophiles, it is therefore of some interest to assess the relative importance of the illustrated contributing polar resonance structures. Within the last decade good X-ray crystal structures of a number of metal enolates have been obtained.

One would predict that as the relative importance of the C^{-}structure increases, the $\mathrm{C}-\mathrm{O}$ bond would shorten and the $\mathrm{C}-\mathrm{C}$ bond would lengthen.

The prediction stated above does hold, but the net change in the $\mathrm{C}-\mathrm{C}$ bond length is $<2 \%$!

In solution and in the solid state metal enolates have a strong tendency to aggregate into dimers and tetramers to satisfy metal solvation requirements.

23-05 enolate structure-1 11/7/03 8:15 AM

Ab initio calculations (Spartan) indicate that the partial negatilve charge on the alpha carbon is ~-0.22 for the Li enolate

Crystallized as the dimer
Li
 J. Am. Chem. Soc. 1985, 107, 5403.

Crystallized as the dimer

Williard, P. G.; Carpenter, G. B. J. Am. Chem. Soc. 1986, 108, 462-468. 23-06 Enolate Structrure-2 11/7/03 8:14 AM

Williard, P. G.; Hintze, M. J. J. Am. Chem. Soc. 1987, 109, 5539-5541.

The "Classical" Reformatsky Process

Review: Comprehensive Organic Synthesis, 1991; Vol 2, Chapter 1.8, pp 277-299 Fürstner, A. "Recent Advances in the Reformatsky Reaction." Synthesis 1989, 571.

H. Nozaki \& Co-workers,
J. Am. Chem. Soc. 197, 99, 7705 Both cyclic and acyclic cases studied (11 cases).

diastereoselection 10:1 55% yield
T. Nishida \& Co-workers, Tetrahedron 1991, 47, 6623.

Based on the Nozaki recipe JACS 1977, 99, 7705

PhCHO
T. H. Chan \& Co-workers,

Chem. Commun. 1990, 505.

diastereoselection 60:40
87\% yield
Rxns carried out in water with either activated Zn or Sn . 19 cases reported

C. H. Heathcock \& Co-workers,
J. Org. Chem. 1987, 52, 5745.

The Samarium(II) Variant

Molander, "Reductions with Samarium (II) lodide." Org. Reactions1994, 46, 211-367.

82\% yield

G. A. Molander \& Co-workers,
J. Am. Chem. Soc. 1987, 109, 6556.

Proposed Transition structure

Mild Methods for Forming Enolates

Lewis Acid C=O Complexation Enhances C-H Acidity (Computation)

BF_{3} complexation generates a "superacid" comparable to the acidity of $\mathrm{H}_{2} \mathrm{SO}_{4}$
Ren et al, JACS 1999, 121, 2633-2634 (pdf)

Some qualitative observations (Evans Group, Unpublished))

In these experiments, the Lewis acid was added first followed by the amine.

Some qualitative observations (Evans Group, Unpublished))

H^{\oplus}
pKa~+7
estimated pKa (DMSO) ~+7
Hence TiCl_{4} complexation lowers acidity by ~20 pka units. this number is the same mgnitude as the BF_{3}-acetaldehyde case just discussed

Strategy

Choose Lewis Acid (LA) which can reversibly associate with amine base (B:).
LA +
B :

This system has the potential to enolize carbonyl functional groups:

All of the above systems will enolize simple ketones to some extent.

Lithium Enolates

Horner-Wadsworth-Emmons Reaction.

Roush \& Masamune, Tet. Lett. 1984, 25, 2183-2186

Conventional methods of deprotonation (NaH) resulted in epimerization (Overman JACS 1978, 5179).

Magnesium Enolates

Rathke, Nowak J. Org. Chem. 1985, 50, 2624-2626.

Magnesium Enolates

$$
\begin{array}{ll}
\text { Rathke } & \text { J. Org. Chem. 1985, 50, 2622-2624. } \\
& \text { J. Org. Chem. 1985, 50, 4877-4879. } \\
\text { Syn. Comm. 1986, 16, 1133-1139. }
\end{array}
$$

Diethylmalonate acylations

Ketone Carboxylation
$\mathrm{MgCl}_{2}, 2$ equiv

Michael reaction

Deuterium quench indicates 25% enolization of N -propionyloxazolidinone 23-11-soft enoliz-3 11/7/03 8:14 AM

Titanium Enolates

The Early Literature
Lehnert, W. Tetrahedron Lett. 1970, 4723-4724.

Harrison, C. R. Tetrahedron Lett. 1987, 28, 4135-4138.

Ketone and aldehyde combined followed
by sequential addn of TiCl_{4} and then amine
91\% yield
95:5 syn/anti

Brocchini, Eberle, Lawton J. Am. Chem. Soc. 1988, 110, 5211-5212.

Titanium Enolates

- Enolization process not responsive to tertiary amine structure
- DIPEA, $E t_{3} \mathrm{~N}, \mathrm{~N}$-Ethylpiperidine all suitable bases.
- DBU and tetramethylguanidine do not provide enolate.
- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is the only suitable solvent for these enolizations.

N-Propionyloxazolidone (1)	
Lewis Acid	\% Enolization
TiCl_{4}	100
$i-\mathrm{PrOTiCl}_{3}$	100
$\mathrm{TiCl}_{4} \cdot 2 \mathrm{THF}^{2}$	80
$(i-\mathrm{PrO})_{2} \mathrm{TCl}$	2
$(i-\mathrm{PrO})_{3} \mathrm{TiCl}$	70
	~ 10

■ Order of addition of reagents is important for TiCl_{4}

Ethylisopropylketone	
Lewis Acid	\% Enolization
$\left.\begin{array}{cc}\mathrm{TiCl}_{4} & 100 \\ i-\mathrm{PrOTiCl}_{3} & 80 \\ (i-\mathrm{PrO})_{2} \mathrm{TiCl}_{2} & 50 \\ \hline & \\ \hline\end{array}\right)$	Me

$\mathrm{R}_{3} \mathrm{~N}+\mathrm{TiCl}_{4}$ \qquad $\mathrm{R}_{3} \stackrel{+}{\mathrm{N}}-\mathrm{TiCl}_{4}$
Irreversible Complexation

■ Order of addition of reagents is not important for $i-\mathrm{PrOTiCl}_{3}$ or $(i-\mathrm{PrO})_{2} \mathrm{TiCl}_{2}$
$\mathrm{R}_{3} \mathrm{~N}+i-\mathrm{PrOTiCl}_{3} \rightleftharpoons \mathrm{R}_{3} \stackrel{+}{\mathrm{N}}-\mathrm{TiCl}_{3}(\mathrm{O}$ Pr $) \quad$ Reversible Complexation
■ Enolizable substrates:

■ Substrates Which present problems:

self condensation

$R=A r, R<i-P r$ self condensation

Reactions with Representative Electrophiles

J. Am. Chem. Soc. 1990, 112, 8215-8216.; J. Org. Chem. 1991, 56, 5750-5752.

Evans, Clark, Metternich, Novack, Sheppard J. Am. Chem. Soc. 1990, 112, 866.

Dialkylboron Triflates

Di-n-butylboron triflate

Mukaiyama, Inoue Chem. Lett. 1976, 559-562.
Bull. Chem. Soc. Jpn. 1980, 53, 174-178.
Enolizes ketones with 2,6-lutidine or DIPEA in ethereal solvents.
Diastereoselective Aldol Reactions of Boron Enolates.
Evans, Vogel, Nelson J. Am. Chem. Soc. 1979, 101, 6120.
Evans, Nelson, Vogel, Taber J. Am. Chem. Soc. 1981, 103, 3099-3111.
Evans, Bartroli, Shih J. Am. Chem. Soc. 1981, 103, 2127.
Masamune, S. et. al. Tetrahedron Lett. 1979, 2225, 2229, 3937.
Masamune, S. et. al. J. Am Chem. Soc. 1981, 103, 1566-1568.

Chiral dialkylboron triflates

Masamune, Sato, Kim, Wollmann
J. Am. Chem. Soc. 1986, 108, 8279-8281.

Paterson, l. et. al.
Tetrahedron 1990, 46, 4663-4684.
Tetrahedron Lett. 1989, 30, 997-1000.
Tetrahedron Lett. 1986, 27, 4787-4790.

(-)-(lpc) $)_{2} \mathrm{BOT}$
Enolate Stereochemistry
Evans, Nelson, Vogel, Taber J. Am. Chem. Soc. 1981, 103, 3099-3111. Goodman, Tetrahedron Lett. 1992, 33, 7219.
Enolization Model: Paterson, Tetrahedron Lett. 1992, 33, 7223

Brown, J. Org. Chem. 1993, 58, 147-153

Borane and lutidine or DIPEA form 1:1 complex with $L_{2} B-O T f$. Complexation reversible as enolization will occur upon addition of ketone. Less hindered nitrogen bases - pyridine, Dabco, DBU, irreversibly complex with L_{2} B-OTf.

The Ketone-Boron Complexes as enolate precursors:
anti

$\mathrm{Cy}_{2} \mathrm{BCl}$-ketone complex may deprotonate through syn complex
$\mathrm{R}_{2} B O T f-k e t o n e$ complex may deprotonate through charged complex with (Z) preference

Question: Why do we generally show enolates reacting with electrophiles at carbon as opposed to oxygen ?? Let's begin the the discussion with an observation:

- "As electrophile reactivity increases, the percentage of reaction at the enolate oxygen increases." For example, consider the reactions of cyclohexanone enolate with the two electrophiles, methyl iodide and the much more reactive acetyl chloride:

The very reactive acid chloride gives almost exclusively the O-acylation product while the less reactive methyl iodide affords the alternate C-alkylation product.

These results may be understood in the context of qualitative statements made by Hammond (The Hammond Postulate) and Hine (The Principle of Least Motion)

The Principle of Least Motion:

"As reactions become more exothermic, the favored reaction becomes that path which results in the least structural (electronic) reorganization."

See Hine in Advances in Phys. Org. Chem. 1977, 15, 1-61

Since the X-ray data clearly support the picture that resonance structure 1 best represents the enolate structure, highly reactive electrophiles will favor O -attack according to Hine's generalization.

The Hammond Postulate is also relevant to this issue and is broadly used to make qualitative statements about transition state structure.

Hammond, JACS 1955, 77, 334 (handout)
■ In attempting to grasp the Hammond Postulate, let's consider two extreme reactions, one which is strongly endothermic and one which is strongly exothermic.

Hammond Postulate

"For strongly exothermic reactions, the transition state T^{\ddagger} looks like reactant(s) e.g. B."

- As applied to the enolate-electrophile reaction, for very exothermic reactions, e.g. the reaction with acetyl chloride, the transition state for the process will involve little enolate structural reorganization. Hence in this instance the electrophile heads for the site of highest electron density

Carey \& Sundberg: Part A; Chapter 4, pp217-220 for discussion of Hammond's Postulate

Based upon the above discussion draw a detailed mechanism for the protonation of cyclohexanone enolate.

Metalloenamines:

Imines may be transformed into their conjugate bases (enolate counterparts) with strong bases:

The usual bases employed are either lithium amides (LDA) or Grignard reagents. Note that Grignard reagents do not add to the $\mathrm{C}=\mathrm{N}$ pi-bond due to the reduced dipole. With this functional group, deprotonation is observed to be the preferred reaction.

- When to use a metalloenamine:

Metalloenamines are significantly more nucleophilic than ketone or aldehyde enolates. They are used when less reactive electrophiles are under consideration. For example:

However:

> no reaction

syn

Metalloenamines are reactive enough to open epoxides in good yield. Ketone enolates are only marginally reactive enough for this family of electrophiles.

Decreasing Nucleophilicity-------

		$\begin{aligned} & \Theta 0 \\ & c=c^{\prime} \\ & c^{\prime} \end{aligned}$		
$\mathrm{Br}_{2}, \mathrm{O}_{3}$	+	+	+	+
$\mathrm{H}_{3} \mathrm{O}^{+}$	+	+	+	+
$\stackrel{\mathrm{O}}{\mathrm{R}-\mathrm{C}-\mathrm{Cl}}$	+	+	+	
$\stackrel{\mathrm{O}}{\mathrm{R}-\mathrm{C}-\mathrm{H}}$	+	+	+	
$\stackrel{\mathrm{O}}{\mathrm{R}-\mathrm{C}-\mathrm{R}}$	+	+		
Me-।	+	+		
$\stackrel{\mathrm{O}}{\mathrm{R}-\mathrm{COR}}$	+	+		
	+			
$\mathrm{Me}_{2} \mathrm{CH}-1$	+			
$\stackrel{\mathrm{O}}{\mathrm{O}-\mathrm{C}_{\mathrm{C}}^{2}}$				

\square Nature uses enamines, "stabilized" enolates, and enol derivatives in
C-C bond constructions extensively.

Quote for the Day

"640K ought to be enough for anybody." Bill Gates, 1981

Today's astrological forecast, Boston Globe, Monday, November 10, 2003 Capricorn (Dec 22-Jan 19th)
"Be prepared for someone to try to steal your ideas or take credit for your work. You're on to something tangible and you need to act fast."

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 24

Enolates \mathcal{E} Metalloenamines-2

- Introduction and General Trends
- Enolate Alkylation: Electronic \& Steric Control Elements
- Enolate Alkylation: Unusual Cases
- Chiral Amide Enolates
- Chiral Ester Enolates
- Chiral Imide Enolates
- Chiral Metalloenamines
- Reading Assignment for this Week:

Carey \& Sundberg: Part A; Chapter 7 Carbanions \& Other Nucleophilic Carbon Species

Carey \& Sundberg: Part B; Chapter 2 Reactions of Carbon Nucleophiles with Carbonyl Compounds

Monday,
D. A. Evans

November 10, 2003

Assigned Journal Articles

"Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures".
D. Seebach Angew. Chem. Int. Ed. Engl., 27, 1624 (1983). (handout)
"Stereoselective Alkylation Reactions of Chiral Metal Enolates". D. A. Evans Asymmetric Synthesis, 3, 1 (1984). (handout)

■ Other Useful References
"Advances in Asymmetric Enolate Methodology" Arya, Qin, Tetrahedron 2000, 56, 917-947 (pdf)
"Recent Advances in Dianion Chemistry". C. M. Thompson and D. L. C. Green Tetrahedron, 47, 4223 (1991).

The Reactions of Dianions of Carboxylic Acids and Ester Enolates". N. Petragnani and M. Yonashiro Synthesis, 521 (1982).
"Generation of Simple Enols in Solution". Capon, Guo, Kwok, Siddhanta, and Zucco Acc. Chem. Res. 21, 121 (1988).
"Keto-Enol Equilibrium Constants of Simple Monofunctional Aldehydes and Ketones in Aqueous Solution". Keeffe, Kresge, and Schepp JACS, 112, 4862 (1990).
"pKa and Keto-Enol Equilibrium Constant of Acetone in Aqueous Solution".
_ _ Chiang, Kresqe, and Tang JACS 106, 460 (1984),

Explain why \mathbf{A} is favored for $\mathrm{X}=\mathrm{O}$ while \mathbf{B} is favored for $\mathrm{X}=$ NNHR

- Metalloenamines:

Imines may be transformed into their conjugate bases (enolate counterparts) with strong bases:

The usual bases employed are either lithium amides (LDA) or Grignard reagents. Note that Grignard reagents do not add to the $\mathrm{C}=\mathrm{N}$ pi-bond due to the reduced dipole. With this functional group, deprotonation is observed to be the preferred reaction.

When to use a metalloenamine:
Metalloenamines are significantly more nucleophilic than ketone or aldehyde enolates. They are used when less reactive electrophiles are under consideration. For example:

syn
lations
However:

Metalloenamines are reactive enough to open epoxides in good yield. Ketone enolates are only marginally reactive enough for this family of electrophiles.

\square Nature uses enamines, "stabilized" enolates, and enol derivatives in
$\mathrm{C}-\mathrm{C}$ bond constructions extensively.

Question: Why do we generally show enolates reacting with electrophiles at carbon as opposed to oxygen ?? Let's begin the the discussion with an observation:

■ "As electrophile reactivity increases, the percentage of reaction at the enolate oxygen increases." For example, consider the reactions of cyclohexanone enolate with the two electrophiles, methyl iodide and the much more reactive acetyl chloride:
1

2

C/O Rxn Ratio

The very reactive acid chloride gives almost exclusively the O-acylation product while the less reactive methyl iodide affords the alternate C-alkylation product.

These results may be understood in the context of qualitative statements made by Hammond (The Hammond Postulate) and Hine (The Principle of Least Motion)

The Principle of Least Nuclear Motion:

"As reactions become more exothermic, the favored reaction becomes that path which results in the least structural (electronic) reorganization."

Hine in Advances in Phys. Org. Chem. 1977, 15, 1-61 (handout)
Since the X-ray data clearly support the picture that resonance structure 1 best represents the enolate structure, highly reactive electrophiles will favor O-attack according to Hine's generalization.

See reinforcing examples on the accompanying page.
24-02 C vs O Enolate React 11/9/03 12:16 PM

C versus O Enolate Reactivity: Enolate Acylation

- Kinetic C-Acylation of ketone enolates can be carried out:

 more slowly than the acylation step

Under these conditions, proton transfer from product to enolate does not occur.

See accompanying "Acylation Handout"

■ Kinetic Acidities nicely illustrate LNM Principle: *Lecture 18"

Proton kinetically controlled transfers from C-H Bonds are slow due to the extensive reorganization required in conjugate base.

■ Leaving Group Ability: Stirling, Chem. Commun. 1975, 940

The Hammond Postulate is also relevant to this issue and is broadly used to make qualitative statements about transition state structure.

Hammond, JACS 1955, 77, 334

- In attempting to grasp the Hammond Postulate, let's consider two extreme reactions, one which is strongly endothermic and one which is strongly exothermic.

Strongly Exothermic Reactions
$\Delta \mathrm{H}^{\circ}>-20 \mathrm{kcal} / \mathrm{mol}$
$B \longrightarrow A$

Hammond Postulate

"For strongly exothermic reactions, the transition state T^{\ddagger} looks like reactant(s) e.g. B."
\square As applied to the enolate-electrophile reaction, for very exothermic reactions, e.g. the reaction with acetyl chloride, the transition state for the process will involve little enolate structural reorganization. Hence in this instance the electrophile heads for the site of highest electron density

Carey \& Sundberg: Part A; Chapter 4, pp217-220 for discussion of Hammond's Postulate

Based upon the above discussion draw a detailed mechanism for the protonation of cyclohexanone enolate.

Wnstein \& Holness, JACS 1955, 55, 5562

Review
 Evans, D. A. Stereoselective Alkylation Reactions of Chiral Metal Enolates.; Morrison, J. D., Ed.; AP: New York, 1984; Vol. 3, pp 1-110.

Stereoelectronic Issues

- Enolization: Breaking C-H bond must overlap with $\pi * \mathrm{C}-\mathrm{O}$ in TS^{\ddagger}
- Alkylation: Forming C-El bond must overlap with $\pi * \mathrm{C}-\mathrm{O}$ in TS^{\ddagger}

- Cyclohexanone Enolate:

twist boat conformation

Metal	R-substituent	Electrophile	Ratio, a:e
Li	Me	$\mathrm{CD}_{3} \mathrm{I}$	$70: 30$
Li	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{Me}-\mathrm{I}$	$83: 17$

Chair vs boat geometries not stongly reflected in diastereomeric TS ${ }^{\ddagger}$ s. The transition states is early and enolate-like.

24-03-Enolate alk-1 11/10/03 8:46 AM

Examples where stereoelectronic factors are dominant

Pilli, Tetrahedron, 1999, 55, 13321

good illustration of the impact of allylic strain

The \mathbf{C}_{19} Angular Methyl Group in the steroid nucleus

Cases which do not appear to give the expected product based on the analysis of steric effects

Seebach, Angew. Chem. Int. Ed 1981, 20, 1030
Ladner, Angew. Chem. Int. Ed 1982, 21, 449

- However:

The enolate (MM-2)

Here is another example of a contrasteric alkylation

Sterically Expected Results:

Contrasteric relatives:

Seebach, Helv. Chim. Acta 1987, 70, 1194.

Ladner, Chem. Ber. 1983, 116, 3413-3426.
Those factors defining olefin face selection are currently being defined: Would you have predicted the outcome of the following

Danishefsky J. Org. Chem. 1991, 56, 387

Chiral Enolate Design Requirements Circa 1978

Overall enantioselection will be the sum total of the defects introduced through:

■ Enolization selectivity
■ Enolate-electrophile face selectivity
■ Racemization attendant with X_{c} removal

- Enolization selectivity: Ester-based chiral controllers X_{C} limited by enolization selectivity (Lecture 23)

- Enolization selectivity: Amide-based controllers X_{C} limited by enolization selectivity (Lecture 22)

■ Amide Based Chiral Auxiliaries

With Takacs, Tetrahedron Lett. 1980, 4233
diastereoselection Ca 95%
Allylic Strain controls Enolate Geometry:

Allylic Strain Prevents Product Enolization:
strongly
favored

Chiral Amide Enolates

Evans, Takacs,
Tet. Lett. 1980, 21, 4233-4236

The nature of enolate chelation is ambiguous. Nitrogen chelation is a real possibility

Myers, JACS 1997, 119, 6496

Amide Hydrolysis

Applications in lonomycin synthesis Ionomycin Calcium Complex JACS 1990, 112, 5290-5313

- 83\%

Enolate Amination

diastereoselection 91-99+ \%

(Trisyl-N N_{3} CHMe 2

Enolate Hydroxylation

Imide (R)	Ratio	Yield *
$\mathrm{PhCH}_{2}{ }^{-}$	$94: 6$	86%
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2}{ }^{-}$	$95: 5$	91%
$\mathrm{MeO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}$	$96: 4$	68%
$\mathrm{Ph}-$	$90: 10$	77%
$\mathrm{Me}_{3} \mathrm{C}-$	$>99: 1$	94%

$$
\text { JACS. 1985,107, } 4346 .
$$

For all indicated rxns, as the R on the enolate grp increases in size enolate-El face selectivity increases. Explain.

Chiral Ester Enolates Helmchen, Angew. Chem. Int.Ed. 1981, 20, 207-208

Helmchen, Angew. Chem. Int.Ed. 1984, 23, 60-61
Helmchen, Tet. Lett. 1983, 24, 1235-1238
Helmchen, Tet. Lett. 1983, 24, 3213-3216

Ratio, $93: 7$ (74\%)
Helmchen, Tet. Lett. 1985, 26, 3319-3322

the stereochemical outcome of reaction.

$\mathrm{El}(+)$	addend	Yield	Ratio $(\mathrm{A}: \mathrm{B})$
$\mathrm{Me}-\mathrm{I}$	THF	63%	$96: 04$
$\mathrm{Me}-\mathrm{I}$	HMPT	57%	$01: 99$
$\mathrm{Bn}-\mathrm{Br}$	THF	48%	$99: 01$
$\mathrm{Bn}-\mathrm{Br}$	HMPT	77%	$15: 85$

Chiral β-Keto Ester Dienolates

Schlessinger, Tet. Lett. 1988, 29, 1489-1492

diastereoselection 98:2

D. Kim \& Co-workers, Tetrahedron Lett. 1986, 27, 943.

G. Stork \& Co-workers, Tetrahedron Lett. 1987, 28, 2088.

"one isomer"
T. Money \& Co-workers, Chem. Commun. 1986, 288.

I. Fleming \& Co-workers, Chem. Commun. 1984, 28.

24-10-enolate alk/A-strain 11/9/03 9:10 PM

I. Fleming \& Co-workers, Chem. Commun. 1985, 318.
Y. Yamamoto \& Co-workers, Chem. Commun. 1984, 904.

I. Fleming \& Co-workers, Chem. Commun. 1986, 1198.

diastereoselection $>95 \%$
T. Mukaiyama \& Co-workers, Chem. Letters 1986, 637

K. Koga \& Co-workers, Tetrahedron Letters 1985, 26, 3031.

Y. Yamaguchi \& Co-workers, Tetrahedron Letters 1985, 26,1723.

■ Seminal Paper: Stork \& Dowd, JACS, 1963, 85, 2178-2180

- Reviews:

Martin in Comprehensive Organic Synthesis, 1991; Vol 2, Chapter 1.16, pp 475-502 Whitesell Synthesis, 1983, 517-535
Bregbreiter in Asymmetric Synthesis, 1983; Vol 2, Chapter 9, pp 243-273 Enders in Asymmetric Synthesis, 1984; Vol 3, Chapter 4, pp 275-339

■ Generation \& Structure:

Acidity Measurements: (Streitwiser, JOC 1991, 56, 1989; Fraser, ibid. 1985, 50, 3234):

Kinetic product geometry strongly favors the syn isomer (>99\%) (Fraser)

- Solid State \& Solution Structure:

X-ray structure reveals the following:
I Anion geometry is (Z)
\square For $\mathrm{M}=\mathrm{Li}$, anion is delocalized rather than localized as pictured

- Geometry Rationalization:

Fraser, JACS 1978, 100, 7999
Fraser, Chem. Commun. 1979, 47

Collum, JACS 1984, 106, 4865-4869 Collum, JACS 1985, 107, 2078-2082 Collum, JACS 1986, 108, 3415-3422 Collum, JACS 1993, 115, 789-790
nonbonding N -lone pair may be stabilized by delocalizatin into antibonding orbital of $\mathrm{C}=\mathrm{C}$.

Remember, (Z) geometry also favored for enol ethers

- Representative Reactions:

83% overall

60% overall

Stork \& Dowd, JACS, 1963, 85, 2178-2180
■ Nature of N -substituent, base, and solvent additive can play a role in
deprotonation regioselectivity: Hosomi, JACS, 1982, 104, 2081-2082

Stereoelectronic Issues:

Fraser, JACS 1978, 100, 7999 (handout)
Tendency for axial-chair alkylation is significantly greater that for ketones

Ratio, 96:04

Ratio, 90:10
Collum, JACS 1984, 106, 4865-4869 (handout)

Chiral Metalloenamines:
early papers: $\left\{\begin{array}{l}\text { Meyers, J. Am. Chem. Soc 1976, 98, } 3032 \\ \text { Whitesell, J. Org. Chem. 1978, 42, 377-378 }\end{array}\right.$
full papers: $\left\{\begin{array}{l}\text { Meyers, J. Org. Chem 1978, 43, } 892 \\ \text { Meyers, J. Am. Chem. Soc 1981, 103, } 3081 \\ \text { Meyers, J. Am. Chem. Soc 1981, 103, } 3088\end{array}\right.$

The base:
R-Li; RMgX; $\mathrm{R}_{2} \mathrm{~N}$-Li

Meyers, J. Am. Chem. Soc 1981, 103, 3081

$\mathrm{R}-\mathrm{X}$	ee
$\mathrm{Me}-\mathrm{I}$	87
$\mathrm{Et-I}$	94
$\mathrm{n}-\mathrm{Pr}-\mathrm{I}$	99

Chiral Metallated Hydrazones

Enders in Asymmetric Synthesis, 1984; Vol 3, Chapter 4, pp 275-339

24-13 Metalloenamline X-rays 11/3/00 7:34 AM

Which of the reactive chelate conformations are we to begin our analysis from?

For a review of this methodology see Enders, D. in Asymmetric Synthesis.; Morrison, J. D., Ed.; AP: New York, 1984; Vol. 3, p 275-339.

Chemistry 206

Advanced Organic Chemistry

Handout-24A

Enolate Acylation

D. A. Evans

Monday ,
November 10, 2003

The Reaction:
Acylation

Carboalkoxylation
 $+$

Situations where the reaction is employed:

- Acyl moiety is a constituent of the target structure:

- Acyl moiety employed in assisting bond construction but not part of the target structure:

Deacylation: When an acyl residue is employed in the one of the illustrated bond constructions, it may then be removed by nucleophilic deacylation: Several examples are provided.

Deformylation:

competitive ring cleavage not a problem due to more electrophilic formyl $C=O$

Decarboxylation:

- Alkyl-Oxygen Cleavage: tert-butyl esters

Decarboxylation in this system is a sigmatropic rearrangement involving C=O participation
representative procedure: Henderson, Synthesis 1983, 996
■ Alkyl-Oxygen Cleavage: Methyl esters

leading references
JOC. 1991, 56, 5301-7
Tet Let. 1990, 31, 1401-4

H24-01-Acylation Intro 11/5/00 5:20 PM

- Claisen Condensation: Condensation of 2 esters

- Intramolecular Variant: Dieckmann Condensation

Strictly speaking, the Claisen and Dieckmann condensations are defined as condensations between ester enolates \& ester electrophiles.
In this discussion, we choose to liberalize the classifcation to include ketone enolates as well.

- Reaction Thermodynamics: Overall Keq ~1

- Final enolization Step: Keq $\sim 10^{+4}$

Contrary to popular belief, final enolization step does not render the process irreversible
Reaction Control Elements: These reactions can be manipulated to give either kinetic or thermodynamic control:

H24-02-Claisen Condensation 11/5/00 5:17 PM

- Analysis of the two processes:

Conventional Carbomethoxylation: Equilibrium achieved between all species

Critical issue: Product enolate \mathbf{A} is significantly destabilized by peri-interaction with aromatic ring disrupting the required planarity of the delocalized enolate. Hence, the greater stability of \mathbf{B} dictates the product.

- This type of control is general:

Meyers, JOC 1976, 41, 1976

 JACS 1965, 87, 5728

- Kinetic Acylation: Methyl Cyanoformate (1):

Enolate acylation with 1 is fast
Intermediate 2 breaks down to product more slowly than the acylation step

Under these conditions, proton transfer from product to enolate does not occur.

\square Examples:

Mander, SynLett. 1990, 169

Hashimoto, Chem. Lett. 1989, 1063

- The Tetrahedral Intermediate 2; Why is it so stable?

Consider this process in the broader context of elimination reactions of the E1cb classification where:

Y might be either C or some heteroatom
X might be various leaving groups such as CN, OR etc.

Data is available for the case where $\mathrm{X}=\mathrm{CN}, \mathrm{OR} \& \mathrm{Y}=$ carbanion:
Stirling, Chem. Commun. 1975, 940-941

leaving grp (X)	pKa $\mathrm{H}-\mathrm{X}$	$\log \left[\frac{k_{\mathrm{X}}}{\mathrm{k}_{\mathrm{OPh}}}\right]$
-OPh	10	1
-CN	9.5	<-7
$-\mathrm{C}(\mathrm{Me})_{2}-\mathrm{NO}_{2}$	~ 10	<-9
-OMe	16	-3.9

Above data makes the point that CN is a poor LG but it also leads one to the faulty conclusion that $\mathbf{2}$ should partition to acyl cyanide rather than methyl ester!

Acylating agents can be desiged where the tetrahedral intermediate exhibits exceptional stability:

$$
R=M e, n-B u \text {, or } \mathrm{Ph} ; \text { yields }>90 \%
$$

Weinreb Tet. Lett. 1981, 22, 3815.

Nucleophiles:

Acceptable		Unacceptable
R-Li, R-MgX	$\mathrm{R}=\mathrm{Li}(\mathrm{MgX})$	$\mathrm{R}-\mathrm{ZnX}$ \& other colalent metal alkyls
		other colalent metal enolates
DIBAL	$\mathrm{LiAlH}_{4} \quad \mathrm{LiB}(\mathrm{R})_{3} \mathrm{H}$	Weak hydride reagents: NaBH_{4}

An excellent review on all aspects of Weinreb amide chemistry:
M. Sibi, Organic Preparations and Procedures Int., 1993, 25 (1), 15-40.

Representative Organometals:

H24-04 Weinreb Amides-1 11/5/00 5:22 PM

Hydride Reductions:

D. Evans and S. Miller
J. Org. Chem. 1993, 58, 471

The Rutamycin B Synthesis, H. Ng, Ph. D. Thesis, Harvard University, 1993

The X-206 Synthesis, S. L. Bender, Ph. D. Thesis, Harvard University, 1986

${ }^{35}$ Ét

Problem is to control C=O reactivity on central D-fragment

Et

stable for hours at $0^{\circ} \mathrm{C}$

Evans, Bender, Morris J. Am. Chem. Soc. 1988, 110, 2506.

H24-05-Weinreb Amides-2 11/5/00 5:25 PM

Key Bond Construction Needed for the B12 Synthesis:

The Problem:

<?? --
A. Eschenmoser Science 196, 1410 (1977)

The Solution:

\qquad

E. Knott J. Chem. Soc. 916 (1955)

The General Reaction: Acylation of an Amide C=O

Key papers:
A. Eschenmoser Helv. Chim. Acta. 54, 710 (1971)
A. Eschenmoser Angew. Chem., Int. Ed. Engl. 6, 866 (1967) A. Eschenmoser Angew. Chem., Int. Ed. Engl. 8, 343 (1969)

Review: Trost Comp. Org. Synth. Vol. 2, Ch. 3.7 (1991)

$\mathrm{RCS}_{2} \mathrm{R}^{\prime}+\mathrm{R}_{2} \mathrm{NH} \longrightarrow \quad$ Thioamid@hem. Ind. (London) 803 (1974)
Imidate $+\mathrm{H}_{2} \mathrm{~S} \longrightarrow$ ThioamideAngew. Chem. 79, 865 (1967)

The Dieckmann Condensation

Reviews: Schaefer, Bloomfield, Organic Reactions 1967, 15, 1.
Davis \& Garratt, Comprehensive Organic Synthesis 1991, 2, 806-829

Accesible Ring Sizes

The individual steps:
Enolization:

A variety of bases may be considered for the enolization step.
Either alkoxide or a non-nucleophilic base such as NaH are commonly used.
Choice of base can be important (Vide infra).

Statements claiming that the final enolization step renders the process irreversible are simply incorrect.

Regioselectivity:

Kinetic Control?

Enolization at (A) preferred on basis of inductive effects. Hence,
Path A preferred in kinetically controlled situation
Enolates (B1) and (B2) both more stable than enolate (A)
Under equilibrating conditions (B1) appears to be preferred over (B2)

The effect of beta heteroatoms: classical kinetic vs. thermodynamic control

Reagents for the Reaction:

Bases:

Inorganic: $\mathrm{MHCO}_{3}, \mathrm{MOH}, \mathrm{MH}, \mathrm{MOR}$
Organic: $\quad \mathrm{R}_{3} \mathrm{~N}, \mathrm{~N}$-methylmorpholine, buffered solutions
Thiophiles: $\mathrm{Ar}_{3} \mathrm{P}, \mathrm{R}_{3} \mathrm{P},(\mathrm{RO})_{3} \mathrm{P}$

Combination:

H. Rapoport J. Org. Chem. 46, 3230 (1981)
A. Eschenmoser Helv. Chim. Acta. 54, 710 (1971)
A. Eschenmoser Science 196, 1410 (1977)

$\left(\overline{\overline{\mathrm{C}}} \mathrm{H}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{Me}$

T. Kametani J. Chem. Soc., Perkin Trans. I 1607 (1980)

Miscellaneous Dieckmann Reactions of Potential Interest

R.Danieli, J.Org.Chem. 1983, 48, 123.

J.L. Adams, J.Org.Chem. 1985, 50, 2730.

Peterset, Recl.Trav.Chim.Pays-Bas 1977, 96, 219.

Deduce the mechanism of this multistep process.

Intramolecular Ketone Acylation

H.-J. Liu and Co-workers, Tet.Lett. 1982, 23, 295.

When $X=N R_{2}$, this is a good reaction, but when $X=O R$, it is a poor reaction.
S.Brandawge and Co-workers, Tet.Lett. 1992, 33, 3025.

Kocienski and Co-workers, Tet. 1990, 46, 1716

Kinetically controlled Cyclizations

H24-10-Dieckmann-3 11/5/00 5:31 PM

Multistep Condensations

Danishefsky, JACS, 1973, 95, 2410

Prostaglandin E2
Sih, JACS, 1975, 97, 865

The Rutamycin B Synthesis, H. Ng, Ph. D. Thesis, Harvard University, 1993 JACS 1993, 115, 11446-11459.

The X-206 Synthesis, S. L. Bender, Ph. D. Thesis, Harvard University, 1986

Ét

Problem is to control C=O reactivity on central D-fragment

Ét

Evans, Bender, Morris J. Am. Chem. Soc. 1988, 110, 2506.

H24-11-met-enamine acylation 11/4/01 7:08 PM

■ The Ferensimycin B Synthesis, JACS 1991, 113, 7613-7630

Ferensimycin B

- The B-C Fragment ($C_{10}-C_{23}$ Synthon)

The $\mathrm{C}-11$ ketone must be protected during the $\mathrm{C}-18 \mathrm{C}-19$ bond construction

- The In situ protection of the C-11 Carbonyl

H24-12-Ferensimycin construct 11/4/01 12:32 PM

Quote for the Day

Quote and limrick by J. W. Cornforth
"Nature, it seems, is an organic chemist having some predilection for the aldol and related condensations."

"That Outpost of Empire, Australia
Produces some Curious Mammalia
The Kangaroo Rat
The Blood-sucking Bat
and Aurthur J. Birch, inter alia."

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 25

The Aldol Reaction-1

- Polyketide Biosynthesis
- Historical Perspective on the Aldol Reaction
- Aldol Diastereoselectivity

■ Enolate Diastereoface Selectivity

- Absolute Control in the Aldol Process

■ Reading Assignment for this Week:
Carey \& Sundberg: Part A; Chapter 7 Carbanions \& Other Nucleophilic Carbon Species

Carey \& Sundberg: Part B; Chapter 2 Reactions of Carbon Nucleophiles with Carbonyl Compounds

Wednesday,
D. A. Evans

November 12, 2003

■ Suggested Reading

Stereoselective Aldol Reactionsw in the Synthesis of Polyketide natural Products, I. Paterson et al. in Modern Carbonyl Chemistry, pp 249-297, J. Otera, Ed. Wiley VCH, 2000 (handout)

Ager, D. J., I. Prakash, et al. (1997). "Chiral oxazolidinones in asymmetric synthesis." Aldrichimica Acta 30(1): 3-12

■ Other Useful References

Evans, D. A., J. V. Nelson, et al. (1982). "Stereoselective Aldol Condensations." Top. Stereochem. 13: 1.

Heathcock, C. H. (1984). The Aldol Addition Reaction. Asymmetric Synthesis. Stereodifferentiating Reactions, Part B. J. D. Morrison. New York, AP. 3: 111.

Oppolzer, W. (1987). "Camphor Derivatives as Chiral Auxiliaries in Asymmetric Synthesis." Tetrahedron 43: 1969.

Heathcock, C. H. (1991). The Aldol Reaction: Acid and General Base Catalysis. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford, Pergamon Press. 2: 133.

Heathcock, C. H. (1991). The Aldol Reaction: Group I and Group II Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford, Pergamon Press. 2: 181.

Kim, B. M., S. F. Williams, et al. (1991). The Aldol Reaction: Group III Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford, Pergamon Press. 2: 239.

Franklin, A. S. and I. Paterson (1994). "Recent Developments in Asymmetric Aldol Methodology." Contemporary Organic Synthesis 1:317-338.

Cowden, C. J. and I. Paterson (1997). "Asymmetric aldol reactions using boron enolates." Org. React. (N.Y.) 51: 1-200.

Nelson, S. G. (1998). "Catalyzed enantioselective aldol additions of latent enolate equivalents." Tetrahedron: Asymmetry 9(3): 357-389.

Mahrwald, R. (1999). "Diastereoselection in Lewis-acid-mediated aldol additions." Chem. Rev. 99(5): 1095-1120.

Aldol Reaction Variants: Each has its Merits \& Liabilities

Metal Aldol Process

Clayton He athcock

Satoru Masamune

Teruaki Mukaiyama
Chem Lett. 1973, 1011

Mukaiyama Aldol Process

Generally catalytic in Metal
Diastereomer control not highly regulated

Retro-biosynthesis: Erythromycin A

Recent overview: Staunton, "Polyketide biosynthesis: a millennium review." Nat. Prod. Rep. 2001, 18, 380-416.

Polypropionate Biosynthesis: The Elementary Steps

Erythromycin Seco Acid The 7 Propionate Subunits

The Acylation Event
Decarboxylation-Acylation could either be stepwise (Option A) or concerted (Option B).
The stepwise Option

The overall acylation is stereospecific

See Lecture 24; page 24-08 for first laboratory example

Polypropionate \& Polyacetate Biosynthesis:
Develop a Laboratory Simulation

Polypropionate Biosynthesis: The Elementary Steps

$\overline{\mathrm{Me}}$

$\overline{\mathrm{Me}} \quad \overline{\mathrm{M}} \mathrm{e}$

The Laboratory Mimic:

See Lecture 23; page 23-08: with M. Ennis JACS 1984, 106, 1154.

Dipropionyl Synthon

Latter Stages of Lonomycin Biosynthesis

Cane, Celmer, Westley JACS 1983, 105, 3594

with Ratz, Huff, \& Sheppard, JACS 1995, 117, 3448

General Reviews of the Aldol Literature:

Mukaiyama in Organic Reactions, 1982; Vol 28, pp 203-331
Evans in Topics in Stereochemistry, 1982; Vol 13, pp 1-115
Heathcock in Asymmetric Synthesis, 1984; Vol 3, pp 111-212

Comprehensive Organic Synthesis, 1991; Vol 2

Group I \& II metal enolates: Heathcock; Chapter 1.6, pp 181
Group III metal enolates: Masamune; Chapter 1.7, pp 239
Transition metal enolates: Paterson; Chapter 1.9, pp 301
Control relative stereochemical relationships
Zimmerman 1957:
Proposed chair-like geometry for the Ivanov Reaction

Zimmerman recognized that diastereoselection should be a function of the relative sizes of the substituents on the carbonyl component.

He also speculated on the role that the metal center might play in controlling the process.

The only flaw in the study was that he failed to determine whether the aldol adducts were stable to the reaction conditions.

DuBois 1965-67:
Rough correlation between enolate stucture \& product stereochemistry for alkali and alkaline earth enolates

(E) Enolate

(Z) Enolate

anti diastereomers

syn diastereomers

Zimmerman-Traxler Model for (Z) Enolates

Stereocontrol optimal for "large" X; the reaction is not general.

Why Boron?

To tighten up the transition state.
Design TS where control can come

$$
\begin{array}{|cccc|}
\hline \mathrm{M}-\mathrm{O} \longrightarrow \mathrm{~B}-\mathrm{O} & \mathrm{M}-\mathrm{C} \longrightarrow \mathrm{~B}-\mathrm{C} \\
1.9-2.2 \AA & 1.4-1.5 \AA & 2.0-2.2 \AA & 1.5-1.6 \AA \\
\hline
\end{array}
$$

exclusively from metal center

Are (E) enolates intrinsically less diastereoselective?

| Now that there are good methods for preparing (E) enolates, it appears that both enolate geometries are nearly equivalent. | Dialkylboron chlorides (Brown) |
| :---: | :---: |
| | |
| | J. Org. Chem. 1992, 57, 499-504.
 J. Org. Chem. 1992, 57, 2716-2721 |
| | J. Org. Chem. 1992, 57, 3767-373 |
| | J. Org. Chem. 1993, 58, 147-153. |

It appears that there is not a great difference in aldol diastereoselectivity

Dissection of the Aldol Problem: Select for one product diastereomer

Control attack on the two enolate enantiofaces

Imide Enolates: The problem of enolate face selectivity

The aldol reaction selects for the opposite enolate diastereoface

Result discovered but not predicted
J. Am. Chem. Soc 1981, 103, 2127-2129 (Handout)

The Alpha substituent, X , plays pivotal role in aldol diastereoselection

Model for Asymmetric Induction (unpublished)

RCHO

$\Delta \Delta \mathrm{G}^{\ddagger}(273 \mathrm{~K}) \sim 2.6 \mathrm{kcal} \mathrm{mol}^{-1}$

disfavored product diastereomer: The destabilizing interaction?

Imide Hydrolysis

Imides may suffer attack at either of the two $\mathrm{C}=\mathrm{O}$ functions (eq 1, eq 2)

Product distribution a function of attacking nucleophile (Tet. Lett. 1987, 28, 6141)

(OF-4949 Synthesis) JACS 1989, 111, 1063

Br
M. Bilodeau, unpublished results
complete hydroytic selectivity possible

Trans-esterification

(OF-4949 Synthesis) JACS1989, 111, 1063
Trans-thioesterification:

(Lepicidin Synthesis) J. Am. Chem. Soc 1993, 115, 4497-4513
RCOSR \longrightarrow RCHO Fukuyama, J. Am. Chem. Soc 1990, 112, 7050-7051
Transamination to Weinreb Amides (see Handout 24A)

General Reaction for Syn Aldols: M = B, Ti

$\mathrm{M}=\mathrm{B}, \mathrm{Ti}$

The Transition States:

Evans, JACS 1991, 113, 1047.

Examples:

Enders ACIEE 1988, 27, 581.
Diastereoselection $=96-98 \%$

Evans, JACS 1991, 113, 1047.
Diastereoselection: 99:1 (81\%)

Evans, JACS 1991, 113, 1047.
Diastereoselection: 95:5 (80-90\%)

The Transition States:

$$
\text { Evans, JACS 1991, 113, } 1047 .
$$

25-08-Ketone aldols-2 11/11/03 8:28 PM

However, the preceding precedent does not extend to these systems:

D. A. Evans, H. P. Ng, J. S. Clark, D. L. Rieger Tetrahedron, 1992, 48, 2127-2

An analogous case:

I. Patterson, J. M. Goodman, M. Isaka Tetrahedron Lett. 1989, 30, 7121-7

These enolates do not comply with steric analysis: \rightarrow electronic effects? Tetrahedron, 1992, 48, 2127-2142.

Masamune, Sato, Kim, Wollmann J. Am. Chem. Soc. 1986, 108, 8279-8281.

| RCHO | Yield, \% | anti/syn | ee \% (corrected) |
| :---: | :---: | :---: | :--- |
| n-PrCHO | 91 | $33: 1$ | 93 (98) |
| i-PrCHO | 85 | $30: 1$ | $95(99)$ |
| t-BuCHO | 95 | $30: 1$ | 96 (99.9) |
| $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHO}$ | 82 | $32: 1$ | $93(98)$ |
| PhCHO | (71) | $33: 1$ | 96 (99.8) |

$$
\begin{array}{ccc}
\text { RCHO } & \text { Yield, } \% & \text { ee } \% \text { (corrected) } \\
\hline \text { n-PrCHO } & 82 & 87(91) \\
\mathrm{i}-\mathrm{PrCHO} & 81 & 87(92) \\
\mathrm{t}-\mathrm{BuCHO} & 71 & 94(98) \\
\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CHO} & 95 & 86(90) \\
\text { PhCHO } & 78 & 88(92) \\
\hline
\end{array}
$$

See analogous study by Reetz
Reetz Tetrahedron Lett. 1986, 4721

25-09-Chiral aldol-metal-1 11/11/03 8:29 PM

disfavored

 favored

Analogous Carbonyl Allylation
Masamune, Sato, Kim, Wollmann J. Org. Chem. 1987, 52, 4831

Metal-Based Chiral Auxilliary:

References:
(Corey) JACS. 1989, 111, 5494 (Corey) JACS. 1990, 112, 4977
(Corey) TL. 1991,32, 2857 (Corey) TL. 1993,34, 1737.

1
Does this reagent perform in accord with the Masamune-Reetz analogy? Note: The sulfonamide nitrogens are pseudo-tetrahedral

- Enolization:

Either enolate geometry possible with proper choice of base, solvent, and substrate

A mechanistic proposal for enolization control is presented in paper
(Corey) JACS. 1989, 111, 5494

Chiral Anti Aldol Reaction: JACS 1990,112, 4977; TL 1991,32, 2857.

| | Ratio
 (R) | | | |
| ---: | :--- | :--- | :--- | :--- |
| (X) | syn:anti | \% ee | Yield | |
| $\mathrm{Ph}-$ | Br | $2: 98$ | 96 | 86% |
| chex- | Br | $2: 98$ | 91 | 65% |

- Chiral Syn Aldol Reaction JACS 1989, 111, 5494.

■ Chiral Acetate Aldol Reaction JACS 1989,111, 5494.

| (R) | $\%$ ee | Yield |
| ---: | :---: | :---: |
| $\mathrm{Ph}-$ | 91 | 84% |
| $\mathrm{Me}_{2} \mathrm{CH}-$ | 83 | 82% |

Nonchelate Reaction

Masamune, JACS 1981, 103, 1566 (boron enolate)
Diastereoselection: 99:1
Evans, JACS 1991, 113, 1047 (titanium enolate)

but marginal for TBS
Thorton, Tet. Let. 1990, 31, 6001

Complimentary aldol reactions may be obtained by changing metal as well as enolate geometry

JACS, 1990, 112, 866; Tetrahedron, 1992, 48, 2127-2142.

Tetrahedron Lett. 1988, 29, 585-588
anti-anti

Tetrahedron Lett. 1989, 30, 7121-7124
Tetrahedron Lett. 1992, 33, 4233-4236

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 26

The Aldol Reaction-2

■ (E) \& (Z) Enolates: Felkin Selectivity

- Double Stereodifferentiating Aldol Reactions
- The Mukaiyama Aldol Reaction Variant
- Allylmetal Nucleophiles as Enolate Synthons
- Reading Assignment for this Week:

Carey \& Sundberg: Part A; Chapter 7 Carbanions \& Other Nucleophilic Carbon Species

Carey \& Sundberg: Part B; Chapter 2 Reactions of Carbon Nucleophiles with Carbonyl Compounds

Monday,

D. A. Evans

November 17, 2002

Assigned Reading

Lithium Diisopropylamide-Mediated Lithiations of Imines: Insights into highly Structure -Dependent Rates and Selectivities. D. Colum, JACS 2003, 125, ASAP (handout)
W. R. Roush, J. Org. Chem. 1991, 56, 4151-4157. (handout)

■ Other Useful References

Evans, D. A., J. V. Nelson, et al. (1982). "Stereoselective Aldol Condensations." Top. Stereochem. 13: 1.

Heathcock, C. H. (1984). The Aldol Addition Reaction. Asymmetric Synthesis. Stereodifferentiating Reactions, Part B. J. D. Morrison. New York, AP. 3: 111.

Oppolzer, W. (1987). "Camphor Derivatives as Chiral Auxiliaries in Asymmetric Synthesis." Tetrahedron 43: 1969.

Heathcock, C. H. (1991). The Aldol Reaction: Acid and General Base Catalysis. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford, Pergamon Press. 2: 133.

Heathcock, C. H. (1991). The Aldol Reaction: Group I and Group II Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford, Pergamon Press. 2: 181.

Kim, B. M., S. F. Williams, et al. (1991). The Aldol Reaction: Group III Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford, Pergamon Press. 2: 239.

Franklin, A. S. and I. Paterson (1994). "Recent Developments in Asymmetric Aldol Methodology." Contemporary Organic Synthesis 1:317-338.

Cowden, C. J. and I. Paterson (1997). "Asymmetric aldol reactions using boron enolates." Org. React. (N.Y.) 51: 1-200.

Nelson, S. G. (1998). "Catalyzed enantioselective aldol additions of latent enolate equivalents." Tetrahedron: Asymmetry 9(3): 357-389.

Mahrwald, R. (1999). "Diastereoselection in Lewis-acid-mediated aldol additions." Chem. Rev. 99(5): 1095-1120.
(E) Enolates Exhibit Felkin Aldehyde Diastereoface Selection

- The illustrated syn-pentane interaction disfavors the anti-Felkin pathway.

Evans, Nelson, Taber, Topics in Stereochemistry 1982, 13, 1-115.
W. R. Roush, J. Org. Chem. 1991, 56, 4151-4157.

Background Information: The influence of β-OR substituents on RCHO Evans, JACS 1996, 118, 4322-4343

1,3-selection

Therefore, one might conclude that:

26-01-E enol/RCHO 11/16/03 7:05 PM

The Non-Reinforcing syn- RCHO is the most Interesting
Dependence of the Selectivity of Felkin-controlled Reactions on Nu Size

both centers

Felkin reinforcing

$$
\mathrm{R}=\mathrm{PMB} \quad 93: 7 \quad \text { (} 84 \% \text { yield) }
$$

\[

\]

Achiral (E) enolates preferentially add to the Felkin diastereoface High anti:syn diastereoselectivity ($\geq 97: 3$) is observed in all cases

Evans etal. JACS 1995, 117, 9073
(Z) Enolates Exhibit Anti-Felkin Aldehyde Diastereoface Selection

The illustrated syn-pentane interaction disfavors the Felkin pathway.
Evans, Nelson, Taber, Topics in Stereochemistry 1982, 13, 1-115. W. R. Roush, J. Org. Chem. 1991, 56, 4151-4157.

An Early study rationalized results through chelated transition states:

26-02-Z enol/RCHO 11/16/03 7:07 PM

■ The bulky OTBS group disfavors chelation. (see Keck, JACS 1986, 108, 3847.)

- The boron and lithium enolates display nearly equal levels of anti-Felkin selectivity.

Titanium enolates exhibit the same trend

Evans etal. JACS 1995, 117, 9073

Double Stereodifferentiating Aldol Bond Constructions

Stereochemical Control Elements
Enolate geometry

Product
Enolate facial bias \Rightarrow Stereochemistry \Leftarrow Aldehyde facial bias

The Issue: Can one reliably take the diastereoselectivites of the individual reaction partners and use this information in the illustrated extrapolation:

The model reactions:

The extrapolation:

Masamune, Angew. Chem. Int. Ed. 1985, 24, 1-76

Matched reactant pair: Stereo-induction from both partners reinforcing The reference reactions:

[aldehyde prod ratio] = 10/1

Me

[enolate prod ratio] $=10 / 1$

- The double stereodifferentiating situation: Stereoselectivity?

■ The assumption: (Masamune, Heathcock)
It is presumed that useful information can be obtained from related achiral enolate \& RCHO addition reactions and that the free energy contributions will be additive:

$$
\begin{aligned}
\Delta \Delta \mathrm{G}^{\ddagger}(\mathrm{Rxn}) & \left.\sim \Delta \Delta \mathrm{G}^{\ddagger} \text { (enolate }\right)+\Delta \Delta \mathrm{G}^{\ddagger}(\mathrm{RCHO}) \\
\log [\text { Product ratio }] & \sim \log \text { [enolate ratio }]+\log \text { [aldehyde ratio }] \\
{[\text { Product ratio }] } & \sim \text { enolate prod ratio }] \times \text { [aldehyde prod ratio }]
\end{aligned}
$$

- Hence, for the case at hand: [Product ratio] ~ [10] x [10] ~ 100

Mismatched reactant pair: Stereo-induction from partners nonreinforcing

The Masamune-Heathcock generalizations hold to a point:

(E)-Boron Enolates: The reference reactions

(E)-Boron Enolates: The matched cases

(E)-Boron Enolates: The mismatched cases

β-center on RCHO can play a significant role in this marginal situation 26-04-stereodif aldol-2 11/16/03 7:09 PM
(Z)-Titanium Enolates: The reference reactions

(Z)-Titanium Enolates: The matched cases

(Z)-Titanium Enolates: The mismatched cases

"Double Stereodifferentiating Aldol Reactions. The Documentation of "Partially Matched" Aldol Bond Constructions". Evans, D. A.; Dart, M. J.; Duffy, J. L.; Rieger, D. L. JACS 1995, 117, 9073-9074.

Synthesis of Polyketide chains

Given a polyprpionate chain of alternating Me \& OH substitutents, select a disconnection point sectioning the fragments into subunits of comparable complexity by adding $\mathrm{C}=\mathrm{O}$ as illustrated.

$\sqrt{1}$

Focusing on the $=\mathrm{OFG}$, there are 2 1st-order aldol disconnections highlighted. Let's proceed forward with $\mathbf{T} 1_{\mathbf{B}}$. Carry out the dissconnection to subunits $\mathbf{2}_{\mathrm{K}}$ and $\mathbf{2}_{\mathrm{A}}$.

For substituted enolate and enolsilane-based processes, there are at least three identifiable stereochemical determinants that influence reaction diastereoselectivity (eq 1). Two of these determinants are associated with the local chirality of the individual reaction partners. For example, enolate (enolsilane) chirality influences the absolute stereochemistry of the forming methyl-bearing stereocenter, and in a similar fashion, aldehyde chirality controls the absolute stereochemical outcome of the incipient hydroxyl-bearing stereocenter. The third determinant, the pericyclic transition state, imposes a relative stereochemical relationship between the developing stereocenters. This important control element is present in the aldol reactions of metal enolates ($M=\mathrm{BR}_{2}, \mathrm{TiX}_{3}$, Li, etc.), but is absent in the Lewis acid catalyzed (Mukaiyama) enolsilanes aldol variants that proceed via open transition states.

26-05-PK synth-1 11/16/03 7:10 PM

The Lonomycin Synthesis: An example of polypropionate assembage Evans, Ratz, Huff, Sheppard JACS 1995, 117, 3448

BH_{3} Transform: See Lecture No. 8

$$
C_{1}-C_{11} \text { Assemblage }
$$

JACS, 1990, 112, 866

Stereochemically

Anti-Felkin Adduct Diastereoselection >95:5 (86\%)
The $\mathrm{Sn}(\mathrm{OTf})_{2}$ aldol reaction of A : seethis lecture + JACS, 1990, 112, 866

The Altohyrtin Synthesis: An example of polypropionate assembage

Evans, Trotter, Coleman, Côté, Dias, Rajapakse, Tetrahedron 1999, 55, 8671-8726.

The stereochemical determinants from each fragment were evaluated

Model Studies

26-06-PK synth-2 11/16/03 7:11 PM

Model Studies

Background

The Aldol Fragment Coupling

Bafilomycin A_{1} Synthesis: An example of polypropionate assembage Evans, Calter, Tetrahedron Lett. 1993, 34, 6871

Bafilomycin A_{1}

Critical Aldol Disconnection

Required: Syn aldol addition
Aldehyde Fragment: Target contains syn aldol retron wilth anti-Felkin relationship at 1 \& 4
Enolate Fragment: Can the needed enolate facial bias be built into the reaction??

Aldol Model Studies Enolization Conditions: $\mathrm{PhBCl}_{2}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$.

The Critical Observation

26-07-PK synth-3 11/16/03 7:12 PM

Enolization Conditions: $\mathrm{PhBCl}_{2}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$.

Critical Aldol Disconnection

60\%
diastereoselection >95:5

Type I Aldol Reaction: Metal Aldol Process

This reaction may be run with either a stoichiometric or catalytic amount

Catalytic Version: Slow step in the catalytic variant is protonation of the intermediate metal aldolate

Type II Aldol Reaction: Mukaiyama Aldol Process
This reaction may be run with either a stoichiometric or catalytic amount of Lewis acid.

The minimalist mechanism: MX = Lewis acid

26-08-Mukaiyama-1 11/16/03 7:12 PM

Recent Reviews

R. Mahrwald, Diatereoselection in Lewis Acid Mediated Aldol Additions, Chem. Rev. 1999, 99, 1095-1120
S. G. Nelson, Catalyzed enantioselective aldol additions of latent enolate equivalents Tetrahedron: Asymmetry 1998, 9, 357-389.

Mukaiyama Aldol Reaction, E. Carreira In Comprehensive
Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.; and Yamamoto, H. Editors; Springer Verlag: Heidelberg, 1999; Vol III, 998-1059.

Reaction Mechanism: "Closed" versus "Open" Transition States

The Mukaiyama aldol reaction proceeds through an "open" transition state. The two illustrated competing TS orientations do not differ significantly in energy. For most reactions in this family there is not a good understanding of reactans-pair orientation. There is a prevalent view that the anti-periplanar TS is favored on the basis of electrostatic effects.

Metal aldolate TS "Closed"

anti-periplanar TS
"Open"

synclinal TS
"Open"

Denmark has designed a nice substrate to distinguish between synclinal and anntiperiplanat transition states:
Denmark, J. Org. Chem. 1994, 59, 707-709

AP

Syn-Anti Aldol Diastereoselection

Heathcock: J. Org. Chem 1986, 51, 3027

 56:44

The effectice size of the enol substituents are probably dominant.

The transition state?

These reactions "exhibit little simple diastereoselection except in special cases."....Heathcock

Merged Syn-Anti \& Felkin Diastereoselection

Evans: JACS 1995, 117, 9598

Conclusions:
Moderate to Good syn diastereoselectlion
Felkin : anti-Felkin 99:1 Excellent Felkin diastereoselectlion

87 : 13 (68\%)

Felkin : anti-Felkin > 99 : 1

 91: 9 (75\%)
Felkin : anti-Felkin 87 : 13
Conclusions:
Moderate to Good syn diastereoselectlion
Excellent Felkin diastereoselectlion
26-10-Mukaiyama-3 11/16/03 7:15 PM

Enolslane Face Selection

Enolsilane Face Selectivity 95 : 5

Double Stereodifferentiating Syn Aldol Rxns with Enolsilanes

98 : 2 (72\%)

98 : 2 (83\%)

- General Reviews of Allyl Metal Reagents:

Comprehensive Organic Synthesis, 1991;Vol. 2.

- The General Reactions

The Hoffman Chiral Allylboronic Esters

M. Reetz Chem. Ind. (London) 1988, 663-664.

- The Tartrate-derived Allylboronic Esters
$\mathrm{iPrO}_{2} \mathrm{C}$

$\mathrm{iPrO}_{2} \mathrm{C}$

W. Roush, J. Am. Chem. Soc. 1985, 107, 8186-8190. Tetrahedron Lett. 1988, 29, 5579-5582.

 Yield $=40 \%$
W. Roush, J. Am. Chem. Soc. 1988, 110, 3979-3982.
\square A Reagent for the Generation of Anti-1,2-Diols
$\mathrm{iPrO}_{2} \mathrm{C}$

W. Roush, Tetrahedron Lett. 1990, 31, 7563-7566.
\square Allenylboronic Esters: Tartrate-derived Controllers and Internal Delivery

- The Masamune Borolane

S. Masamune, J. Org. Chem. 1987, 52, 4831-4832.
H. Yamamoto, J. Am. Chem. Soc. 1982, 104, 7667-7669

95\% Yield $>99: 1$ Tetrahedron Lett. 1986, 27, 1175-1178.

The Corey Stein Controller

E. J. Corey, J. Am. Chem. Soc. 1989, 111, 5495-5496. J. Am. Chem. Soc. 1990, 112, 878-879.

- The Brown IPC Controller

H. C. Brown, J. Am. Chem. Soc. 1983, 105, 2092-2093.
J. Org. Chem. 1991, 56, 401-404.
J. Org. Chem. 1992, 57, 6614.

C. Brown, J. Am. Chem. Soc. 1988, 110, 1535-1538.
See also: Tetrahedron Lett. 1990, 31, 455-458.

H. C. Brown, J. Chem. Soc., Perkin Trans. 1, 1991, 2633.

The Allylboron Reagents Add to Carbonyl Compounds via a Zimmerman-Traxler Transition State

Masamune, Sato, Kim, Wollmann J. Org. Chem. 1987, 52, 4831

anti:syn, 96:4

favored

enantioselection: 95-97\%

An Enantioselective Allyltitanium Reagent

$\mathrm{R}^{*} \mathrm{OH}=$

M. Riediker, R. Duthaler, ACIEE, 1989, 28, 494-495. In Organic Synthesis via Organometallics, 1991, 285-309 J. Am. Chem. Soc. 1992, 114, 2321-2336.

Duthaler Chem. Rev. 1992, 92, 807

R. Duthaler, J. Am. Chem. Soc. 1992, 114, 2321-2336.

Chiral α-Substituted Allyl Metal Reagents: Boron

R. Hoffman, Chem. Ber. 1986, 119, 2013-2024

Chem. Ber. 1988, 121, 1501-1507.
ACIEE, 1986, 25, 1028-1030.

The favored transition states

■ Three Catalytic Asymmetric Allylations of Aldehydes are Known

H. Yamamoto, Synlett 1991, 561-562.

$\mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{CHO}$

81\% yield
97.4\% ee

1

2

| R | Catalyst | Yield (\%) | ee (\%) |
| :---: | :---: | :---: | :---: |
| Ph | $\mathbf{1}$ | 88 | 95 |
| Chex | $\mathbf{2}$ | 98 | 92 |
| | $\mathbf{1}$ | 66 | 94 |
| | $\mathbf{2}$ | 95 | 92 |
| | $\mathbf{1}$ | 42 | 89 |

G. Keck J. Am. Chem. Soc. 1993, 115, 8467-8468.
E. Tagliavini, A. Umani-Ronchi J. Am. Chem. Soc. 1993, 115, 7001-7002.

- Many Other Metals Have Been Employed in the Allylation Reaction ...

Pb: S. Torii, Chem. Lett. 1986, 1461-1462.
Mo: J. Faller, Tetrahedron Lett. 1991, 32, 1271-1274.
Cr: Y. Kishi, Tetrahedron Lett. 1982, 23, 2343-2346.
P. Knochel, J. Org. Chem. 1992, 57, 6384-6386.

Sb: Y. Butsugan, Tetrahedron Lett. 1987, 28, 3707-3708.
Mn: T. Hiyama, Organometallics, 1982, 1, 1249-1251.
Zn : T. Shono, Chem. Lett. 1990, 449-452.
Ba: H. Yamamoto, J. Am. Chem. Soc. 1991, 113, 8955-8956.

Chemistry 206

Advanced Organic Chemistry

Handout 26A

The Asymmetric Baylis-Hillman Reaction

An Evans Group Afternoon Seminar Jake Janey
March 29th, 2001

J. Janey

Monday,
November 17, 2003

An Evans Group Afternoon Seminar
Jake Janey
March 29th, 2001

Leading References:
Langer, P. Angew. Chem. Int. Ed. Engl. 2000, 39, 3049-3052.
Ciganek, E. Org. React. 1997, 51, 201-350.
Basavaiah, D.; et. al. Tetrahedron, 1996, 52, 8001-8062.
Drewes, S. E.; Roos, G. H. P. Tetrahedron, 1988, 44, 4653-4670.

Baylis-Hillman Reaction Scope

$R^{1}=$ alkyl, aryl
$\mathrm{CHO}, \mathrm{COR}, \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{SO}_{3} \mathrm{Ph}$
cat. bases:

$n-\mathrm{Bu}_{3} \mathrm{P}:$

An anti propionate aldol equivalent...

Early Synthetic Examples

10 years after the Baylis-Hillman German patent... used in a C_{10} integerrinecic acid synthesis:

Drewes, S. E. J. Chem. Soc., Perkin Trans. 1 1982, 2079-2083.

Shortly thereafter, a more extensive, published study:

- All reactions run neat in a sealed tube with 1.5-2 equivalents of acrylate

Hoffmann, H. M. R.; Rabe, J. Angew. Chem. Int. Ed. Engl. 1983, 22, 795-797.

Hill, J. S.; Isaacs, N. S. J. Phys. Org. Chem. 1990, 3, 285-288. Kaye, P. T.; Bode, M. L. Tetrahedron Lett. 1991, 32, 5611-5614.

- rate $=\mathrm{K}_{\text {obs }}$ [aldehyde][alkene][amine]
- pseudo-second order if [amine]~constant
- addition to aldehyde is r.d.s. because the dipole is increased by further charge seperation
- acrylonitrile and methyl acrylate studied
- enolate geometry not considered
- ethereal solvent inhibits reaction whereas alcohols
(especially diols) accelerate reaction
- huge volume of activation: $\Delta \mathrm{V}^{\ddagger}$ of $-79 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ (the

Diels-Alder is $-35 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$) found by plotting Ink $k_{\text {obs }}$ vs.
P. 5000 bar increases rate by 1.1×10^{6}

- Reaction is reversible (i.e. a Grob type
fragmentation), thus mechanism could be ternary, with no discrete enolate intermediate (supported by $\Delta \mathrm{V}^{\ddagger}$ and temperature effects).

Evidence for an Intermediate

Drewes, S. E.; et. al. Syn. Comm. 1993, 23, 2807-2815.

Drewes:
"...the counter ion was chloride (presumably originating from the dichloromethane...)."

Or...

Effects of Acrylate Ester Substituent

Caubere, P.; et. al. Tetrahedron 1992, 48, 6371-6384.

Bases for Catalysis

Sterics also important:

$$
\mathrm{Me}_{2} \mathrm{NH}>\mathrm{Me}_{2} \mathrm{NEt}>\mathrm{MeNEt}_{2}>\mathrm{NEt}_{3} 10.75 \text { (9.00) }
$$

Many, many phosphines screened...the winner: $n-\mathrm{Bu}_{3} \mathrm{P} \sim 9$

- $n-\mathrm{Bu}_{3} \mathrm{P}$ is only a slightly better catalyst than DABCO.

unreactive

..or could accelerate protonation of intermediate, as any alcohol additive will accelerate reaction

Temperature Effects

- Reaction is accelerated for a wide variety of aldehydes when conducted at $0^{\circ} \mathrm{C}$
- Temperature effect not seen with acrylonitrile (cannot form enolate)
- Author concludes that one enolate must react faster than another (i.e. a kinetic versus a thermodynamic enolate).

Which enolate is more stable and which is more reactive?
Leahy, J. W.; Rafel, S. J. Org. Chem. 1997, 62, 1521-1522.

Enolate Geometry

E

Thermodynamic

- less charge seperation
- less reactive

Salt Additive

- Ether was found to be optimal from solvent screening.
- General for a variety of alkenes and aldehydes.

Kobayashi, S.; Kawamura, M. Tetrahedron Lett. 1999, 40, 1539-1542.

Lewis Acid Catalysis

Relative Reaction Rates

| ligand | $\mathrm{Sc}(\mathrm{OTf})_{3}$ | $\mathrm{Yb}(\mathrm{OTf})_{3}$ | $\mathrm{Eu}(\mathrm{OTf})_{3}$ | $\mathrm{La}(\mathrm{OTf})_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| none | 3.3 | 3.6 | 3.5 | 4.7 |
| (+)BINOL | 9.4 | 14.4 | 12.8 | 14.6 |
| (+)diethyl tartrate | 5.2 | 9.7 | 5.5 | 7.3 |
| (+)diisopropyl tartrate | 3.5 | 9.5 | 4.6 | 8.1 |
| (+)TMTDA | 4.1 | 8.0 | 3.6 | 4.0 |
| (+)hydrobenzoin | 3.5 | 16.2 | 5.8 | 5.3 |
| (+)triphenylethanediol | 3.2 | 5.2 | 2.2 | 5.9 |
| (+)TADDOL | 2.9 | 4.5 | 3.8 | 4.7 |
| ethylene glycol | 3.3 | | | |
| triethanolamine | 4.65 | | 5.2 | 4.0 |
| salen | 2.31 | 6.3 | | 5.2 |
| box | 3.6 | 5.8 | 3.2 | 4.4 |
| N-methylephedrine | 2.87 | | | |

- no enantioselectivity observed

DABCO loading dropped to <10 mol\% with (+)-BINOL

- rac-BINOL showed no rate acceleration

Aggarwal, V. K.; et. al. Chem. Commun. 1996, 2713-2714. Aggarwal, V. K.; et. al. J. Org. Chem. 1998, 63, 7183-7189

Possible Stereoisomers

III

III

III

- E2 favored over E1 pathway
- $-\mathrm{NR}_{3}{ }^{+}$is orthogonal to π face (stereoelectronics)

III

E/Z Selectivity with Crotononitrile

Rozendaal, E. L. M.; Voss, B. M. W.; Scheeren, H. W. Tetrahedron 1993, 49, 6931-6936.

$5 \mathrm{~mol} \%$ DABCO, 17 h , solvent $50 \mathrm{vol} \%$
26B-06 11/9/01 1:08 PM

Possible Stereoisomers for Methylcrotonate

|||

|||

 considered, thus there are an additional 4 stereoisomers possible

- starting geometry of methylcrotonate and in situ isomerization not considered
- retro-Baylis-Hillman not considered

Camphorsultam Acrylate Baylis-Hillman

Camphorsultam Acrylate Mechanism

α-Branched Aldehydes: Modest Felkin-Anh Selection

- Varying the amount of catalyst only affects the rate, not selectivity.
- Anti and syn drawn incorrectly in review, should be reversed.

Ciganek, E. Org. React. 1997, 51, 217-218

syn selective

Chiral Aldehydes: Chromium Auxiliary

- dr determined by $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR
- N -Tosyl arylimine chromium complex also reacts

Kundig, P. E.; et. al. Tetrahedron Lett. 1993, 34, 7049-7052.

Chiral Phosphine Catalysts

Frater, G.; et. al. Tetrahedron Lett. 1992, 33, 1045-1048.

Zhang, X.; et. al. J. Org. Chem. 2000, 65, 3489-3496.

The High Point of Chiral Phosphine Catalysts

- other phosphines screened gave \sim racemic products: DIOP, NORPHOS, BPPFOH, and MOP

Soai, K.; et. al. Chem. Commun. 1998, 1271-1272.

Naturally Occurring Alkaloids as Chiral Catalysts

- (-)-quinine, $(1 R, 2 S) N$-methylephedrine, $S-(-)$-nicotine, $S-(-)-N$-methylprolinol screened
- (-)-menthyl acrylate ester gave 100% de with aromatic aldehydes and DABCO under high P

Isaacs, N. S.; et. al. Tetrahedron: Asymm. 1991, 2, 969-972.

-3-QDL, quinine, cinchonine, cinchonidine, O -acetyl quinidine, N -methylprolinol, N-methylephedrine also screened

- ee is highly pressure dependent, optimized pressure is shown in table

Marko, I. E.; Giles, P. R.; Hindley, N. J. Tetrahedron 1997, 53, 1015-1024.

Model For Quinidine Catalyst

Author's model:

- C_{α} hydrogens control π face of the aldehyde
- bulky R should enhance selectivity, a trend that they say is "...clearly visible."
- H-bonding plays a "clear role" as O -acyl quinidine gives no enantioselectivity

Marko, I. E.; Giles, P. R.; Hindley, N. J. Tetrahedron 1997, 53, 1015-1024.

C_{2} Symmetric DABCO Catalyst

| | R | time (h) | yield (\%) | $e e(\%)$ |
| :---: | :---: | :---: | :---: | :---: |
| | Bn | 12 | 45 | 47 |
| | TBDPS | 12 | 23 | 34 |
| | TIPS | 28 | 33 | 19 |
| | Ph | 16 | 60 | 35 |
| | Mesityl | 28 | 67 | 16 |
| | 1-naphthyl | 16 | 66 | 42 |
| | 1-anthranyl | 24 | 9 | 11 |
| | 1-napththoyl | 17 | 68 | 15 |
| | N-Cbz-Gly | 24 | 63 | 21 |

- racemic alcohol product can be easily resolved by kinetic resolution with Sharpless asymmetric epoxidation
- other chiral DABCO's made, but not tested...

Hirama, M.; et. al. Tetrahedron: Asymm. 1995, 6, 1241-1244.

Chiral Pyrrolizidine Catalyst

ArCHO

| Ar | yield (\%) | $e e(\%)$ |
| :---: | :---: | :---: |
| 2- NO_{2} | 71 | 67 |
| $2-\mathrm{F}$ | 31 | 63 |
| $2-\mathrm{Cl}$ | 58 | 72 |
| 2- Br | 63 | 71 |
| 3- NO_{2} | 51 | 37 |
| 2-pyridyl | 83 | 21 |
| 3-pyridyl | 93 | 49 |
| 4-quinolinyl | 63 | 70 |
| 4- NO_{2} | 17 | 39 |

Author's model:

Barrett, A. G. M.; et. al. Chem. Commun. 1998, 2533-2534.

C_{2} Symmetric DABCO Catalyst

| | R | time (h) | yield (\%) | $e e(\%)$ |
| :---: | :---: | :---: | :---: | :---: |
| | Bn | 12 | 45 | 47 |
| | TBDPS | 12 | 23 | 34 |
| cat. = | TIPS | 28 | 33 | 19 |
| | Ph | 16 | 60 | 35 |
| | Mesityl | 28 | 67 | 16 |
| | 1-naphthyl | 16 | 66 | 42 |
| | 1-anthranyl | 24 | 9 | 11 |
| | 1-napththoyl | 17 | 68 | 15 |
| | N-Cbz-Gly | 24 | 63 | 21 |

- racemic alcohol product can be easily resolved by kinetic resolution with Sharpless asymmetric epoxidation
- other chiral DABCO's made, but not tested...

Hirama, M.; et. al. Tetrahedron: Asymm. 1995, 6, 1241-1244.

Chiral Pyrrolizidine Catalyst

ArCHO

Author's model:

Barrett, A. G. M.; et. al. Chem. Commun. 1998, 2533-2534.

Quinidine Ether Catalyst

RCHO +

$+$

| R | yield (\%) | $e e(\%)$,
 (config) | yield (\%) | $e e(\%)$,
 (config) |
| :---: | :---: | :---: | :---: | :---: |
| $p-\mathrm{NO}_{2}$ | 58 | $91(R)$ | 11 | $4(R)$ |
| Ph | 57 | $95(R)$ | -- | -- |
| $(E)-\mathrm{PhCH}=\mathrm{CH}$ | 50 | $92(R)$ | -- | -- |
| Et | 40 | $97(R)$ | 22 | $27(S)$ |
| $i-\mathrm{Bu}$ | 51 | $99(R)$ | 18 | $18(S)$ |
| $i-\mathrm{Pr}$ | 36 | $99(R)$ | 25 | $25(S)$ |
| $c-\mathrm{Hex}$ | 31 | $99(R)$ | 23 | $23(S)$ |
| $t-\mathrm{Bu}$ | -- | -- | -- | -- |

- Quinidine and other acyclic derivatives showed no enantioselection and very low reactivity.
- Free hydroxyl on quinoline is essential for enantioselectivity.
- Reactions conducted at room temperature showed lower enantioselection.
- Racemic ester does not react to give dioxanone under the reaction conditions.

Hatakeyama, S.; et. al J. Am. Chem. Soc. 1999, 121, 10219-10220.
cat. $=$

prepared in 65% yield from quinidine in 85% phosphoric acid and $\operatorname{KBr}\left(100^{\circ} \mathrm{C}, 5 \mathrm{~d}\right)$.

Proposed Mechanism: Partial Kinetic Resolution

A Model for Facial Selectivity

Favored
PM3 minimized: C-N bond to enolate constrained to $1.6 \AA^{i}$

- Catalyst orthogonal to opposite π face of the enolate leads to same major enantiomer after elimination

Disfavored

BINOL as an Additive or Ligand

| R | yield (\%) | |
| :---: | :---: | :---: |
| $n-\mathrm{C}_{7} \mathrm{H}_{15}$ | quant. | |
| Ph | 92 | e ee were all $<10 \%$ |

$\mathrm{MEMO}\left(\mathrm{CH}_{2}\right)_{3} 98$ - phenol also accelerates reaction

Et $91 \quad$ other acrylates also tolerated
$\mathrm{PhCH}_{2} \mathrm{CH}_{2}$ quant.

Ikegami, S.; Yamada, Y. M. A. Tetrahedron Lett. 2000, 41, 2165-2169.

Zhang, X.; et. al. J. Am. Chem. Soc. 1997, 119, 3836-3837. Lu, X.; et. al. J. Org. Chem. 1995, 60, 2906-2908.

Phosphine Catalyzed Addition

(

Zhang, X.; et. al. J. Org. Chem. 1998, 63, 5631-5635.

Addition Mechanism

Author's proposal:

Recipe for a Good Catalyst?

vs.

vs.

- for substituted acrylates, must control enolate π facial selectivity
- chirality on catalyst may also gear ester substituent to influence aldehyde approach
or

Conclusions

- The Baylis-Hillman reaction provides convenient access to valuable allylic alcohol building blocks which may serve as synthetic equivalents to anti-propionate aldol addition products.
- The basics of the reaction mechanism are understood, but the mechanistic details still remain elusive at best.
- Few examples of a general, diastereoselective Baylis-Hillman have been reported and the successful ones are rather limited in scope.
- Only one synthetically useful enantioselective, base catalyzed Baylis-Hillman reaction exists. There is no rational design, nor models for asymmetric catalysis.
- The asymmetric, catalytic Baylis-Hillman reaction is very promising and attractive methodology, but remains an elusive goal of chiral Lewis base catalysis.

Chemistry 206

Advanced Organic Chemistry

Handout 26B

Asymmetric Carbonyl Ene Reactions

Evans Group Seminar
by
Steven Tregay, December 12, 1997

\longrightarrow

D. A. Evans

Monday,
November 17, 2003

Chem 206 Problems Containing the Ene Reaction

The problems provided on this and the following page deal with the ene reaction either directly or indirectly. In the latter cases, this reaction is imbedded within a multistep rearrangement sequence. Answers to these questions may be obtained by entering the descriptors "Rearrangement" and "Ene" into the problems database: http://evans.harvard.edu/problems/

Problem 210. The carbonyl ene reaction is illustrated below. Using FMO analysis, evaluate the transition state of this reaction. Your answer should include: a transition state drawing; clear orbital depictions and HOMO-LUMO assignments; an indication of the number of electrons from each segment; and indication of whether the reaction is thermally allowed.

Problem 19. The following transformation was recently reported by Barriault and Deon in conjunction with their synthesis of arteanniun M (Org. Lett. 2001, 3, 1925-1927). Provide a mechanism for the illustrated thermal rearrangement(s) of \mathbf{A} to B. Where stereochemical issues are at stake, provide clear three dimensional drawings to support your answer.

Single product diastereomer

DBU is a useful amidine base; pKa ~ 12

Problem 83. Chiral methyl groups are commonly used to probe the stereochemical outcome of biological reaction mechanisms. Many interesting strategies have been developed to synthesize chiral methyl groups in high enantiomeric excess. The first approach, designed by Arigoni (Chem. Commun. 1975, 921), is illustrated below.

\qquad

Provide a mechanism for the following transformation that accounts for the (H,D,T) stereochemistry of the chiral methyl group. You do not need to account for the stereochemistry at the starred carbon (it was not determined by the investigators).

Chem 206 Problems Containing the Ene Reaction

Problem 177. Provide a mechanism that predicts the observed stereochemistry at the starred (*) carbon atoms (Rajagopalan, Tetrahedron Lett. 1998, 39, 4133). Draw the starting material, each intermediate, and the product clearly in 3D.

Problem 184. The key step in Kim's synthesis of perhydrohistrionicotoxin, 3, was the conversion of intermediate $\mathbf{1}$ to ketone 2 in a single acid-catalyzed transformation (Chem. Commun., 1997, 2263). Provide a mechanism for the conversion of $\mathbf{1}$ to $\mathbf{2}$ that accounts for the observed stereochemistry.

Problem 203. Provide mechanisms that account for the stereoselective formation of the products obtained by treatment of aldehyde \mathbf{A} to the conditions shown below. Briefly comment on the difference in reactivity under the two sets of conditions (JOC, 1998, 7586).

Problem 233. Snapper and co-workers have reported an approach to the [5.3.0] ring system that is commmon to a number of sesquiterpenes(JACS 2001, 123,5152). One cited example is alismol whose structure is provided for reference. Upon thermolysis, the illustrated tetracyclic ester is transformed into the illustrated bicyclic ring system in 64% yield (eq 1).

Alismol

Provide a plausible mechanism for this transformation. Your answer should include an explanatin of the somewhat unusual stereochemical inversion of the center carrying the flagged "red" hydrogen.

Seminar Topics

Early Work on Chiral Glyoxylates

Thermal reaction $\left(160{ }^{\circ} \mathrm{C}\right)$ gave no induction

Achmatzowicz, JOC, 1972, 37, 964.

Ene reactions of 8-Phenylmenthol Glyoxylate Ester

Mechanism for 1-Substituted Olefins

Mechanism for 1-Substituted Olefins

Whitesell, JCS CC, 1982, 989.
Whitesell, Tetrahedron, 1986, 42, 2993.

Asymmetric Desymmetrization using 8-Phenylmenthol Glyoxylate Ester

Whitesell, JACS, 1988, 110, 3585. Whitesell, JACS, 1986, 108, 6802.
Whitesell, JOC, 1985, 50, 3025.

one diastereomer
(81 \% yield)
Note: 1 gives opposite bridgehead selectivity

Phenylmenthol Imine-Ene Reaction

*R = 8-Phenylmenthol

*R = 8-Phenylmenthol

97% de 76% yield
was not discussed

Mikami, TL, 1993, 34, 4841.

Ene reaction of (S)-2-(Ethylthio)-3-siloxy-1-butene

Referenced in Mikami, Chem. Rev., 1992, 92, 1021
Kuwajima, Annual Meeting of the Chemical Society of Japan, 1991.

Ene Reactions of N-Glyoxyloyl -(2R)-bornane-10,2-Sultam

| $\mathrm{R}=$ | Catalyst | Temp $\left({ }^{\circ} \mathrm{C}\right)$ | $\%$ de | $\%$ Yield |
| :--- | :--- | :--- | :--- | :--- |
| Et | SnCl_{4} | -78 | $84: 16$ | 78 |
| | ZnBr_{2} | 5 | $90: 10$ | 50 |
| $n-\mathrm{Pr}$ | SnCl_{4} | -78 | $75: 25$ | 93 |
| | ZnBr_{2} | 5 | $89: 11$ | 43 |

Most Reactive Conformation according to PM3 and Ab initio calculations
Chapuis, Helv. Chim. Acta, in preparation

(Z)- methylfarnesal

Yamamoto, Tetrahedron, 1986, 42, 2203.

Zn BINOL Promoted Intramolecular Ene Cyclizations

| $\mathrm{R}=$ | Solvent | 1% ee (\% yield) | | 2% ee (\% yield) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | Toluene (20 days) | ND | (17) | ND | (37) | |
| Me | Toluene | 82 | (39) | 92 | (36) | |
| | 1,3,5 Trimethylbenzene | 86 | (32) | >98 | (37) | |
| | $\mathrm{CFCl}_{2} \mathrm{CF}_{2} \mathrm{Cl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 97 | (47) | ND | (16) | |
| - $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ - | $\mathrm{CFCl}_{2} \mathrm{CF}_{2} \mathrm{Cl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\overline{8} \overline{4}$ | (ND) | >98 | (ND) | |

Narasaka, Chem. Lett., 1988, 1609.

3-3'-bis(triphenylsilyl)BINOL Aluminium Catalyst

Note: Use of less reactive aldehydes (ie Chloral) afforded lower \% ee and stoic. LA were required

Use of MS is required for catalytic reaction
Use of 3-3'-diphenylbinaphthol complex gave 0% ee
$(\mathrm{i}-\mathrm{PrO})_{2} \mathbf{T i C l}_{2}(\boldsymbol{R})$-BINOL Catalyzed Ene Reaction

Preliminary Result:

Nakai, JACS, 1989, 111, 1940.
Nakai; Mikami, JACS, 1990, 112, 3949.
$(\mathrm{i}-\mathrm{PrO})_{2} \mathbf{T i B r}_{2}(\boldsymbol{R})$-BINOL Catalyzed Ene Reaction: 1,1 Disubstituted
Olefin

Reaction conditions: Ethyl glyoxylate, $-30^{\circ} \mathrm{C}, 3 \mathrm{hr}, \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Nakai, JACS, 1989, 111, 1940.
Nakai; Mikami, JACS, 1990, 112, 3949.
Nakai, Org. Syn., 1993, 14.

Olefin
 Products

Reaction conditions: Ethyl glyoxylate, $5-10 \mathrm{~mol} \%$ cat., $-30^{\circ} \mathrm{C}, 3 \mathrm{hr}, \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Nakai, JACS, 1989, 111, 1940.
Nakai; Mikami, JACS, 1990, 112, 3949.

Importance of Molecular Sieves

For reaction of α-methyl Styrene and ethyl gloxylate $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}\right)$

| | Additive 4 A MS (g/mmol) | Yield | \% ee | | Additive i-PrOH | Additive 4 A MS ($\mathrm{g} / \mathrm{mmol}$) | Yield | \% ee |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method A | 5 | 100 | 97 | Method B | 0 | 0 | 95 | 93 |
| | 0 | 81 | 10 | | 10 mol \% | 0 | 90 | 95 |
| | 5 then filter | 96 | 97 | | | 5 | 100 | 95 |
| | | | | | 10 mol \% | 5 | 98 | 96 |

Note: By ${ }^{13} \mathrm{C}$ NMR no Ti BINOL complexation occurs until MS are added.
$(\mathrm{i}-\mathrm{PrO})_{2} \mathrm{TiCl}_{2}$ is a viable catalyst for the reaction.

Note : For X-ray crystal structure of dimeric $\left((\mathrm{PhO})_{2} \mathrm{TiCl}_{2}\right)_{2}$ See: Watenpaugh, Inorg. Chem. 1966, 5, 1782.

Mikami, Tetrahedron, 1992, 48, 5671.
Mikami, JACS, 1994, 116, 2812.

For chiral poisoning of racemic BINOL Complxes see:

Faller, TL, 1996, 37, 3449.
Mikami, Nature, 1997, 385, 613.
$(\mathbf{i}-\mathrm{PrO})_{2} \mathbf{T i B r}_{2}(\boldsymbol{R})$-BINOL Catalyzed Ene Reaction : Other Enophiles

| Enophile | $\mathrm{n}=$ | $\%$ Yield | \% ee |
| :---: | :---: | :---: | :---: |
| COOMe | 0 | 85 | 87 |
| 1 | 1 | 70 | 94 |

Mikami, TL, 1996, 47, 8515.

Asymmetric Desymmetrization using (i-PrO) $)_{2} \mathbf{T i B r}_{2}(\boldsymbol{R})$-BINOL

1:2 ratio 92 : 8

Mikami, TL, 1996, 47, 8515.
Mikami, Synlett, 1995, 29.

Asymmetric Desymmetrization / Resolution using (i-PrO) $)_{2} \mathbf{T i C l}_{2}(R)$-BINOL

Mikami, Annual Meeting of the Chemical Scoiety of Japan, 1990 and 1991.
See : Mikami, Synlett, 1992, 255.

Synthesis of $\mathrm{C}_{10}-\mathrm{C}_{\mathbf{1 5}}$ and $\mathrm{C}_{\mathbf{3 0}}-\mathrm{C}_{\mathbf{3 5}}$ fragments of Rapamycin

$\mathrm{R}=$ Dimethylthexylsilyl

(R)-BINOL (83 \% yield) >99
(S)-BINOL (61 \% yield) 3
Mikami, TL, 1994, 35, 7793.

$\mathrm{C}_{10}-\mathrm{C}_{15}$ fragment
$(\mathrm{i}-\mathrm{PrO})_{2} \mathrm{Ti}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{R})$-BINOL Catalyzed $\{\mathbf{3}, \mathbf{4}\}_{\text {exo, exo }}$ Intramolecular Ene Reaction

| $\mathrm{X}=$ | Additive | time | \% Yield | Ratio
 trans $:$ cis | trans
 \% ee |
| :--- | :--- | :--- | :---: | :---: | :---: |
| O | none | 24 h | 73 | $47: 53$ | 70 |
| O | AgClO_{4} | 24 h | 50 | $80: 20$ | 84 |
| $-\mathrm{CH}_{2^{-}}$ | AgClO_{4} | 48 h | 66 | $69: 31$ | 55 |

$(\mathrm{i}-\mathrm{PrO})_{2} \mathrm{Ti}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{R})$-BINOL Catalyzed

$\{2,4\}_{\text {exo, exo }}$ Intramolecular Ene Reaction

| $\mathrm{n}=$ | $\mathrm{R}=$ | \% yield | \% ee |
| :--- | :--- | :--- | :--- |
| 0 | H or Me | NR | -- |
| 1 | H | 43 | 91 |
| 1 | Me | 40 | 82 |

Mikami, TL, 1991, 32, 6571.
Mikami, Tet. :Asymm., 1991, 2, 1403.
$(\mathrm{i}-\mathrm{PrO})_{2} \mathrm{Ti}(\mathrm{Cl})_{2}(\mathrm{~S})$-BINOL Catalyzed
$\{2,4\}_{\text {exo, exo }}$ Intramolecular Ene Reaction

1) $(\mathrm{i}-\mathrm{PrO})_{2} \mathrm{Ti}(\mathrm{Cl})_{2}(\mathrm{~S})-\mathrm{BINOL}$

2) Acylation

4.5 (38 \% ee) :

1

Trichothecene Anguidine

Corey's Model for Ti BINOL Ene Reactions

BINOL Ti X 2 Aldehyde Complex

Corey, TL, 1997, 38, 6513.

BF_{3} Menthylethyl Etherate catalyzed Ene reaction

Demir, Syn. Comm. 1994, 24, 137.

[^9]
$\mathbf{Y b}(\mathbf{O T f})_{3}$ BINOL Catalyzed Ene Reaction

| Ligand $\mathrm{R}=$ | \% ee |
| :---: | :--- |
| H | 12 |
| Br | 38 |
| Ph | 25 |
| $-\xi=\mathrm{TMS}$ | 29 |

Qain, TL, 1997, 38, 6721.

Jorgensen's Ene byproducts

| Solvent | Diels-Alder
 $\%$ ee | Ene Product
 $\%$ ee | DA :Ene
 Ratio |
| :--- | :---: | :---: | :--- |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 85 | 83 | $1: 1.8$ |
| $\mathrm{CH}_{3} \mathrm{NO}_{2}$ | 90 | 78 | $1: 0.8$ |

Jorgensen, Tetrahedron, 1996, 52, 7321.
For optimization of hetero Diels-Alder reaction products See: Jorgensen, JCS PT 2, 1997, 1183.

Work from the Evans Groups

"C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids. Catalytic Enantioselective Carbonyl-Ene Reactions with Glyoxylate and Pyruvate Esters". Evans, D. A.; Tregay, S. W.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T. J. Am. Chem. Soc. 2000, 122, 7936-7943.

olefin \quad product $^{a} \quad$ catalyst $\mathrm{mol} \%$ \% yield \% ee

211

| 97 | $93(S)$ |
| :--- | :--- |
| 99 | $89(R)$ |

| $\mathbf{2}$ | 1 | 95 | $96(S)$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | 10 | 97 | $76(R)$ |

| $\mathbf{2}$ | 1 | 89 | $96(S)$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | 10 | 81 | $92(R)$ |

Regiochemistry 75:25

$\begin{array}{llll}\mathbf{2} & 1 & 72 & 96(S) \\ \mathbf{3} & 10 & 85 & 91(R)\end{array}$ one regioisomer

62
98 (S)
(R) one regioisomer

$1 \quad 10 \quad 95 \quad 98(S)$
exo:endo
$86: 14$
$95: 5$

$1 \quad 10 \quad 96 \quad 98(S)$
$E: Z$
(S,S)-t-Bu Box Cu Glyoxylate ($\mathbf{P M 3}^{\text {tm }}$)

However, $(S, S)-\mathrm{Ph}-\mathrm{Box} \mathrm{Cu}(\mathrm{OTf})_{2}$ gives (R) configured alcohols:

Tetrahedral Cu center?? Jorgensen, JOC, 1995, 60, 5757.

(S, S)-Ph Box Cu (OTf $)_{2}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{2}}$ X-ray

Quotes for the Day

"In the last third of his life, there came over Laslo J amf-so it seemed to those who from out of the wood lecture halls watched his eyelids slowly granulate, spots and wrinkles grow across his image, disintegrating it towards old-age hostility, a strangely personal hatred, for the covalent bond."

Thomas Pynchon, "Gravity's Rainbow"
"Faced with the choice between changing one's mind and proving that there is no need to do so, almost everyone gets busy with the proof. "

John Kenneth Galbraith

Chemistry 206

 Advanced Organic Chemistry

 Advanced Organic Chemistry}

Handout-27A

An Organizational Format for the Classification of Functional Groups. Applications to the Construction of Difunctional Relationships
D. A. Evans

Wednesday ,
November 19, 2003

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 27

Functional Group Classification Scheme for Polar Bond Constructions

- Historical Perspective
- Charge Affinity Patterns
- Functional Group Classification Scheme
- The Chemistry of the $-\mathrm{NO}_{2}$ Group
- The Chemistry of the $-\mathrm{N}_{2}$ Group

Reading Assignment for this Week:

"An Organizational Scheme for the Classification of Functional Groups.
Applications to the Construction of Difunctional Relationships."
D. A. Evans Unpublished manuscript. (Handout)
"Methods of Reactivity Umpolung."
D. Seebach Angew. Chem. Int. Ed. Engl. 1979, 18, 239. (Handout)
"Nitroaliphatic Compounds-Ideal Intermediates in Organic Synthesis"' Seebach, D. et. al, Chimia, 1979, 33, 1-18. (Handout)
D. A. Evans

Wednesday,
November 19, 2003

Papers of Historical Interest:
"Arthur Lapworth: The Genesis of Reaction Mechanism."
M. Saltzman J. Chem. Ed. 1972, 49, 750. (Handout)
"A Theoretical Derivation of the Principle of Induced Alternate Polarities." A. Lapworth J. Chem. Soc. 1922, 121, 416.
"The Electron Theory of Valence as Applied to Organic Compounds."
J. Steiglitz J. Am. Chem. Soc. 1922, 44, 1293.

Monographs:
Hase, T. A. "Umpoled Synthons. A Survey of Sources and Uses in Synthesis".; John Wiley \& Sons, Inc.: New York, 1987.

Ho, T.-L. "Polarity Control for Synthesis"; John Wiley \& Sons, Inc.: NY, 1991.
Ono, N., "The Nitro Group in Organic Synthesis", Wiley-VCH, 2001
Several Interesting Problems
Provide a mechanism for the Nef reaction

The von Richter reaction is illustrated in the accompanying equation. Please provide a plausible mechanism for this transformation taking into account the following observations. (a) If ${ }^{15} \mathrm{~N}$-labeled KCN is used, the N_{2} formed is half labeled; (b) 3-bromo-benzonitrile does not form 3-bromo-benzoic acid under the reaction conditions.

Stoltz and co-workers recently reported the interesting rearrangement illustrated below (JACS 2003, 125, 13624). Please provide a mechanism for the illustrated transformation. Your answer should include clear 3-D drawings where relevant. the answer may be found in the database.

Required Reading:

"An Organizational Scheme for the Classification of Functional Groups. Applications to the Construction of Difunctional Relationships."
D. A. Evans Unpublished manuscript.
"Methods of Reactivity Umpolung."
D. Seebach Angew. Chem. Int. Ed. Engl. 1979, 18, 239.
"Nitroaliphatic Compounds-Ideal Intermediates in Organic Synthesis"' Seebach, D. et. al, Chimia, 1979, 33, 1-18.

Papers of Historical Interest:

"Arthur Lapworth: The Genesis of Reaction Mechanism."
M. Saltzman J. Chem. Ed. 1972, 49, 750.
"A Theoretical Derivation of the Principle of Induced Alternate Polarities." A. Lapworth J. Chem. Soc. 1922, 121, 416.
"The Electron Theory of Valence as Applied to Organic Compounds."
J. Steiglitz J. Am. Chem. Soc. 1922, 44, 1293.
"Displacement of Aliphatic Nitro Groups by Carbon \& Heteroatom Nucleophiles." R. Tamura, A. Kamimura, N. Ono Synthesis 1991, 423.
"Functionalized Nitroalkanes as Useful Reagents for Alkyl Anion Synthons." G. Rosini, R. Ballini Synthesis 1988, 833.
"Conjugated Nitroalkenes: Versatile Intermediates in Organic Synthesis."
A. G. M. Barrett, G. G. Graboski Chem. Rev. 1986, 86, 751.

Monographs:

Hase, T. A. "Umpoled Synthons. A Survey of Sources and Uses in Synthesis".; John Wiley \& Sons, Inc.: New York, 1987.

Ho, T.-L. "Polarity Control for Synthesis"; John Wiley \& Sons, Inc.: New York, 1991.
27-01-Historical 11/17/03 12:57 PM

Arthur Lapworth (1872-1941)

Lapworth was among the first to understand and conceptualize the effect of heteroatomic substituents on the reactivity of individual carbon centers, and how this effect is propagated through the carbon framework of organic molecules.

Lapworth's Theory of Alternating Polarities:

"Latent Polarities of Atoms and Mechanism of Reaction, with Special Reference to Carbonyl Compounds."
A. Lapworth Mem. Manchester. Lit. Phil. Soc. 1920, 64 (3), 1.
"The addition of electrolytes to the carbonyl compound invariably proceeded as if the carbon were more positive than the oxygen atom, and invariably selected the negative ion; for example:"

"The extension of the influence of the directing, or "key atom," over a long range seems to require for its fullest display the presence of double bonds, and usually in conjugated positions...."

The "key atom" is the one with the most electronegative character, in this case the carbonyl oxygen.
anionoid/cationoid
nucleophilic/electrophilic

The Lapworth polarity designations can be used to form the basis of a functional group classification scheme.

- Polar rxns form the basis set of bond constructions in synthesis

■ Generalizations on conferred site reactivity will therefore be important

Given this target
and the desire to form this bond The functional group $=\mathrm{O}$ "dictates" the following bond construction

■ Conferred site reactivity of $=0$

Charge Affinity Patterns

Use the descriptors (+) and (-) to denote the polar disconnections shown.

$$
\begin{aligned}
& \begin{array}{l}
(-)(+) \\
\mathrm{A}=\mathrm{B} \\
(+)(-) \\
\mathrm{A}=\mathrm{B}
\end{array} \Longleftrightarrow \mathrm{~A}:- \\
& \mathrm{B}+ \\
& \mathrm{A}:+ \\
& \mathrm{B}:-
\end{aligned}
$$

■ In the transforms illustrated above, symbols (+) \& (-) are used to denote the particular polar transform illustrated.
In the present case there is NO INTRINSIC BIAS in favoring one transform over the other.

Let's now add an OH functional group (FG) to propane at C-2 and see whether one creates a bias in the favoring of one or the other transforms:

27-02-Chg Affinity 11/18/03 9:21 PM

- The actual reaction associated with this transform is the addition of organometals to carbonyl substrates.
$\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{H}$
$\stackrel{M}{\mathrm{M}} \underset{\mathrm{C}}{\mathrm{C}} \mathrm{H}_{3}$

When one considers the polar resonance structure for the $\mathrm{C}=\mathrm{O}$ group it is clear that an O atom is very good at stabilizing an adjacent
$(+)$ charge through resonance.
- Consider polar disconnections of the illustrated β-hydroxy ketone 1:

It is evident that the heteroatom functional groups, $=\mathrm{O}$ and -OH , strongly bias the indicated polar disconnections.

Charge Affinity Patterns of Common Functional Groups

$$
\begin{aligned}
& \mathrm{C}-\mathrm{C}-\stackrel{(+)}{\mathrm{C}}-\mathrm{E}_{1} \\
& \mathrm{C}-(-)-(+) \\
& \mathrm{C}-\mathrm{E}_{2} \\
& \stackrel{(+)}{\mathrm{C}}-\mathrm{C}-\stackrel{(+)}{\mathrm{C}}-\mathrm{E}_{3} \\
& (+) \\
& \mathrm{C}-(-) \\
& \mathrm{C}-(+) \\
& \mathrm{C}
\end{aligned} \mathrm{E}_{4} .
$$

Functional groups activate the carbon skeleton at the point of attachment by either induction \& resonance.

| Induction | (+) | (+) | (-) | (-) |
| :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{C}-\mathrm{F}_{1}$ | $\mathrm{C}-\mathrm{F}_{2}$ | $\underset{(+)}{\mathrm{C}}-\mathrm{F}_{3}$ | $\mathrm{C}-\mathrm{F}_{4}$ |
| Resonance | | \bigcirc | \longrightarrow | |
| | (+) | | | (-) |
| Symbol | C-E | | | $\mathrm{C}-\mathrm{G}$ |

$\mathrm{E}=$ electrophilic at the point of attachment
A = ambiphilic at the pont of attachment $G=$ nucleophilic at the point of attachment

For simplicity, we will designate three FG classes according to the designations provided above.

E \& G-Functions:

To organize activating functions into common categories it is worthwhile to define "hypothetical" functional groups E, and G, having the charge affinity patterns denoted below.

Hypothetical E-function

Hypothetical G-function

$$
\stackrel{(+)}{\mathrm{C}}-\stackrel{(-)}{\mathrm{C}}-\stackrel{(+)}{\mathrm{C}}-\mathrm{E}
$$

$$
\stackrel{(-)}{\mathrm{C}}-\stackrel{(+)}{\mathrm{C}}-\stackrel{(-)}{\mathrm{C}}-\mathrm{G}
$$

Given the appropriate oxidation state of the carbon skeleton, such functional groups confer the indicated polar site reactivity patterns toward both electrophiles and nucleophiles.

Any FG that conforms either to the ideal charge affinity parrern or a sub-pattern thereof will thus be classified as either an E- or G-function.

Representative E-functions:

A-Functions:

A 3rd hypothetical FG, designated as A, may be defined that has an unbiased charge affinity pattern as in 1. Such an idealized FG's activates all sites to both nucleophilic and electrophilic reactions, and as such include those functions classifies as either E- or G-. The importance of introducing this third class designation is that it includes those functional groups having non-alternate charge affinity patterns such as 2-4.

FG-Classification Rules
In the proposed classification scheme the following rules followed in the assignment of class designation of a given FG.

- Activating functions are to be considered as heteroatoms appended to or included within the carbon skeleton.

Activating functions are inspected and classified according to their observed polar site reactivities.

Since proton removal and addition processes are frequently an integral aspect of FG activation, the FG, its conjugate acid or base, and its proton tautomers are considered together in determining its class designation.

The oxidation state of the FG is deemphasized since this is a subordinate strategic consideration.

Common E-Functions: Symbol: (+)C-E

$$
\begin{array}{ll}
-\mathrm{OR}=\mathrm{O} \\
-\mathrm{NR} & =\mathrm{NR} \\
-\mathrm{X}, \mathrm{X}=\text { halogen }
\end{array}
$$

Also consider all combinations of above FGs; e.g $=\mathrm{O}+\mathrm{OR}$

Common G-Functions: Symbol: (-)C-G

Typical G-class functions are the Group I-IV metals whose reactivity patterns, falls into a subset of the idealized G-FG 5.

(-)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{MgBr}$

$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{G}$
5

Common A-Functions: Symbol: (\pm) C-A

A-functions are usually more structurally complex FGs composed of polyatomic assemblages of nitrogen, oxygen and their heavier Group V and VI relatives ($\mathrm{P}, \mathrm{As}, \mathrm{S}, \mathrm{Se}$).

Typical A-functions, classified by inspection, are provided below

$$
\begin{aligned}
& -\mathrm{NO}_{2}=\mathrm{NOR}=\mathrm{NNR}_{2}=\mathrm{N}(\mathrm{O}) \mathrm{R}=\mathrm{N}_{2} \overline{+} \mathrm{N} \\
& -\mathrm{SR}=\mathrm{S}(\mathrm{O}) \mathrm{R}-\mathrm{SO}_{2} \mathrm{R}-\mathrm{SR}_{2} \\
& -\mathrm{PR}_{2}-\mathrm{P}(\mathrm{O}) \mathrm{R}_{2}-\mathrm{PR}_{3}
\end{aligned}
$$

■ These FG's are capable of conferring both (+) and (-) at point of attachment.

Remarkably, the dual electronic properties of oximes were first discussed by Lapworth in 1924 before the modern concepts of valence bond resonance were developed.

Lapworth, A. Chemistry and Industry 1924, 43, 1294-1295.

The Nitro Functional Group

As an example, the class designation of the nitro function is determined by an evaluation of the parent function, its nitronic acid tautomer, as well as conjugate acid and base.

$\stackrel{\mathrm{O}}{\stackrel{\text { O}}{ }}$
 $\Theta 0^{\prime}$

| H -tautomer | conjugate base | conjugate acid |
| :---: | :---: | :---: |
| | | |

The Reaction:

\square This reactivity pattern may be extended via conjugation:

The Reaction:

- The resonance feature which has been exploited:

Important Transformations of the $-\mathrm{NO}_{2}$ Functional Group

- Reduction:

$r x n$ is quite facile

Ono, N.; Kaji, A. Synthesis 1986, 693.

- Nef Reaction:

Pinnick,
Org. Reactions 1990, 38, 655

The Nef Reaction

$$
\square \text { Overall Transformation: } \underset{R}{+O^{+N}}
$$

Mechanism

The charge affinity patterns represented

- The resonance features which have been exploited:

$$
\text { - } \mathrm{NO}_{2} \text { As a Leaving Group }
$$

Representative examples: $\mathbf{O}_{\mathbf{2}} \mathbf{N}-\mathbf{C}(+)$

The Diazo Functional Group

- Both (+) and (-) reactivity patterns suggested by resonance structures
- Rxns with acids:

- Initiating reactivity is (-); subsequent reactivity is (+)

■ Ring expansion reactions:

Restriction: Starting ketone must be more reactive than product ketone
\square Precursors to Carbenes: $\quad \mathrm{N}_{2} \xrightarrow[(-)]{(-)}$

Acid Catalyzed Reactions of Diazo Compounds

Review: Smith, Tet. 19812407

Common acids include $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{HBF}_{4}$, TFA, etc.

Mechanism of activation is unclear for both Lewis and protic acids; activation may occur by protonation on C or O

"Having become familiar with the peculiarities of diazoketone chemistry while preparing [other compounds] (and, I might add, inured to handling uncomfortably large quantites of diazomethane), it occurred to us that we might be able to substitute a diazo group for bromine."

Lewis Mander

TFA $\xrightarrow[(82 \%)]{-25^{\circ} \mathrm{C}, 2 \mathrm{~min}}$
 Gibberrellic Acid

Mander, JACS 19806626

Diazo-Carbonyl Insertations:

Mander, Aust. J. Chem. 19791975
Wolff Rearrangements
Web Problem 332. Stoltz and co-workers recently reported the interesting rearrangement illustrated below (JACS 2003, 125, 13624).

$\frac{\mathrm{AgOBz}, \mathrm{Et}_{3} \mathrm{~N}}{\mathrm{THF}, 45^{\circ}}$

AgOBz, $\mathrm{Et}_{3} \mathrm{~N} \mid-\mathrm{N}_{2}$

Diazo-mediated Ring Construction:
Evans, Mitch, JACS 1980, 102, 5956

Web Problem 109. The following is a general reaction for the formation of pyrroles.
In this condensation, any of the three reaction constituents may be widely varied. (Ono, "The Nitro Group in Organic Synthesis" Wiley-VCH, 2001. Chapter 10, pp $326-328)$. Siince it is not clear what the "inorganic" reaction product is, provide us with anything that is mechanistically sound using the reagents illustrated. Key descriptor for answer, "Nitro".

NH_{3}

In the space below provide a plausible mechanism for this transformation.

Web Problem 188. Provide a mechanism for the following reaction that predicts the stereochemistry at the starred (${ }^{*}$) carbon atoms (Valentin, TL, 1983, 1621). Key descriptor for answer, "Nitro".

Web Problem 150. Provide a concise mechanism for the indicated reaction in the space below. Key descriptor for answer, "Carbene".
cis olefin

Web Problem 13. The following transformation was recently reported by Stoltz (J. Am. Chem. Soc 2002, 124, 12426). In addition to the illustrated product, styrene and dinitrogen are produced as by-products in this transformation. Key descriptor for answer, "Carbene".

anti diastereoselection $>20: 1,80 \%$ yield
Provide a plausible mechanism for this transformation and identify intermediate 1. Your mechanism should provide a rationalization for the product stereochemical relationship.

Hydrazone Anions: A useful Reversed Polarity Equivalent

J. E. Baldwin, et al. JCS Chem. Comm. 1983, 1040.

PhCHO

Lassaletta, J-M, et al.Tet. Lett. 1992, 33, 3691.

1. $\mathrm{O}_{3} ; 2$. DMS
$\mathrm{A}-\mathrm{C}(+)$

Wolff-Kishner Reduction Procedures

 $\mathrm{N}_{2} \mathrm{H}_{4}$,
$\mathrm{NaOCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$
reflux and then
heat to $210^{\circ} \mathrm{C}$

Barton, D. H. R., Ives, D. A. J., and Thomas, B. R. J. Chem. Soc. 1955, 2056.
For particulary hindered ketones: anhydrous hydrazine or formation of hydrazone under acid catalysis (hydrazine/hydrazine dihydrochloride), then basify.

Under these forcing conditions, saponification, epimerization, and methyl ether cleavage can occur.

Mechanism

Chemistry 206

 Advanced Organic Chemistry

 Advanced Organic Chemistry}

Handout-27A

An Organizational Format for the Classification of Functional Groups. Applications to the Construction of Difunctional Relationships
D. A. Evans

Wednesday ,
November 19, 2003

An Organizational Format for the Classification of Functional Groups. Applications to the Construction of Difunctional Relationships

D. A. Evans
Department of Chemistry \& Chemical Biology, Harvard University, Cambridge, MA, 02318

Introduction

Among the subdisciplines of chemistry the area of organic synthesis is probably the least organized in terms of unifying concepts and general methodology. This conclusion has been made quite obvious by the relative scarcity of critical monographs covering this important topic. ${ }^{1}$ The wide structural diversity of organic molecules, the vast abundance of organic reactions, and the restrictions imposed upon these reactions when applied to the synthesis of a complex structure all contribute to the magnitude of the problem of making generalizations in this area.

However difficult the overall task of explicitly defining a priori a total synthesis of an organic structure may be, there are certain simplifying features which can be developed to generate logical sets of potential synthetic pathways to a given molecular target. Some of the general guidelines which help to define this task have been outlined. ${ }^{2}$ Recently, some of the problems associated with reducing synthetic design to a mathematical basis and the application of machine computation to synthetic analysis have been reported. ${ }^{3,4}$

Difunctional Relationships. One aspect of the synthesis of any polyfunctional target structure deals with strategies associated with the construction of arrays of relationships between heteroatom functional groups which may be denoted as $\mathrm{F}_{1}, \mathrm{~F}_{2}$, etc. The general reactions illustrated below simply represent the union of two monofunctional organic fragments where the functional groups $\mathrm{F}_{1}, \mathrm{~F}_{2}$ provide the necessary activation for the coupling process. In these reactions, the oxidation states of the associated carbon fragments are purposely left undefined. In relating the generalized notation below to a real situation, if F_{1}-C-C were an enolate, Equation 1 might be used to represent a generalized aldol or Mannich reaction while equation 3 might represent a Michael reaction.

Henrickson has provided some useful generalizations on the construction of difunctional relationships which are worth summarizing. For example, he defines the construction span as the number of carbons linking F_{1} and F_{2}. In the cases illustrated above, the product of the reaction illustrated in Equation 1 has a construction span of three. The construction fragments are then defined as the monofunctional reactants, such as $\mathrm{F}_{1}-\mathrm{C}-\mathrm{C}$ and $\mathrm{F}_{1}-\mathrm{C}$. In general, construction spans are limited to six or less. This is a consequence of the fact that the operational utility of a given functional group diminishes as it is removed

[^10]from the C-C bond being formed. The problem of site or ambident reactivity in systems possessing extended conjugation is the principal liability in the extension of the construction span. This point is illustrated below for both conjugate addition and enolate alkylation (Scheme I).
Scheme I The Problem of Ambident Reactivity

The objectives of the present discourse are to present an organizational format which can serve to correlate strategies for the construction simple pairwise functional group relationships. As a result of the overwhelming predisposition of nature to employ polar rather than free radical processes in the biosynthesis of organic compounds the chosen organizational format reflects this bias in reaction type. The designation of reactions as polar is recognized to be rather arbitrary since known reactions vary widely in their polar character, ranging from essentially nonpolar radical reactions and weakly polar electrocyclic reactions to strongly polar ionic processes. Of primary concern in this discussion will be those reactions that involve charged species at some point along the reaction coordinate.

Charge Affinity Patterns.

In order to describe an organizational model for the classification and synthesis of heteroatom-heteroatom $A-B \quad \Longrightarrow \quad A:-\quad B+\quad$ (4) (difunctional) relationships in organic molecules, two familiar ideas will be employed. The first is that in a given target molecule $\mathrm{A}-\mathrm{B} \quad \square \mathrm{A}:+\mathrm{B}:-$ the various bonds can be ionically "disconnected" (eq 4, 5). That is, if the A-B bond could be cleaved heterolytically, the indicated set of polar fragments would result.

This antithetic process suggests ionic precursors suitable for the construction of the target molecule via polar coupling processes. The second well accepted idea is that functional groups determine site reactivities on a carbon skeleton based upon known reactions. That is, the oxygen atom in both acetone and anisole dictates the site reactivities that are displayed for each molecule with nucleophilic and electrophilic reagents. Thus, if the molecule A-B contained one or more functional groups proximal to the bond to be disconnected, one pair of ionic precursors, eq 6 or 7 , would be strongly favored
$A-B \quad A:-\quad B+$ as plausible precursors. In such a case the favored ionic $(+)(-)$ precursors to A-B could be symbolized with either $(+)$ or $(-)$ in the $A-B \quad \square A:+B$ target molecule, e.g. 5

As an example, two possible polar disconnections for ketone $\mathbf{1}$ are illustrated below. The parity labels in the target structure suggest plausible monofunctional precursors from which the target structure can be assembled by polar processes. It is also evident that the heteroatom functional groups, $=\mathrm{O}$ and OH , strongly bias the indicated polar disconnections.

cheme II Polar Disconnections and Charge Affinity Pattterns

1

$$
\underset{(+)_{2}}{\mathrm{CH}_{2}}=\underset{(-)}{\mathrm{O}}
$$

$\underset{(-)}{\mathrm{OH}}$

5) The use of the symbols, (+) and (-), in no way represents formal positive or negative charges and will always be bracketed to denote this distinction. Other forms of notation have been considered such as (0) and (1) to denote a potential site of electrophilicity or nucleophilicity; however, the chosen symbols convey more direct information to the organic chemist.

For any given atom or heteroatom assemblage which is defined as a functional group linked to a carbon skeleton, the parity labels, (+) and (-), may be employed to denote the positional polar site reactivity, or charge affinity pattern which the functional group confers upon the carbon framework. For the simple molecules shown below (Scheme III) containing a homogeneous set of activating functions, E, there are associated charge affinity patterns 2-5 of which each is a sub-pattern of the generalized structure 6. Note that the carbonyl function is defined as $=\mathrm{O}$ rather that $\mathrm{C}=\mathrm{O}$ in this discussion. You might contemplate why this functional group is defined in this fashion.

Scheme III Charge Affinity Patterns of Common Functional Groups

The notion that an organic structure can be viewed as an "ion assemblage" has an interesting history originating with the work of Lapworth and others. ${ }^{6,7}$ Although the ion assemblage viewpoint was developed historically to predict site reactivity in both aliphatic and aromatic systems, this description of an organic structure is equally instructive in defining rational sets of synthetic pathways for a given target structure employing heterolytic processes as the primary set of coupling reactions. Indeed, the thought processes associated with the construction of organic molecules operate intuitively to recognize many subunits of a given structure in terms of polar fragments. The present use of parity labels to denote viable polar fragments simply formalizes this intuition.

Classification of Functional Groups (FG).

In order to organize general strategies that have been developed to construct heteroatom-heteroatom relationships from monofunctional precursors it is useful to develop a self-consistent classification scheme for single functional groups (FG) based on the concepts of polar disconnection and conferred site reactivity towards nucleophiles and electrophiles. The proposed scheme recognizes the dominate inductive and resonance components of various substituents and establishes ${ }^{8}$ broad categories for activating functions which correlate similar conferred chemical properties to carbon. ${ }^{9}$ Four possible functional group categories ($\mathrm{F}_{1}-\mathrm{F}_{4}$) are shown below. Those FGs which are more electronegative than carbon provide inductive activation defining the electrophilic potential at the point of attachment denoted as (+). In a complementary fashion, FGs which are less electronegative than carbon provide inductive activation creating nucleophilic potential at the point of attachment denoted as (-). Since FG activation through induction and resonance are independent variables which contribute to the overall FG reactivity pattern, four possible classes of functional groups can be defined (Scheme IV). This discussion is reminiscent of the classification of FGs according to their impact on electrophilic aromatic substitution. ${ }^{10}$

Scheme IV Classification of Functional Groups

| Induction | (+) | (+) | (-) | (-) |
| :---: | :---: | :---: | :---: | :---: |
| | $\underset{(+)}{\mathrm{C}}$ - F_{1} | $\mathrm{C}-\mathrm{F}_{2}$ | $\mathrm{C}-\mathrm{F}_{3}$ | $\mathrm{C}-\mathrm{F}$ |
| Resonance | (+) | ${ }^{(-)}$ | (+) | |
| | (+) | | | (-) |
| Symbol | C-E | | | $\mathrm{C}-\mathrm{G}$ |

[^11]E \& G-Functions. From the preceding discussion, one might opt for the creation of four classes of functional groups; however, for the sake of simplicity, three FG class designations will be chosen. To organize activating functions into common categories it is worthwhile to define "hypothetical" functional groups E, and G, ${ }^{11}$ having the charge affinity patterns denoted in 6 and 7 respectively. Given the appropriate oxidation state of the carbon skeleton, such functional groups confer the indicated potential site reactivity patterns towards both electrophilic and nucleophilic reagents. Any functional groups whose reactivity pattern conforms to the ideal pattern or to a sub-pattern of these hypothetical functions will be thus classified as an E - or G-function respectively. For example, the halogen and oxygen-based functional groups in four molecules
ypothetical E-function

ypothetical G-function

7 illustrated in Scheme III may be classified as E-functions since their respective charge affinity patterns conform to a subset of the charge affinity pattern of the hypothetical E-function.

A-Functions. A third hypothetical function, A, (A for amphoteric!) can be defined which has an unbiased charge affinity pattern as in 8. Such an idealized functional group activates all sites to both nucleophilic and electrophilic reactions and, as such, include those functions classified as either E or G. The importance of introducing this third class designation is that
 it includes those functional groups having non-alternate charge affinity patterns as in $\mathbf{9 , 1 0}$ and $\mathbf{1 1}$.

The differentiation of polar reactivity patterns can be described in an alternative manner. Starting with an ideal A-function, one could imagine a process in which the reactivity pattern is gradually polarized towards E- or G-behavior (Scheme V). Since site reactivity is not an on-off property but varies continuously over a wide range, one could further subdivide A-class functions into those functions with a bias towards E-class or G-class properties. Such a bias could be denoted by the dominant subordinate charge affinity notation in $\mathbf{1 2}$ and 13; however, for the concepts to be presented in this discourse, such A-function subclasses are nonessential. It should be emphasized that the purpose of the E- and G-classification is not to rigidly pigeon-hole functional groups based on site reactivity, but only to separate those which are strongly polarized toward E or G behavior. The decision has been made to avoid the pursuit of an overly detailed FG classification scheme since such attempts will dangerously oversimplify problems since an essentially contiguous function cannot be segmented in to discrete parts.

Scheme V Alternate vs Nonalternate Reactivity Patterns

[^12]FG Classification Rules. In the proposed classification scheme the following rules are followed in the assignment of class designations to functional groups.

- Activating functions are to be considered as heteroatoms appended to or included within the carbon skeleton.
- Activating functions are inspected and classified according to their observed polar site reactivities.
- Since both proton removals and addition processes are frequently an integral component in functional group activation, the function, its conjugate acid or base, and its possible proton tautomers are considered together in determining its class designation.
\square The oxidation state of the FG is de-emphasized since this is a subordinate strategic consideration.
E-Functions. For example, carbonyls and carbonyl derivatives will be represented as $=\mathrm{X}$ where X may be either oxygen or substituted nitrogen. Well recognized exceptions to the polar class designations illustrated in Scheme I may be found in the chemistry of CO and HCN. In these instances the carbon bearing the heteroatom exhibits well-defined nucleophilic properties. Accordingly these two functional groups will be classified as A-functions by inspection (vide infra).

Table I. Common E-Functions: Symbol $(+) \mathrm{C}$-E

Also consider all combinations of of above FGs; e.g =O +OR
G-Functions. Typical G-class functions are the Group I-IV metals whose reactivity pattern, falls into a subset of 7 .

A-Functions. A-functions are usually more structurally complex FGs composed of polyatomic assemblages of nitrogen, oxygen and their heavier Group V and VI relatives (P, As, S, Se). Typical Afunctions, classified by inspection, are provided in Table II.

Table II. Common A-Functions: Symbol(\pm)C—A

Functional groups possessing the following general structure, $=\mathrm{N}-\mathrm{X}$ where X is a hetroatom bearing a nonbonding electron pair, have an expanded set of resonance options which create either an electrophilic or nucleophilic potential at the point of attachment. Remarkably, the dual electronic properties of oximes were first discussed by Lapworth ${ }^{12}$ in 1924 before the modern concepts of valence bond resonance was developed.

- These FG's are capable of conferring both (+) and (-) at the point of attachment.

[^13]A Case Study: The Nitro Group. As an example, the class designation of the nitro function is determined by an evaluation of the parent function, its nitronic acid tautomer, as well as conjugate acid and base 14 and 15 .

conjugate base
conjugate base

nitronate anion, 14

15
From the collection of transformations of the nitro group one finds that the dominate mode of reactivity of the nitronate anion $\mathbf{1 4}$ is that of a G-function while the protonated nitronic acid $\mathbf{1 5}$ mirrors the reactivity of an E-function.

The typical behavior of nitronate anions $\mathbf{1 4}$ is summarized in the representative transformations provided in Scheme VI. These moderately nucleophilic species, although they are not readily alkylated, readily undergo aldol and conjugate addition reactions.
cheme VI Selected Reactions of the Nitronate Anion The Reaction:

- This reactivity pattern may be extended via conjugation:

It is no surprise that the charge affinity pattern of this FG may be extended by conjugation, and α, β-unsaturated nitro compounds readily participate in conjugate addition reactions (Scheme VII).

Scheme VII Selected Reactions of the Nitronate Anion

The non-alternate behavior of the nitro functional group is dramatically illustrated in the transformations provided in Scheme VIII. In both instances the derived anions 16 and $\mathbf{1 7}$ are highly nucleophilic. ${ }^{13}$ The non-alternate charge affinity patterns of these nucleophiles is provided.

Scheme VIII Deprotonated Nitronate Anions

16

The nitro group also exhibits the potential of undergoing direct displacement under specific conditions, a general transformation characteristic of E-functions. A recent review by Tamura provides numerous literature precedents for this general class of reactions. ${ }^{14}$ while table III provides some of the cited reactions. Although the NO_{2} group cannot be considered as a general leaving group, there are a number of conditions under which this moiety can be exploited, particularly when it is either allylic or tertiary.

Table III. Representative Substitution Reactions of the Nitro Group (eq 10).

A particularly useful transformation of the nitro group is the Nef Reaction, a process which transforms NO_{2} into $=\mathrm{O}$ (Scheme IX). A recent comprehensive review of this transformation provides a detailed discussion of this process. ${ }^{15}$ In addition to the Pinnick review, Seebach has also written a comprehensive review of the diverse chemistry of the nitro functional group. ${ }^{16}$

[^14]Scheme IX The Nef Reaction
■ Overall Transformation:

■ Mechanism

The Diazo Functional Group. This functional group provides one of the best illustrations of an A-function. As illustrated in Scheme X, both (-) and (+) polar site reactivity is observed in is reactions with carboxylic acids.

Scheme IX The Nef Reaction
■ Overall Transformation:

■ Mechanism

The same overall reactivity pattern is expressed by the diazo functional group in the TiffeneauDemjanov ring expansion reaction ${ }^{17}$ wherein diazomethane functions as the nucleophilic agent in the first step and the functional group is lost as a leaving group in the subsequent step (Scheme XI).

Scheme XI The Tiffeneau-Demyanov Ring Expansion

Restriction: Starting ketone must be more reactive than product ketone

[^15]
Sulfur-Based Functional Groups

Sulfonium Salts. The dual electronic behavior of sulfur functions may be illustrated in the reactions of sulfur ylids which are excellent examples of A-functions. As illustrated in Scheme XII, sulfonium salts are effective in carbanion stabilization, a characteristic of G-functions, and sulfonium salts are effective leaving groups, a characteristic of E-functions.

Scheme XII. Sulfonium Salts: Modes of Reactivity
■ Carbanion Stablization:

Leaving Group Potential: Good

$\mathrm{R}_{2} \mathrm{~S}-{ }_{-}^{(+)} \mathrm{C}$

The non-alternate reactivity pattern of trimethylsulfonium ylids is revealed in the cyclopropanation of unsaturated ketones as illustrated in the case below (Scheme XIII). ${ }^{18}$

Scheme XIII. Reactions of Sulfonium Ylids: Conjugate Addition

- Nonalternate reactivity pattern revealed in consecutive reactions

Sulfones. Other types of sulfur-derived functional groups exhibit reactivity profiles similar to that exhibited by sulfonium salts. A number of excellent applications of the arylsulfonyl functional group illustrate this point. Two applications utilizing the sulfone functional groups are presented below.

The phenylsufonyl moiety strongly stabilizes carbanions and may be equated with the -CN FG in its potential for hydrocarbon acidification. ${ }^{19}$ In addition, this FG is a respectable leaving group in selected situations. In comparisons with sulfonium ions (Scheme XV), arylsulfonyl-stabilized carbanions are more nucleophilic than sulfonium ylids (G-property), while ArSO_{2} - is a poorer leaving group than $\mathrm{Me}_{2} \mathrm{~S}$ - (E Property).

Scheme XV. Sulfones: Modes of Reactivity

[^16]Julia's use of phenylsulfonyl carbanions in the synthesis of trans-chrysanthemic acid provides the justification for defining this functional group as an A-function (Scheme XVI). ${ }^{20}$

Scheme XVI. The Julia Chrysanthemic Acid Synthesis

The dual electronic properties of the sulfone functional group are illustrated in the Julia synthesis of vitamin A (Scheme XVII). ${ }^{21}$ In this application, the E-property of the FG is exploited in the base-induced elimination reaction to generate the fully conjugated polyene.

Scheme XVII. The Julia Vitamin A Synthesis

Julia \& Co-workers, Bull. Soc. Chim. Fr. 1985, 130
For additional reading on the utility of the utility of sulfones in organic synthesis a monograph on this subject has recently appeared. ${ }^{22}$ Several other reviews providing extensive literature coverage are worth reading. 23

Organoboranes. The boron atom exhibits many of the common reactions normally attributed to metals, and when bound to carbon, serves as an excellent source of nucleophilic carbon. ${ }^{24}$ The transformations provided in (Table IV) represent but a few cases which demonstrate the G-properties of this activating function. $25,26,27,28,29,30,31$

[^17]Table IV. Reactivity Patterns for Organoboranes

The potential for non-alternate charge affinity patterns for boron have been revealed in the reactions of acetylenic and vinylic boron ate complexes (Table IV, entries F, G). ${ }^{30,31}$ These compounds exhibit high nucleophilicity towards a variety of electrophiles β to the boron atom. The origin of such β-nucleophilicity could be a consequence of $\sigma-\pi$ conjugation ${ }^{32}$ (e.g., 19) not observed with the heavier metallic elements which are attacked by electrophiles α to the metal where the alternate mode of conjugation 18 is possible. ${ }^{33}$ In principle, both types of conjugative stabilization are possible with a range of organometaloids; however, in practice this is not the case. It would be expected that the effects of
31) (a) Utimoto, K.; Uchida, K.; Nozaki, H. Tetrahedron 1973, 30, 4527. (b) Utimoto, K.; Uchida, K.; Nozaki, H. Chem Lett. 1974, 1493.
32) (a) Harmon, G. D.; Traylor, T. G. Tetrahedron Lett. 1975, 939, and reference cited therein. (b) for example of $\sigma-\pi$ delocalization of type 25 involving R3B- see Hanstein W.; Traylor, T. G. ibid. 1967, 4451; (c) for the reaction of vinylsilanes electrophiles see Miller, R. B.; Reichenbach, T. ibid. 1974, 543, and references cited therein.
33) Kitching, W. in "Organometallic Reactions," Vol. 3, E. I. Becker and M. Tsutsui, Ed., Wiley-Interscience, New York 1972, pp. 319-398.
$\sigma-\pi$ conjugation, such as that illustrated in 24, would be more important in those systems having shorter C-M bonds, a situation which may be unique to boron. It is noteworthy that the other group III and IV organometallic compounds, $\mathrm{R}_{3} \mathrm{M}-\mathrm{CH}=\mathrm{CH}_{2}(\mathrm{M}=\mathrm{Al}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Sn})$ react with electrophilic reagents α to the metal. These elements all exhibit polar reactivity patterns common to G-class functions.

Metals. In deriving a class designation for metals, M, bound to carbon, two reaction types are considered. Metals undergoing exclusive substitution at the metal-carbon bond by electrophiles, El^{+}, are classified as G-functions (eq 12), while metals which are involved in redox processes (eq 13) are classified as A-functions since such organometallic compounds also exhibit G-type behavior.

$$
\begin{align*}
& \stackrel{(-)}{\mathrm{R}-(+)} \mathrm{M} \tag{12}\\
& \underset{\mathrm{M}}{(+)} \mathrm{BI}(+) \tag{13}\\
& \mathrm{R}-\mathrm{(-)} \\
& \mathrm{M}
\end{align*}+\mathrm{Nu}(-) \rightleftharpoons \mathrm{R}-\mathrm{El}+\mathrm{M}(+)
$$

The organic chemistry of $\mathrm{Tl}(\mathrm{III}),{ }^{34}$ and $\mathrm{Pd}(\mathrm{II})^{35}$ (eq 14-16) illustrate the role of metals as leaving groups (reductive elimination). Oxidative addition reactions of metal carbonyl anions and alkyl halides provide examples of the reverse process. ${ }^{36}$ In general, transition metal-mediated cross-coupling reactions provide a useful illustration of the Aclassification of redox metals (eq 17). ${ }^{37}$ The assignment of charge affinity labels to R_{1} and R_{2} in this case is arbitrary.
 synthetic reactions, existing functional groups may be organized according to their known chemical properties. Any number of positions may be taken relative to the classification of atom reactivity. The
 goal of this section has been to define a general classification scheme which may be used to organize the multitude of different strategies which have been developed to construct pairwise functional group relationships in organic molecules.

[^18]
Classification of Difunctional Relationships.

One of the basic assumptions employed in synthetic design involves the maximum utilization of existing functionality at all intermediate points in the construction of a polyfunctional molecule. Such guidelines aid in minimizing the number of side reactions and protection-deprotection steps during the assemblage operation. In the synthesis of even simple difunctional organic molecules, the relative positioning of the two activating functions on the carbon framework strongly influences the reaction types that will usually be employed to establish the difunctional relationship. Using the general notation developed in the previous section for activating functions, two distinct classes of difunctional relationships which may be defined between ideal E - and G-functions which may be defined are illustrated in Table V.

Paths. Difunctional relationships between heteroatoms having "matched" charge affinity patterns will be defined as consonant while unmatched relationships will be labeled dissonant.

It should be pointed out that the charge affinity notation is unnecessary to define the appropriate relation; other parity labels could serve equally well. For example, the number of bonds between E- and G-functions could be used to define the appropriate relationship. Employing E-functions for the purpose of illustration, the two carbonyl groups in 20a have a matched charge affinity pattern along the potential construction path. Since they are separated by three atoms they can be defined as 1,3-consonant (1,3-C). The symbol notation 20b transmits information relative to the $\mathrm{E}-\mathrm{E}^{\prime}$ positioning along the construction path and since the E-symbol represents a homogeneous class of electronically equivalent functional groups, a common symbol is employed. In those cases where it is necessary to recognize oxidation states of carbon to derive a symbolic structural notation, one may easily do so.

Table V. Consonant \& Dissonant Difunctional Pairwise Functional Group Relationships
Consonant Relationships Symbol Notation

Cycles. In cyclic structures, a heteroatom attached to or contained within the cycle creates a relationship with itself. For non-arbitrary mathematical considerations it is convenient to define an evenmembered ring with or without a single functional group as consonant and corresponding odd-membered rings as dissonant. For the bicyclic ketone 21a, both of the oxygen heteroatoms, denoted as E_{1} and E_{2}, establish consonant relationships with each other via all bond paths and individually by virtue of their position either attached to or contained within an even-membered ring.

Consonant and Dissonant Bond Paths. In contrast to the uniformity with which consonant relationships may be established through common classes of polar processes, the synthetic methods and functional groups required for the construction of the bonds define a D-relationship are quite varied and involve either more steps, more functional groups or more reactive intermediates than reactions leading to C-paths. This statement will be reinforced in a series of case studies (vide infra); however a single case is presented to reinforce this assertion. Consider the Michael transform executed on the 1,5- and 1,4-diketones shown below (eq 18, 19). In the first instance, the transform may be executed using only the functional groups illustrated; however, this is not possible with the dissonant dicarbonyl relationship since one of the resulting polar fragments will be electronically mismatched with its associated FG. In the illustrated disconnection (eq 19), the electronically mismatched fragment is the carbonyl anion.

One possible solution to the construction of this dissonant relationship is through FG manipulation. In the present instance the application of the Nef transform (vide supra) provides the opportunity to match the charge affinity patterns so that the Michael transform may be properly executed. The use of Afunctions in this fashion is just one of a number of strategies which may be employed to construct dissonant difunctional relationships.

In conclusion, dissonant pairwise relationships, either identified in simple acyclic molecules or within complex cyclic structures, generally pose a greater synthetic challenge and represent seams of lower flexibility within the carbon framework. At this point, it may be instructive to the reader to contemplate a synthesis strategy based on how and when D-relationships are incorporated into target structures. This point will be addressed later in the discussion.

Synthesis of Consonant Difunctional Relationships.

Every complex polyfunctional molecule may be analyzed structurally in terms of its individual consonant or dissonant construction paths or cycles. For example, in the alkaloid lupinine (22) all possible construction paths interconnecting E_{1} and E_{2} are consonant. On the other hand, mesembrine (23) ${ }^{38}$ contains the potential dissonant paths and cycles illustrated in heavy lines. Consonant paths within the polyatomic

22 (lupinine)
 framework define seams in the structure that may be constructed using aldol and related condensation processes.

[^19]Regarding the number of different possibilities available for the synthesis of a consonant difunctional relationship interconnected by \mathbf{n} bonds, there exists a set of \mathbf{n} different connective operations that may be employed to establish any bond along the construction path from monofunctional or consonant polyfunctional precursors. ${ }^{39}$

23 (Iupinine)

dissonant bond paths (cycles)

In the analysis of potential routes to structures like lupinine, identify the shortest consonant bond path and then proceed to carry out all polar disconnections along that bond path (Scheme XVIII). Since there four bonds interconnecting $=\mathrm{O}$ and $\mathrm{N}\left(\mathrm{E}_{1}\right.$ and $\left.\mathrm{E}_{2}\right)$, there will be four associated transforms which one may execute using the illustrated functional groups. In each set of precursors the intrinsic polar reactivity patterns of the heteroatoms are accommodated in the coupling process. The resulting adducts containing the requisite nitrogen-oxygen relationship may then be ranked in order of desirability by considering criteria such as chemical feasibility of the coupling step, ease of subsequent transformation to the target structure, and availability of precursor fragments. In the present example, transforms A and B might be more highly ranked that transform C while transform D might be discarded since it does not lead to structural simplification.

In those cases when a given consonant or dissonant relationship is separated by a significant number of bonds, it is strategically worthwhile to consider the option of incorporating additional functions to aid in the construction of the desired target molecule. The relative placement of such a functional group is of prime importance in dictating the subsequent polar

24 disconnections that are perceived in generating a plausible synthetic tree. This point is illustrated when considering plausible precursors to ketone 24 (Scheme XIX). In this structure, the =O FG establishes a 1,5-relationship with itself on the six-membered ring. Through the addition of an appropriate second

[^20]activating function to the target molecule $\mathbf{2 4}$, an expanded set of potential disconnections is created. In the placement of the second FG, the charge affinity pattern of the resident FG should be used. For example, consider the installation of a second $F G, E_{2}$, at the (+) sites on the ring to set up aldol or Claisen transforms. In a complementary fashion the addition of C - E_{2} fragments to the (-) sites will open up the execution of the two possible Dieckmann transforms. ${ }^{40}$ The preceding analysis leads to the three precursors 26a-26c. Each of which contains a 1,5 -consonant difunctional relationship between the carbonyl functions. These subgoals now become the focus of the next level of analysis wherein the preceding logic is again applied. It should be emphasized that the precursors illustrated in Scheme XIX are not inclusive but represent one set which leads to the generation of a synthetic tree based upon aldol and related reactions. The point to be emphasized is that in the first stage of the analysis where functionality is being added to the target structure, consonant, rather than dissonant relationships should be created.

40) To be completely rigorous with regard to this analysis, the addition of $\mathrm{C}-\mathrm{E}_{2}$ to the 4-position should also be considered; however, the $\mathrm{E}_{1}-\mathrm{E}_{2}$ construction span from such a precursor is sufficiently large as to render this precursor less attractive than the other precursors 25a-25d.

Chemistry 206

Advanced Organic Chemistry

Handout 27B

Synthetic Applications of α-Diazocarbonyl Compounds

An Evans Group Afternoon Seminar
Krista B. Goodman

January 15, 1999
D. A. Evans

Monday,
November 17, 2003

Synthetic Applications of α-Diazocarbonyl Compounds

An Evans Group Afternoon Seminar
Krista Beaver
January 15, 1999

Leading References:
McKervey and Ye, Chem. Rev. 19941091
Doyle, McKervey and Ye, Modern Methods for Organic Synthesis with Diazo Compounds, Wiley, 1998

Diazocarbonyl Compounds: Structure and Nomenclature

Δ, hvor M

Diazonium
cyclopropanation
insertion
rearrangement ylide formation

Synthesis of α-Diazocarbonyl Compounds

- First synthesized by Curtius in 1883 by diazotization of α-amino acids
- Arndt-Eistert synthesis (1927)

Arndt and Eistert, Ber. Dtsch. Chem. Ges. 1927 60B 1122 Pettit, JOC 19861282

- Diazo Transfer

For temporary activation of carbonyl compounds prior to diazo transfer see Danheiser, JOC 19901960

- Acyl Transfer

More Acid Catalysis

Olefins as nucleophiles:

Smith's cyclopentenone annulation:

Rearrangement:

Mander, Aust. J. Chem. 19791975

Polyene cyclizations:

β-Ketoester synthesis:

Ring expansion:

Ghosh, Chem. Comm. 19881421
Aplysin

Substitution:

Thiols also work well

$$
\text { John and ThomasTL } 1978995
$$

Tetrahydrofuran Synthesis:

Diastereoselectivity increases with size of R; independent of Lewis acid or protecting group

Synthesis of α-substituted chiral acids:

Reaction with Boranes

Base-Induced Reactions

Aldol-type reactions:

Ester alkylation:

Gilbert-Seyferth Reagent:

Mechanism?

Carbenoid Reactions: The Catalysts

Review: Padwa, ACIEE 19941797

Decomposition can be catalyzed by

Heat or light
Transition metals, including $\mathrm{Cu}^{\text {II }}, \mathrm{Rh}^{\prime \prime}, \mathrm{Mn}^{\text {II }}, \mathrm{Fe}^{\prime \prime}, \mathrm{Co}^{\text {II }}, \mathrm{Ni}^{0}, \mathrm{Ni}^{\text {II }}, \mathrm{Zn}^{\text {II }}, \mathrm{Mo}^{\text {II }}, \mathrm{Ru}^{\text {II }}, \mathrm{Ru}^{\text {III }}, \mathrm{Pd}^{\text {III }}$

Most common catalysts:

$\operatorname{Copper}(\mathrm{I}): \quad \mathrm{CuOTf}, \mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{CuSO}_{4}, \mathrm{CuX}, \mathrm{Cu}(\mathrm{acac})_{2}$
Rhodium (II): Much milder catalyst than Cu (introduced in 1973 by Tessié)
Structures generally contain bridging ligands and contain a Rh-Rh single bond Reaction pathways are highly sensitive to steric and electronic effects

Transition Metal Catalyzed Diazo Decomposition

Doyle, Chem. Rev. 1986919

Ligand Effects: Selectivity

Methine versus methyl

More Competition Experiments
Dipolar Cycloaddition versus C-H insertion:

Conclusions:

These results imply that the metal is involved in the transition state Reaction pathways can be controlled by tuning the ligands on the metal

Generalizations: Sigma Bond Insertion

- When X is a heteroatom, insertion is facile
- When X is carbon:

Only intramolecular processes are generally useful 5 - membered ring formation is favored in general Order of selectivity: methine > methylene > methyl

O-H Insertion Reactions

"the most complex alkoxyphosphonate yet described"

Tandem O-H Insertion/Claisen Rearrangement

Merck Thienamycin Process

C-H Insertion: Reactions

Corey, JACS 19652518

Diastereoselection 93:7
For a review of catalytic enantioselective carbene reactions, see:
Doyle, Chem. Rev. 1998911

Generalizations: Cyclopropanation

Reviews: Davies, Ald. Acta. 1997107
Davies, Tet. 19935203
For subsequent reactions: Calter, Evening Seminar 1992
Electron rich olefins work best
Both concerted asynchronous and stepwise mechanisms have been proposed Cyclopropanes can participate in tandem reactions

Cyclopropanation Followed by Rearrangement

Davies, JOC 1992 4309; TL 1992453

More Cyclopropanation

Reaction with Aromatic Rings

Discovered by Büchner (1893)

Büchner, Liebigs Ann. Chem. 1893214 Doering, JACS 19565448
Initial experiments gave poor selectivity, but transition metals help..

+6 other products

$$
\overbrace{\mathrm{OEt}}^{\mathrm{O}} \xrightarrow[(73 \%)]{\mathrm{Rh}(\mathrm{II})}
$$

 JOC 1981873

Büchner Reaction: Confertin Synthesis

McKervey, Chem. Comm. 19881028 JCS Perkins / 19912565

1. $\mathrm{KMnO}_{4}, \mathrm{NaIO}_{4}$
2. $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, acetone (97\%, two steps)
3. $6 \mathrm{~N} \mathrm{HCl}, \triangle$
$\frac{\text { 2. } \mathrm{CISO}_{3} \mathrm{H}}{(84 \%)}$

$\frac{\mathrm{Li}_{2} \mathrm{CuCnAr}_{2}}{(82 \%)}$

Corey, TL 19945373

Ylide Formation

Reviews:
Padwa, Chem. Rev. 1991263
Padwa, Chem. Rev. 1996223
Barnes, Evening Seminar, March 16, 1993
X is generally S, O or N and can be $s p^{2}$ or $s p^{3}$ hybridized Ylides often undergo sigmatropic rearrangements or cycloadditions

[2,3]-Sigmatropic rearrangement:

Stevens Rearrangement ([1,2] alkyl shift)

West, JACS 19931177

Wolff Rearrangement

Arndt-Eistert Homologation:

Wolff Rearrangement - [2+2] Cycloaddition

SiO_{2}
(60\%)
Ireland, JACS 1981 2446; JOC 19841001

Catalyst Glossary

$\mathrm{Cu}(\mathrm{TBS})_{2}$ Copper t-Butylsalicylaldimine

$\mathrm{CH}_{3} \mathrm{CO}_{2} \quad \mathrm{Rh}_{2}(\mathrm{MEOX})_{4}$

$\begin{array}{ll}\mathrm{Rh}_{2}(\mathrm{OAc})_{4} & \text { Rhodium Acetate } \\ \mathrm{Rh}_{2}(\mathrm{acam})_{4} \text { or } & \text { Rhodium Acetamidate }\end{array}$ $\mathrm{Rh}_{2}(\mathrm{acm})_{4}$
$\mathrm{Rh}_{2}(\text { cap })_{4} \quad$ Rhodium Caprolactamate
$\mathrm{Rh}_{2}(\mathrm{oct})_{4} \quad$ Rhodium Octanoate
$\mathrm{Rh}_{2}(\mathrm{pfb})_{4} \quad$ Rhodium Perfluorobutyrate
$\mathrm{Rh}_{2}(\mathrm{tfa})_{4} \quad$ Rhodium Trifluoroacetate
$\mathrm{Rh}_{2}(\mathrm{tfm})_{4} \quad$ Rhodium Trifluoroacetamidate
$\mathrm{Rh}_{2}(\mathrm{tpa})_{4} \quad$ Rhodium Triphenylacetate
$\mathrm{CH}_{3} \mathrm{CONH}$

$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}_{2}$
$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CO}_{2}$
$\mathrm{CF}_{3} \mathrm{CO}_{2}$
$\mathrm{CF}_{3} \mathrm{CONH}$
$\mathrm{Ph}_{3} \mathrm{CCO}_{2}$
$\mathrm{Rh}_{2}(\mathrm{MEPY})_{4}$

$\mathrm{Rh}_{2}(\mathrm{MPPIM})_{4}$

$\mathrm{Rh}_{2}(S-\text { TBSP })_{4}$

$\mathrm{Rh}_{2}(\mathrm{~S} \text {-DOSP })_{4}$

All ligands on Rhodium are bridging through the carboxylate or the amide

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 28

Ambiphilic Functional Groups-2 Hydrazone-Based Transformations

- Wolff-Kischner Reduction

■ Wharton Rearrangement

- Eschenmoser-Tanabe Fragmentation

■ Reduction of Tosyl Hydrazones: "The Alkene Walk"

- Tosyl Hydrazone-Based Fragment Coupling
- The Shapiro Reaction
- Bamford-Stevens Reaction

Reading Assignment for this Week:

Shapiro Reaction: Chamberlin, and Bloom. "Lithioalkenes from arylsulphonyl-hydrazones." Org. Reactions 1990, 39: 1. (handout)

Wolff-Kishner \& Related Reactions: Hutchins, (1991). "Reduction of $\mathrm{C}=\mathrm{X}$ to CH_{2} by Wolff-Kishner and Other Hydrazone Methods". Comprehensive Organic Synthesis. Trost and Fleming. Oxford, Pergamon Press. 8: 327. (in library)

Relevant Background Reading

Hutchins, R. O. (1991). "Reduction of $\mathrm{C}=\mathrm{X}$ to CH_{2} by Wolff-Kishner and Other Hydrazone Methods". Comprehensive Organic Synthesis. Trost and Fleming. Oxford, Pergamon Press. 8: 327.

Shapiro, R. H. (1976). "Alkenes from Tosylhydrazones." Org. React. (N.Y.) 23: 405.

Addlington, R. M. and A. G. M. Barrett (1983). "Recent Applications of the Shapiro Reaction." Acc. Chem. Res. 16: 55.

Chamberlin, and Bloom (1990). "Lithioalkenes from arylsulphonyl-hydrazones." Org. React. (N.Y.) 39: 1.

Bergbreiter, and Momongan (1991). "Hydrazone Anions". Comprehensive Organic Synthesis. Trost and Fleming. Oxford, Pergamon Press. 2: 503.

Cume Question, November, 2000
Sorensen and coworkers recently reported the synthesis of (-)-hispidospermidin (Sorensen JACS. 2000, 122, 9556). The Shapiro Reaction, along with methodology developed by Whitesell, was use in the construction of intermediate $\mathbf{3}$ from the indicated building blocks 1 and 2 (eq 1).

1

2

(-)-hispidospermidin sulfonyl hydrazine, $\xrightarrow{\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{CN}, 75 \%}$ Intermediate $\xrightarrow{n \text {-BuLi (2.05 equiv) }}$ Intermediate $\longrightarrow \quad$ B

Hydrazone Anions: A useful Reversed Polarity Equivalent

J. E. Baldwin, et al. JCS Chem. Comm. 1983, 1040

PhCHO

$\frac{\text { 1. } \mathrm{n} \text {-BuLi }}{\text { 2. } \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}}$

A-C(+)

J. E. Baldwin, et al. JCS Chem. Comm. 1984, 1095.

Lassaletta, J-M, et al.Tet. Lett. 1992, 33, 3691.
Chiral Hydrazones as Carbonyl Anion Equivalents

Lassaletta, J-M, et al. Chem Commun 2002, 498-499

Wolff-Kishner Reduction

Barton, D. H. R., Ives, D. A. J., and Thomas, B. R. J. Chem. Soc. 1955, 2056.

Mechanism

Elimination of α-Leaving Groups

D. H. Gusyafson, W. F. Erman J. Org. Chem. 1965, 30, 1665.

The Wharton Rearrangement

This example illustrates the 2 possible modes for the decomposition of \mathbf{A}

G. Stork et al. JACS 1977, 99, 7067.

Some procedural improvements:

$\xrightarrow[\text { KDA, KOtBu, etc. }]{\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}}$

For stable hydrazones, strongly basic conditions favor the ionic pathway.
C. Dupuy, J. L. Luche Tetrahedron Lett. 1989, 44, 3437.

Tosylhydrazones - Better Than Hydrazones

Tosylhydrazones are isolable, stable, and easily prepared.
The presence of the tosyl leaving group strongly biases the system towards polar reaction pathways under hydridic reducing conditions.

L. Caglioti, M. Magi Tetrahedron 1963, 19, 1127.

Further Refinements

Very mild reduction with $\mathrm{NaBH}_{3} \mathrm{CN}$ under slightly acidic conditions (pH 4-5). No reduction in the absence of acid; carbonyl, nitro, nitrile FGs unaffected. Aromatic, sterically hindered carbonyls very poor substrates.

R. O. Hutchins, et al. JACS 1973, 95, 3662.

G. W. Kabalka, et al. J. Org. Chem. 1975, 40, 1834.

Another Interesting Leaving Group

59\%
A. R. Chamberlin, et al. Tetrahedron Lett. 1991, 32, 1691.

The Eschenmoser-Tanabe Fragmentation

A. Eschenmoser, et al. Helv. Chem. Acta 1967, 50, 708.

A. Eschenmoser, et al. Helv. Chem. Acta 1967, 50, 2108.

Tosylhydrazone Reductions: The Alkene Walk

C. Djerassi, et al. JACS 1976, 98, 2275.

This has been developed into a reliable reduction

16 cases reported: Hutchins, et al. JOC 1975, 40, 923

Wendler, N. L., et al. Tet. Lett. 1982, 23, 5501.

The stereochemical course of the hydrazone reduction may be stereospecifically transferred via the 1, 3-rearrangement

Topiramate,
Maryanoff, B. E., et al. Tet. Lett. 1992, 33, 5009.

Sulfonylhydrazone Reductions: Alcohol Deoxygenation

The intervention of radicals has been implicated (again):

10 cases reported: A. Myers, et al. JACS 1997, 119, 8572.

Tosylhydrazone-Based Fragment Coupling

TBS $=\mathrm{t}-\mathrm{BuMe}_{2} \mathrm{Si}-$

$$
-78 \rightarrow \mathrm{rt}
$$

A Complex Application: A. Smith etal. JACS 1999, 121, 7423

28-06 Hydrazones-6 11/19/03 1:52 PM

Stereoselective Construction of Trisubstituted Olefins

A. G. Myers, P. J. Kukkola JACS, 1990, 112, 8208.

H

$$
{ }_{N}^{\mathrm{Ne}}
$$

O $\quad \alpha$-Keto Carbonium Ion Equivalents

Review: T. L. Gilchrist, Chem. Soc. Rev. 1983, 12, 53-72
Reactions with Nucleophiles

T. Kaiser, JACS. 1972, 94, 9276-9277

Corey, Tetradedron Lett. 1975, 3117

Corey, Helv. Chem. Acta. 1977, 60, 2964

Cycloadditions

Ressig, J. Org. Chem. 1992, 57, 339

Stereoelectronic Issues

Stereoelectronic vs Steric Issues

Bozzini, Tetrahedron 1982, 38, 1459

Bozzini, Tetrahedron 1982, 39, 3413

General Reviews:

Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapters 4.3. Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapters 4.6. Shapiro, Organic Reactions 1976, Vol 23, pp 405-507.

Mechanism:

Regiochemistry

$+$

$\xrightarrow[\text { 2. } \mathrm{MeLi}^{\mathrm{Et}} \mathrm{Et}_{2} \mathrm{O}]{\text { 1. } \mathrm{TsNHNH}_{2}}$

(100 \%)
28-08-Shapiro Reaction-1 11/19/03 1:54 PM

Deprotonation of the monoanion occurs predominantly at the kinetically more acidic site giving after elimination the less substituted alkene product.

In THF solution regiochemical ratios generally reflect the starting hydrazone geometries

Bond J. Org. Chem. 1978, 43, 154.

Grieco J. Org. Chem. 1977, 42, 1717.

Nemoto et. al. JCS, Perkin Trans. 1 1985, 927.

Trapping of the intermediate alkenyllithium

Bloom Tet Lett. 1984, 25, 4901

Carbonyl Transposition

Shapiro alternatives

(Juvabione) Evans J. Am. Chem. Soc. 1980, 102, 774

Applications
Myers, J. Am. Chem. Soc. 1990, 112, 8208

1. $\mathrm{TsNHNH}_{2}, \mathrm{TsOH}$
2. nBuLi, TMEDA

82 \%

van Tamelen J. Am. Chem. Soc. 1983, 105, 142.

RCHO

Ioroxanthin Baütikofer Helv. Chim. Acta. 1983, 66, 1148

A Recent Aplication of the Shapiro Reaction

Web Problem 24. Sorensen and coworkers recently reported the synthesis of (-)-hispidospermidin (Sorensen JACS. 2000, 122, 9556). The Shapiro Reaction, along with methodology developed by Whitesell, was use in the construction of intermediate $\mathbf{3}$ from the indicated building blocks $\mathbf{1}$ and $\mathbf{2}$ (eq 1).

Part A (8 points). Provide a mechanism for the Shapiro Reaction of $\mathbf{1}$ to intermediate B in the space below. Feel free to use a simplified analog of $\mathbf{1}$ such as 2,2 -dimethylcyclopentanone to answer this question.

Part B (7 points). Provide a mechanism for the transformation of intermediate B to the illustrated product 3. Use 3-dimensional representations to illustrate the stereochemical aspects of this individual step.

Mattox-Kendall Dehydrohalogenation (Paquette, Reagents, Vol 5, p 3509)

Problem: The syn relationship between Br and H renders the direct dehydrohalogenation with base unfavorable (relative to other potential reactions. Solution; proceed via the hydrazone.

An Alternate Decomposition Pathway for Tosyl Hydrazones

Bamford-Stevens vs. Shapiro

R. H. Shapiro Org. React. 1976, 23, 405.

quantitative

Directed Bamford-Stevens

T. K. Sarkar, et al. JCS Chem. Comm. 1992, 1184.

Chemistry 206

Advanced Organic Chemistry

Handout-28A

Oxidative Coupling of Enolates \& Enol Derivatives

Chuck Scales
Evans Group Seminar, March, 1995
D. A. Evans

Friday ,
November 21, 2003

The Oxidative Coupling of Enolates

 and Enol DerivativesEvans Research Seminars
March 14, 1995

An underappreciated umpolung of enolates

```
1. Ketone Enolates
2. Ester Enolates
3. Carboxylic Acid Dianions
3. Carboxylic Acid Dianio
4. Silyl Enolate Derivates
5. Applications to Organic Synthesis
```

```
eading Papers:
    Saegusa, T. JACS, 1977, 99, 148
    Fox, M.A. JOC, 1988, 53, 3745
```

 Narasaka, K. Chem. Letters, 1992, 2099

Chuck Scales

Reaction Background

Synthesis of 3,4-diphenyl succinic acid

38\%
12\%

- Also obtained a "high" yield of a-bromophenylacetic acid
- Proposed radical dimerization as mechanism for production of β-diphenylsuccinic acid.

Ivanoff, Bull. Soc. Chem. Fr., 1935, 2, 76

Synthesis of 1,4 Diketones

52%

Reaction Background

Coupling of Stabilized Anions

Mislow, K. JACS, 1973, 95, 5839 Tamaru, Y. JACS, 1978, 100, 192
A. Muci and K. Campos, unpublished results

Anion Coupling Models

- Type 1 Oxidants

- Type 2 Oxidants

Synthesis of 1,4-Diketones

Methyl Ketone Dimerization

α-Substituted Ketone Dimerization

73%

60\%

Synthesis of 1,4-Diketones

Cross-Coupling of Methyl Ketones

γ Coupling of α, β-unsaturated ketones

$33 \% \gamma, \gamma$ coupling product

- No α, α coupling product seen
- γ, γ couple not produced from thermal rearrangment of α, α product

$32 \% \alpha, \gamma$ coupling product Saegusa, T. et al. JACS 1977, 99, 1487

1,4-Diketones with Copper (II) Triflate

From enolates

Anions Make a Difference

Kobayashi, et al. TL, 18, 3741 (1977)
Kobayashi, et al. Chem. Pharm. Bull., 28, 262 (1980)

Coupling of Ketone Enolates

Oxidative Coupling with Ferric Chloride

 52\%

- Dimers obtained from hindered enolates in moderate yields (40-60\%)
- Prepared from kinetic and thermodynamic enolates

Frazier, R.H. et al. JOC, 1980, 45, 5408

Oxidation with Manganic Acetate

- Proposed radical coupling mechanism for transformation

Dessau, R.M. et al. JOC, 1974, 39, 3457

Oxidative Dimerization of Aldehydes

- All examples produced ca 80% yield of dimer in 45:55 ratio (C-C:C-O).

Intramolecular Coupling

Ketone cyclization

- Generally poor yields; spirocyclic examples included.

Kobayashi, et al. TL, 1978, 19, 3555

Tetraketone Synthesis

- Synthesized various aryl substituted 3,4-aroyl-2,5-hexanediones
- Observed that EDG favor oxidation and EWG disfavor oxidation (correlated to Hammett plot)

Hammett Plot Here

Ester Enolate Coupling

Synthesis of Succinate Esters

| R | $\underline{\text { R' }}$ | Yield | |
| :---: | :---: | :---: | :---: |
| | | CuBr_{2} | $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{C}_{5} \mathrm{H}_{9}\right)_{2}$ |
| -H | -t-Bu | 85 | 95 |
| $-\mathrm{Me}$ | -Et | 81 | 50 |
| -n-Bu | -Et | 63 25 | 20 |
| -i-Pr | -Et | 20 | 20 |
| -Ph | -Et | 75 | 60 |

- Increasing alkyl substitution decreases yield of dimer
- Yield of a-bromoester increased with increasing alkyl substitution when copper (II) bromide used as oxidizing agent
- Yield of dimer not increased with copper (II) valerate
- Product obtained as an unspecified mixture of stereoisomers

Oxidative Coupling Mechanism

Proposed Mechanism

- Radical may be associated with oxidizing agent

Evidence for Radical Mechanism

- Investigation of possible $\mathrm{S}_{\mathrm{N}} 2$ mechanism

- Exclusion of bromide source also leads to product

Succinate Esters with Other Oxidants

Oxidation with lodine

- Authors propose an $\mathrm{S}_{\mathrm{N}} 2$ mechanism for this transformation

Brocksom, T.J., et al. Synthesis 1987, 396

Oxidation with TiCl_{4}

1) LDA, THF, $-78^{\circ} \mathrm{C}$
2) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$

- Excellent yields with α-substituted esters (i-Pr, BnO)
- Other Lewis acids $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{SnCl}_{4}\right)$ do not promote oxidation
- ZrCl_{4} resulted in Claisen condensation products
- Not applicable for ketones or amides
80%

Intramolecular Coupling

Ester cyclization

| \underline{n} | \underline{R} | $\underline{\text { Yield }}$ |
| :--- | :--- | :--- |
| 3 | Me | $88 \%(3: 1$ cis:trans) |
| 4 | $\mathrm{t}-\mathrm{Bu}$ | 20% (undetermined mixture of stereoisomers) $^{\mathrm{b}}$ |
| 5 | $\mathrm{t}-\mathrm{Bu}$ | $>50 \%$ (undetermined mixture of stereoisomers) $^{\mathrm{b}}$ |
| 6 | Me | 93% (0. $6 \cdot 1$ cis.trans) $^{\mathrm{a}}$ |

- Equilibration between cis and trans isomers noted for all reactions.
- Dimethyl adipate and dimethyl pimelate gave exclusively Dieckmann cyclization under the reaction conditions.
${ }^{2}$ Chung, S.K. et al. JOC, 1983, 48, 1125 ${ }^{\text {b }}$ Babler, J.H. et al. JOC, 1987, 52, 3462

Oxidation of dimethyl β, β-dimethyIglutarate

| Oxidant | | | |
| :--- | :--- | :--- | :--- |
| | Temp. | Yield | |
| cis:trans | | | |
| CuCl_{2} | -78 | 71% | $57: 43$ |
| CuCl_{2} | 0 | 83% | $68: 32$ |
| I_{2} | -78 | 76% | $19: 81$ |
| AgCl | -78 | 81% | $80: 20$ |

- No attempt to rationalize stereochemical outcome of reaction

Babler, J.H. et al. Synth. Comm., 1983, 13, 905

Carboxylic Acid Dianion Coupling

Coupling of Acid Dianions

- Yields increased with dianion salt isolation

Stereochemical Model

Belletire, J.L. et al. TL, 1984, 25, 5969

γ Coupling of α, β-Unsaturated Carboxylic Acids

31\%, E,E only

- No rational for observed stereochemistry
- Also observed unspecified yields of γ, α coupled product

Mestres, R. TL, 1988, 29, 6181

lodine Oxidation Mechanism

Mechanistic Investigations

- "Dimerization reaction is much faster than nucleophilic substitution under the reaction conditions."

| $[\mathrm{O}]$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: |
| e^{-} | | |
| I_{2} | 16 | 40 |
| 23 | 38 | |

2

- Formation of α,para coupling product 2 supports radical anion intermediate

Fox, M.A. et al. JACS 1988, 53, 3745

lodine Oxidation Mechanism

5-Hexenyl Radical Trap

| $[\mathrm{O}]$ | $\mathbf{1}$ | $\underline{\mathbf{2}}$ |
| :--- | :--- | :--- |
| I_{2} | 26% | 32% |
| e^{-} | 8% | 36% |

No cyclopentylmethyl products seen!

Mechanism for lodine Promoted Coupling

- Proposed initial step is SET to form radical anion (D).
- Radical anion (D) may iodinate, then form dimer (B) via $\mathrm{S}_{\mathrm{N}} 2$ reaction
- Radical anion may form dimer directly, especially if R and R^{\prime} are large (>H)
- Direct iodination of dianion neither supported or excluded by experiments

Silyl Ketene Acetal Dimerization

Silyl Ketene Acetals

- SET ($\mathrm{Ti}^{\mathrm{IV}}$--> $\left.\mathrm{Ti}^{\mathrm{ill}}\right)$ followed by radical coupling mechanism proposed by both authors
- Other reagents $\left(\mathrm{Cu}^{\mathrm{II}}\right.$ salts, $\left.\mathrm{FeCl}_{3}\right)$ ineffective for coupling reaction.

> a ${ }^{\text {o Ojima, I. et al. TL 1977, 18, } 2009}$ b Rhodes, Y.E. et al. Synth. Comm. 1985, 15, 301

Vinyl Ketene Silyl Acetal Coupling

| \underline{R} | $\underline{R^{\prime}}$ | $\underline{\text { Yield }}$ | $\underline{\gamma, \gamma: \gamma, \alpha}$ |
| :--- | :--- | :--- | :--- |
| H | H | 98% | $83: 17$ |
| H | Me | 76% | $64: 36$ |
| Me | H | 98% | $96: 4$ |

 γ, α coupling

Silyl Ketene Acetal Coupling

Carbocycle Synthesis

- Stereochemical course under thermodynamic control
- No coupling from ketone-derived enol silyl ethers
- Generally poor yields; exclusively 1,3-trans product.

Chan, T.H. Tetrahedron, 1983, 39, 847

Acrylonitrile Trapping

- Authors propose enoxyradical trapping by acrylonitrile, followed by dimerization
- Reactions with methacrylonitrile gave poor yields.
- Attempts to trap putative radical intermediate with $\mathrm{FeCl}_{3}, \mathrm{CCl}_{4}, \mathrm{CBr}_{4}$, and tributyltin hydride failed.

Silyl Enol Ether Dimerization

Hypervalent lodine Oxidants

Proposed Mechanism

- Nucleophile trapping accomplished in "good yields."

Moriarty, R., et al. JCS Chem. Comm., 420 (1985) Moriarty, R., et al. J. Chem. Soc. Perk. Trans. I, 559 (1987) Caple, R., et al. JOC, 54, 2609 (1989)

Silyl Enol Ether Dimerization

Metal Oxidants

| | | $\begin{aligned} & \mathrm{u}(\mathrm{OTf})_{2}, \mathrm{Cu}_{2} \mathrm{O} \\ & { }_{\mathrm{r}} \mathrm{CN}, 0^{\circ} \mathrm{C} \end{aligned}$ | | 55\% | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oxidant | \# eq | Solvent | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Time (hr) | Yield | Ref. |
| $\mathrm{Cu}(\mathrm{OTf})_{2} / \mathrm{Cu}_{2} \mathrm{O}$ | 1,4 | i-PrCN | 0 | 2 | 55\% | a |
| $\mathrm{Ag}_{2} \mathrm{O}$ | 1,4 | DMSO | 65 | 2 | 73\% | b |
| $\mathrm{Pb}_{(\mathrm{OAc}}{ }_{4}$ | 0.5 | $2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{THF}$ | -78, then 23 | 1.5;1 | 45\% | c |
| $\mathrm{VO}(\mathrm{OEt}) \mathrm{Cl}_{2}$ | 2 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | -75, then -40 | 3;4 | 30\% | d |

- All authors also reported yields for non-styrenyl silyl enol ethers.

Yields are extremely substrate dependent

- Generally, increasing steric hindrance decreases yields.
- All authors propose oxidation to cation radical, followed by loss of trimethylsily cation and radical coupling.
${ }^{2}$ Kobayashi, Y. et al. Chem. Pharm. Bull., 1980, 28, 262
'Saegusa, T. et al. JACS 1975, 97, 649
${ }^{\text {SMa }}$ Moriarty, R.M. et al. TL 1987, 28, 873
dohshiro, Y. et al. TL 1992, 33, 5823

Cross Coupling Experiments

- Less reactive substrate added first, followed by more reactive substrate.
- In all cases, trace amounts of dimers isolated.

Silyl Enol Ether Coupling

Alkene Trapping

- Also observed for δ, ε olefins
- Kinetic product can be isomerized in $\mathrm{KOH} / \mathrm{MeOH}$.

Snider, et al. JOC, 1990, 55, 4786

6-Oxo- α, β-Unsaturated Carbonyl Compounds

Proposed Mechanism

Ruzziconi, R. et al. TL 1993, 34, 721

28A-11.handouts 3/14/95 1:24 PM

Application: Ketone Enolates

Cerorubenic Acid III: Construction of the Tetracyclic Core

- Other oxidants $\left(\mathrm{CuCl}_{2}, \mathrm{Cu}(\mathrm{OTf})_{2}\right)$ coupled with poor yields

Paquette, L.A. JOC, 1993, 58, 4245

C_{16} Hexaquinacene

58\%

Ketone Enolate Applications II

Coupling of 2-acetylthiophene

Kagan, J. et al Heterocycles, 1983, 20, 1941
γ-Coupling of Ketone Enolates

90\%

90\%
reflux

Application: Carboxylic Acid Dianions

Total Synthesis of Racemic Wikstromol

 acid

Belletire, J.L. et al, JOC, 1988, 53, 4724

- Anhydride "obtained as a single diastereomer by NMR analysis."

Total Synthesis of Racemic Hinokinin

- Mixture of erythro and threo acids; anhydride exclusively threo.

Applications: Ketone Enolates and Silyl Enol Ethers
Synthesis of Racemic Hirsutene

- Isolated as a single diastereomer; proof by conversion to hirsutene.

Studies Toward the Synthesis of Brackenin

- "Use of Li enolates [for coupling] proved to be unsatisfactory."

Drewes, S.E. JCS Perk. Trans 1, 1989, 1585

Stereoselective Synthesis of Succinamides

Oxazolidine Auxiliary Experiments

- No model for induction proposed

Porter, N.A. et al. TL, 1993, 34, 4457

Oxazolidinone Auxiliary Experiments

 50\% yield 5:1 dl mixture

- Also obtained ca. 30% yield of meso dimer

Oxidative Coupling of Enamines

Silyl Enol Ether Trapping

Proposed Mechanism

Chemistry 206

Advanced Organic Chemistry

Handout-28A

Oxidative Coupling of Enolates \& Enol Derivatives

Chuck Scales

Evans Group Seminar, March, 1995
D. A. Evans

Friday,
November 21, 2003

Chemistry 206

Advanced Organic Chemistry

Handout-28B

Asymmetric Organocatalysis Using Chiral Amines

An Evans Group Friday Seminar Jonathan Lawrence
November $14^{\text {th }} 2003$

D. A. Evans

Friday,
November 21, 2003

Asymmetric Organocatalysis Using Chiral Amines

Contents:

Background
Aldol reactions
Mannich reactions
Amination/Oxidation reactions
Michael reactions
Cycloaddition reactions
Alkylation reactions

An Evans Group Friday Seminar
 Jonathan Lawrence
 November $14^{\text {th }} 2003$

Revent Reviews:

List, B. "Proline Catalyzed Asymmetric Reactions", Tet. 2002, 58, 5573-5590
Miller, S. "Amino Acids and Peptides as Asymmetric Organocatalysts", Tet. 2002, 58, 2481-2495
List, B. "Asymmetric Aminocatalysis", Synlett 2001, 11, 1675-1686
Dalko, P. "Enantioselective Organocatalysis", ACIEE 2001, 40, 3726-3748

Other Chiral Amines

Cinchona alkaloids:

$\mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{OH}[(-)$-quinine $]$
$\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{OH}$ [(-)-cinchonidine]

The "nucleophilic" catalysts

$\mathrm{R}=\mathrm{OMe} \quad[(+)$-quinidine $]$
$\mathrm{R}=\mathrm{H} \quad[(-)$-cinchonine $]$

Reviews:

Pracejus, H. Fortschr. Chem. Forsch, 1967, 8, 493.
Morrison, J., Mosher, H. Asymmetric Organic Reactions; Prentice-Hall: Englewood Cliffs, 1971.
Wynberg, H. Top. Stereochem. 1986, 16, 87.
Relevant Group Seminars:
Karl Scheidt, Asymmetric Catalysis with Chiral Lewis Bases (Part I), March 2001
Hemaka Rajapakse, Nonmetal-Based Asymmertic Catalysis (Part II), March 2001
Essa Hu, Asymmetric Catalysis with Chiral Lewis Bases (Part III), March 2001
Jake Janey, Asymmetric Catalysis with Chiral Lewis Bases (Part IV), March 2001

Preliminary Findings

Yamada, 1969:

Yamada, S. TL 1969, 10, 4237.

The Seminal Experiments

$\begin{array}{lr}\mathrm{R}=\mathrm{Me} & 100 \%, 93 \% \text { ee } \\ \mathrm{R}=\mathrm{Et} & 71 \%, 99 \% \text { ee }\end{array}$

- the use of protic solvents severly diminishes enantioselectivity
- other amino acids as catalysts lead to decreased chemical yield and enantioselectivity
- Eder, Sauer, and Weichert obtained the corresponding aldol condensation products in similar optical purity using $47 \mathrm{~mol} \%$ L-proline and $1 \mathrm{~N} \mathrm{HClO}_{4}$

Effect of the Catalyst

Hajos, J., Parrish, D. JOC 1974, 39, 1615.

Transition States

Agami, 1984-1986

- favorable (enamine) N-H---O hydrogen bond
- N-H anti to carboxylate electrostatically favored
- reaction is second-order in proline (non-linear effect observed)
- second proline acts as a proton shuttle, allowing enamine to be nucleophilic

Agami, C. TL 1986, 13, 1501.
Houk, K. JACS 2001, 123, 12911.
Houk, K., List, B. JACS 2003, 125, 16.

Houk, 2001-2003

- N-H---O hydrogen bond does not lower energy of transition state
- favorable O-H---O hydrogen bond
- additional NC-H---O hydrogen bond further stabilizes system
- reaction is first order in proline (supported by kinetic data) and no non-linear effect observed
for a discussion on $\mathrm{R}_{3} \mathrm{~N}+-\mathrm{C}-\mathrm{H}-\mathrm{-}-\mathrm{O}=\mathrm{C}$ bonds, see: Houk, K. JACS, 2002, 124, 7163.

Direct Aldol Addition 1

The initial reaction:

Catalyst screen:

(selected examples)

| compound | \% yield | \% ee |
| :--- | :--- | :---: |
| (L)-His, (L)-Val
 (L)-Tyr, (L)-Phe | <10 | -- |

List, B., Barbas, C. JACS, 2000, 122, 2395-2396
*Barbas, C. JACS, 2001, 123, 5260-5267

Direct Aldol Addition 2

Substrate scope:

variation of the aldehyde

product $\mathrm{R}=\quad$ cat. \quad \% yield \quad \% ee
product $\mathrm{R}=\quad$ cat. $\quad \%$ yield $\quad \%$ ee

- DMTC 2 is catalyst of choice for aromatic aldehydes, although chemical yield decreases due to slower rate of reaction
- α-unbranched aldehydes yield no appreciable amount of product with proline catalyst 1 due to enolization and self-aldolization under reaction conditions ($\mathrm{DMSO} /$ acetone $=4: 1$)

List, B. JACS, 2000, 122, 2395.
Barbas, C. JACS, 2001, 123, 5260.

Direct Aldol Addition 3

Barbas, C. JACS, 2001, 123, 5260.

Direct Aldol Addition 4

Substrate scope:

use of α-unbranched aldehydes

| product $\mathrm{R}=$ | \% yield 1 | \% yield 2 | \% ee | product $\mathrm{R}=$ | \% yield 1 | \% yield 2 | \% ee |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S ${ }^{3}$ | $\begin{aligned} & 29 \\ & 31 \end{aligned}$ | $\begin{array}{r} 0 \\ 38 \end{array}$ | $\begin{aligned} & 70 \\ & 67 \end{aligned}$ | | $\begin{aligned} & 23 \\ & 34 \end{aligned}$ | $\begin{aligned} & 46 \\ & 42 \end{aligned}$ | $\begin{aligned} & 61 \text { * } \\ & 73 \end{aligned}$ |
| | 35 | 40 | 73 * | | 22 | 50 | 36 |
| 3 | 34 | 35 | 72 | * rea | ion perform | ned neat in | cetone |

[^21]List, B. OL 2001, 3, 573.

Direct Aldol Reaction Mechanism

List, B. JACS 2000, 122, 2395.
List, B., Houk, K. JACS 2003, 125, 2475.

Synthesis of Anti-1,2-Diols

product $\mathrm{R}=$ cat. \quad dr $\quad \%$ yield | $\%$ ee |
| :---: |
| 1 |

product $\mathrm{R}=$ cat. $\quad \mathrm{dr}$ \% yield | \% ee |
| :---: |
| 1 |

List, B. JACS, 2000, 122, 2395. Barbas, C. JACS, 2001, 123, 5260.
more substituted enamine formed due to:

- increased acidity of proton removed
- increased stability of enamine due to $\mathrm{O}_{\mathrm{n} . \mathrm{b} .}{ }^{-->} \pi^{*} \mathrm{C}=\mathrm{C}$

Use of Aldehydes as Donors in Direct Aldol

product $\mathrm{R}=\mathrm{Clc}$

MacMillan, D. JACS, 2002, 124, 6798.

Trimerization of Acetaldehyde

- THF at $0^{\circ} \mathrm{C}$ was found to be the optimal conditions for yield and ee (DMSO @ rt = 13\% y, 57\% ee, $\left.\mathrm{CHCl}_{3} @ \mathrm{rt}={ }_{2} \% \mathrm{y}, 68 \% \mathrm{ee}\right)$

Mechanism:

Barbas, C. JOC, 2002, 67, 301.

Propionaldehyde Trimerization

A method for carbohydrate assembly

47\%

- reaction analygous to an aldolase enzyme that furnishes the minor product shown above
- propionaldehyde added slowly dropwise in order to obtain trimer over dimer products
- enantioselectivity erodes with longer reaction times (after 10 hr product ee $=47 \%$)
- substituent at C-6 variable by using 1 eq. of corresponding aldehyde and 2 eq. of propionaldehyde

Barbas, C. TL, 2002, 43, 9591.

Mechanism of Propionaldehyde Trimerization

- incubating isolated 1 with L-proline led to formation of 2 through epimerization (1:1 ratio of $\mathbf{1 : 2}$ after 96 hr)

Barbas, C. TL 2002, 43, 9591.

Aldehyde Aldol Addition to Activated Carbonyl Compounds

| product $\mathrm{R}=$ | $\%$ yield | $\%$ ee |
| :---: | :---: | :---: |
| Me | 90 | 90 |
| Et | 91 | 85 |
| $i-\mathrm{Pr}$ | 88 | 85 |
| n-Hex | 94 | 88 |
| Ph | 91 | 84 |

- protection of the aldehyde as the dioxolane prevents epimerization of the α center during column chromatography

Other Chiral Amine Catalysts for the Direct Aldol Addition

1

2

3

4

| product $\mathrm{R}=$ | cat. | $\%$ yield 3 | $\%$ ee | $\%$ yield $\mathbf{4}$ |
| :--- | :---: | :---: | :---: | :---: |
| $1.5 \mathrm{~mol} \% \mathbf{1}+2 \mathrm{TfOH}+$
 $1.5 \mathrm{~mol} \% \mathbf{1}$
 $3 \mathrm{~mol} \% \mathbf{2}$ | 60 | 88 | 7 | |
| $1.5 \mathrm{~mol} \% \mathbf{1}+2 \mathrm{TfOH}+$
 $1.5 \mathrm{~mol} \% \mathbf{1}$
 $3 \mathrm{~mol} \% \mathbf{2}$ | 72 | 93 | 7 | |

- proposed mechanism similar to that of proline catalyzed reactions, with proton transfer from protonated tertiary N to O

Mannich Reaction: First Report

Required Conditions:

- enamime addition must be faster to the imine than to the corresponding aldehyde
- formation of the aldimine from a primary amine must be faster than the aldol addition
- NMR studies show that Keq(aldehyde \rightleftharpoons imine $)=1$

3-component reaction verifies hypotheses:

- $10 \mathrm{~mol} \%$ proline and 1.3 eq ketone used without loss of efficiency

List, B. JACS, 2000, 122, 9336.

Mannich Reaction: Scope

Variation of the ketone donor:

Mannich Reaction: Transition States

List, B. JACS 2002, 124, 827.

Mannich Reaction: Scope 2

Variation of the aldehyde:

- aliphatic aldehydes, including α-unbranched are good substrates ($60-90 \%$ yield, $73-93 \%$ ee)
- aromatic aldehydes are excellent substrates, (79-92\% yield, 61-99\% ee)

Effect of electron donation from the aldehyde:

| $\mathrm{R}=$ | \% yield | dr | \% ee |
| :--- | :---: | :---: | :---: |
| CN | 88 | $15: 1$ | 99 |
| H | 83 | $9: 1$ | 93 |
| Me | 85 | $5: 1$ | 86 |
| OMe | 88 | $3: 1$ | 61 |

Variation of the catalyst:

- proline proves to be the best catalyst, with other catalysts affording reduced yield and optical purity.

Reaction of acetone with isovaleraldehyde:

60% у., 16% ee

26% y., 0% ee

α-Imino Ethyl Glyoxylate as Mannich Acceptor 1

An entry to α-amino acids

Addition of ketones:

$20 \mathrm{vol} \%$

| product | $\%$ yield | dr | $\%$ ee |
| :---: | :---: | :---: | :---: |

$47 \quad>19: 1 \quad>99$

Barbas, C. JACS 2002, 124, 1842

α-Imino Ethyl Glyoxylate as Mannich Acceptor 1

An entry to α-amino acids

Addition of aldehydes:

$20 \mathrm{vol} \%$

| $\mathrm{R}=$ | $\%$ yield | dr | $\%$ ee |
| :--- | :---: | :---: | :---: |
| Me | 72 | $1.1: 1$ | 99 |
| Et | 57 | $1.5: 1$ | 99 |
| $i-\mathrm{Pr}$ | 81 | $>10: 1$ | 93 |
| n-Bu | 81 | $3: 1$ | 99 |
| n-Pent | 89 | $>19: 1$ | >99 |
| ? | 71 | $>19: 1$ | >99 |

- aqueous workup or column chromatography may lead to decreased diastereoselectivities
- reaction has been performed in aqueous media (Barbas, TL 2003, 44, 1923)

Anti-Selective Mannich Reaction

Addition of aldehydes:

$20 \mathrm{vol} \%$

| $\mathrm{R}=$ | $\%$ yield | dr | $\%$ ee |
| :--- | :---: | :---: | :---: |
| Et | 44 | $1: 1$ | 75 |
| i-Pr | 52 | $10: 1$ | 82 |
| n-Bu | 54 | $10: 1$ | 74 |
| t-Bu | 57 | $>10: 1$ | 92 |
| n-Pent | 78 | $>10: 1$ | 76 |
| n-Hex | 68 | $>19: 1$ | 76 |
| | | | For a review |

bettter?

Barbas, C. TL 2002, 43, 7749.

Direct $\boldsymbol{\alpha}$-Amination 1

Addition of aldehydes:

| $\mathrm{R}=$ | $\%$ yield | $\%$ ee |
| :---: | :---: | :---: |
| Me | 97 | >95 |
| $n-\mathrm{Pr}$ | 93 | >95 |
| $n-\mathrm{Bu}$ | 94 | 97 |
| $i-\mathrm{Pr}$ | 99 | 96 |
| Bn | 95 | >95 |

- longer reaction time leads to epimerization, so aldehyde is reduced in situ

List, B. JACS 2002, 124, 5656.

Direct $\boldsymbol{\alpha}$-Amination 2

Addition of ketones:

| product 1 | ratio 1:2 | $\%$ yield (1+2) | \% ee |
| :---: | :---: | :---: | :---: |
| | 10:1 | 80 | 95 (93) |

3:1 99
99 (99)

--- $\quad 79 \quad 94$ (93)
Jorgensen, JACS 2002, 124, 6254.

99
(

α-Oxidation of Aldehydes with Nitrosobenzene 1

The choice of reaction conditions determine N or O selelctive addition:

Yamamoto, H. OL, 2002, 4, 3579.

Larger basicity of nitrogen allows proline to catalyze O-nucleophilic addition:

a possible transition state

α-Oxidation of Aldehydes with Nitrosobenzene 2

Aldehyde scope:

| $\mathrm{R}=$ | \% yield | \% ee | $\mathrm{R}=$ | \% yield | \% ee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Me | 88 | 97 | Bn | 95 | 97 |
| $n-\mathrm{Bu}$ | 79 | 98 | Ph | 60 | 99 |
| $i-\operatorname{Pr}$ | 85 | 99 | $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTIPS}$ | 76 | 98 |
| $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ | 99 | 96 | $\begin{aligned} & \mathrm{CH}_{2}-\left(3_{3}^{\prime}-\mathrm{N}-\right. \\ & \text { methyl indole) } \end{aligned}$ | 83 | 98 |

- product most easily isolated as the primary alcohol $\left(\mathrm{NaBH}_{4}\right.$ reduction)

MacMillan, D. JACS 2003, 125, 10808.

Asymmetric Organocatalysis of the Michael Reaction

Two mechanistic possibilities exist:

enamine
or

imminium

Examples include:
additions to:
alkylidene malonates
α, β-unsaturated nitroalkenes
additions of:
malonate esters
nitroalkanes
aromatics (Friedel-Crafts reactions)
silyloxy furans
Diels-Alder reaction
Dipolar cycloaddition

Michael Additions using Enamine Catalysis:

Moderate Success has been Achieved

Kozikowski, A. JOC, 1989, 54, 2275.

34% ee

Momose, T. J.Chem.Soc., Perkin Trans., 1992, 509.

Enamine Catalysis: Examples 2

Recent examples:
List:

97\%

List, B. OL 2001, 3, 2423.
Enders:

- use of MeOH as solvent increases ee

Enders, Synlett 2002, 26.

Enamine Catalysis: Examples 3

THF, rt
59\%

Barbas, C. TL, 2001, 42, 4441.

proposed transition state:
$\mathrm{R}=\mathrm{Me} 56 \%$ ee, $\mathrm{dr}=9: 1$
$\mathrm{R}=i-\operatorname{Pr} 72 \%$ ee, $\mathrm{dr}=11: 1$
\ddagger

Barbas, C. OL 2001, 3, 3737.

A Highly Enantioselective Michael Addition Using Enamines A New Chiral Diamine Catalyst

- with variation of aromatic group on nitroolefin:

$$
\begin{aligned}
\mathrm{ee} & =96-98 \% \\
\mathrm{dr} & =3.5: 1-19: 1
\end{aligned}
$$

- selection of aromatic groups used:

Imminium Catalysis of Conjugate Additions 1

Proline has been used with only mild success:

58% ee

- Proline rubidium salt gives lower ee in the Hajos-Parrish-Weichert reaction

Yamaguchi, JOC 1996, 61, 3520.

MacMillan Introduces A New Catalyst

Imminium ion formation lowers the LUMO of the system and allows catalysis to occur:

Consensation of an aldehyde with the catalyst produces an imminium complex:

$\overline{\bar{~}}$

PM3 minimized structure

Diels-Alder Cycloaddition 1

Dienophile scope:

| $\mathrm{R}=$ | $\%$ yield | endo:exo | $\%$ ee(endo) | $\%$ ee(exo) |
| :--- | :---: | :---: | :---: | :---: |
| Me | 75 | $1: 1$ | 86 | 90 |
| $n-\operatorname{Pr}$ | 92 | $1: 1$ | 86 | 90 |
| $i-\mathrm{Pr}$ | 81 | $1: 1$ | 84 | 93 |
| Ph | 99 | $1.3: 1$ | 93 | 93 |
| Furyl | 89 | $1: 1$ | 91 | 93 |

MacMillan, D. JACS 2000, 122, 4243.

Diels-Alder Cycloaddition 2

Diene scope:

| diene | R | product | \% yield | exo:endo | \% ee | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Me | | 75 | 35:1 | 96 | |
| | H | | 82 | 1:14 | 94 | $\mathrm{O} \quad \mathrm{Me}$ |
| | H | | 84 | --- | 89 | |
| Ph | H | Ph ${ }^{\text {R }}$ | 90 | --- | 83 | ${ }_{1} \mathrm{HCl}$ |
| $\sqrt{2}$ | Me | | 75 | --- | 90 | |
| | H | | 75 | 1:5 | 90 | |
| | H | | 72 | 1:11 | 85 | |

Application to Complex Synthesis

DMF / MeOH (1:1) $5 \% \mathrm{H}_{2} \mathrm{O},{ }_{36} \mathrm{~h}$ 35% yield, ${ }_{70} \%$ de (endo)

(+)-Hapalindole Q

Nitrone Cycloaddition

| Z | R | R_{1} | endo:exo | yield | ee (endo) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Bn | Ph | Me | $94: 6$ | 98 | 94 |
| allyl | Ph | Me | $93: 7$ | 73 | 98 |
| Me | Ph | Me | $95: 5$ | 66 | 99 |
| Bn | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$ | Me | $92: 8$ | 78 | 95 |
| Me | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$ | Me | $93: 7$ | 76 | 94 |
| Bn | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4$ | Me | $98: 2$ | 93 | 91 |
| Me | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ | Me | $93: 7$ | 82 | 97 |
| Bn | 2-napth | Me | $95: 5$ | 98 | 93 |
| Bn | c-Hex | Me | $99: 1$ | 70 | 99 |
| Bn | Ph | H | $81: 19$ | 72 | 90 |
| Bn | Ph | H | $86: 14$ | 80 | 92 |
| Bn | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$ | H | $85: 15$ | 80 | 90 |
| Bn | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$ | H | $80: 20$ | 80 | 91 |
| Bn | $2-$ napth | H | $81: 19$ | 82 | 90 |
| Bn | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4$ | H | $91: 9$ | 83 | 90 |

- HClO_{4} proved to be the best Bronsted acid cocatalyst to promote only enantioselective catalysis
- high endo selectivity attributed to to favorable placement of R group away from geminal dimethyl substituents on catalyst

Friedel-Crafts Alkylation 1: Pyrroles

Substitution on the pyrrole is also possible:

Alkylation of Indoles 1

The need for a new amine catalyst:

- Indole is less electron-rich than pyrrole, so is less nucleophilic toward conjugate addition

Second generation catalyst: a more reactive variant

lone pair exposed

- Kinetic studies indicate rate of reaction influenced by imminium formation as well as carbon-carbon bond forming event

Alkylation of Indoles 2

| R | temp $\left({ }^{\circ} \mathrm{C}\right)$ | yield | ee |
| :--- | :---: | :---: | :---: |
| Me | -83 | 82 | 92 |
| $n-\mathrm{Pr}$ | -60 | 80 | 93 |
| $i-\mathrm{Pr}$ | -50 | 74 | 93 |
| Ph | -55 | 84 | 90 |
| $\mathrm{CH}_{2} \mathrm{OBz}$ | -83 | 84 | 96 |
| $\mathrm{CO}_{2} \mathrm{Me}$ | -83 | 89 | 91 |

An increase in rate of reaction and enantioselectivity:

- increased top-face coverage
- nucleophile-geminal dimethyl interation removed

MacMillan, D. JACS 2002, 124, 1172.

Alkylation of Indoles 3

Indole Scope:

| R | Y | Z | R_{1} | temp $\left({ }^{\circ} \mathrm{C}\right)$ | $\%$ yield | $\%$ ee |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Me | H | H | Me | -87 | 82 | 92 |
| H | H | H | Me | -60 | 72 | 91 |
| allyl | H | H | Me | -72 | 70 | 92 |
| Bn | H | H | Me | -60 | 80 | 89 |
| H | H | Me | $-\mathrm{CH}_{2} \mathrm{OBz}$ | -60 | 94 | 94 |
| Me | H | OMe | $-\mathrm{CH}_{2} \mathrm{OBz}$ | -87 | 90 | 96 |
| H | Cl | H | $-\mathrm{CH}_{2} \mathrm{OBz}$ | -60 | 73 | 97 |

Application to Simple Synthesis:

1. $20 \mathrm{~mol} \%$ catalyst

2. $\mathrm{AgNO}_{3}, \mathrm{NaOH}$

MacMillan, D. JACS 2002, 124, 1172.

Alkylation of Benzenes

MacMillan, D. JACS 2002, 124, 7894.

Mukaiyama-Michael Reaction 1

Previous Michael additions with silyloxy furans:

Katsuki, Tet. 1997, 53, 17015
Desimoni, G. Tet. 2001, 57, 10203

- note that Lewis acids promote 1,2-addition products when possible, such as α, β-unsaturated enals

Optimized reaction conditions:

Mukaiyama-Michael Reaction 2

MacMillan, D. JACS 2003, 125, 1192.

Another Chiral Amine Catalyst

Asymmetric Michael Additions

| R_{1} | R_{2} | $\%$ yield | $\%$ ee |
| :--- | :---: | :---: | :---: |
| $p-\mathrm{NO}_{2} \mathrm{Ph}$ | Me | 84 | 89 |
| $p-\mathrm{NMe}_{2} \mathrm{Ph}$ | Me | 58 | 77 |
| 2 -furyl | Me | 75 | 92 |
| $2-$ pyridyl | Me | 95 | 88 |
| $n-\mathrm{Bu}$ | Me | 61 | 91 |
| $i-\mathrm{Pr}$ | Me | 33 | 84 |
| $\mathrm{MeO}_{2} \mathrm{C}$ | Me | 59 | 59 |
| Ph | Me | 86 | 99 |
| Ph | Et | 66 | 95 |
| Ph | $i-\mathrm{Pr}$ | 2 | |

- Nitroalkane additions to α, β-unsaturated ketones has also been performed in good to excellent selectivity (Jorgensen, K. JOC 2002, 67, 8331.)

A Listing of Other Asymmetric Organocatalytic Reactions

[4+3] cycloadditions:

64%

endo only (89% ee)
Harmata, M. JACS, 2003, 125, 2058.

Michael Reactions:

Tandem Knoevenegel-Diels-Alder Reactions:
Jorgensen, K. ACIEE 2003, 42, 4955

Barbas, C. ACIEE 2003, 42, 4233

Summary

- Reactions are direct:

Donors can be used without modification -- no need to deprotonate or silylate prior to reaction Electrophiles can be generated in situ (Mannich reaction) most of the time

- Catalysts are:
inexpensive
commerially available or easily prepared in both enantiomeric forms non-toxic
recoverable
- Many reactions can be run at room temperature, under an aerobic atmosphere, with wet solvents
- Many types of reactions can be catalyzed; for some reactions, organocatalysis is the only highly efficient way known (Mannich and Mukaiyama-Michael additions)
- Reaction yield and enantioselectivity is highly dependent on solvent system so require "fine tuning"
- Only reactions that use ketones or aldehydes as donors (electrophiles for Michael additions) can be catalyzed

Organocatalysis using small molecules is a field that has emerged only within the past decade. It is bound to receive increasing attention in the future; as a result, new catalysts will emerge which will allow for the catalysis of reactions previously unutilized in the realm of organocatalysis.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 29

Ambiphilic Functional Groups-3 Sulfur-Based Activating Groups

■ Sulfur-Ylides

- Sulfur-Stabilized Carbanions: Structure

■ Sulfone-Based Transformations

- Pummerer Rearrangement

Reading Assignment for this Week:

Carey \& Sundberg: Part A; Chapter 7 Carbanions \& Other Nucleophilic Carbon Species

Carey \& Sundberg: Part B; Chapter 2 Reactions of Carbon Nucleophiles with Carbonyl Compounds
"Chemical Chameleons: Organosulfones as Synthetic Building Blocks" B. M. Trost, Bull. chem. Soc. Japan, 1988, 61, 107-124 (handout)
D. A. Evans

Monday,
November 24, 2003

Relevant Background Reading

General: Simpkins, N.S. Sulphones in Organic Synthesis, Pergamon Press, New York, 1993.

General: Magnus, P.D. Tetrahedron 1977, 33, 2019.
Julia: Blakemore, J. Chem. Soc. Perkin Trans I. 2002, 2563.
Electrophilic Properties: Trost, B.M. Bull.Chem. Soc. Jpn. 1988, 61, 107.
SO_{2} Extrusion: Vogtle, F.; Rossa, L. ACIEE 1979, 18, 515.
Ramberg-Bäcklund Rxn: Paquette, L.A. Org. Reactions 1977, 25, 1.
Triflones: Hendrickson, J.B. Org. Prep. Proc. Int. 1977, 175.
Sulfoximides: Johnson, C.R. Tetrahedron 1984, 40, 1225

Cum Question, 1998: The stereoselective construction of trans olefins through carbanion-mediated condensation processes has still not been rendered general. One transformation that may be used in certain circumstances is the "one-step" Julia transformation illustrated below. PPProvide a mechanism for this transformation.

The cruel mechanistic problems that you should be prepared for in Chem 206

Relevant Background Reading

General: Simpkins, N.S. Sulphones in Organic Synthesis, Pergamon Press, New York, 1993

General: Magnus, P.D. Tetrahedron 1977, 33, 2019.

Julia: Blakemore, J. Chem. Soc. Perkin Trans I. 2002, 2563.
Electrophilic Properties: Trost, B.M. Bull.Chem. Soc. Jpn. 1988, 61, 107
$\mathbf{S O}_{2}$ Extrusion: Vogtle, F.; Rossa, L. ACIEE 1979, 18, 515.
Ramberg-Bäcklund Rxn: Paquette, L.A. Org. Reactions 1977, 25, 1.
Triflones: Hendrickson, J.B. Org. Prep. Proc. Int. 1977, 175.
Sulfoximides: Johnson, C.R. Tetrahedron 1984, 40, 1225

Acidities of Sulfur-based Functional Groups

Bordwell, F. G.; Zhang, X.-M. Acc. Chem. Res. 1993, 26, 510-17

Sulfonium Salt

29-01 Sulfur chem-1 11/23/03 6:07 PM

Reactions of Sulfonium Ylids

- Synthesis

Sulfonium Salt: pKa~18

(+)

$-\mathrm{O}-\mathrm{P}=0$

Deprotonation:

- Leaving Group Potential: $\mathrm{R}_{2} \mathrm{~S}-\mathrm{C}(+)$

Excellent LG

Good LG

Sulfone- \& Sulfoxide Based Carbanions: Structure

- Sulfone- and sulfoxide-stabilized carbanions are extremely useful carbon nucleophiles in organic synthesis.
LDA

\qquad

However, until recently little information was available on the solid state structures of these species:
"The Structure of Lithium Coumpounds of Sulfones, Sulfoximides, Sulfoxides, Thioethers, 1,3 Dithianes, Nitriles, Nitro Compounds, and Hydrazones."

$$
\text { Boche, G. Angew. Chem., Int. Ed. Engl. 1989, } 28,277 .
$$

Here are several examples taken from the Boche review:

Boche, etal. Angew. Chem. Int. Ed. 1986, 25, 1101

The Li counterions are not associated with the charged carbon.

- The carbanions are largely trigonal.
+ TMEDA

Boche, etal. Angew. Chem. Int. Ed. 1985, 24, 573
\square Reactions with ketones: $\mathrm{R}_{2} \mathrm{~S}-\stackrel{(\mp)}{\mathrm{C}}$ Reactivity Pattern: Nonalternate

Corey \& Chaycovski, JACS 1965, 87, 1353-1364. (Handout)

"Twenty-five Years of Dimethylsulfoxonium Methylide (Corey's Reagent).", Gololobov, Y. G.; Lysenko, V. P.; Boldeskul, I. E. Tetrahedron 1987, 43, 2609. (electronic handout)

Reactions of OxoSulfonium Ylids: Conjugate Addition

Nonalternate reactivity pattern revealed in consecutive reactions

29-03 Sulfur chem-2 11/23/03 6:32 PM

Reactions of Sulfones

Synthesis:

Good review article: Magnus, Tetrahedron 1977, 33, 2019-2045.

Reactions of Sulfones

1,2-addition

$$
\mathrm{R}_{2} \mathrm{SO}_{2}-\stackrel{(-)}{\mathrm{C}}
$$

Alkoxide not sufficiently nucleophilic to displace PhSO_{2}^{-}anion.

However!!

Industrial synthesis developed by M. Julia
Not observed

Not

trans chrysanthemic acid

Synthesis of Vitamin A: Julia \& Co-workers, Bull. Soc. Chim. Fr. 1985, 130

29-04 Sulfur chem-3 11/23/03 6:03 PM

The Sulfone group may also be readily removed reductively:

Fragment Coupling with Sulfonyl Carbanions

Heathcock, C.H.; et al. Heathcock, C.H., et, 1922.

Smith, A.B. III; et al. Tet.Lett. 1989, 30, 6963.

TBDPSO,

PMBO
Al-Hg, aq. THF

PMBŌ TFAA, DMSO; NEt_{3} $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$

O,

77\% yield

First Generation Julia Trans Olefin Synthesis:

Good sulfone review: Trost, Bull Chem. Soc. Japan, 1988, 61, 107-124.

Julia Review,

Blakemore, J. Chem. Soc. Perkin Trans I. 2002, 2563. (electronic handout)

The reduction step is not stereosecific

Cytovaricin Synthesis: JACS 1990, 112, 7001

Evans, Smith, Fitch, Cee JACS 2000, 122, 10033-10046.

$\mathrm{C}_{39}-\mathrm{C}_{46}$ Synthon

RCHO

Mechanism??

The Mechanism:

Carbonyl Anions: A useful Reversed Polarity Equivalent

Consider the two possible polar disconnections of the $\mathrm{C}-\mathrm{R}_{2}$ bond of the ketone shown below:

Carbonyl anions are not normally accessible via aldehyde deprotonation

Operational equivalents to the carbonyl anion are useful in synthesis

1,3-Dithianes as Carbonyl Anion Equivalents

Latest Innovations: A. B. Smith, JACS 2003, 125, 14435-14445 (Handout)

29-08 carbonyl anions 11/24/03 8:44 AM

The overall set of reactions which establishes the equivalency of the hypothetical carbonyl anion 1 and its equivalent synthon $\mathbf{2}$ is shown below:

Nitronate Anions are also useful Carbonyl Anions
pKa 18

Dithianes anions highly nucleophilic (indiscriminate):
Nitonate anions higly discriminating

- Introduction. As you know, transform T_{1} conforms to the polar bias mapped on to the carbon skeleton by $=0$, while transform T_{2} does not. Although T_{1} is the more common transform, sometimes, because of the presence other functionality in either R_{1} or R_{2}, the "reversed-polarity" transform is more suitable for the particular synthesis at hand.

$$
\begin{aligned}
& \text { Reversed Polarity Synthon }
\end{aligned}
$$

Ideally, one might visualize a catalytic agent (Q) which might react reversibly with an aldehyde in conjunction with inverting its charge affinity pattern. Nature has designed such reagents.

General Scheme

- Charge Affininty Inversion Step: The structural constraints on (Q) are that it must be nucleophilic, add reversibly to aldehydes, and stabilize an adjacent carbanionionic center.

Lets call (Q) a charge affininty inversion operator since in operates on RCHO and reverses the intrinsic polar reactivity of the RCHO carbon from (+) to (-).

- Overall Process:

The Inversion Operator

- Benzoin Condensation:

Cyanide ion is the best example of a reagent which functions as an inversion operator. The benzoin reaction is restricted to aromatic aldehydes. Why?
29-09 Inversion Operators 11/24/03 8:50 AM

Nature's Inversion Operators

There is a clear need in nature to have both types of polar bond constructions exemplified by Transforms T_{1} and T_{2} (Eq 1-2). One such reaction is shown below.

- This reaction, which is enzyme-catalyzed, requires the cofactor thiamine which functions as the inversion operator in these biological processes.

■ α-Ketol Transferases:

+ thiamine (Q: ${ }^{-}$)

- Crucial bond construction:
- Related transform:

- The Thiamine Coenzyme (Virtamin B_{1}) \& how it functions

thiamine ($\mathrm{Q}:^{-}$)

Equivalent synthons

$+$

Basic Transformation:

The Pummerer Rearrangement facilitates the transformation of a sulfinyl \rightarrow aldehyde transformation. The rearrangement may be initiated by either a Bronsted acid or an anhydride such as trifluoroacetic anhydride (TFAA). With the latter reagent, the transformation occurs at room temperature.

Leading References

De Lucchi, Miotti, et al. (1991). "The Pummerer reaction of sulfinyl compounds." Organic Reactions 1991, 40: 157.

Grierson, and Husson (1991). Polonovski- and Pummerer-type Reactions and the Nef Reaction. Comprehensive Organic Synthesis. Trost and Fleming. Oxford, Pergamon Press. 6: 909.
Padwa, A., D. E. Gunn, et al. "Application of the Pummerer reaction toward the synthesis of complex carbocycles and heterocycles." Synthesis 1997 1353-1377.
Carreno, "Applications of sulfoxides to asymmetric synthesis of biologically active compounds." Chem. Reviews 1995 95, 1717-1760.

Kita, Y. and N. Shibata (1996). "Asymmetric pummerer-type reactions induced by O-silylated ketene acetals." Synlett(4): 289-296.

The Related Polonovski Reaction:

Regioselectivfity: Depends on the relative kinetic acidy of the α protons
29-10-Pummerer 11/20/03 3:06 PM

Transformations Mediated by the Pummer Rearrangement

P. Magnus et al. Accts Chem Res. 1984, 17, 35

The cruel mechanistic problems that you should be prepared for in Chem 206

Mechanism??

Exam 3, 2000: Question 5 (11 points). An interesting rearrangement which also results in the construction of this same ring system (Question 4) has been reported by Langlois \& coworkers (J.Org. Chem. 1985, 50, 961). This rearrangement is illustrated

29-11-Pummerer-2 11/20/03 3:06 PM
below. Provide a mechanism for this transformation.

Pummerer \downarrow

Product

Chemistry 206

Advanced Organic Chemistry

Handout 29A

Overview of the Julia-Kocienski Olefination

Evans Group Seminar
by
Scott Peterson, September 26, 2003

D. A. Evans

Friday,
November 21, 2003

Examples of Direct Olefination from Carbonyl Compounds

| | X | Reaction |
| :---: | :---: | :---: |
| B.E Maryanoff, A.B. Reitz, Chem. Rev., 1989, 89, 863 | $\mathrm{R}_{3} \mathrm{P}^{+}$ | Wittig |
| | $\mathrm{R}_{2} \mathrm{P}(=\mathrm{O})$ | Horner-Wittig |
| | $(\mathrm{RO})_{2} \mathrm{P}(=\mathrm{O})$ | Horner-Wadsworth-Emmons |
| L.F. van Staden, D Gravstock, D.J. Ager,Chem. Soc. Rev., 2002, 31, 195 | $\mathrm{R}_{3} \mathrm{Si}$ | Peterson |
| | $\mathrm{ArS}(=\mathrm{O})(=\mathrm{NMe})$ | Johnson |
| P.R. Blakemore, J. Chem. Soc., \qquad Perkin Trans. 1, 2002, 2563 | ArSO_{2} | classical Julia |
| | HetSO_{2} | modified Julia |

Classical Julia Olefination

$E: Z=80: 20$

$E: Z=90: 10$

$\mathrm{E}: Z=>99: 1$

Mechanism of Olefin Formation

-Originally proposed mechanism for $\mathrm{Na} / \mathrm{Hg}$ elimination, though Keck has shown this is not the case
-Believed to be mechanism for Sml_{2} elimination

G.E. Keck et al., J. Org. Chem., 1995, 60, 3194

Mechanism of Olefin Formation

-Using MeOD results in >90\% Deuterium incorpration
-After initial elimination, there is no equilibration, explaining why $\mathrm{Na} / \mathrm{Hg}$ and Sml_{2} can give different results

G.E. Keck et al., J. Org. Chem., 1995, 60, 3194

Synthesis of Bryostatin 2

D.A.Evans, P.H. Carter, et al., J. Am. Chem. Soc., 1999, 121, 7540

D.A.Evans, P.H. Carter, et al., J. Am. Chem. Soc., 1999, 121, 7540

Modified Julia Olefination

Modified Julia Olefination - Smiles Rearrangement

Diastereoselectivity of BT-Sulfones

J.B. Baudin, Bull. Soc. Chim. Fr., 1993, 130, 856

Effects of Solvent and Counterion with BT-Sulfone

Solvent Screen in U-106305 Synthesis

A.B. Charette, et al., J. Am. Chem. Soc., 1996, 118, 10327

$$
E: Z=23: 77
$$

P.R. Blakemore, Ph.D. Thesis, University of Glasgow, Glasgow, 1999

Aromatic Aldehydes with BT-Sulfones

Reversibility in Rapamycin Synthesis

$\mathrm{MN}\left(\mathrm{SiMe}_{3}\right)_{2}$, THF
$-78^{\circ} \mathrm{C}$ to RT

| M | yield | E:Z |
| :---: | :---: | :---: |
| Li | 75% | $29: 71$ |
| Na | 79% | $43: 57$ |
| K | -- | $18: 82$ |

| M | yield | $\mathrm{E}: Z$ |
| :--- | :---: | :---: |
| Li | 68% | $95: 5$ |
| Na | 21% | $78: 22$ |

Possible Explanation for Diastereoselctivity

Chelate (closed) Transition State favored for non-polar solvents, small counter-ions (Li)

Non-chelate (opened) Transition State favored for polar solvents, large counter-ions (K)

S. Peterson, Meandering Thoughts, 2003

Ipso Substitution with BT-Sulfones

J.B.Baudin, et al., Bull. Soc. Chim. Fr., 1993, 130, 856

Synthesis of ent-Bengamide E

K.J.McRae, PhD Thesis, Research School of Chemistry, Canberra, 2001 J.B.Baudin, et al., Bull. Soc. Chim. Fr., 1993, 130, 856
ent-Bengamide E

3) aldehyde
4) $-78^{\circ} \mathrm{C}: 1$ hour
$0^{\circ} \mathrm{C}$ to $\mathrm{RT}: 1$ hour
2) $\mathrm{TiHMDS},-78{ }^{\circ} \mathrm{C}$, THF $50^{\circ} \mathrm{C}$: 1 hour

L. Waykole, et al., Organic Process Research and Development, 2003, ASAP (Novartis Process Group)
45% single isomer, white crystalline solid

Synthesis of LAF389

L. Waykole, et al., Organic Process Research and Development, 2003, ASAP (Novartis Process Group)

3) aldehyde
4) $-78^{\circ} \mathrm{C}: 1$ hour
$0^{\circ} \mathrm{C}$ to $\mathrm{RT}: 1$ hour
2) $\mathrm{TiHMDS},-78{ }^{\circ} \mathrm{C}$, THF $50^{\circ} \mathrm{C}$: 1 hour

L. Waykole, et al., Organic Process Research and Development, 2003, ASAP (Novartis Process Group)
45% single isomer, white crystalline solid

Synthesis of LAF389

L. Waykole, et al., Organic Process Research and Development, 2003, ASAP (Novartis Process Group)

Pyridinyl (PYR) Sulfones Examples

A. B. Charette, et al., Tet Lett, 2001, 42, 5149

Pyridinyl (PYR) Sulfones Examples

Curacin B

A. B. Charette, et al., Tet Lett, 2001, 42, 5149

1-Phenyl-1H-tetrazol-5-yl Sulfones

| | | | $\mathrm{MN}\left(\mathrm{SiMe}_{3}\right)_{2}$
 $-78{ }^{\circ} \mathrm{C}$ to RT | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | M | toluene | $\mathrm{Et}_{2} \mathrm{O}$ | THF | DME |
| | Li | 51:49 | 61:39 | 69:31 | 72:28 |
| | Na | 65:35 | 65:35 | 73:27 | 89:11 |
| | K | 77:23 | 89:11 | 97:3 | 99:1 |

P.J. Kocienski, et al., Synlett, 1998, 26

Kinetically Controlled Diastereoselectivity - Irreversible

$91 \%, E: Z=2: 98$

P.R. Blakemore, Ph.D. Thesis, University of Glasgow, Glasglow, 1999

Synthesis of Herboxidine

Synthesis of Herboxidine

1) LDA, THF

P.J.Kocienski, et al., J. Chem. Soc., Perkin Trans. 1, 1999, 955

Synthesis of (+)-Ambruticin

E.N. Jacobsen, P. Liu, J. Am. Chem. Soc., 2001, 123, 10772

tert-Butyl-1H-tetrazol-5-yl Sulfones

| | 1) KHMDS, DME | | Het | yield |
| :---: | :---: | :---: | :---: | :---: |
| | $-60^{\circ} \mathrm{C}, 2 \mathrm{hr}$ | | BT | 0\% |
| | 2) $\mathrm{H}_{2} \mathrm{O}$ | | PT | 20\% |
| | | | TBT | 91\% |

1) KHMDS, DME
 $-60^{\circ} \mathrm{C}$ to RT

39\% 67:33

1) KHMDS, DME

$-60^{\circ} \mathrm{C}$ to RT
60\% 4:96

Diastereoselectivity of TBT-Sulfones

Sulfone Synthesis

$\mathrm{R}^{\prime} \mathrm{O}_{2} \mathrm{CN}=\mathrm{NCO}_{2} \mathrm{R}^{\prime}$

2-mercaptobenzothiazole $100 \mathrm{~g}=\$ 18.00$

1-phenyl-1-H-tetrazole-5-thiol $25 \mathrm{~g}=\$ 22.60$
tert-butyl isothiacyanate; $25 \mathrm{~g}=\$ 57.80$
Sodium azide; $25 \mathrm{~g}=\$ 51.90$

Sulfone Synthesis

Oxidation Problems - Allylic Sulfones

H. Hilpert, B. Wirz, Tetrahedron, 2001, 57, 681
D.A. Evans, G.C. Andrews, Acc. Chem. Res., 1974, 7, 147

Synthesis of the Proposed Structure of Amphidinolide-A

$-78{ }^{\circ} \mathrm{C}$ to RT
78\% 4:1 dr inseparable

G.Pattenden, H.W.Lam, Angew. Chem. Int. Ed., 2002, 41, 508
M. Hirama, Tet. Lett., 1999, 40, 4897

1) HF-pyr (separate isomers)
2) t - $\mathrm{BuOOH}, \mathrm{Ti}(\mathrm{O} P r)_{4}$
3) EDC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (E)-iodobut-2-enoic acid

Synthesis of Proposed Structure of Amphidinolide-A

NOT Amphidinolide-A

NOT Amphidinolide-A
G.Pattenden, H.W.Lam, Angew. Chem. Int. Ed., 2002, 41, 508

Synthesis of Okadaic Acid

NaHMDS
DMF-THF
$-60^{\circ} \mathrm{C}$ to RT
66\%

"small quantity of the correspon
detected by $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR"
(Z)-isomer was also

信

S.V. Ley, et al., J. Chem. Soc., Perkin Trans. 1, 1998, 3907

Synthesis of Vinylsilanes

Conclusions

BT and PT sulfones have become useful funtional groups for the synthesis of olefins from aldehydes inexpensive starting materials sulfones can be made in high yield from alcohols olefination reactions occur under mild conditions, and are typically high yielding and selective

Stereochemical outcome is kinetically controlled in most cases. Though reaction conditions can often influence selectivities Polar solvents with soft counter ions often favor E olefins Non-polar solvents with hard counter ions often favor Z olefins

BT sulfones are most useful for the synthesis of conjugated dienes through reaction with α, β-unsaturated aldehydes

PT sulfones are most useful for the synthesis of non-conjugated (E) olefins

PYR and TBT sulfones both produce high levels of cis selectivity, though yields are typically lower than BT reactions

Definitely more to come in the future

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 30

Ambiphilic Functional Groups-4

- Construction of Consonant \& Dissonant FG Relationships
- Charge Affinity Inversion Operators

Lecture 27 and handout 27A

Handout 30A: Homoenolates: Synthesis \& Applications
Mesembrine Syntheses: Keely, S. L.; Tahk, F. C. JACS. 1968, 90, 5584. Stevens, R. V.; Wentland, M. P. JACS 1968, 90, 5580 (handouts)

Stetter, The catalyzed nucleophilic addition of aldehydes to electrophilic double bonds. Org. React. (N.Y.) 1991, 40, 407.

Ahlbrecht, "Stereoselectivity of chiral homoenolate equivalents." Synthesis 1999, 365-390.

Relevant Questions

The pyridoxal co-factor (Vitamin B_{6}) 1, facilitates the decarboxylation of α-amino acids. Provide a mechanism by which 1 carries out this transformation.

Cume Question, Fall 2001. The reaction illustrated below was recently reported by Murry and co-workers from the Merck Process Group (JACS 2001, 123, 9696-9697). Provide a mechanism for this transformation.

The nucleophilic addition of aldehydes to electrophilic double bonds catalyzed by thiazolium salt 1 is referred to as the Stetter Reaction (Stetter, H.; Kuhlmann, H. Org. Reactions 1991, 40, 407). Provide a mechanism for this transformation.

Classification of Functional Groups

Each substituent attached to carbon activates that carbon toward a polar reaction by either resonance or induction or both.

Real functional groups are assigned to a class designation by inspection of the chemistry of that FG, along with that of its conjugate acid and conjugate base

Charge affinities of real functional groups form a subset of the ideal FG classes.
E-Functions

$$
\begin{array}{r}
\mathrm{CH}_{3}-\underset{(+)}{\mathrm{CH}_{2}-\mathrm{OR}} \underset{(-)}{\mathrm{CH}_{2}}=\underset{(+)}{\mathrm{CH}} \underset{(-)}{\mathrm{CH}_{2}-\underset{(-)}{\mathrm{Br}}}
\end{array}
$$

$$
\underset{(-)}{\mathrm{CH}_{3}-\underset{(+)}{\mathrm{O}} \underset{(-)}{\mathrm{O}}=\mathrm{O}}
$$

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}
$$

$$
\mathrm{CH}_{3}-\underset{(+)}{\mathrm{CH}_{2}}-\mathrm{NR}_{(-)}
$$

Note that the issue of oxidation state in not explicitly incorporated.
This issue is subordinate to that of defining site reactivity.
For example,

$$
\underset{(-)}{\mathrm{CH}_{3}-\underset{(+)}{\mathrm{C}}=\mathrm{O}}=\underset{(-)}{\mathrm{OR}} \text { is represented as: } \stackrel{(-)}{\mathrm{C}}-\stackrel{(+)}{\mathrm{C}}-\mathrm{E} \text { and not: } \stackrel{(-)}{\mathrm{C}} \stackrel{(+)}{\stackrel{(+)}{\mathrm{E}}-\mathrm{E}_{1}}
$$

30-01 Pairwise FGs-1 11/30/03 6:09 PM

G-Functions

Those ideal FGs which create nucleophilic carbon at point of attachment.
Exhibit strictly alternate charge affinity patterns

These are your metallic FGs such as Li, Mg, etc.

$$
\mathrm{CH}_{3}-\underset{(-)}{\mathrm{CH}_{2}-\mathrm{Li}} \underset{(-)}{\mathrm{CH}_{2}}=\mathrm{CH}-\underset{(-)}{\mathrm{CH}_{2}}-\mathrm{MgBr}
$$

Note that a 2-electron reduction (or oxidation) will transform an E-Class FG to a G-Class FG.

A-Functions

(+) (+)

- All sites activated equally for electrophilic \& nucleophilic reactivity.

Those ideal FGs which exhibit nonalternate polar site reactivity are included.

One might visualize a process wherein A-functions are gradually polarized towards either E - or G - behavior in response to changes in inductive and resonance effects

A-functions are some of the most useful FGs in organic synthesis because of the unique reactivity provided.

A-Functions: Real Examples

A-Functions

$$
\mathrm{A}-\stackrel{(\mp)}{\mathrm{C}}-\stackrel{(\pm)}{\mathrm{C}} \quad \mathrm{~A}-\stackrel{(+)}{\mathrm{C}}-\stackrel{(+)}{\mathrm{C}} \quad \mathrm{~A}-\stackrel{(-)}{\mathrm{C}}-\stackrel{(-)}{\mathrm{C}}
$$

A-functions are composed of polyatomic arrangements of $\mathrm{N} \& \mathrm{O}$.
$-\mathrm{NO}_{2}=\mathrm{NOH}=\mathrm{NNR}_{2} \quad-\mathrm{N}=\mathrm{NR}_{2} \quad=\mathrm{N}(\mathrm{O}) \mathrm{R} \quad=\mathrm{N}=\mathrm{N} \quad \equiv \mathrm{N}$
\square A-functions are composed of second-row elements such \mathbf{S} and \mathbf{P}.

Functional groups derived from many of the transition elements

Synthesis of Targets containing E-Functions

Transforms utilizing target E-function in synthesis plan given highest priority.

| | $\begin{gathered} \mathrm{E} \\ \mathrm{C} \\ \mathrm{C} \\ (+) \end{gathered}$ | | G-FG lost in construction |
| :---: | :---: | :---: | :---: |
| |
 (+) (-) | | E'-FG lost in construction |
| | | $\begin{aligned} & \mathrm{G} \\ & \mathrm{C} \\ & \mathrm{C} \\ & (-) \end{aligned}$ | G-FG lost in construction |

Given the resident E-function, the charge affinity pattern dictates the nature of the polar coupling process and thus functional groups to be employed in synthesis.

Classification of Pairwise Difunctional Relationships

Consider the paired relationships of E-functions. There are two relationships.

Consonant \& dissonant relationships may be established with E-E, E-G, or G-G pairings.

Most target structures are composed of E-functions.

Representative difunctional relationships

Classification: 1,3-C symbolic representation

Classification: 1,2-D

Classification of Pairwise Difunctional Relationships

- A single FG residing either in or appended to a cycle may establish a FG relationship with itself.

Consonant cycles

Dissonant cycles

Consonant \& Dissonant Relationships: Path-Cycle Interconversions

Linear molecules may be transformed into cycles \& vice-versa:

Consonant Cycles

1,5-C

Dissonant Cycles
Relationship:

Path-cycle interconversions such as those illustrated permute, but do not eliminate the relationship. i.e. D-bond paths are transformed into D-cycles.

Pairwise Relationships: Path-Path Interconversions via Sigmatropic Rearrangements

[3,3] Sigmatropic Rearrangements:

$1,5-\mathrm{C}$
\square For these rearrangements, $\mathrm{C} \rightarrow \mathrm{C}^{\prime}, \mathrm{D} \rightarrow \mathrm{D}^{\prime}$ but $\mathrm{C} \rightarrow \mathrm{D}$ not possible

[1,2] Sigmatropic Rearrangements:

[2,3] Sigmatropic Rearrangements:

General Rule For [m,n] Sigmatropic Rearrangements:
When the sum of $m+n$ is even, the $F G$ relationship is maintained, e.g. $C \rightarrow C^{\prime}$ When the sum of integers is odd, the FG relationship is changed, e.g. $C \rightarrow D$

Pairwise Relationships in Inorganic Reagents

\square E-functions in their most stable oxidation states $\left(\mathrm{HO}^{-}, \mathrm{NH}_{3}, \mathrm{Cl}^{-}\right)$are represented as $E(-)$.

There exist an important family of reagents which have E-FGs directly coupled:
$\left.\begin{array}{l}\mathrm{E}-\mathrm{E} \text { Reagents } \\ \mathrm{HO}-\mathrm{Br} \quad \mathrm{HO}-\mathrm{NH}_{2} \\ \mathrm{HO}-\mathrm{OH} \mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}\end{array}\right\}$

In each of these reagents there is a 0,0-D relationship

These reagents are used to construct D-Relationships:

Synthesis of Targets containing Consonant Pairwise Relationships

[^22]
A Specific Case

Target structure:

Step I: There are 4 bonds interconnecting E \& E' Hence generate the 4 transforms leading to monofunctional precursors:

 $(+) \quad(-) \quad(+) \quad(-)$

$(+) \quad(-) \quad(+) \quad(-)$

Step II: Evaluate the efficiency of the 4 plausible routes to the target from available precursors.

Given the oxidation state in the target, the second synthesis looks the best and the fourth looks the worst

The Constraint of Quaternary Centers

If a quaternary center occurs along the consonant bond path, one is limited to bond constructions on either side of that restriction

Quaternary Centers \& Bridgehead Restrictions

Lucidulene Synthesis: JACS 94, 4779 (1972)

Focus on the shortest consonant bond path:

The two permitted bond constructions along illustrated bond path flank the bridgehead carbon

Enamine Acylation

Option Selected

■ Corrolary: π-conjugation cannot be extended through bridgehead or quaternary centers

Synthesis of Dissonant Pairwise Relationlships

The pairwise relationship is "unmatched"; hence, the illustrated E-functions cannot be used exclusively to construct the bond path. Let's consider the simplest case: a 1,2-D relationship

Resident E-functions do not provide required charge affininty pattern for coupling
$E(+)$

This transform defined a path-cycle permutation of the D-relationship

In the illustrated polar disconnections, one of the fragments may exploit the charge affinity pattern of the resident FG while the other may not.
Hence dissonant pairwise relationships may not be constructed via just the functions present in the target.

Dissonant Pairwise RelationIships via A-Functions

(+)
A
C
C
(\pm)

In implementing this strategy you must know all important 1,1-A $\leftrightarrow \mathrm{E}$ FG transformations

The Pummerer Rearrangement
"The Pummerer reaction of sulfinyl compounds.", De Lucchi, etal. Org. Reactions 1991, 40, 157.

The Nef Reaction

Bond path analysis of simple alkaloids

Iupinine

Every complex polyfunctional molecule may be analyzed structurally in terms of its individual consonant or dissonant construction paths or cycles. For example, in the alkaloid lupinine all possible construction paths interconnecting E1 and E2 are consonant. Consonant paths within the polyatomic framework define seams in the structure that may be constructed using aldol and related processes.

Begin the disconnection process by focusing on the shortest consonant bond path. In this case, there are 4 bonds, hence 4 disconnections.

Note that oxidation states of precursors is not yet considered.

Mesembrine

Curphey, T. J.; Kim, H. L. Tetrahedron Lett. 1968, 1441.
Keely, S. L.; Tahk, F. C. JACS. 1968, 90, 5584
Stevens, R. V.; Wentland, M. P. JACS 1968, 90, 5580
Shamma, M.; Rodrigues, H. R. Tetrahedron 1968, 24, 6583

In the analysis of potential routes to structures like mesembrine, identify the shortest consonant bond path and then proceed to carry out all polar disconnections along that bond path. Since there four bonds interconnecting $=O$ and $N(E 1$ and E 2$)$, there will be four associated transforms which one may execute using the illustrated functional groups.

Now consider further analysis of \mathbf{T}_{1} : Again, select the shortest $E_{1}-E_{2}$ bond path and disconnect next to quaternary center. Dissonant element is localized in 5 -membered enamine

 equivalent to:

Keely, S. L.; Tahk, F. C. JACS. 1968, 90, 5584
Stevens, R. V.; Wentland, M. P. JACS 1968, 90, 5580

Inaccessible Reactivity Modes in Carbonyl Deprotonation

Example:

Can one design "catalysts" which will provide access to carbonyl anion equivalents in situ??

Let \mathbf{Q} - be such a catalyst, we will call it an "inversion operator"

30-07 Inversion Operators-1 11/30/03 6:18 PM

The Benzoin Condensation

- :CN

2

\square Cyanide ion is such a "catalyst"

■ Hydrogen cyanide is a fairly good Bronsted acid ($\mathrm{pKa}_{\mathrm{HOH}}$ 9.5)

\square Acetonitrile can be attacked be nucleophiles:

(+)
C-E

■ Acetonitrile can be deprotonated by strong bases (pKa ${ }_{\text {DMSO }} \sim 30$)
$\mathrm{Me}-\mathrm{C} \equiv \mathrm{N} \quad \longrightarrow \quad \mathrm{H}^{+}+\mathrm{H}_{2} \stackrel{-}{\mathrm{C}}-\mathrm{C} \equiv \mathrm{N} \quad \stackrel{(-)(+)}{\mathrm{C}-\mathrm{C}-\mathrm{E}}$

Cyanide-based Carbonyl Anion Equivalents

- Extensions of the Benzoin condensation concept are possible in some instances:

The $\mathbf{C}-\mathrm{C}$ Bond Construction
Stetter, Org. Reactions 1991, 40, 407.

- The in situ use of cyanide ion as an inversion operator is limited. Greater generality may be achieved by multistep alternatives:

Aldehyde Derivatization Step

Substrate Deprotonation Step

Deprotonation possible for All R groups
G. Stork JACS 93, 5286 (1971)

Thiazolium Salts: Nature's Inversion Operators

Reactions equivalent to the benzoin are catalyzed by biological co-factors to make (and break) dissonant difunctional heteroatom-heteroaton relationships

The pka of this proton has been the subject of considerable study. The current estimates are that the value falls in the range of $16-20$ but this number is not firm.
F. G. Bordwell JACS 113, 985, (1991)

The thiamine cofactor

\qquad

$\mathrm{O}^{\ominus} \ominus$
$R^{-C .0}$
2

Carbonyl anions might be similarly stabilized

reactivity.

Reactions catalyzed by thiamine

Aldehyde dimerization by Thiazolium Salts

The Reaction

The Catalytic Cycle

■ Hence dissonant relationships may made from E-functions if "inversion operator" is employed

- The is a fundamental strategy for handling the formation and cleavage of D-relationships in nature.

Cataylzed Michael Reactions byThiazolium Salts

The Reaction

The Catalyst:
 The Conditions:
The Catalys:
 0.1 equiv catalyst, $\mathrm{Et}_{3} \mathrm{~N}$ or NaOAc EtOH or DMF at $60-80^{\circ} \mathrm{C}$

Examples: "The catalyzed nucleophilic addition of aldehydes to electrophilic double bonds.", Stetter, H.; Kuhlmann, H. Org. Reactions 1991, 40, 407.

- 1,4-D relationships may also be made from E-functions if "inversion operator" is employed.

\square There is no analogue to this reaction in nature.

Decarboxylation Cataylzed by Thiazolium Salts

■ Background: Decarboxylation from consonant difunctional relationships is facile:

(-)

■ The reverse processe can be achieved under basic conditions:

- Such consonant relationships may be readily made (and broken) via the resident functional groups. The analog reactions for dissonant relationships not possible.

For example:

- Nature uses inversion operators to break such 1,2-D relationships

30-10 Inversion Operators-4 11/30/03 6:37 PM

Design Attributes of Inversion Operators

Inversion operators are constructed from A-functions or molecules containing D-relationships.

The pyridoxal Co-factor (Vitamin B_{6})

The critical difunctional relationlship is that between $=\mathrm{O} \&=\mathrm{N}$. This is a $1,4-\mathrm{D}$ relationship

The Reaction

1,2-D relationship

The Mechanism

Chemistry 206

Advanced Organic Chemistry

Handout 30A

Homoenolates: Synthesis \& Applications

Evans Group Seminar
by
Jason Burch, March 24, 2000

D. A. Evans

Monday,
December 1, 2003

Enolates and Homoenolates

The Tautomerism Problem

- Enolates

- Homoenolates

- tautomerism is a much larger problem because it is often irreversible and oxyanioic tautomer rarely acts as a carbon nucleophile

Nakamura in Comp.Org.Synth., 1991, 2, 441

Homoenolate Equivalents

Definition: species containing an ionic carbon β to a moeity which can be converted into a carbonyl group

Examples:

$X=O R, N_{2}$, etc.
$Y=H, R, O R, N R 2$, etc.
Werstiuk in "Umpoled Synthons", Hase, Ed.;
Wiley: New York, 1987, Chap. 6
Ahlbrecht, Synthesis, 1999, 365 (chiral examples)

The First "Homoenolate"

- no racemization occurred in >4 days at $250^{\circ} \mathrm{C}$ in the absence of base
- proposed to proceed via a "homoenolate anion"

Nickon, J.Am.Chem.Soc., 1962, 84, 4604

Cyclopropane Ring Opening

Synthesis of Titanium Homoenolates

- if conducted in CDCl_{3} leads to a deep wine-red color; precipitates as purple needles in hexanes
- IR spectrum strongly supports coordinated carbonyl ($v_{\mathrm{C}=\mathrm{O}}=1603$ for $\mathrm{R}={ }^{i} \mathrm{Pr}$ in benzene)
- molecular weight by cryoscopy is 560-620 indicating dimeric structure
\rightarrow later verified in solid state by x-ray crystal structure (Floriani)

Relevant bond lengths (A):

| $\mathrm{Ti}-\mathrm{C}$ | 2.081 |
| :--- | :--- |
| $\mathrm{Ti}-\mathrm{O}$ | 2.072 |
| $\mathrm{C}=\mathrm{O}$ | 1.235 |

Nakamura, J.Am.Chem.Soc. 1983, 105, 651
Floriani, Organometallics, 1993, 12, 2845

Cyclopropane Ring Opening

Regioselectivity of Ring Cleavage - Titanium

- in general, cleavage occurs selectively at the least substituted cyclopropane bond

- A can be isolated, but \mathbf{B} is too unstable; only detected by in situ quench with electrophiles (i.e. $\mathrm{Br}_{2}, \mathrm{RCHO}$)
- if non-racemic starting material is used, quench with electrophiles indicates non-racemized A and totally racemic B

Nakamura, J.Am.Chem.Soc., 1986, 108, 3749

Cyclopropane Synthesis

- most common method

- used to prepare substituted cyclopropanes

- use Simmons-Smith for ketone-derived substrates

Ruhlmann, Synthesis, 1971, 236.
Salaun, Org. Synth., 1985, 63, 147
Murai, J.Org.Chem., 1973, 38, 4354

Alkoxide-Modified Homoenolates

Tuning Titanium Homoenolate Reactivity

- Problem: trichlorotitanium homoenolates are not reactive enough for some applications can also lead to chlorinated byproducts
- Idea: replace 1 or more chlorides with alkoxides to increase nucleophilicity

- Have not been characterized to the detail of the trichlorohomoenolates
- Appear to have "significant contribution from monomeric forms" (from molecular weight data)
- Are more reactive than trichloro homoenolates towards homoaldolisation

Nakamura, J.Am.Chem.Soc., 1986, 108, 3745

Cyclopropane Ring Opening

Zinc Homoenolates

- Zinc homoenolates can be prepared in a similar method to titanium

Nakamura, Organometallics, 1985, 4, 641

Direct Oxidative Addition

Zinc and Lanthanide Homoenolates

Yoshida, Tetrahedron Lett., 1985, 26, 5559
Yoshida, Angew.Chem.,Int.Ed.Engl., 1987, 26, 1157
Fukuzawa, Chem. Commun., 1986, 475

Enolate Homologation

Synthesis of Zinc Homoenolates

- less reactive than most zinc homoenolates
- can also be used to form aldehyde homoenolates

Knochel, J.Org.Chem., 1993, 58, 2694

Direct Tin-Titanium Exchange

New Route to Titanium Homoenolates

- Treatment of β-tri-n-butylstannyl esters with TiCl_{4} directly forms titanium homoenolate

- Isotope labelling studies showed rxn does not proceed via cyclopropane
- Substrates can easily be prepared by two methods:

Goswami, J.Org.Chem., 1985, 50, 5907
van der Kirk, J. Appl. Chem., 1957, 7, 356
Still, J.Am.Chem.Soc., 1978, 100, 1481

The First Homoaldol Reaction

Synthesis of γ-hydroxyesters and γ-lactones

Aldehyde

Homoaldol Reactions with Alkoxide-modified Homoenolates

Homoaldol Reactions with Aromatic Aldehydes and Ketones

| Electrophile | R | Temp(${ }^{\circ} \mathrm{C}$) | Yield (\mathbf{A} or B) |
| :---: | :---: | :---: | :---: |
| Benzaldehyde | ${ }^{\text {i }}$ Pr | 0 | 90(A) |
| Crotonaldehyde | ${ }^{\text {i Pr }}$ | 0 | 88(A) |
| Acetophenone | $\begin{aligned} & \text { iPr } \\ & { }^{\mathrm{t}} \mathrm{Bu} \end{aligned}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | $\begin{gathered} 66(A), 12(B) \\ 93(B) \end{gathered}$ |
| Cyclohexanone | $\begin{aligned} & \text { iPr } \\ & { }^{\mathrm{I}} \mathrm{Bu} \end{aligned}$ | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | $\begin{aligned} & \text { 62(B) } \\ & 91(\mathbf{B}) \end{aligned}$ |
| | ${ }^{\text {tBu}}$ | 20 | $\begin{gathered} 91(\mathbf{B}) \\ \mathrm{dr}=88: 12 \\ \text { equatorial attack } \end{gathered}$ |

Nakamura, J.Am.Chem.Soc., 1986, 108, 3745

Homoaldol Reactions of Zinc Homoenolates

First Catalytic Homoaldol Reactions

- TMSCI generated is essential (i.e. no reaction if removed in vacuo for stoichiometric case)

| Aldehyde | Catalyst, yield | |
| :---: | :---: | :---: |
| | $\mathrm{ZnCl}_{2}(\mathbf{3 0 - 5 0} \mathbf{~ m o l} \%$) | $\mathrm{ZnI}_{2}(0.1-1 \mathrm{~mol} \%)$ |
| PhCHO | 84 | 89 |
| $\mathrm{Ph} \sim_{\mathrm{CHO}}$ | 94 | 84 |
| | 91 | 95 |
| | -- | 84 |
| | $\begin{aligned} & 79 \\ & \text { 93:7 syn : anti } \\ & \text { chelation product } \end{aligned}$ | -- |

Homoaldol Reactions of Zinc Homoenolates

Proposed Catalytic Cycle

- with Znl_{2}, the homoenolate is reactive enough to add to ketones:

- no reaction even with stoichiometric ZnCl_{2}

Nakamura, J.Am.Chem.Soc., 1987, 109, 8056

Gleason's Homoaldol reaction

First Catalytic Titanium Homoaldol Reaction

| R ${ }^{1}$ | R ${ }^{\text {2 }}$ | Conditions | Yield |
| :---: | :---: | :---: | :---: |
| Ph | H | $0^{\circ} \mathrm{C}, 24 \mathrm{~h}$ | 99 |
| $\mathrm{Ph}=\underline{=}$ | H | $0^{\circ} \mathrm{C}, 36 \mathrm{~h}$ | 76 |
| TMS $=\}-$ | H | $0^{\circ} \mathrm{C}, 36 \mathrm{~h}$ | 82 |
| | H | $0^{\circ} \mathrm{C}, 80 \mathrm{~h}$ | 84 |
| ${ }^{\text {t }} \mathrm{Bu}$ | H | $45-50^{\circ} \mathrm{C}, 54 \mathrm{~h}^{\text {a }}$ | 52 |
| Ph | Me | $45-50{ }^{\circ} \mathrm{C}, 60 \mathrm{ha}^{\mathrm{a}}$ | 78 |

${ }^{a_{2}}$ equiv. of cyclopropane used

Gleason's Homoaldol reaction

Proposed Catalyst and Catalytic Cycle
Catalyst:

Gleason, Org. Lett., 1999, 1, 1643

Diastereoselective Homoaldol Reactions of Amide-homoenolates

Synthesis of syn- or anti- β-methyl- γ-hydroxyamides

- idea:

- initial results:

But ReactIR showed disappearance of enolate and appearence of new species

McWilliams, J.Am.Chem.Soc., 1996, 118, 11970

Tandem Asymmetric Enolate Homologation - Homoaldol Reaction

Asymmetric Synthesis of α-alkyl, γ-hydroxy Carbonyl Compounds

- proposal: zinc enolate unreactive towards homolagation; higher order zincate (zincate + extra enolate) active species in migration

- 2 eq. enolate needed so max yield is 50%

- involvement of higher order zincates in 1,2migrations is known (Harada)
- idea: add an equivalent of alkoxide to take the place of the enolate in the higher order zincate

McWilliams, J.Am.Chem.Soc., 1996, 118, 11970
Harada, J.Org.Chem., 1993, 113, 2958

Tandem Asymmetric Enolate Homologation - Homoaldol Reaction

Asymmetric Synthesis of α-alkyl, γ-hydroxy Carbonyl Compounds

| Aldehyde (R') | \mathbf{R} | $\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$ | de (\%) | Yield |
| :---: | :---: | :---: | :---: | :---: |
| Bn | Bn | -20 | 299 | 59 |
| BocHN | Me | -20 | 82 | 58 |
| phenyl | Bn | -40 | 82 | 50 |
| phenyl | Me | -40 | 80 | 44 |
| iso-propyl | Bn | -50 | 76 | 53 |
| n-butyl | Bn | -20 | 64 | 53 |

McWilliams, J.Am.Chem.Soc., 1996, 118, 11970

Reactive Homoenolates

First Synthesis of a Metal-free Homoenolate

- reactive enough to add to imines, as well as aldehydes and ketones

- substrate made easily using Nishiguchi method

Conjugate Addition of Zinc Homoenolates

Synthesis of δ, ε-(silylenolether)-esters

Nakamura, J.Am.Chem.Soc., 1987, 109, 8056
Nakamura, Org. Synth., 1987, 66, 43

Acylation of Zinc Homoenolates

Synthesis of γ-ketoesters - Yoshida
1.5 equiv

| R | Yield |
| :---: | :---: |
| Ph | 100 |
| | 90 |
| Ph~ | 92 |
| | 100 |

Yoshida, Tetrahedron Lett., 1985, 26, 5559

Acylation of Zinc Homoenolates

Synthesis of γ-ketoesters - Nakamura

- note: only 0.5 equiv. of Zn species needed so both homoenolates are transferred

| R ${ }^{1}$ | $\mathrm{R}^{\mathbf{2}}$ | Yield |
| :---: | :---: | :---: |
| Et | Ph | 93 |
| ${ }^{\text {i }} \mathrm{Pr}$ | | 81 |
| Et | Ph | 83 |
| ${ }^{\text {i }} \mathrm{Pr}$ | ${ }^{\text {tBu}}$ | 50 |

- when carried out in CDCl_{3} got quantitative O -acylation (with or without Pd)
i.e.

Nakamura, J.Org.Chem., 1987, 26, 8056

Application of Homoenolate Acylation

Synthesis of α, β-disubstituted γ-butyrolactones by Diastereoselective Reduction

Asaoka, Heterocycles, 2000, 52, 227

Arylation and Vinylation of Zinc Homoenolates

Synthesis of β-vinyl and β-aryl esters - Yoshida

Coupling Partner

Yoshida, Tetrahedron Lett., 1986, 27, 955

Arylation and Vinylation of Zinc Homoenolates

Synthesis of β-vinyl and β-aryl esters - Nakamura

| Coupling Partner | Yield |
| :---: | :---: |
| $\mathrm{Bu} \sim$ | 90 |
| | 87 |
| | $\begin{gathered} 0 \\ 67 \\ 79 \end{gathered}$ |
| | 49 |

Nakamura, J.Org.Chem., 1987, 26, 8056

Arylation of Palladium Homoenolates

Catalytic Formation of β-aryl Ketones

- proposed to proceed via

| $\mathbf{R}_{\mathbf{1}}$ | $\mathbf{R}_{\mathbf{2}}$ | Ar | Yield |
| :---: | :---: | :---: | :---: |
| $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | 1-napthyl | 84 | |
| $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ | p-NO $\mathbf{N O}_{2} \mathrm{Ph}$ | 68 | |
| H | p-OMePh | Phenyl | 65 |
| n-Heptyl | H | 1-napthyl | 58 |

Nakamura, J.Am.Chem.Soc., 1988, 110, 3296

Allylation of Zinc Homoenolates

Synthesis of δ, ε-unsaturated Esters - Yoshida

| $\mathbf{R}^{\mathbf{1}}$ | $\mathbf{R}^{\mathbf{2}}$ | \mathbf{X} | Yield | $\mathbf{S}_{\mathbf{N}} \mathbf{2}^{\mathbf{2}}: \mathbf{S}_{\mathbf{N}} \mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| H | H | OTs | 89 | -- |
| Ph | H | OTs | 80 | $87: 13$ |
| | | Br | 93 | $88: 12$ |
| $\mathrm{Cl}_{2} \mathrm{Me}$ | H | Br | 80 | $100: 0$ |

Allylation of Zinc Homoenolates

Synthesis of δ, ε-unsaturated Esters - Nakamura

Nakamura, J.Am.Chem.Soc., 1987, 109, 8056

Carbonylative Symmetrical Coupling of Palladium Homoenolates

Catalytic Synthesis of 4-keto Pimelates

- proposed to proceed via

- evidence

Crimmins' Cyclopentenone Synthesis

Introduction and Generality

Functionality supported in R: ethers, epoxides, furans, α, β unsaturated esters

Crimmins, J.Org.Chem., 1993, 58, 1038

Crimmins' Cyclopentenone Synthesis

- problem: two steps have opposite electronic requirements
- appears amide and ester have right balance; ketone too electron poor to cyclize

Leahy Cyclopentannulation

Synthesis of 3,3-disubstituted cyclopentanones

TMSCI, 2.4 equiv. CuBr-DMS, 0.5 equiv. HMPA, 2.4 equiv.

Substrates studied:
$\mathrm{R}^{1}=\mathrm{R}^{2}=n-\mathrm{Bu}$
$R^{1}=R^{2}=P h$
Leahy, J.Org.Chem., 1994, 59, 5496
$\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$
$R^{1}=P h, R^{2}=H$

Tandem Aldol / Aldol / Homoaldol Reaction

One-pot synthesis of a 6,7,6-tricycle

A possible mechanism:

Synthetic Examples

Depresosterol

- trichlorotitanium homoenolate is not reactive enough to add to hindered aldehyde

Nakamura, J.Am.Chem.Soc., 1985, 107, 2138

Synthetic Examples

Depresosterol - completion of the formal synthesis

1. LDA, $-78 \rightarrow-10^{\circ} \mathrm{C}$
2. $\mathrm{CH}_{2} \mathrm{O}(\mathrm{g})$
3. aqueous HCl $70 \%, \sim 10: 1 \mathrm{dr}$

Synthetic Examples

Depresosterol - Maximizing Homoenolate Functionality

Nakamura, J.Am.Chem.Soc., 1985, 107, 2138

Synthetic Examples

Pumiliotoxin 251D

via:

Synthetic Examples

(\pm)-Cortisone
(\pm

(\pm)-cortisone

7 steps

Synthetic Examples

(\pm)-Ginkgolide B

(\pm)-Ginkgolide B

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 30

Introduction to Carbonium Ions

- Carbocation Stabilization
- Carbocation Structures by X-ray Crystallography
- Vinyl \& Allyl Carbonium Ions

Reading Assignment for this Lecture:

Carey \& Sundberg, Advanced Organic Chemistry, 4th Ed. Part A Chapter 5, "Nucleophilic Substitution", 263-350 .

Birladeanu, L. (2000). "The Story of the Wagner-Meerwein Rearrangement." J. Chem. Ed. 2000, 77, 858. (handout)

Olah, G. A. (2001). "100 Years of Carbocations and their Significance in Chemistry." J. Org. Chem. 2001, 66, 5944-5957. (handout)

Walling, C. (1983). "An Innocent Bystander Looks at the 2-Norbornyl Cation." Acc. Chem. Res. 1983, 16, 448. (handout)
Laube (1995). "X-Ray Crystal Structures of Carbocations Stabilized by Bridging or Hyperconjugation." Acc. Chem. Res.1995, 28,: 399 (handout)

Wednesday,
D. A. Evans

December 3, 2003

Other Relevant Background Reading

March, Advanced Organic Chemistry, 4th Ed. Chapter 5, pp165-174.
Lowery \& Richardson, Mech. \& Theory in Org, Chem., 3rd Ed. pp 383-412.
Arnett, Hoeflich, Schriver in Reactive Intermediates Vol 3, Wiley, 1985, Chapter 5, p 189.

Saunders, M. and H. A. Jimenez-Vazquez (1991). "Recent studies of carbocations." Chem. Rev. 91: 375.

Stang, P. J. (1978). "Vinyl Triflate Chemistry: Unsaturated Cations and Carbenes." Acc. Chem. Res. 11: 107.

Olah, G. A. and G. Rasul (1997). "Chemistry in superacids .26. From Kekule's tetravalent methane to five-, six- and seven-coordinate protonated methanes." Acc. Chem. Res. 30(6): 245-250.

Olah, G. A. (1995). "My search for carbocations and their role in chemistry (Nobel lecture)." Angew. Chem., Int. Ed. Engl. 34, 1393-1405

Qumulative Exam Question Fall, 2001. The reaction illustrated below was recently reported by Snider and co-workers (Org. Lett. 2001, 123, 569-572). Provide a mechanism for this transformation. Where stereochemical issues are present, provide clear three dimensional drawings to support your answer.

Carey \& Sundberg-A, p 337: Provide mechanisms for the following reactions.

Carbocation Subclasses

The following discussion will focus on carbocations unsubstitutred with heteroatoms

Stability: Stabilization via alkyl substituents (hyperconjugation)

Order of carbocation stability: $3^{\circ}>2^{\circ}>1^{\circ}$

The relative stabilities of various carbocations can be measured in the gas phase by their affinity for hydride ion

$$
\begin{gathered}
\mathrm{R} \oplus+\mathrm{H} \Theta \longrightarrow \mathrm{R}-\mathrm{H}+\mathrm{HI} \\
\text { Hydride Affinity }=-\Delta \mathrm{G}^{\circ}
\end{gathered}
$$

$\Delta \mathrm{HI}$ increases $\rightarrow \mathrm{C}(+)$ stability decreases
Note: As S-character increases, cation stability decreases due to more electronegative carbon.
J. Beauchamp, J. Am. Chem. Soc. 1984, 106, 3917.

| | Hydride ion
 affinities |
| :---: | :---: |
| $\mathrm{CH}_{3}{ }^{+}$ | 314 |
| $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$ | 276 |
| $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}$ | 249 |
| $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$ | 231 |
| $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}^{+}$ | 287 |
| $\mathrm{H}=\mathrm{C} \equiv \mathrm{C}^{+}$ | 386 |
| $\mathrm{PhCH}_{2}{ }^{+}$ | 239 |

Carey \& Sundberg-A, pp 276-

Hydride ion affinities (HI)

The effect of beta substituents: Rationalize

Hydride ion affinities versus Rates of Solvolysis

| | $\mathrm{PhCH}_{2}-\mathrm{Br}$ | $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$ | $\mathrm{Me}_{2} \mathrm{CH}-\mathrm{B}$ |
| :---: | :---: | :---: | :---: |
| rel rate | 100 | 52 | 0.7 |
| HI | 239 | 256 | 249 |
| $\Delta-\mathrm{HI}$ | 0 | +17 | +10 |

Relative Solvolysis rates in $80 \% \mathrm{EtOH}, 80^{\circ} \mathrm{C}$
A. Streitwieser, Solvolytic Displacement Reactions, p75

Conclusion:

Gas phase stabilities do not always correlate with rates of solvolysis

Carbocation Stability: The $\mathrm{pK}_{\mathrm{R}_{+}}$value

Definition:

$$
\mathrm{R}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{ROH}+\mathrm{H}^{+}
$$

$$
\mathrm{K}_{\mathrm{R}+}=\frac{\mathrm{a}_{\mathrm{ROH}} \cdot \mathrm{a}_{\mathrm{H}+}}{\mathrm{a}_{\mathrm{R}_{+}} \cdot \mathrm{a}_{\mathrm{H} 2 \mathrm{O}}} \quad \mathrm{a}=\text { activity }
$$

$$
\mathrm{pK}_{\mathrm{R}_{+}}=-\log \mathrm{K}_{\mathrm{R}_{+}}
$$

Carey \& Sundberg, A, p 277
Table: $\mathrm{pK}_{\mathbf{R}_{+}}$values of some selected carbenium salts

| $\left(4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{C} \oplus$ | $\mathrm{Ph}_{3} \mathrm{C} \oplus$ | $\left(3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{C} \oplus$ | $\mathrm{Ph}_{2} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}$ | least stable |
| :---: | :---: | :---: | :---: | :---: |
| 0.82 | -6.63 | -11.0 | -13.3 | |
| | | | $\mathrm{Z}=\stackrel{{ }_{\overline{1}}^{\mathrm{C}}}{\mathrm{Co}} \mathrm{C}(\mathrm{P}$ | |
| 0.40 | 0.75 | -10.4 | -7.4 | |
| $\mathrm{H}_{7} \mathrm{C}_{3}$ | | | | |
| | \oplus | most stable | | |
| ${ }_{7}{ }^{\text {c }}$, | 4.77 | Carey \& Sundberg, A, pp 276- | | |

Carbocation Generation

Hydride abstraction from neutral precursors

 etc.

Lewis-Acid: $\quad \mathrm{Ph}_{3} \stackrel{\oplus}{\mathrm{C}} \mathrm{BP}_{4}, \mathrm{BF}_{3}, \mathrm{PCl}_{5}$

Removal of an energy-poor anion from a neutral precursor via Lewis Acids

$$
\mathrm{R}_{3} \mathrm{C}-\mathrm{X}+\mathrm{LA} \longrightarrow \mathrm{R}_{3} \mathrm{C} \oplus+\mathrm{LA}-\mathrm{X} \oplus
$$

LA: $\mathrm{Ag}, \mathrm{AlCl}_{3}, \mathrm{SnCl}_{4}, \mathrm{SbCl}_{5}, \mathrm{SbF}_{5}, \mathrm{BF}_{3}, \mathrm{FeCl}_{3}, \mathrm{ZnCl}_{2}, \mathrm{PCl}_{3}, \mathrm{PCl}_{5}, \mathrm{POCl}_{3}$

$$
\text { X: } \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OR}
$$

Acidic dehydratization of secondary and tertiary alcohols

$$
\mathrm{R}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{H}-\mathrm{X} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}} \mathrm{R}_{3} \mathrm{C} \oplus+\mathrm{X} \oplus
$$

R: Aryl + other charge stabilizing substituents X: $\mathrm{SO}_{4}{ }^{2-}, \mathrm{ClO}_{4}^{-}, \mathrm{FSO}_{3}^{-}, \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$

From neutral precursors via heterolytic dissociation (solvolysis) - First step in $\mathrm{S}_{\mathrm{N}} 1$ or E 1 reactions

$$
\mathrm{R}_{3} \mathrm{C}-\mathrm{X} \xrightarrow{\text { solvent }} \mathrm{R}_{3} \mathrm{C} \oplus+\mathrm{X} \oplus
$$

Ability of X to function as a leaving group:

$$
-\mathrm{N}_{2}^{+}>-\mathrm{OSO}_{2} \mathrm{R}^{\prime}>-\mathrm{OPO}\left(\mathrm{OR}^{\prime}\right)_{2}>-\mathrm{I} \geq-\mathrm{Br}>\mathrm{Cl}>\mathrm{OH}_{2}^{+} \ldots
$$

Addition of electrophiles to π-systems

Provide a Mechanism of this transformation

Carbocation Stabilization Through Hyperconjugation

■ FMO Description

Take linear combination of $\sigma C-R$ (filled) and $C p_{z}$-orbital (empty):

Syn-planar orientation between interacting orbitals
C-H versus $C-C$ Hyperconjugation:

R. P von Schleyer in

Stable Carbocation Chemistry, 1997, p 46-47

Physical Evidence for Hyperconjugation: The Adamantyl Cation
Bonds participating in the hyperconjugative interaction, e.g C-R, will be lengthened while the $C(+)-C$ bond will be shortened.

First X-ray Structure of an Aliphatic Carbocation

The Adamantane Reference

T. Laube, Angew. Chem. Int. Ed. 1986, 25, 349

$\mathrm{C}-\mathrm{C}_{1}: 1.439 \AA$
$\mathrm{C}-\mathrm{C}_{2}: 1.446 \AA$
$\mathrm{C}-\mathrm{C}_{3}: 1.442 \AA$
T. Laube, JACS 1993, 115, 7240

T. Laube, Angew. Chem. Int. Ed. 1987, 26, 560

**One of the longest documented $\mathrm{C}-\mathrm{C}$ bond lengths.

T. Laube, JACS 1989, 111, 9224

31-07 C(+) Summary 12/3/03 8:16 AM

Vinyl \& Phenyl Cations: Highly Unstable

Evidence suggests that vinyl cations are linear.

As ring size decreases, the rate of hydrolysis also diminishes. Implying that the formation of the linear vinyl cation is disfavored due to increasing ring strain.

A secondary kinetic isotope effect was measured to be $K_{H} / K_{D}=1.5$ (quite large) indicating strong hyperconjugation and an orientation of the vacant p orbital as shown above.
P. J. Stang J. Am. Chem Soc. 1971, 93, 1513; P. J. Stang J.C.S. PT I/ 1977, 1486.

Hydride ion affinities (HI)

The ring geometry opposes rehybridization (top) so the vacant orbital retains sp^{2} character. Additionally, the empty orbital lies in the nodal plane of the ring, effectively prohibiting conjugative stabilization.

Allyl \& Benzyl Carbocations

Carbocation Stabilization via π-delocalization

allyl cation

- Stabilization by Phenyl-groups

The Benzyl cation is as stable as a t-Butylcation. This is shown in the subsequent isodesmic equations:

Hydride ion affinities versus Rates of Solvolysis

| | $\mathrm{PhCH}_{2}-\mathrm{Br}$ | $\mathrm{Me}_{2} \mathrm{CH}-\mathrm{Br}$ | $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$ |
| :---: | :---: | :---: | :---: |
| | 100 | 0.7 | 52 |
| HI | 239 | 249 | 256 |
| $\Delta-\mathrm{HI}$ | 0 | +10 | +17 |
| | Relative Solvolysis rates in $80 \% \mathrm{EtOH}, 80^{\circ} \mathrm{C}$ | | |

"The Synthesis and Isolation of Stable Hypervalent Carbon Compound (10-C-5) Bearing a 1,8-Dimethoxyanthrecene Ligand"
Akibe, et al. JACS 1999, 121, 10644-10645

"The relevant $\mathrm{C}-\mathrm{O}$ distances are longer than a covalent $\mathrm{C}-\mathrm{O}$ bond ($1.43 \AA$) but shorter than the sum of the van der Waals radii ($3.25 \AA$)."

For a recent monograph on hypervalent Compounds see: "Chemistry of Hypervalent Compounds", K. Akiba, Wiley-VGH, 1999

Carbocation Stabilization - $d(\pi)$ stabilization via Transition metal Fragments

Transition metals bound to carbenium ions: $\pi-$ Allyl $\operatorname{Pd}(I I)$ Complexes

Selected Bond Lengths Pd-C $\mathrm{C}_{1}, 2.16 \AA \AA ; \mathrm{Pd}^{2} \mathrm{C}_{2}, 2.28 \AA$ Pd-P, 2.29 Å; Pd-S, 2.38 A

$$
\text { JACS 2000, 122, } 7905
$$

http://www.courses.fas.harvard.edu/~chem206/
Chemistry 206

Advanced Organic Chemistry

Lecture Number 32

Introduction to Carbonium Ions-2

■ Allyl- \& Vinylsilanes: The β-Silicon Effect

- Carbonium Ion Rearrangements

Reading Assignment for this Lecture:
Carey \& Sundberg, Advanced Organic Chemistry, 4th Ed.
Part A Chapter 5, "Nucleophilic Substitution", 263-350 .
Walling, C. (1983). "An Innocent Bystander Looks at the 2-Norbornyl Cation." Acc. Chem. Res. 16: 448. (handout)
Birladeanu (2000). "The Story of the Wagner-Meerwein Rearrangement." J. Chem. Ed. 77: 858. (handout)

Lambert, (1999). "The β effect of silicon and related manifestations of σ conjugation." Acc. Chem. Res. 32, 183-190. (handout)

Other Relevant Background Reading

Saunders, M. and H. A. Jimenez-Vazquez (1991). "Recent studies of carbocations." Chem. Rev. 91: 375.
D. A. Evans

Friday,
December 5, 2003

Here is a typical carbonium ion question that you should be able to handle by the end of the course. Write out a mechanism for the following transformation.

Question 13. Final Exam, 1999. During Corey's synthesis of Aspidophytine (JACS, 1999, 121, 6771), the pivotal intermediate 3 was assembled by the union of 1 and 2 under the specified conditions. Provide a mechanism for this single-pot transformation.

Carbocation [1,2] Sigmatropic Rearrangements

1,2 Sigmatropic shifts are the most commonly encountered cationic rearrangements. When either an alkyl substituent or a hydride is involved, the term Wagner-Meerwein shift is employed to identify this class of rearrangments.

Birladeanu (2000). "The Story of the Wagner-Meerwein Rearrangement." J.
Chem. Ed. 77: 858. (handout)

Stereoelectronic requirement for migration....

2-electron Huckel transition state

If migration accompanies ionization, the migration terminus will be inverted. Overlap between the $\sigma \mathrm{C}-\mathrm{C}$ (migration origin) and the $\sigma^{*} \mathrm{C}-\mathrm{X}$ (migration terminus) will be maximized in an antiperiplanar arrangement.

Pinacol rearrangement (vicinal diol): Driving force is the gen. of $\mathrm{C}=0$

Demjanov-rearrangement (Driving force: relief of ring strain)

Wagner-Meerwein Rearrangements: Application in Total Synthesis

Preparation of A :

Synthesis of (土)-Isocomene: Pirrung, JACS 1979, 7130; 1981, 82

Carbocations: Neighboring Group Participation

- Groups with accessable electron density (heteroatoms, arenes) and the correct stereoelectronic orientation (anti-periplanar) can "assist" in the ionization of a leaving group.

The Cram Phenonium Ion Experiments: Cram, JACS 1949, 71, 3865

Physical Evidence for Neighboring Group Participation

See Lowry \& Richardson, pp 434-439 for discussion of this controversy

References:

Lambert Acc. Chem. Res. 1999, 32, 183-190
Lambert, JACS 1990, 112, 8120; 1996, 118, 7867.
Fleming, Organic Reactions 1989, 37, 54.
Fleming, Chem. Rev., 1997, 2063.

Allyl- \& VinyIsilanes react with electrophiles

Mechanism - the simple picture: β-Silicon stabilizes carbocation

Fleming, Organic Reactions 1989, 37, 54.
β-Silicon Effect: the origin of regioselectivity

$\sigma_{\text {Si-C }} \rightarrow p_{z \text { empty }}$
A $\stackrel{+}{\mathrm{H}} \stackrel{\mathrm{H}}{\mathrm{H}}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ versus

B

Calculation: A more stable than B by $38 \mathrm{kcal} / \mathrm{mol}$.
Jorgensen JACS 1985, 107, 1496.

Magnitude of the β-Silicon Effect

"These figures established the β-effect as one of the kinetically strongest in organic chemistry": J. Lambert

Data provide no distinction between open and bridged intermediates

Proof for a stepwise mechanism provided the following protodesilylation experiment:

General: Allylsilanes are more nucleophilic than alkenes
$\Longrightarrow \mathrm{HOMO}$ is higher in energy due to negative hyperconjugation

Electrophile Addition - Stereoelectronics

major (trans)

minor (cis)

The stereochemical consequences for the major product are:
\square trans-alkene:
\square anti-addition of E^{+}with respect to SiR_{3}

Examples:

But
JACS 1982, 104, 4962.

Eschenmoser, Helv. Chim. Acta 1979, 62,

Carbonyl Addition of Allylsilanes: Open Transition States
$\mathrm{Me}_{3} \mathrm{Si}$ - is not sufficiently Lewis acidic to activate $\mathrm{C}=\mathrm{O}$ through pre-association; however $(\mathrm{RO})_{2} \mathrm{MeSi}-$ is Lewis acidic enough to activate $\mathrm{C}=\mathrm{O}$ through pre-association. These allylsilanes add to RCHO througl closed transition states

Antiperiplanar TS

OR

Synclinal TS

Calculations by Houk et al. show that the relative energy differences between the antiperiplanar and and synclinal transition states are negligible. Both the antiperiplanar and synclinal models predict a syn selectivity for the newly formed stereogenic centers.

Catalytic Enantioselective Addition of Allylic Organometallic Reagents to
Aldehydes and Ketones, Denmark and Jiping Fu, Chem. Rev. 2003, 103, 2763-2793 (handout)

Allylsilanes add to aldehydes and acetals under Lewis acid promotion

Felkin Selectivity also holds with this class of nucleophiles
Acetals can be used as well

The Sakurai Reaction (Enone Conjugate Addition)

Fleming, Org. Reactions 1989, 37, 127-133

32-05-allyllsilanes 12/5/03 8:27 AM

Reactions Proceedilng through Silicon-Migration

Si migration may be promoted by using hindered Si substituents

Can you work out the mechanism??

Panek, J. Org. Chem. 1993, 58, 2345

Stereochemistry of Electrophile Addition to Vinylsilanes

Vinyl/Allylsilanes in Organic Synthesis - Selected Examples Fleming, Org. Reactions 1989, 37, 54.

Summary Statements

1. $\mathrm{Me}_{3} \mathrm{C}+$ is more stable than $\mathrm{Me}_{3} \mathrm{Si}+$ in spite of the fact that Si is less electronegative than C .

$\mathrm{C}-\mathrm{Si}$ hyperconjugation is less pronounced than the anaologous $\mathrm{C}-\mathrm{C}$ hyperconjugation do to the impact of the longer $\mathrm{C}-\mathrm{Si}$ bond lengths.
2. Carbonium ions α to Si are less stabilized than carbonium ions $\boldsymbol{\beta}$ to Si .
$C(+) \alpha$ to silicon

$\mathrm{Me}_{3}{ }^{\mathrm{S}}{ }^{\mathrm{i}}$
$C(+) \beta$ to silicon

C -Si hyperconjugation is less pronounced than the anaologous $\mathrm{C}-\mathrm{C}$ hyperconjugation do to the impact of the longer $\mathrm{C}-\mathrm{Si}$ bond lengths.
3. According to Lambert, silicon has a propensity to stabilize β carbonium ion via hyperconjugation (vertical stabilization) rather than bridging (nonvertical stabilization.
$C(+) \beta$ to silicon

hyperconjugation more important than bridging

4. Silicon has a lower propensity to undergo Wagner-Meerwein like rearrangements than carbon.

Common Methods of Generation:

Oxidation of Amines

Stereoelectronic Effects on Nu Addition to Iminium Ions

one diastereomer

Nu (favored)
Stork et al. JACS 1972, 94, 5109

Overman et al. TL 1984, 25, 5739.

Only in the case of the (Z) vinylsilane is the emerging p orbital coplanar with C-Si bond. Full stabilization of the empty orbital cannot occur with the (E) vinylsilane.....hence the rate difference.

Review:
Heimgartner, H. In "Iminium Salts in Organic Chemistry"; Bohme, H., Viehe, H., Eds.; Wiley: New York, 1979; Part 2, pp 655-732.

The 3-aza-Cope Rearrangement:

Neutral Variant:

Exothermic as written by $\sim 7-10 \mathrm{kcal} / \mathrm{mole}$.

Ammonium Variant:

Even more exothermic than the neutral version, since enamine lacks resonance and iminium salt has stronger p -Bond than imine does.

2-aza-Cope Rearrangement:

In the simplest case, degenerate. Steric effects, conjugation, or selective trapping of a particular isomer, will drive equilibrium. As with the 3-aza-Cope, the cationic version proceeds under much milder conditions.

1-aza-Cope Rearrangement:

The 3-aza-Cope rearrangement can be driven in reverse by judicious choice of substrates(i.e., incorporating the imine into a strained ring or by making R an acyl group).

The 3-aza-Cope Rearrangement

First Neutral Case: Hill TL 1967, 1421.

First Cationic Case: Elkik Compt. Rend. 1968, 267, 623.

Good way to allylate aldehydes: Opitz Angew. Chem. 1960, 72, 169.

$+$
 $-\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}$

The 2-aza-Cope Rearrangement

First Reported Case: Horowitz JACS 1950, 72, 1518.

Equilibrium between \mathbf{A} and \mathbf{B} driven towards \mathbf{B} by conjugation of iminium double bond to the aromatic ring in \mathbf{B}

Application to Yohimbine Analog Synthesis: Winterfeldt Chem. ber. 1968, 101, 2938.

NaBH_{4}

15-Methoxy-isoyohimbane

32-09 Aza Cope-2 12/5/03 8:43 AM

Mechanism for Yohimbane Analog Formation:

N-Acyliminium Ion Rearrangements: Hart JOC 1985, 50, 235.
Hart observed an unusual product while trapping the intermediates of N -acyliminium olefi cyclizations.

2-Aza Cope rearrangements add to complexity of cyclization process

N -Acyliminium Ion Rearrangements

Synthesis of (-)-hastanecine: Hart JOC 1985, 50, 235.

Gelas-Mailhe, Tet. Lett, 1992, 33, 73

Competing 2-Aza-Cope and Pinacol Rearrangements:

Which Dominates??

Mannich

Me
Pinaco

racemic product
Conclusion: 2-aza-Cope rearrangements afford a low-barrier to competing processes

2-Aza-Cope-Mannich sequence:

32-11-iminium ions-2 12/3/03 5:15 PM

Another aza-Cope-Mannich sequence:

$\xrightarrow[\text { Pictet-Spengler }]{67 \%}$ cyclization

Overman et al. JOC 1991, 56, 5005

References

Prins reaction: Adams, D.R.; Bhaynagar, S. D. Synthesis 1977, 661 Prins \& carbonyl ene reactions: Snider, Comprehensive Organic Synthesis, 1991, Vol. 2

The Prins Process:

The Prins-Pinacol Variant:

If a $[3,3]$ rearrangement were intervening, the product would be racemic.

> Overman, JACS 2000, 122, 8672
> Overman, Org Lett 2001, 3, 1225

Examples of Stereoselective THF Formation

Prins-Pinacol Mechanism

Prins cyclization faster than [3,3] rearrngement

[3,3] rearrngement faster than Mannich cyclization

Overman: Magellanine Synthesis JACS, 1993, 115, 2992
(-)-Magellanine

The pivotal transformation

1. $\mathrm{OsO}_{4}, \mathrm{HIO}_{4}$
2. $\mathrm{Ph}_{2} \mathrm{CHNH}_{3} \mathrm{Cl}$
$\mathrm{NaBH}_{3} \mathrm{CN}$
(-)-Magellanine

Overman Synthesis of a Eunicellin Diterpene

Overman \& MacMillan JACS, 1995, 117, 10391
(-)-7-Deacetoxy-alcyoninacetate

Felkin Control (Lecture 20)

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (3 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2},-55 \rightarrow-20^{\circ} \mathrm{C}$

6 steps, 39% yield from (S)-carvone

Overman: Synthesis of trans-Kumausyne

JACS, 1991, 113, 5378

trans-Kumausyne

97\%

Mukaiyama Aldol-Prins Cascade

Rychnovsky JACS, 2001, 123, 8420

The Basic Process

Let $\mathrm{El}(+)=$ Lewis acid activated RCHO

Control of hydroxyl center: see Lecture 20

Aldehyde Synthesis

Chiral enolate alkylation: see Lecture 23

cyclic oxo-carbenium ion addition: see Lecture 19

Donald J.Cram (1919-2001)

Phenonium Ion Experiments: Cram, JACS 1949, 71, 3865

Cram: "Just remember Dave, old deadwood is better than young deadwood."
"A View from the Far Side. Memorable Characters and Interesting Places." Evans, D. A. Tetrahedron 1999, 55, 8589-8608.

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 33

Introduction to Carbonium Ions-3

- Stabilized Carbocations: Iminium Ions ($\mathrm{C}=\mathrm{NR}_{2}(+)$)

■ Stabilized Carbocations: Oxo-Carbenium Ions ($\mathrm{C}=\mathrm{OR}(+)$)

- Stabilized Carbocations: Addition \& Rearrangements

Reading Assignment for this Lecture:

Carey \& Sundberg, Advanced Organic Chemistry, 4th Ed.
Part A Chapter 5, "Nucleophilic Substitution", 263-350 .
Question 13. Final Exam, 1999. During Corey's recent synthesis of Aspidophytine (JACS, 1999, 121, 6771), the pivotal intermediate 3 was assembled by the union of 1 and 2 under the specified conditions. Provide a mechanism for this single-pot transformation.

D. A. Evans

Monday,
December 8, 2003

(A)

The product-determining step could be step A. $\quad \downarrow \mathrm{NaBH}_{3} \mathrm{CN}$

Review:
Heimgartner, H. In "Iminium Salts in Organic Chemistry"; Bohme, H., Viehe, H., Eds.; Wiley: New York, 1979; Part 2, pp 655-732.

The 3-aza-Cope Rearrangement:

Neutral Variant:

Exothermic as written by $\sim 7-10 \mathrm{kcal} / \mathrm{mole}$.

Ammonium Variant:

Even more exothermic than the neutral version, since enamine lacks resonance and iminium salt has stronger p -Bond than imine does.

2-aza-Cope Rearrangement:

In the simplest case, degenerate. Steric effects, conjugation, or selective trapping of a particular isomer, will drive equilibrium. As with the 3-aza-Cope, the cationic version proceeds under much milder conditions.

1-aza-Cope Rearrangement:

The 3-aza-Cope rearrangement can be driven in reverse by judicious choice of substrates(i.e., incorporating the imine into a strained ring or by making R an acyl group).

The 3-aza-Cope Rearrangement

First Neutral Case: Hill TL 1967, 1421.

First Cationic Case: Elkik Compt. Rend. 1968, 267, 623.

Good way to allylate aldehydes: Opitz Angew. Chem. 1960, 72, 169.

$+$
 $-\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}$

$[3,3]$

N-Acyliminium Ion Rearrangements

Synthesis of (-)-hastanecine: Hart JOC 1985, 50, 235.

[3,3]

(-)-hastancine
 \longleftarrow \longleftarrow

The origin of the modest diastereoselection has not been attributed to
2-aza-Cope process

Gelas-Mailhe, Tet. Lett, 1992, 33, 73

Competing 2-Aza-Cope and Pinacol Rearrangements:
Which Dominates??

cyclization

Me
Pinacol

Mannich

racemic product
Conclusion: 2-aza-Cope rearrangements afford a low-barrier to competing processes

References

Prins reaction: Adams, D.R.; Bhaynagar, S. D. Synthesis 1977, 661 Prins \& carbonyl ene reactions: Snider, Comprehensive Organic Synthesis, 1991, Vol. 2

The Prins Process:

The Prins-Pinacol Variant:

If a $[3,3]$ rearrangement were intervening, the product would be racemic.

> Overman, JACS 2000, 122, 8672
> Overman, Org Lett 2001, 3, 1225

Examples of Stereoselective THF Formation

Prins-Pinacol Mechanism

Prins cyclization faster than [3,3] rearrngement

[3,3] rearrngement faster than Mannich cyclization

Overman: Magellanine Synthesis JACS, 1993, 115, 2992
(-)-Magellanine

The pivotal transformation

1. $\mathrm{OsO}_{4}, \mathrm{HIO}_{4}$
2. $\mathrm{Ph}_{2} \mathrm{CHNH}_{3} \mathrm{Cl}$
$\mathrm{NaBH}_{3} \mathrm{CN}$
(-)-Magellanine

Overman Synthesis of a Eunicellin Diterpene

Overman \& MacMillan JACS, 1995, 117, 10391
(-)-7-Deacetoxy-alcyoninacetate

Felkin Control (Lecture 20-21)

6 steps, 39\% yield from (S)-carvone

Overman: Synthesis of trans-Kumausyne

JACS, 1991, 113, 5378

trans-Kumausyne

97\%

Mukaiyama Aldol-Prins Cascade

Rychnovsky JACS, 2001, 123, 8420

The Basic Process

Let $\mathrm{El}(+)=$ Lewis acid activated RCHO

Control of hydroxyl center: see Lecture 20-21

Aldehyde Synthesis

Chiral enolate alkylation: see Lecture 24

33-08- Squalene, Lanosterol 12/7/03 9:03 PM

Squalene Oxide Cyclase

Prestwilch, et. al. Chem. Rev. 1993, 93, 2189-2206

Cornforth Proposal: ACIEE, 1968, 903.

Squalene Oxide Cyclase - Cornforth Proposal: ACIEE, 1968, 903.

$81 \mathrm{kcal} / \mathrm{mol}(\mathrm{MM} 2)$
anti-migration

Corey-Virgil Revision: JACS 1991, 113, 4025-4026; 8171-8172

Sir John Cornforth:
"That outpost of empire Australia, If you are anxious for over-exposure, produces some curious mammalia, the kangaroo rat,
the blood-sucking bat, and Aurthur J. Birch, inter alia."
to prepublication disclosure, to good food and good drink, without leisure to think,
try IUPAC symposia."

Biomimetic Polyene Cyclizations

$$
\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H} \quad 20 \%, 24 \mathrm{hr} .
$$

$$
\text { Johnson, et al. JACS 1987, 109, 5852. } \quad \mathrm{R}=\mathrm{OAc}, \mathrm{R}^{\prime}=\mathrm{CH}=\mathrm{CH}_{2} \quad 80 \%, 1 \mathrm{~min} .
$$

Post cyclization transformation: Johnson

E. J. Corey, et al. Tetrahedron Lett. 1994, 35, 9149.

Cyclization to Form Simpler Bicyclics

Johnson, et al. JACS 1984, 106, 1138.

Introduction of chiral auxiliaries for $\mathbf{C = O}$ groups

http://www.courses.fas.harvard.edu/~chem206/
Chemistry 206

Advanced Organic Chemistry

Handout 33A

Introduction to Carbonium Ions-4

- Stabilized Carbocations: Oxo-Carbenium Ions ($\mathrm{C}=\mathrm{OR}(+)$)
- Introduction to Terpene Biosynthesis
- Squalene, Lanosterol, \& Cholesterol Biosynthesis
- Polyene Cyclizations
- Chiral Acetals as $\mathrm{C}=\mathrm{O}$ Auxiliaries

Reading Assignment for this Lecture:

Carey \& Sundberg, Advanced Organic Chemistry, 4th Ed.
Part A Chapter 5, "Nucleophilic Substitution", 263-350 .
Heathcock, C. H. (1992). "The enchanting alkaloids of Yuzuriha." Angew. Chem., Int. Ed. Engl. 31: 665. (handout)

Other Excellent References

Bartlett, P. A. (1984). "Olefin Cyclisation Processes That Form Carbon-Carbon Bonds". Asymmetric Synthesis. Stereodifferentiating Reactions, Part B. J. D. Morrison. New York, AP. vol 3: 341.

Thebtaranonth, C. and Y. Thebtaranonth (1994). "Cyclization Reactions". Boca Raton, FL, CRC Press.
Corey \& Liu, enzyme "Mechanism for Polycyclic Triterpene Formation," Angew. Chem. Int Ed. 2000, 39, 2812-2833
D. A. Evans

Monday,
December 8, 2003

Several Comp[ex Mechanisms

Angew. Chem. Int. Ed. Engl. 1978, 17, 476.
J. Org. Chem. 1990, 57, 2544.

A. P. Johnson et al., JCS Chem. Commun. 1994, 6, 765
"That outpost of empire Australia, produces some curious mammalia,
the kangaroo rat,
the blood-sucking bat,
and Aurthur J. Birch, inter alia."
If you are anxious for over-exposure,
to prepublication disclosure,
Sir John Cornforth:
to good food and good drink, without leisure to think, try IUPAC symposia."

Suggested Reading

"An Experimental Demonstration of the Stereochemistry of Enzymic Cyclization of 2,3-Oxidosqualene...."
E. J. Corey, S. C. Virgil JACS, 1991, 113, 4025.
"New Mechanistic and Stereochemical Insights on the Biosynthesis of Sterols from 2,3-Oxidosqualene Cyclase"
E. J. Corey, et al. JACS 1991, 113, 8171.
"Enzymatic Cyclization of Squalene and Oxidosqualene to Sterols and Terpenoids" Abe, et al. Chem. Rev. 1993, 93, 2189.
"Isoprenoid Biosynthesis. Stereochemistry of the Cyclization of Allylic Pyrophosphates." D. E. Cane Acc. Chem. Res. 1985, 18, 220.
"Biomimetic Polyene Cyclizations"
W. S. Johnson Angew. Chem. Int. Ed. Engl, 1976, 15, 9.

Interesting Reading

Science, 1997, v277:
"Structure and Function of the Squalene Cyclase", G. Shultz, p. 1811.
"Structural Basis for Cyclic Terpene Biosynthesis by Tobacco 5-epi-Aristolochene", J. P. Noel, p. 1815.
"Crystal Structure of Pentalene Synthase: Mechanistic Insights on Terpenoid Cyclization Reactions in Biology", D. W. Christianson, p. 1821.
"The Stereochemistry of Allylic Pyrophosphate Metabolism."
D. E. Cane Chem. Rev. 1980, 36, 1109.
"Biosynthesis of Natural Products" P. Manitto; Wiley\&Sons, NY: 1981.

Representative Terpenes

taxol

gibberellic acid

- Definition: Natural products whose carbon skeletons are built up largely from isoprene subunits:

- Occurance: Plants, insects, higher organisms
\square Role in plants: hormones, defense etc.
example: pyrethrin insecticides

acid

example: flavor constituents

33A-02-terpene-1 1/25/00 2:49 PM
\square Role in insects: hormones, pheromones (communication chemicals)

periplanone
sex attractant pheromone of the American cockroach

Cecropia junenile hormone blocks development at larval growth stage
note that the starred methyls are not derived from isoprene

alarm pheromone for aphids

■ Role in mammals: hormones, pheromones ??

nepetalactone
oil of catnip
active at nanomolar-femptomolar concentrations is this related to a feline pheromone?

Classification of terpenes

monoterpenes : 10 C -atoms (2 isoprene units) sesquiterpenes : 15 C -atoms (3 isoprene units)
diterpenes $\quad: 20 \mathrm{C}$-atoms (4 isoprene units) triterpenes $\quad: 30 \mathrm{C}$-atoms (6 isoprene units)

eranio
citronellol

cinnamolide antifungicide

Practice: Recognize the isoprene units in the above structures.
33A-03-terpenes-2 12/17/99 8:00 AM

- Terpene Biosynthesis

There are two isoprene units which are used to build up terpenes:

isopentenyl pyrophosphate (IPP)
γ, γ-dimethylallyl pyrophosphate
(DMAP)

pyrophosphate: nature's leaving group
$\equiv \mathrm{ROX}$

tosylate:
chemist's leaving group

The basic process: alkene addition to electrophiles:

DMAP

33A-04-terpenes-3 12/17/99 8:03 AM

[^23]

33A-07- Squalene, Lanosterol 12/7/03 8:45 PM

Squalene Oxide Cyclase

Prestwilch, et. al. Chem. Rev. 1993, 93, 2189-2206

Cornforth Proposal: ACIEE, 1968, 903.

Squalene Oxide Cyclase - Cornforth Proposal: ACIEE, 1968, 903.

$81 \mathrm{kcal} / \mathrm{mol}(\mathrm{MM} 2)$
anti-migration

H
lanosterol

Corey-Virgil Revision: JACS 1991, 113, 4025-4026; 8171-8172

Biomimetic Polyene Cyclizations

$$
\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H} \quad 20 \%, 24 \mathrm{hr} .
$$

$$
\text { Johnson, et al. JACS 1987, 109, 5852. } R=O A c, R^{\prime}=C H=\mathrm{CH}_{2} \quad 80 \%, 1 \mathrm{~min} .
$$

Post cyclization transformation: Johnson

E. J. Corey, et al. Tetrahedron Lett. 1994, 35, 9149.

Cyclization to Form Simpler Bicyclics

Johnson, et al. JACS 1984, 106, 1138.

Introduction of chiral auxiliaries for $\mathbf{C = O}$ groups

W. S. Johnson \& Co-workers,
J. Am. Chem. Soc., 1976, 98, 6188

$$
\text { Ratio }=72: 28 \quad \mathrm{de}=84 \%
$$

J. Am. Chem. Soc., 1983, 105, 2088
$\mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17} \quad$ Ratio $=88: 12$

G. Castaldi \& Co-workers,

Angew. Chem. I. E., 1986, 25, $259 . \quad 94 \%$ yield $\quad \mathrm{de}=86 \%$

K. A. Nelson \& E. A. Mash,
J. Org. Chem., 1986, 51, 2721
$\mathrm{de}=>95 \%$

$\mathrm{CH}_{2}=\mathrm{C}_{\text {Et }}^{\mathrm{OTMS}} \xrightarrow[\mathrm{CH}_{3} \mathrm{CN},-20^{\circ} \mathrm{C}]{\mathrm{SnCl}_{4}}$

J. M. McNamara, Y. Kishi,
J. Am. Chem. Soc., 1982, 104, 7371

$$
\begin{array}{ll}
\mathrm{R} & \text { ratio } \\
\hline \mathrm{Ph} & 16: 1 \\
\mathrm{n}-\mathrm{C}_{9} \mathrm{H}_{19} & 03: 1
\end{array}
$$

P. Mangeney \& Co-workers,

Tetrahedron Lett., 1987, 28, 2363.
(error in R/S nomenclature in paper)

| Acetal Isomer | Alkylating Agent (R) | Product E/Z | \% Yield | \% de |
| :---: | :---: | :---: | :---: | :---: |
| E | (1) | 100/0 | 75 | 95 (R) |
| E | (2) | 95/5 | 70 | 85 (R) |
| Z | (1) | 100/0 | 75 | 69 (S) |

Daphniphylline

Secodaphniphylline

Daphnilactone A

Methyl Homodaphniphyllate

Methyl Homosecodaphniphyllate

Bukittinggine

- Isolated from bark and leaves of Yuzuriha tree
- Used to cure asthma and vermicide in the early 20th century
- Compounds have been known since 1909. First structure solved in 1965.
- 38 members in this alkaloid family
J. Org. Chem. 1992, 57, 2531-2594 Kyoto Igaku Zasshi 1909, 6, 208 Tet. Lett. 1965, 965

"Classical" Total Synthesis of Methyl Homodaphniphyllate

J. Org. Chem. 1992, 57, 2531
J. Am. Chem. Soc. 1975, 97, 6116

Angew. Chem. Int. Ed. Eng. 1992, 31, 665

Synthesis of Methyl Homosecodaphnipyllate

The Vollhardt "Ammonia" Incident

Angew. Chem. Int. Ed. Engl. 1978, 17, 476.
J. Org. Chem. 1990, 57, 2544.

Stepwise vs Concerted Cyclization

One-Pot Pentacyclization Reaction: Formation of Protodaphniphylline

Other amines:
Glycine
(S)-(+)-Alanine
(S)-(+)-Alanine
(S)-(+)-Valine $\begin{array}{ll}(+)-\alpha \text {-Phenylethyl amine } & 13 \% \text { y } 20-25 \% \text { ee } \\ \text { no reaction }\end{array}$

Retrosynthesis of Daphnilactone A

J. Org. Chem. 1992, 57, 2585

Angew. Chem. Int. Ed. Engl. 1992, 31, 665

Synthesis of Daphnilactone A

Org. React. 1975, 22, 423
Ang. Chem. Int. Ed. Eng. 1967, 6, 1 Ang. Chem. Int. Ed. Eng. 1969, 8, 535

4.5

1

Total Synthesis of Daphnilactone and Conversion to the Daphniphylline Skeleton

Carfbene-Olefin Cycloaddition: The FMO Analysis

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 34

Introduction to Carbenes \mathcal{E} Carbenoids-1

- Carbene Structure \& Electronics
- Methods for Generating Carbenes
- Simmons-Smith Reaction
- Carbene-Olefin Insertions
- Carbene Rearrangements

Reading Assignment for this Lecture:

Carey \& Sundberg, Advanced Organic Chemistry, 4th Ed. Part B Chapter 10, "Reactions Involving Highly Reactive Electron-Deficient Intermediates", 595-680.

Handout 09A Simmons-Smith Reaction: Enantioselective Variants
Handout 26B Synthetic Applications of α-Diazocarbonyl Compounds
Chiral DirhodiumCarboxamidates: Catalysts for Highly Enantioselective Syntheses of Lactones and Lactams, Aldrichchimica Acta. 1996, 29, 3 (handout)

Doyle, Catalytic Methods for Metal Carbene Transformations, Chem. Rev. 1986, 86, 919-939 (electronic handout)

McKervey, Organic Synthesis with α-Diazocarbonyl Compounds, Chem. Rev. 1994, 94, 1091-1160 (electronic handout)

Muller, Catalytic Enantioselective Aziridinations \& Asymmetric Nitrene Insertions, Chem. Rev. 2003, 103, 2905-2919 (electronic handout)

Monday,
December 10, 2003

Useful References to the Carbene Literature

Books:

Modern Catalytic methods for Organic Synthesis with Diazo Compounds;

M. P. Doyle, Wiley, 1998.

Carbene Chemistry, 2nd ed. Academic Press, Kirmse, W., 1971.

Provide a mechanism for the following transformations.

JACS 19902037

Suggested Reading:

> Doyle, Chem Rev. 1988, 86, 919.
> Kodadek, Science, 1992, 256, 1544.

Recent Review Article:

Chemistry of Diazocarbonyls: McKervey et al. Chem Rev. 1994, 94, 1091.

Books:

Modern Catalytic methods for Organic Synthesis with Diazo Compounds; M. P. Doyle, Wiley, 1998.

Carbenes and Nitrenes in "Reactive Molecules: The Neutral Reactive Intermediates in Organic Chemistry", Wentrup, C. W. 1984, Wiley, p. 162.

Rearrangements of Carbenes and Nitrenes in Rearrangements in Ground \& Excited States, Academic Press, DeMayo ed., Jones, W. M. 1980, p. 95.

Carbene Chemistry, 2nd ed. Academic Press, Kirmse, W., 1971.

Carbenes: Electronic Structure

Carbene Configuration: Triplet vs. Singlet

Triplet (two unpaired e-)
Often has radical-like character

- Nitrene

Singlet (all e- paired)

Singlet (all e^{-}paired)
Often has electrophilic or nucleophilic character: A-type
(Ambiphilic)

Carbene Configuration: Triplet vs. Singlet

Due to electron repulsion, there is an energy cost in pairing both electrons in the σ orbital. If a small energy difference between the σ and p orbitals exists, the electrons will remain unpaired (triplet). If a large gap exists between the σ and p orbitals the electrons will pair in the σ orbital (singlet).

- the History of the Singlet-Triplet Gap

| Year | Method | Author | HCH Angle | Grnd State | S-T Splitting
 kcal/mol |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1932 | Qual. | Muliken | $90-100^{\circ}$ | singlet | - |
| 1947 | Thermochem | Walsh | 180° | triplet | small |
| 1957 | Qual. QM | Gallup | 160° | triplet | 30 |
| 1969 | Ab initio | Harrison | 138° | triplet | >33 |
| 1971 | Kinetics | Hase | - | triplet | $8-9$ |
| 1971 | SCF | Pople | 132° | triplet | 19 |
| 1974 | MINDO | Dewar | 134° | triplet | 8.7 |
| 1976 | Expt | Lineberger | 138° | triplet | 19.5 |
| 1976 | An Initio | Schaeffer | - | triplet | 19.7 |
| 1978 | Expt | Zare | - | triplet | 8.1 |
| 1982 | Expt | Haydon | - | triplet | 8.5 |
| | | | | | Wentrup) |

Heteroatom-Substituted Carbenes: Singlets

The p orbital of carbenes substituted with p-donor atoms (N, O, halogen) is raised high enough in energy to make the pairing of the electrons in the σ orbital energetically favorable. As a result, these carbenes are often in the singlet state.

Methods of Synthesis

- Alkyl Halides:

ketenes

Bamford-Stevens Reaction: See Lecture 28 on Hydrazones Shapiro Org. Rxns. 1976, 23, 405.

\square diazo compounds

metal-catalyzed decomposition Doyle Chem Rev. 1986, 86, 919 (handout)

- "Stable Carbenes"

"Stable Carbenes-Illusion or reality"?
Regitz, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 674 (handout)

Arduengo et al. J. Am. Chem. Soc. 1991, 113, 361; 1992, 114, 5530.
Arduengo et al. J. Am. Chem. Soc. 1994, 116, 6812, Neutron diffraction study:

Arduengo argues that these resonance structures are not players based on electron distribution from neutron diffraction.

These are nucleophilic carbenes which display high stability.
For reviews on the subject, see:
Regitz, M. Angew. Chem. Int. Ed. Engl. 1996, 35, 725.
Regitz, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 674.

34-03-carbenes intro 12/10/03 8:20 AM

- Cyclopropanation The Skell Rule:

Singlet carbenes add to olefins stereospecifically;

Triplet carbenes add non-stereospecifically Skell and Woodworth JACS, 1956, 78, 4496.

Synthetic Applications

\square Simmons-Smith Cyclopropanation (See Tedrow hanndout 10B) Simmons, H.; Smith, R. J. Am. Chem. Soc., 1958, 80, 5323.

The intermediate organometallic reagent: $\mathrm{I}-\mathrm{CH}_{2}-\mathrm{Zn}-\mathrm{I}$

Winstein \& Sonnenberg, JACS 1961, 91, 3235

- The Furakawa Simmons-Smith Variant

For a recent general review of the Simmons-Smith reaction see: Charette \& Beauchemin, Organic Reactions, 58, 1-415 (2001)

$$
\begin{gathered}
=\frac{\mathrm{Et}_{2} \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{I}_{2}}{\text { Solvent }} \Delta \\
\mathrm{Et}-\mathrm{Zn}-\mathrm{Et}+\mathrm{I}-\mathrm{CH}_{2}-\mathrm{I} \rightleftharpoons 2 \mathrm{I}-\mathrm{CH}_{2}-\mathrm{Zn}-\mathrm{Et}
\end{gathered}
$$

Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron, 1968, 24, 53
Furukawa, J.; Kawabata, N.; Fujita, T. Tetrahedron, 1970, 26, 243

■ Hydroxyl directivity is a powerful atribute of the S-S Rxn

For an review of the directed Simmons-Smith, see:
Evans, D. A.; Hoveyda, A.; Fu, G. Chem. Rev. 1993, 93, 1307.

Charette, A. B. JACS 1991, 113, 8166.
>50: 1 diastereoselection

- Catalytic Asymmetric Cyclopropanation:

Kobayashi, et al. Tetrahedron Lett. 1994, 35, 7045.
For a Lewis Acid catalyzed process in which the rate of the catalyzed process is faster than the uncatalyzed, see: Charette, A. B. JACS 1995, 117, 11367.

- Applications in Synthesis

Org. Lett. 2001, 3, 503

Charrette, A. B.; J. Am. Chem. Soc. 1996, 118, 10327.

Falck J. Am. Chem. Soc.
1996, 118, 6096.
Barrett, JOC, 1996, 61, 3280

Exploring New Reactive Species for Cyclopropanation

Zhiqiang Yang, Jon C. Lorenz, and Yian Shi*
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
Email: yian@lamar.colostate.edu

$$
\xrightarrow[X=\mathrm{Br}, \mathrm{Cl}, \mathrm{I} ; \mathrm{Y}=\text { halogen, } \mathrm{Et}, \mathrm{ICH}_{2}]{\mathrm{YZnCH} \mathrm{C}_{2} \mathrm{X}(1)}
$$

Figure 1. Plot of the conversion of trans- β-methylstyrene against time (h). The curves presented are: (A) No RXH, (B) EtOH or $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, (C) $\mathrm{Cl}_{2} \mathrm{CHCH}_{2} \mathrm{OH}$, (D) $\mathrm{CCl}_{3} \mathrm{CH}_{2} \mathrm{OH}$, (E) $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, (F) $\mathrm{PhCO}_{2} \mathrm{H}$, (G) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$.

Table 1. Cyclopropanation of Representative Olefins Accelerated by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\mathrm{a}}$

| Entry | Substrate | time (min) | Conv. (\%) ${ }^{\text {b }}$ | Yield (\%) ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Ph | 30 | 100 | 77 |
| 2 | $\mathrm{Ph}-\mathrm{Ph}$ | 60 | >90 | $70^{\text {d }}$ |
| 3 | Ph | 60 | nd | $72{ }^{\text {d }}$ |
| 4 | Ph otes | 30 | 100 | 95 |
| 5 | Ph | 40 | 100 | 80 |
| 6 | $\mathrm{C}_{8} \mathrm{H}_{13} \sim \mathrm{C}_{6} \mathrm{H}_{13}$ | 40 | 100 | 99 |
| 7 | Ph | 20 | 100 | 85 |
| 8 | Pho | 30 | >97 | 88 |
| 9 | PhCO_{2} - | 150 | >90 | 90 |
| 10 | | 30 | 100 | 78 |

\square Synthetic Applications

Corey \& Myers JACS 1985, 107, 5574.

Antheridic Acid

■ Buchner Reaction

McKervey et al. JCS PTI, 1991, 2565.

confertin

- Wolff Rearrangement

Characterization of metal carbenoid intermediates: not much data!

For a detailed mechanistic study which provides supporting evidence for the intermediacy of a Rh carbene, see: Kodakek, Science, 1992, 256, 1544.

spectroscopically observed
"Copper(I) Carbenes: The Synthesis of Active Intermediates inCu-Catalyzed Cyclopropanation" P. Hoffmann et al, Angew. Chem. Int. Ed. 2001, 40, 1288-1290
\square Catalytic Asymmetric Variants:
Chiral Cu(I) Complexes

94:6 trans/cis

b, $R=M e,>99 \%$ ee

Evans, et al. J. Am. Chem. Soc. 1991, 113, 726.
34-06-carbenes 12/10/03 8:38 AM

Mechanism

There is no definitive evidence for metal-catalyzed cyclopropanation and the possibility that metallacyclobutane intermediates are involved cannot be ruled out.

-Gatalytie-Asymmétríc Váriants:Chiral Rh(II) Complexes

How do these complexes really work??

- Carbene-Carbene Rearrangements

■ Skattebol Rearrangement

Tetrahedron Lett. 1973, 2283.

■ Other Rearrangements

Schecter, J. Am. Chem. Soc. 1971, 93, 5940.

Sammes, Chem. Comm. 1975, 328.

■ Vinylidenes

> Corey-Fuchs:

Danishefsky et al.
J. Am. Chem. Soc. 1996, 118, 9509.

- Carbene Rearrangements

Bestmann, et al. Synlett 1996, 521.

Gilbert, JOC 1983, 48, 5251

Stang et al. J. Am. Chem. Soc. 1994, 116, 93.
carbene intermediates are accessible at high temperatures, more later!

■ C-H Insertions continued...

Electrophilic carbenes are very sensitive to electronic effects
Stork Tetrahedron Lett. 1988, 29, 2283.

Sulikowski, J. Org. Chem. 1995, 60, 2326.

Enantioselective C-H Insertion

Chiral DirhodiumCarboxamidates: Catalysts for Highly Enantioselective Syntheses of Lactones and Lactams, Aldrichchimica Acta. 1996, 29, 3 (handout)

34-09-carbenes 12/9/03 8:54 PM

■ N-H Insertions are also possible...

Salzmann, JACS, 1980, 102, 6163.

Insertions (X-H): Stereochemical outcome

Taber JACS, 1996, 107, 196.

Ring Opening

Tetrahedron Lett. 1990, 31, 6589.
(88\%

Ring Contraction

Moore et al. J. Org. Chem. 1983, 48, 3365.

Wolff-[2+2]

34-10-carbenes 12/9/03 9:16 PM

Problem 332: Wolff Rearrangement Stoltz ACS 2003, 125, 13624

Vinylolgous Wolff Rearrangement Doyle pp520-521

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 35

Introduction to Carbenes \mathcal{E} Carbenoids-2

■ Thermally Induced Carbene Rearrangements

- Carbonyl Ylides and their Reactions

■ Oxonium \& Sulfonium Ylides and their Reactions

Reading Assignment for this Lecture:

Carey \& Sundberg, Advanced Organic Chemistry, 4th Ed.
Part B Chapter 10, "Reactiona Involving Highly Reactive
Electron-Deficient Intermediates", 263-350 .
Handout 10B Simmons-Smith Reaction: Enantioselective Variants Handout 27B Synthetic Applications of α-Diazocarbonyl Compounds Handout 35A The Use of Fischer Carbenes in Organic Synthesis

Friday,
D. A. Evans

December 12, 2003

Useful References to the Carbene Literature

Recent Review Article:

Chemistry of Diazocarbonyls: McKervey et al. Chem Rev. 1994, 94, 1091.
Books:
Modern Catalytic methods for Organic Synthesis with Diazo Compounds;
M. P. Doyle, Wiley, 1998.

Carbenes and Nitrenes in "Reactive Molecules: The Neutral Reactive Intermediates in Organic Chemistry", Wentrup, C. W. 1984, Wiley, p. 162.

Rearrangements of Carbenes and Nitrenes in Rearrangements in Ground \& Excited States, Academic Press, DeMayo ed., Jones, W. M. 1980, p. 95.

Carbene Chemistry, 2nd ed. Academic Press, Kirmse, W., 1971.

The Automerization of Naphthalene (The Cume Question from Hell!)

Rationalize

$\alpha-{ }^{13} \mathrm{C}$-labeled $\mathrm{C}_{10} \mathrm{H}_{8}$ is isomerized into $\beta-{ }^{13} \mathrm{C}$-labeled $\mathrm{C}_{10} \mathrm{H}_{8}$ at $1035{ }^{\circ} \mathrm{C}$
L. T. Scott, JACS 1991, 113, 9692.

Provide a Mechanism for this Transformation

Scott, L.T., et. al., JACS 1137082 (1991)

- Carbene-Carbene Rearrangements

■ Skattebol Rearrangement

Tetrahedron Lett. 1973, 2283.

■ Other Rearrangements

Schecter, J. Am. Chem. Soc. 1971, 93, 5940.

Sammes, Chem. Comm. 1975, 328.

■ Vinylidenes

> Corey-Fuchs:

Danishefsky et al.
J. Am. Chem. Soc. 1996, 118, 9509.

- Carbene Rearrangements

Bestmann, et al. Synlett 1996, 521.

Gilbert, JOC 1983, 48, 5251

Stang et al. J. Am. Chem. Soc. 1994, 116, 93.
carbene intermediates are accessible at high temperatures, more later!

■ C-H Insertions continued...

Electrophilic carbenes are very sensitive to electronic effects
Stork Tetrahedron Lett. 1988, 29, 2283.

Sulikowski, J. Org. Chem. 1995, 60, 2326.

Enantioselective C-H Insertion

Chiral DirhodiumCarboxamidates: Catalysts for Highly Enantioselective Syntheses of Lactones and Lactams, Aldrichchimica Acta. 1996, 29, 3 (handout)

34-09-carbenes 12/9/03 8:54 PM

■ N-H Insertions are also possible...

Salzmann, JACS, 1980, 102, 6163.

Insertions (X-H): Stereochemical outcome

Taber JACS, 1996, 107, 196.

Ring Opening

Tetrahedron Lett. 1990, 31, 6589.
(88\%

Ring Contraction

Moore et al. J. Org. Chem. 1983, 48, 3365.

Wolff-[2+2]

34-10-carbenes 12/9/03 9:16 PM

Problem 332: Wolff Rearrangement Stoltz ACS 2003, 125, 13624

Vinylolgous Wolff Rearrangement Doyle pp520-521

Carbenes are Accessible via Sigmatropic Rearrangement

■ $[1,2]$ Shifts: Alpha-Alkynone Cyclizations

Karpf, M., Dreiding, A., Helv. Chim. Acta. 6513 (1982)

Karpf, M., Dreiding, A.S., Helv. Chim. Acta. 671963 (1984)

The Automerization of Naphthalene (The Cume Question from Hell!)

Rationalize

\qquad

$\alpha-{ }^{13} \mathrm{C}$-labeled $\mathrm{C}_{10} \mathrm{H}_{8}$ is isomerized into $\beta-{ }^{13} \mathrm{C}$-labeled $\mathrm{C}_{10} \mathrm{H}_{8}$ at $1035{ }^{\circ} \mathrm{C}$

■ Mechanism-1: L. T. Scott, JACS 1977, 99, 4506;

■ For the azulene-naphthalene Isomerization: $\quad \Delta \mathrm{G}^{\circ}=-30.7 \mathrm{kcal} / \mathrm{mol}$ (298K)
■ The Activation energy for the isomerization: $\quad \Delta \mathrm{G}^{ \pm}=+86 \mathrm{kcal} / \mathrm{mol}$
■ Mechanism-2,3: L. T. Scott, JACS 1991, 113, 9692.

Option-2

B

$$
\mathbf{B F} \xrightarrow{900^{\circ} \mathrm{C}} \underset{ }{\mathbf{B}}+\underset{\mathbf{A}}{ }
$$

ption-3

$\Delta\left(\mathrm{H}_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}\right)=-3.4 \mathrm{kcal} / \mathrm{mol}(\mathrm{MNDO})$

A

Provide a Mechanism for this Transformation

Corannulene 10\%

Scott, L.T., et. al., JACS 1137082 (1991)

Carbenes: Reaction with Heteroatoms

Suggested Reading

Houk and Wu J. Org. Chem. 1991, 56, 5657.
Padwa and Hornbuckle Chem. Rev. 1991, 91, 263.

Review Articles

Padwa and Krumpe Tetrahedron 1992, 48, 5385.
Hoffman, R. W. Angew. Chem. Int. Ed. Engl. 1979, 18, 563.
McKervey et al. Chem. Rev. 1994, 94, 1091.

Ylide Formation by the Interaction of Carbeneoids

 with Carbonyl Lone Pairs

Generally, the carbene precursor of choice is a diazoalkane or, more frequently, an α-diazocarbonyl reagent. These can be decomposed via thermolysis or photolysis. However, the most common method involves catalytic amounts of transition metals, such as copper or rhodium.

Dipolar Cycloaddition (See Lecture 18)

Web Problem 88. Please provide a mechanism for the following high temperature reaction that was reported by Yranzo and co-workers (J. Org. Chem. 1998, 63, 8188).

Draw a plausible mechanism for the transformation to the major product isomer. Do not invoke any radical intermediates in your answer.

Web Problem 135. Anderson has reported the transformation illustrated below (Aust J. Chem. 1990, 43,1137) which is implemented by flash vacuum pyrolysis (FVP). As indicated, this reaction proceeds through intermediate A.

Provide a mechanism for this reaction and identify intermediate \mathbf{A} in your answer.

Web Problem 172. Scott has recently reported the transformation illustrated below (Tetrahedron Lett 1997, 38, 1877) which is implemented by flash vacuum pyrolysis (FVP) at the indicated temperature.

Provide a concise mechanism for this reaction in the space below.

Web Problem 198. Provide a mechanism for the thermal conversion of triquinacene to azulene (JACS, 1973, 2724).

Web Problem 282. Hoffmann has reported the mechanistically interesting thermally induced transformation illustrated below (Chem. Ber. 1985, 634.).

$400^{\circ} \mathrm{C}$

Provide a plausible mechanism for this reaction.

Tandem Intramolecular Cyclization-Intermolecular Cycloaddition

Dipolar-Dipolarophile Cycloadditions: HOMO-LUMO Energies
Carbonyl Ylides have very small HOMO-LUMO gaps

Therefore, either raising the dipolarophile HOMO (electron-donating substituents) or lowering the LUMO (electron-withdrawing) will accelerate the reaction.

LUMO

HOMO

Reactions of Diazoimides: [3+2] addition

Maier, M. E.; Evertz, K. Tetrahedron Lett. 1988, 29, 1677-1680

Padwa et. al. Tetrahedron Lett. 1992, 33, 4731-4734.

Dipolar Cycloadditions: Carbonyl Ylides

Padwa, JOC 19956258

(95\%)
Vindoline Skeleton

Reactions of Diazoimides: [3+2] addition - [4+2] retroaddition

Padwa, A.; Hertzog, D. L.; Chinn, R. L. Tetrahedron Lett. 1989, 30, 4077-4080.

The 1,3-proton shift is catalyzed by trace amounts of water. Azomethine ylide formation requires a proton at the tertiary center.
Padwa, A.; Dean, D. C.; Zhi, L. J. Am. Chem. Soc. 1989, 111, 6451-6452. Padwa, A.; Dean, D. C.; Zhi, L. J. Am. Chem. Soc. 1992, 114, 593-601.

The Synthesis of Furans
Intermolecular addition to α, β-unsaturated carbonyls

Spencer Tetrahedron Lett. 1967, 1865-1867.

Spencer, T. A., et. al. JACS 1967, 89, 5497.
Can you propose a rational mechanism for this transformation?

Hildebrandt, Tetrahedron Lett. 1988, 29, 2045-2046.

Ylide Formation

Reviews:
 Padwa, Chem. Rev. 1991263

Padwa, Chem. Rev. 1996223
Barnes, Evening Seminar, March 16, 1993
X is generally S, O or N and can be $s p^{2}$ or $s p^{3}$ hybridized
Ylides often undergo sigmatropic rearrangements or cycloadditions

[2,3]-Sigmatropic rearrangement:

Kido and Kato, JCS Perkins 11992229

Stevens Rearrangement ([1,2] alkyl shift):

West, JACS 19931177

Ring expansion reactions have been investigated

Methods based on sulfur ylides: (review) Vedejs, Accts. Chem. Res. 1984, 17, 358

Methynolide has been synthesized by Vedej using this ring-expansion methodology

Vedejs, JACS 1989, 111, 8430

Pirrung et al JACS, 1991, 113, 8561

Tetrahedron Lett. 1996, 37, 5605.

griseofulvin

Chemistry 206

Advanced Organic Chemistry

Handout-35A

The Use of Fischer Carbenes in Organic Synthesis

"...every synthetic chemist is well advised to follow this fascinating field with appropriate attention."

- Schmalz, H.-G., ACIEE, 1994, 303.

Brian Connell Evans Group Seminar, February, 1999

D. A. Evans

Friday,
December 12, 2003

The Use of Fischer Carbenes in Organic Synthesis

"...every synthetic chemist is well advised to follow this fascinating field with appropriate attention."

- Schmalz, H.-G., ACIEE, 1994, 303

Brian Connell
 Evans Group Seminar 2/12/99

Outline

- Introduction and Fundamentals
- Reactions
- Cyclopropanation
- Diels-Alder Cycloaddition
- Other Cycloadditions
- Dotz Reaction and Analogs
- Photochemistry
- Conjugate Additions
- Other Reactions

General References:
Wulff, Organometallics, 1998, 3116.
Wulff,Comprehensive Organic Synthesis, Vol. 5, Chap 9.2: Metal Carbene Cycloadditions, Pergamon Press, 1991.
Wulff, Comprehensive Organometallic Chemistry II, Vol. 12, Chap 5.3: Transition Metal Carbene Complexes: Alkyne and Vinyl Ketene Chemistry, Pergamon Press, 1994.
Hegedus, Comprehensive Organometallic Chemistry II, Vol. 12, Chap 5.4: Transition Metal Carbene Complexes:
Photochemical Reactions of Carbene Complexes, Pergamon Press, 1994.

Introduction

- Definition: electrophilic, heteroatom stabilized complexes having formal metal-to-carbon double bonds
- Group 6 metals ($\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$) are the most common metals used.
- First prepared by Fischer (ACIEE, 1964, 580):

- excellent yields for all steps
$\downarrow \begin{aligned} & \text { "hard" alkylating reagents } \\ & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{OBF}_{4}, \mathrm{CH}_{3} \mathrm{COBr}\end{aligned}$
- cheap starting materials (20-50¢/mmol)

- air, silica stable
- crystalline, easy to handle
- colored (yellow to red)

Selected Physical Data

Bond Lengths

$$
\begin{aligned}
& \mathrm{C}_{\text {carbene }}-\mathrm{O}=1.33 \AA \AA \\
& \mathrm{C}_{\text {carbene }}-\mathrm{Cr}=2.04 \AA \\
& \mathrm{Cr}^{-} \mathrm{CO}_{\text {cis }}=1.86-1.91 \AA \\
& \mathrm{Cr}-\mathrm{CO}_{\text {trans }}=1.87 \AA
\end{aligned}
$$

IR Frequencies

vCO ~2070, 1992, $1953 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR
$\mathrm{C}_{\text {carbene }}-\mathrm{CH}_{3}=\sim 5$
${ }^{13}$ C NMR
$\mathrm{C}_{\text {carbene }} 320-360 \mathrm{ppm}$

Bond Lengths
Carbene $-\mathrm{N}=1.31 \AA$
$\mathrm{C}_{\text {carbene }}$ - $\mathrm{Cr}=2.16 \AA$
$\mathrm{Cr}-\mathrm{CO}_{\text {cis }}=1.90 \AA$
$\mathrm{Cr}-\mathrm{CO}_{\text {trans }}=1.85 \AA$
IR Frequencies
$\mathrm{vCO}=\sim 2060,1970,1940 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR
$\mathrm{C}_{\text {carbene }}-\mathrm{CH}_{3}=\sim 3.2$
${ }^{13}$ C NMR
$\mathrm{C}_{\text {carbene }}=250-290 \mathrm{ppm}$

Bond Lengths
$\mathrm{C}_{\text {carbonyl }}-\mathrm{N}=1.29 \AA$
$\mathrm{C}_{\text {carbonyl }}-\mathrm{O}=1.23 \AA$

IR Frequencies

$\mathrm{vCO}=\sim 1650 \mathrm{~cm}^{-1}$
${ }^{1}$ H NMR
$\mathrm{C}_{\text {carbonyl }}-\mathrm{CH}_{3}=\sim 2.1$
${ }^{13} \mathrm{C}$ NMR
$\mathrm{C}_{\text {carbonyl }}=\sim 165 \mathrm{ppm}$

Major Contributors

Ernst Otto Fischer

I was born in Solln, near Munich, on 10 November 1918 as the third child of the Professor of Physics at the Technical College of Munich, Dr. Karl T. Fischer (died 1953), and his wife, Valentine, née Danzer (died 1935). After completing four years at elementary school I went on to grammar school in 929, from which I graduated in 1937 with my Abitur. Following a subsequent period of "work service" and shortly before the end of my two years" Chemistry at the Tohnical Cole in Munich during a period of study la a a was released by the Americans in the autumn of 1945 and resum Chemif Professor Walter Hieber in the Inorganic Chemistry Department, and under his quidance I dedicated myself to warking on my doctoral thesis "The Pechanisms of Carbon Monoxide Reation of Nickell Salt in the Prence of Dithionites and Sulfoxylates". After receiving my doctorate in 1952 , ras invited by Professor Hieber to continue my activitios at the college and consequently chose to specialise in the study of organo-metallic chemistry I wrote my university teaching thesis on "The Metal Comploxes of Cyclopentadienes and Indenes" I was appointed ecturer at the Technical College in 1955 and in 1956 I completed a scientific sojourn of many months in the United States. In 1957 I was appointed Professor at the University of Munich. After turning down an offer of the Chair of Inorganic Chemistry at the University of Jena I was appointed Senior Professor at the University of Munich in 1959 . In 1957 I was awarded the Chemistry Prize by the Göttingen Academy of Sciences. The Society of German Chemists awarded me the Alfred Stock Memorial Prize in 1959 In 19601 refused an appointment as Senior Professor in the Department of norganic Chemistry at the University of Marburg. In 1964 I took the Chair of Inorganic Chemistry at the Technical College of Munich, which had been racated by Professor Hieber In the same year I was elected a member of the Mathematics/Natural Science section of the Bavarian Academy of Sciences: in 1969 I was appointed a member of the German Academy of Scientists Leopoldina. In 1972 I was given an honorary doctorate by the Faculty of Chemistry and Pharmacy of the University of Munich.
Lectures on my fields, particularly those on metallic complexes of cyclopentadienes and indenes, metal-pie-complex s of six-ringed aromatics, mono-, di- and oligo-olefins and most recently metalcarbonyl carbene and carbyne complexes, led me on lecture tours of the United States, Australia Venezuela, Brazil, Israel and Lebanon, as well as numerous European countries, including the former Soviet Union. In 1969 I was Firestone Lecturer at the University of Wisconsin, Madison,Wisconsin, USA; in 1971 Visiting Professor at the University of Florida, Gainesville, USA, as well as the first norganic Chemistry Pacific West Coast Lecturer. In the spring of 1973 I held lectures as the Arthur D. Little Visiting Professor at the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; and that was followed by a period when I was Visiting Distinguished Lecturer at the University of Rochester, Rochester, New York, USA.

Nobel lecture: On the way to carbene and carbyne complexes. Angew. Chem. (1974), 86(18), 651-63.

Karl Heinz Dotz

Kekule-Institut fur Organische Chemie und Biochemie der Universitat Bonn
Born1943
Ph.D. Technical University of Munich (E.O. Fischer) 1971.
Habilitation Technical University of Munich 1980.
Professor of Organometallic Chemistry University of Marburg 1986-1992, Dean of the Faculty 1990-1991.
Professor of Organic Chemistry University of Bonn since 1992.
Karl's research is focused on the following areas:
Synthetic Organometallic Chemistry (metal carbenes and planar-chiral arene complexes)

- Physical Organic and Organometallic Chemistry
(distorted fused arenes and cyclophanes: synthesis and structure-chiroptics correlation,transition metal NMR spectroscopy, Ab initio-calculations on organometallic complexes and intermediates)
- Metal-Mediated Organic Synthesis (stereoselective C-C formation via metal carbenes, diastereoselective benzannulation and cyclopentannulation)
- Organometallic Catalysis (chromium-catalyzed cyclopropanation, axial-chiral and redox-active biaryl ligands)
- Transition Metal Modified Sugars (metal glycosylcarbenes and glycosylidenes: synthesis and application in C-glycosidation, disaccharide mimetics,conformation of acyclic metal modified sugars)

Major Contributors

Claude F. Bernasconi University of California at Santa Cruz

Claude was born in Zurich Switzerland. He received his undergraduate and Ph.D. degrees from the Swiss Federal Institute of Technology (ETH) with Heinrich Zollinger
Following a postdoctoral year with Manfred Eigen at the Max Planck Institute for Biophysical Chemistry in Gottingen, he joined the chemistry faculty at he University of California at Santa Cruz in 1967, where he has been a professor of chemistry since 1977. His main esearch interests are in physical organic chemistry and enter on problems of mechanism, structure-reactivity relationships, intrinsic barriers of reactions, and catalysis in organic and organometallic eactions, particularly proton transfer reactions, nucleophilic addition to electrophilic alkenes, nucleophilic vinylic substitution and reactions of Fischer carbene complexes.

Charles P. Casey
University of
Visconsin-Madison
Born 1942, St. Louis, MO
B.S. 1963, St. Louis

University
Ph.D. 1968, MIT

Chuck received a Ph.D. in rganic chemistry from MIT in 1968, where he studied organocopper chemistry under the direction of Professor George M. Whitesides. After spending 6 months at Harvard as an NSF postdoc with Paul D. Bartlett he joined the faculty at Wisconsin. Chuck is interested in studying the mechanisms of organometallic reactions and in developing an and in developing
understanding of homogeneous catalysis
addition, he is trying to addition, he is trying to deagign new organomets for synthesis and new heterobimetallic catalysts.

William D. Wulff
University of Chicago Born Eau Claire, Wisconsin, 1949 B. S. 1971, University of Wisconsin-Eau Claire Ph.D. 1979, Iowa State University

Professor Wulff received his Ph.D. degree from lowa State University in 1979 with Professor Thomas Barton. After NIH postdoctoral work with Martin Semmelhack at Princeton University, he accepted a position at the University of Chicago in 1980. Professor Wulff's research interests are in the applications of organometallics in organic synthesis as both reagents and catalysts.

Jose Barluenga University of Oviedo

Jose Barluenga obtained his Ph.D. degree (solvomercuration of dienes) at the University of Zaragoza in 1966 under the direction of Professor V. Gomez-Aranda. He spent 3.5 years as a postdoctoral fellow at Max Planck Institut Fur Kohlenforschung, Mulheim, in the group of Professor Hoberg
studying aluminum chemistry. In 1970 he took a position as a research associate at the University of Zaragoza, where he was promoted to Associate Professor in 1972. In 1975 he moved to the University of Oviedo as Professor of Organic Chemistry in the Department of Organometallic Chemistry. His major research interest is focused on the development of new synthetic methods in the area of heterocyclic chemistry and functionalized systems

Louis S. Hegedus
Colorado State University Born Cleveland, Ohio, 1943 B.S, 1965, Penn State University M.A. 1966, Penn State University Ph.D., 1970, Harvard

Lou was born in 1943 in Cleveland, Ohio, but grew up in ural Ohio, away from big city temptations. He did his undergraduate studies at Pennsylvania State University, where studied aqueous chromium redox chemistry with Professor Albert Haim. After Ph.D. studies at Harvard on nickel carbonyl chemistry with E. J. Corey (1970), and a NIH postdoctoral year at Stanford with J. P. Collman studying polymer-supported homogeneous catalysis, he moved to Colorado State Jniversity, where he remains today as a professor of chemistry. His research interests center on the use of transition metals in organic synthesis.

Recurring Themes

- $(\mathrm{CO})_{5} \mathrm{Cr}$ is sterically very large

Resonance

-Rotation about heteroatom carbene bond is restricted by $14-25 \mathrm{kcal} / \mathrm{mol}$
. ${ }^{53} \mathrm{Cr}$ NMR is consistent with strong resonance contribution

Hegedus and Dotz JACS, 1988, 8413.

Kinetic Electrophilicity

-Formation of tetrahedral intermediate is 10^{9} faster than $\mathrm{CH}_{3} \mathrm{O}^{-}$addition to $\mathrm{BnO}_{2} \mathrm{CCH}_{3}$.

Bernasconi
Chem. Soc. Rev., 1997, 299.
JACS, 1998, 8632.

pKa Data

Thermodynamic Acidity

- $\mathrm{pK}_{\mathrm{a}}(\mathrm{THF})=8$
- $\mathrm{pK}_{\mathrm{a}}=20.4$ (DMSO)
- $\mathrm{pK}_{\mathrm{a}}=35$ (DMSO)
- $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=12.3$
equivalent to p-cyanophenol

Casey, JACS, 1974, 1230.

See Hegedus, JACS, 1990, 6255.

Metal Removal and Functionalization

Casey, TL, 1973, 1421.

 Casey, JACS, 1972, 6543.

Via similar intermediates:

Selected Reactions of Saturated Fischer Carbene Complexes

Cyclopropanation

$E: Z$
Harvey, TL, 1990, 2529.
1.9:1

Wulff
Pure Appl. Chem., 1988, 137. JACS, 1988, 2653.

PhH, $100^{\circ} \mathrm{C}$
81\%

Harvey, JACS, 1992, 8424.

Hoye, JACS, 1988, 2676.

Selective Cyclopropanation

Barluenga
Chem. Commun., 1995, 665.
JACS, 1997, 7591.

Cyclopropanation

Reaction with Alkynes

Harvey, JOC, 1992, 5559.

Barluenga
Chem. Commun., 1994, 321.
JACS, 1995, 9419.
JACS, 1996, 695.
Chem. Eur. J., 1996, 88.

Diels-Alder Cycloaddition

10^{4} times faster than methyl acrylate

Wulff, JACS, 1990, 4550.

Diels-Alder Cycloadditions

Wulff
JACS 1983, 6726.
JACS 1990, 3642.

Diels-Alder Cycloadditions

Wulff, JACS, 1990, 3642.

Asymmetric Exo-Selective Diels-Alder Reaction

non-oxygenated dienes give ~85:15 exo:endo

Proposed Transition State
Wulff, JACS, 1997, 6438.

$$
[2+2] \text { Cycloaddition }
$$

corresponding ester does not react

$180^{\circ} \mathrm{C}, 16 \mathrm{~h}$

$25^{\circ} \mathrm{C}, 6 \mathrm{~h}$ 97\%
\longrightarrow

>300:1 regioselection

Wulff, JACS, 1986, 6726.
Barluenga $T L$, 1998, 4887.
Barluenga JCS Perkin I, 1997, 2267.

Dotz Reaction
Thermal Reaction of Unsaturated Carbene Complexes
"...one of the most utilized reactions in natural product synthesis involving an organometallic process."

Observed Connectivity:

Dotz
ACIEE, 1975, 644.
New J. Chem., 1990, 433.
ACIEE, 1984, 587.

Dotz Proposed Reaction Mechanism

rate-limiting CO dissociation

Dotz Alternative Workup Procedures

Dotz: Nitrogen Analog

Wulff, JOC, 1995, 4566.
Barluenga, JOC, 1998, 7588.

Dotz: Large Scale Applicability

Biaryl Synthesis

2 equiv.

The concept works, in moderate to low yield, but the reactions must be run stepwise. Occasionally CO insertion is suppressed and five-membered rings are formed.

Wulff, Chem. Commun., 1996, 1863.

Synthetic Uses

menogaril
antitumor antibiotic
Wulff, JOC, 1998, 840.

Synthetic Uses

1)

$\mathrm{R}=\mathrm{CH}_{3}$ Chromomycin
$\mathrm{R}=\mathrm{H}$, Olivomycin
antitumor antibiotics
Wulff, Synthesis, 1999, 80.

Application to Synthesis

Barluenga, Chem Commun., 1995, 1973.

Ketene Cyclizations

Via:

"Asymmetric" Benzopentaannulation

 66-84\%

Herndon, JOC, 1998, 4564.
"A Versatile $[4+2+1-2]$ Cycloaddition"

Photochemistry

- Electronic absorption consists of three low-lying bands:
- ~500 nm: spin-forbidden $\mathrm{M} \rightarrow$ carbene π^{*} charge transfer transition
- 360-450 nm: spin allowed $M \rightarrow$ carbene π^{*} charge transfer transition (visible)
- 300-350 nm: ligand field transition
- In addition, all carbene complexes absorb strongly below 300 nm .
- Exposure to light leads to a reversible CO insertion:

Geoffroy, JACS, 1983, 3064.

Molecular Orbital Diagram

| $(\mathrm{CO})_{5} \mathrm{Cr}$ | | |
| :---: | :---: | :---: |
| $\overline{a_{1}\left(d_{x} 2 . y^{2}\right)}$ | $3 a_{1}$ | |

Ketene [2+2]

Hegedus
Tetrahedron, 1985, 5833.
JOC, 1997, 3586.

Hegedus
JOC, 1995, 3787.
JOC, 1996, 6121.
Organometallics, 1997, 2313.
JOC, 1998, 4691 \& 8012.

(+)-Cerulenin

Ene Carbamate Synthesis

Amino Acid Synthesis

hv, $t-\mathrm{BuOH}$

60-80\% $\geq 97 \%$ de

- Mutiply-labeled amino acids are readily prepared from $\left({ }^{13} \mathrm{CO}\right)_{6} \mathrm{CO}$ and $\mathrm{CH}_{3} \mathrm{OD}$:

Hegedus
JACS, 1990, 2264.
JACS, 1992, 5602.
JACS, 1993, 87.
Acc. Chem. Res., 1995, 299.
JOC 1995, 5831.
JACS, $1995,3697$.
JOC 1997, 7704.

Peptide Synthesis

Solid Support
Merrifield Resin: Acc. Chem. Res., 1995, 299. PEG: JOC 1995, 5831; JOC 1997, 7704.

- Reactions have been performed and do work, but are not as practical because the failure to achieve 100% yields and high diastereoselectivity limit this method.
- hard to work with because the polymer "sticks to everything, making quantitative transfer difficult".

Acc. Chem. Res., 1995, 299.

$\mathrm{H}_{2}, \mathrm{PdCl}_{2}$

40-95\% yield
56-98\% ee

Hegedus, JOC, 1992, 6914.

Tertiary Amino Acids

1) 0.2 M HCl
2) phosgene

Hegedus, JOC, 1993, 5918.

91:8

71\%
[3,3]

81:19

Hegedus, JOC, 1996, 2871.

Michael Reaction

Wulff, JACS, 1993, 4602.

Asymmetric Michael Addition

Wulff, Chem. Commun., 1996, 2601.

Asymmetric Michael Reaction

Michael Reactions: Selectivity

Open Transition States are Postulated

Pyridine Synthesis

Aumann, Synlett, 1993, 669.

Alkylation

Wulff, JOC, 1987, 3263.

Wulff, $T L, 1989,4061$.
"Aldol" Reaction

Wulff, JACS, 1985, 503.

a) n-BuLi
b) 1.1 equiv. $\mathrm{PhCHO} / \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ 96\%

Wulff, JACS, 1989, 5485.

Wulff, JOC, 1994, 6882.
ds: 98.6: 1.4
oxazolidinone complexes were unstable:
in absense of $B u_{3} B$, ds: 91:9

Ene Reaction

Wulff, JACS, 1990, 6419.

Reaction of Ketene Acetals

(\pm)-eldanolide sex pheromone

VinyIsilane Synthesis

Vinylsilane Synthesis
Proposed Mechanism

Allyl Stannane Synthesis

1,1 addition is usually observed, however 1,3 addition is possible:

Merlic, TL, 1995, 1007.

Andres, A. Dissertation, Strasbourg, 1911. van Halban, Helv. Chim. Acta, 1948, 1899.

Wulff

http://www.courses.fas.harvard.edu/~chem206/

Chemistry 206

Advanced Organic Chemistry

Lecture Number 36

Introduction to Organosilicon Chemistry

- Silicon Bonding Considerations
- The Silicon-Proton Analogy
- $\mathrm{C}=\mathrm{O}$ Addition of Organosilanes
- Sigmatropic Rearrangements of Organosilanes
- Anionic (Brook) Rearrangements
- Peterson Olefination Reaction
- Survey of Silicon (and related) Protecting Groups Reading Assignment for this Lecture:
Carey \& Sundberg, Advanced Organic Chemistry, 4th Ed. Part B Chapter 9, " C-C Bond Forming Rxns of Boron, Silicon \& Tin", 595-680.

Fleming, I.; Barbero, A.; Walter, D. "Stereochemical control in organic synthesis using silicon-containing compounds." Chem. Rev. 1997, 97, 2063-2192. (Web)
Moser, W. H. "The Brook Rearrangement in Tandem Bond Formation Strategies," Tetrahedron 2001, 57, 2065-2084 (handout)
Masse, C. E.; Panek, J. S. "Diastereoselective reactions of chiral allyl- and allenylsilanes with activated C-X pi-bonds." Chem. Rev. 1995, 95, 1293-1316.

Ager, D. J. "The Peterson olefination reaction." Org. Reactions 1990, 38, 1-224
Colvin, E. "Silicon in Organic Synthesis," Butterworths, 1981
Bois, et al. "SiliconTethered Reactions" Chem. Rev. 1995, 95, 1253-1277. (Handout)

Problems to Contemplate

Calter, M. A. Ph. D. Thesis, Harvard University, 1993.

The $\mathrm{C}=\mathrm{O}$ addition illustrated in eq 1 proceeds while the carbon analogue (eq 2) does not. Explain

Provide a mechanism for the indicated transformation

Takeda, Org. Lett, 2000, 2, 903-1905

Bonding Considerations: Carbon vs Silicon

| Average Bond dissociation eneregies (Kcal/mol) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}-\mathrm{C}$ | $\mathrm{C}-\mathrm{Si}$ | $\mathrm{Si}-\mathrm{Si}$ | $\mathrm{C}-\mathrm{F}$ | $\mathrm{Si}-\mathrm{F}$ | $\mathrm{C}-\mathrm{O}$ | $\mathrm{Si}-\mathrm{O}$ |
| 83 | 76 | 53 | 116 | 135 | 86 | 108 |
| | | | $\mathrm{C}-\mathrm{H}$ | $\mathrm{Si}-\mathrm{H}$ | | |
| | Average Bond | Lengths (A) | | | | |
| | $\mathrm{C}-\mathrm{C}$ | $\mathrm{C}-\mathrm{Si}$ | $\mathrm{C}-\mathrm{O}$ | $\mathrm{Si}-\mathrm{O}$ | 83 | 76 |
| | 1.54 | 1.87 | 1.43 | 1.66 | | |

$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3} \mathrm{BDE}=83 \mathrm{kcal} / \mathrm{mol}$ Bond length $=1.534 \AA$

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{SiH}_{3} \mathrm{BDE} \sim 76 \mathrm{kcal} / \mathrm{mol}
$$

$$
\text { Bond length }=1.87 \AA
$$

This trend is even more dramatic with pi-bonds:

$$
\pi \mathrm{C}-\mathrm{C}=65 \mathrm{kcal} / \mathrm{mol} \quad \pi \mathrm{C}-\mathrm{Si}=36 \mathrm{kcal} / \mathrm{mol} \quad \pi \mathrm{Si}-\mathrm{Si}=23 \mathrm{kcal} / \mathrm{mol}
$$

| $\delta-$ | $\delta+$ |
| :---: | ---: |
| C | -Si |

Group IV Electronegativities (Pauling)

| Carbon | Silicon | Germanium | Tin | Lead |
| :---: | :---: | :---: | :---: | :---: |
| 2.55 | 1.90 | 2.01 | 1.96 | 2.33 |
| | +2 Oxidation state becones
 increasingly more stable | | | |

36-01-Si intro 12/14/03 8:46 PM

Hypervalent 5-Coordinate Silicon Compounds

Akiba, "Chemistry of hypervalent Compounds" Wiley-VCH, Chapters 4-5, 1999
Penta-coordinate silicates are commonly observed

$$
\stackrel{\ominus}{\mathrm{Ph}_{3} \mathrm{SiF}_{2}} \stackrel{\oplus}{\mathrm{NR}_{4}}
$$

Nucleophilic substitution at Silicon

Duhamel et al. J. Org. Chem. 1996, 61, 2232

Stork et al. JACS. 1968, 90, 4462, 4464
Thermal Rearrangements One may readily access divalent intermediates

J. Am. Chem.Soc. 1987, 109, 476

Acta Crystallogr. Sect. C 1984, 40, 476

Carbonyl addition Reactions

1970 DAE Objective: Develop a reagent that will transform aldehydes into protected cyanohydrins in one step

| $\mathrm{R}_{3} \mathrm{Si}-\mathrm{G}$ Candidates | Carbonyl Adducts |
| :---: | :---: |
| $\mathrm{R}_{3} \mathrm{Si}-\mathrm{CN}$ | |
| $\mathrm{R}_{3} \mathrm{Si}-\mathrm{OSO}_{2} \mathrm{Ar}$ | |
| $\mathrm{R}_{3} \mathrm{Si}-\mathrm{OPR}_{2}$ | |

Thermal $\mathrm{C}=\mathrm{O}$ addition of TMSCN is not a clean reaction

The prospect of catalysis was investigated

Principle established that normally inaccessible cyanohydrin derivatives may now be accessed

with Truesdale, Carroll, Chem Commun. 1973, 55; J. Org. Chem.. 1974, 39, 914 Tetrahedron Lett 1973, 4929 (first discussion of Nu catalysis)
"The Silicon Advantage"
From the preceding case, it is clear that $\Delta \mathrm{H}_{\mathrm{Si}}$ is more exothermic than $\Delta \mathrm{H}_{\mathrm{H}}$

$+\mathrm{X}-\mathrm{CN}$ \qquad
 $\Delta \mathrm{H}_{\mathrm{Si}}>\Delta \mathrm{H}_{\mathrm{H}}$

Nucleophilic Catalysis

Explain the following observations

1-4 addition

1-2 addition

with Truesdale, Grimm, Nesbitt, JACS 1975, 97, 3229 JACS 1977, 99, 5009

Non-catalyzed processes may also occur if a proper geometry for atom transfer can be achieved

"The Proton-Silicon Correlation"

Organosilanes undergo carbonyl addition processes in direct analogy with their proton counterparts but with an attendant greater exothermicity.

- Organosilanes undergo a range of thermal rearrangements processes in direct analogy with their proton counterparts.

A. J. Ashe III, JACS 1970. 92, 1233

Yoder et al., JACS 1974. 96, 4283

$$
\mathrm{Me}_{3} \mathrm{Si}-\mathrm{C} \equiv \mathrm{~N} \longrightarrow \mathrm{C} \equiv \mathrm{~N}-\mathrm{SiMe}_{3}
$$

- Organosilicon hydrides undergo transition metal catalyzed hydrosilylation processes in direct analogy with normal hydrogenation reactions

"Hydrosilylation of C-C Bonds". T. Hayashi In Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.; and Yamamoto, H. Editors; Springer Verlag: Heidelberg, 1999; Vol I, 319-332.

[1,3]-Sigmatropic Rearrangements

$Y=C ; X=0$

$\mathrm{Y}=\mathrm{C} ; \mathrm{X}=\mathrm{C}$

Theoretical calculations lead to the conclusion that the concerted $[1,3]$ sigmatropic rearrangement with retention of Si-configuration should represent the lower energy pathway.

Yamabe, JACS 1997, 119, 808
At the present time these rearrangements are not well studied,

"The Brook Rearrangement(s)"

A. G. Brook Accts. Chem. Research 1974, 7, 77-84

Brook has documented that retention at Silicon \& inversion at Carbon occur.

Transformations Involving the Brook Rearrangement

Moser, W. H. "The Brook Rearrangement in Tandem Bond Formation Strategies," Tetrahedron 2001, 57, 2065-2084

Acylsilanes

Transformations Involving the Brook Rearrangement

Moser, W. H. "The Brook Rearrangement in Tandem Bond Formation Strategies," Tetrahedron 2001, 57, 2065-2084

Intramolecular alkylations may be carried out:

Takeda JACS 1993, 115, 9351; Synlett 1994, 178; SynLett 1997, 255

Tetrahedron 2001, 57, 2065-2084, footnote 16

The natural product target:
The key reaction

Takeda, Org. Lett, 2000, 2, 903-1905

The Peterson Olefination Reaction

> Ager, D. J. "The Peterson olefination reaction." Org. Reactions 1990, 38, 1-224

The key paper: Peterson, J. Org. Chem. 1968, 33, 780-784
It was Peterson's intent to find a silicon analog to the Wittig rxn.
 The reaction concept is outlined below:

Magnesium alkoxides: Stable

\qquad
 hese adducts are quite stable
Na \& K alkoxides: Eliminate

36-06-Brook Rearrangments-3 12/15/03 8:18 AM

carbanion-stabiizing groups facilitate elimination

Elimination could also be effected with dilute acid

analogy provided by Whitmore et al. JACS 1947, 69, 1551

Mechanistic aspects of Beta-OH Elimination

note site of nu attack. Why?

- Simple Examples: Taken from Organic Rxns review

This reagent is better that $\mathrm{H}_{2} \mathrm{C}=\mathrm{PPh}_{3}$ for hindered ketones

Nozaki, JACS 1974, 96, 1620

Chan, Tet. Lett 1978, 2383

Chan, Chem. Commun 1982, 969

| entry | base | solvent | $E: Z$ |
| :---: | :--- | :---: | :--- |
| $\mathbf{1}$ | LDA | THF | $73: 27$ |
| 2 | NaHMDS | THF | $18: 82$ |
| 3 | LDA | $\mathrm{Et}_{2} \mathrm{O}$ | $66: 33$ |
| 4 | LDA | PhMe | $66: 33$ |

Hudrlik, JACS 1981, 103, 6251

n-Hexyl

Reaction may be altered significantly with an attendant change in stereoselection Ireland Enolate Claisen Coupled to Peterson Olefination

Sato et al. Chem. Lett 1986, 1553

Bunnelle-Peterson Allylsilane Synthesis

Application to Leucasandrolide: Rychnovsky JACS, 2001, 123, 8420

The Pivotal Step:

Silyl Ethers:

trimethylsilyl
(TMS)

triethylsilyl
(TES)

tert-butyldimethylsilyl
(TBS or TBDMS)

tert-butyldiphenylsilyl (TBDPS)

triisopropylsilyl
(TIPS)

di-tert-butyldimethylsilylene
(DTBS)

Formation

By far the two most common methods:

$$
\mathrm{R}-\mathrm{OH} \xrightarrow[\mathrm{DMF}, \text { R.T. }]{\mathrm{R}_{3} \mathrm{Si-Cl} \text {, imidazole }} \quad \mathrm{R}-\mathrm{OSiR}_{3}
$$

2 equiv of imidazole are required relative to $\mathrm{R}_{3} \mathrm{SiCl}$.

Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.

$$
\mathrm{R}-\mathrm{OH} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}]{\mathrm{R}_{3} \mathrm{Si}-\mathrm{OTf}, 2, \text {-lutidine }} \quad \mathrm{R}-\mathrm{OSiR}_{3}
$$

Corey, E. J. et al., Tetrahedron Lett. 1981, 22, 3455.

Relative stabilities:

TES $\sim 10^{2}$ times more stable to acidic hydrolysis than TMS TBS $\sim 10^{4}$ times more stable to acidic hydrolysis than TMS

| SiR_{3} | Half-life |
| :--- | ---: |
| TBS | 76 min |
| TIPS | 137 min |

Cunico, R. F.; Bedell, L. J. Org. Chem. 1980, 45, 4797-4798.

Selective Protection:

Evans et al.JACS 1999, 121, 7540-7552.

Askin, D.; Angst, D.; Danishefsky, S. J. Org. Chem. 1987, 52, 622.

Donaldson, R. E.; Fuchs, P. L. J. Am. Chem. Soc. 1981, 103, 2108

TMS-NEt ${ }_{2}$ has been reported to selectively protect equatorial alcohols in the presence of axial alcohols: Weisz, I. et al. Acta. Chim. Acad. Sci. Hung. 1968, 58, 189.

Evans, Ng JACS 1993, 115, 11446

Selective Protection:

Evans, D. A.; Dart, M. J. Unpublished

Evans, Ratz JACS 1995, 117, 3448

Selective Deprotection:

Calter, M. A. Ph. D. Thesis, Harvard University, 1993

Evans, Gage, Leighton JACS 1992, 114, 9434

Selective Deprotection:

Nakaba, T.; Fukui, M.; Oishi, T. Tetrahedron Lett. 1988, 29, 2219, 2223.

Hart, T. W.; Metcalfe, D. A.; Scheinmann, F.
J. Chem. Soc., Chem. ommun. 1979, 156.

1,2-Migration:

Mulzer, J.; Schollhorn, B. Angew. Chem., Int. Ed. Eng. 1990, 29, 431-432.

1,3-Migration:

Calter, M. A. Ph. D. Thesis, Harvard University, 1993.

$\underset{\text { THF, }-78^{\circ} \mathrm{C}}{\underset{\text { KHMDS }}{ } \uparrow 94 \%}$

Calter, M. A. Ph. D. Thesis, Harvard University, 1993.

Principle Methods for Benzylation of Alcohols:
1.

$$
\mathrm{R}-\mathrm{OH} \xrightarrow{\substack{\text { 1. } \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C} \\
\text { 2. } \mathrm{BnBr} / \mathrm{PMBBr}}} \begin{gathered}
\mathrm{R} — \mathrm{OBn} \\
\mathrm{R} — \mathrm{PMB}
\end{gathered}
$$

2.

$$
\mathrm{R}-\mathrm{OH}
$$

$$
\mathrm{Ar}=4-\mathrm{MeO}-\mathrm{Ph}: \mathrm{Et}_{2} \mathrm{O}
$$

$$
\mathrm{Ar}=\mathrm{Ph}: \quad \text { Iversen, T.; Bundle, K. R. }
$$

$$
\text { J. Chem. Soc., Chem. Commun. 1981, } 1240 .
$$

Ar $=4-\mathrm{MeO}-\mathrm{Ph}: \quad$ Yonemitsu, O. et al., Tetrahedron Lett. 1988, 29, 4139.
3.

Cruzado, C.; Bernabe, M.; Martin-Lomas, M. J. Org. Chem. 1989, 54, 465.
Review: David, S.; Hanessian, S. Tetrahedron, 1985, 41, 643-663.
4.

$$
\mathrm{R}-\mathrm{OH} \xrightarrow[\mathrm{AMF}]{\mathrm{Ag}_{2} \mathrm{O}, \mathrm{BnBr}} \mathrm{R}-\mathrm{OBn}
$$

Van Hijfte, L.; Little, R. D. J. Org. Chem. 1985, 50, 3940.

Via Benzylidene Acetal:

Takano, S. et al., Synthesis 1986, 811-817.

Priciple Methods for Deprotection:

1. Hydrogenation
$\mathrm{R} — \mathrm{OBn} \xrightarrow[\mathrm{EtOH} / \mathrm{EtOAc} / \mathrm{AcOH}]{10 \% \mathrm{Pd} \text { on } \mathrm{C}, \mathrm{H}_{2}} \quad \mathrm{R}-\mathrm{OH}$
See Greene, p. 49.
2. Transfer Hydrogenation

Hydrogen Source
Ref.

Cyclohexene
Cyclohexadiene
$\mathrm{HCO}_{2} \mathrm{H}$
$i-\mathrm{PrOH}$
3. Lewis Acids

$$
\mathrm{R}-\mathrm{OBn} \longrightarrow \mathrm{R}-\mathrm{OH}
$$

Reagents
Ref.
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{EtSH}$
Tetrahedron Lett. 1989, 30, 5713.

1. $\mathrm{BCl}_{3},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
J. Am. Chem. Soc. 1989, 111, 1923.
2. $\mathrm{MeOH},-78^{\circ} \mathrm{C}$.

TMSBr, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SMe}$
Chem. Pharm. Bull. 1987, 35, 3880.

PMB Deprotection:

Yonemitsu, O. et al., Tetrahedron 1986, 42, 3021.

Other Oxidants: $\mathrm{NBS}, \mathrm{Br}_{2}, \mathrm{CAN}\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right)$.
Acta Chem. Scand. Ser. B, 1984, B38, 419.
J. Chem. Soc., Perkin Trans. I, 1984, 2371.

36A-14 Benzyl Protect 12/7/01 8:18 AM

DDQ is incompatible with:

styryl

extended conjugated polyenes

Selective Benzylation:

Fukuzawa, A. et al. Tetrahedron Lett. 1987, 28, 4303.

Cruzado, C.; Bernabe, M.; Martin-Lomas, M. J. Org. Chem. 1989, 54, 465.

Ng, H. P. Ph. D. Thesis, Harvard University, 1993

Polypropionate Fragment

Selective silylation was unsuccessful.

| DIBAI-H | |
| :---: | :---: |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ | |
| | |

36A-16 Rutamycin 12/7/01 8:18 AM

1. $\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}$

DMAP, $\mathrm{Et}_{3} \mathrm{~N}$, benzene
2. (aq.) $\mathrm{HF}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}$

Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434-9453

36A-17 Calyculin 12/7/01 8:18 AM

After protonation of the amine, coulombic repulsion insulates against formation of another cationic site in the vicinity.

DDQ
$\mathrm{R}=\mathrm{PMB} \frac{20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}}{\mathrm{R}^{2}=\mathrm{H} \longleftarrow} \mathrm{e}$

Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031.

36A-18 Cytovaricin 12/7/01 8:18 AM

Romo, D.; Meyer, S. D.; Johnson, D. D.; Schreiber, S. L.

1. $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}, \mathrm{HCO}_{2} \mathrm{NH}_{4}, \mathrm{THF}$
2. Dess-Martin Periodinane
3. HF•pyr, pyridine, THF
J. Am. Chem. Soc. 1993, 115, 7906-7907
30% overall

[^0]: 6-03-Conform/cyclic-3 9/25/03 7:57 PM

[^1]: a. F. R. Jensen and C. H. Bushweller, Adv. Alicyclic Chem. 3, 140 (1971).
 b. N. L. Allinger and L. A. Freiberg, J. Org. Chem. 31, 804 (1966).
 c. J. A. Hirsch, Top Stereochem. 1, 199 (1967).
 d. E. L. Eliel and M. Manoharan, J. Org. Chem. 46, 1959 (1981).
 e. H. J. Schneider and V. Hoppen, J. Org. Chem. 43, 3866 (1978).

[^2]: 9-07-Bromination-1 10/2/03 3:41 PM

[^3]: 14-07 Oxy-Cope/probs 10/15/03 12:05 PM

[^4]: 15-13-cyclic enolates 10/19/03 6:00 PM

[^5]: 16-01-Cycloaddition intro-1 10/22/03 6:15 AM

[^6]: $\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
 $\mathrm{pKa}=24.4$

 O
 O
 $\mathrm{OH}-\mathrm{CH}_{2} \mathrm{SPh}$
 $\mathrm{pKa}=17.1$

[^7]: enolate
 see kinetic acidity handout for an

[^8]: Provide a rationalization of these results. Three-dimensional drawings are recommended.

[^9]: a \% ee detrmind by NMR analysis of (S)-MPTA ester of methyl ketone

[^10]: ${ }^{1}$) (a) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley, New York, 1979. (b) Fuhrhop, J.; Penzlin, G. Organic Synthesis: Concepts, Methods, Startimg Materials; Verlag Chemie, Weinheim, 1983. (c) Carruthers, W. Some Modern Methods of Organic Synthesis, 3nd ed.; Cambridge Univ. Press, Cambridge, 1987. (d) Organic Synthesis, The Disconnection Approach; Wiley, New York, 1982. (e) Payne, C. A.; Payne, L.B. How To Do An Organic Synthesis; Allyn and Bacon., Boston, 1969. (f) Ireland, R. E. Organic Synthesis, Prentice-Hall, Inc., Englewood Cliffs, 1969.
 ${ }^{2}$) (a) Corey, E. J. Pure Appl. Chem. 1967, 14, 19. (b) Corey, E. J. Quart. Rev. 1971, 25, 455.
 3) (a) Hendrickson, J. B. J. Am. Chem. Soc. 1971, 93, 6487. (b) Ugi, I; Gillespie, P. Angew. Chem. Int. Ed. 1971, 10, 914. (c) Corey, E. J.; Wipke, W. T.; Cramer, III, R. D.; Howe, W. J. J. Am. Chem. Soc. 1972, 94, 421. (d) Corey, E. J.; Cramer, III, R. D.; Howe, W. J. ibid. 1972, 94, 440, and earlier references cited therein. (e) Corey, E. J.; Howe, W. J.; Pensak, D. A. ibid. 1974, 96, 7724. (f) Blair, J.; Gasteiger, J.; Gillespie, C.; Gillespie, P. D.; Ugi, I. Tetrahedron 1974, 30, 1845. (g) Bersohn, M. J. Chem. Soc., Perkin I 1973, 1239.
 ${ }^{4}$) (a) Thakkar, A. J. Fortschritte Chem. Forschung 1973, 39, 3. (b) Dungundji, J.; Ugi, I. ibid. 1973, 39, 19. (c) Gelernter, H.; Sridharan, N. S.; Hart, A. J.; Yen, S. C.; Fowler, F. W.; Shue, J.-J. ibid. 1973, 41, 113.

[^11]: 6) (a) Lapworth, A. Mem. Proc. Manchester Lit. Phil. Soc. 1920, 64, 1. (b) Lapworth, A. J. Chem. Soc. 1922, 121, 416. (c) Lapworth, A. Chem. Ind. 1924, 43, 1294. (d) Lapworth, A. ibid. 1925, 44, 397. For an excellent review of Arthur Lapworth's contributions to chemistry see: Saltzman, M. J. Chem. Ed. 1972, 49, 750-753.
) (a) Vorländer, D. Chem. Ber. 1919, 52B, 263. (b) Stieglitz, J. J. Am. Chem. Soc. 1922, 44, 1293.
 ${ }_{9}^{8}$ See reference 3 c for an alternate classification scheme for functional groups.
 ${ }^{9}$) For an analysis of the relative importance of field and resonance components of substitutent effects see: Swain, C. G.; Lupton, Jr., E. C. J. Am. Chem. Soc. 1968, 90, 4328.
 ${ }^{10}$) March, J. Advanced Organic Chemistry, 4th ed.; Wiley-Interscience: New York, 1992; pp 507-512.
[^12]: 11) The symbol E was selected to denote electrophilic at the point of attachment to the carbon skeleton Unfortunately, the symbol N cannot be used to represent those FGs which are nucleophilic at the point of attachment since this is also the symbol for nitrogen. To avoid this conflict, the symbol G was chosen for this FG class designation.
[^13]: 12) Lapworth, A. Chemistry and Industry 1924, 43, 1294-1295.
[^14]: 13) (a) Henning, R.; Lehr, F.; Seebach, D. Helv. Chim. Acta 1976, 59, 2213-2217; (b) Seebach, D.; Henning, R.; Lehr, F.; Gonnermann J. Tetrahedron Lett. 1977, 1161-1164.

 14) Tamura, R.; Kamimura, A.; Ono, N. Synthesis 1991, 423-434.
 15) Pinnick, H. W.; Org. Reactions 1990, 38, 655-792.
 ${ }^{16}$) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T.; Chimia 1979, 33, 1-18.

[^15]: ${ }^{17}$) For a monograph on ring expansion reactions see: Hesse, M. Ring Enlargement in Organic Chemistry; VCH: New York, 1991.

[^16]: ${ }^{18}$) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1352-1364.
 19) For an excellent compilation of pKa data for organic functional groups in DMSO see: Bordwell, F. G. Acc. Chem. Res. 1988, 21 , 456-463.

[^17]: ${ }^{20}$) (a) Julia, M.; Guy-Rouault, Bull. Soc. Chim. Fr. 1967, 1141. (b) Campbell, R. V. M.; Crombie, L.; Findley, D. A. R.; King, R. W.; Pattenden, G.; Whiting, J. J. Chem. Soc., Perkin Trans. I 1975, 897.
 ${ }^{21}$) Arnould, D.; Chabardes, P. Farge, G.; Julia, M. Bull. Soc. Chim. Fr. 1985, 130.
 ${ }^{22}$ 2) Simpkins, N. S. Sulfones in Organic Synthesis, Pergamon Press, New York 1993.
 ${ }^{23}$) (a) Trost, B. M. Bull. Chem. Soc. Jpn. 1988, 61 , 107-124. (b) Magnus, P. D. Tetrahedron, 1977, 33, 2019-2045.
) (a) Brown, H. C. Boranes in Organic Chemistry, Cornell University Press, New York 1973. (b) Cragg, G. M. L. Organoboranes in Organic Synthesis, Marcel Dekker, New York, 1973
 ${ }^{25}$) (a) Kow, R.; Rathke, M. J. Am. Chem. Soc. 1973, 95, 2715. (b) Zweifel, G.; Fisher, R. P.; Horng, A. Synthesis 1973, 37. (c) Matteson, D. S. ibid. 1975, 147.
 ${ }_{27}^{26}$) Negishi, E.; Abramovitch, A.; Merrill, R. E. J. Chem. Soc., Chem. Commun. 1975, 138.
 27 For a recent citation on allylboron-based nucleophiles see: Wang, Z.; meng, X. J.; Kablaka, G. W. Tetrahedron Lett. 1991, 32, 5677-5680 and references cited therein.
 ${ }^{28}$) Marshall, J. A. Synthesis 1971, 229.
 ${ }^{29}$) (a) Brown, H. C.; Rhodes, S. P. J. Am. Chem. Soc. 1969, 2149, 2149. (b) Hawthorne, M. F.; Dupont, J. A. J. Am. Chem. Soc. 1958, 80, 5830.
 30) (a) Pelter, A.; Subrahmanyan, C.; Laub, R. J.; Gould, K. J.; Harrison, C. R. Tetrahedron Lett. 1975, 1633. (b) Pelter, A.; Harrison, C. R.; Kirkpatrick, D. ibid. 1973, 4491. (c) Pelter, A.; Harrison, C. R. J. Chem. Soc., Chem. Comm. 1974, 828. (d) Naruse, M.; Utimoto, K.; Nozaki, H. Tetrahedron 1974, 30, 3037.

[^18]: 34) Taylor, E. C.; McKillop, A. Acc. Chem. Res. 1970, 3, 338.
 ${ }^{35}$) Trost, B. M. Acc. Chem. Res. 1980, 13, 385-393.
 ${ }^{36}$) Ellis, J. E. J. Organomet. Chem. 1975, 86, 1.
 35) (a) Neuman, S. M.; Kochi, J. K. J. Org. Chem. 1975, 40, 599. (b) Normant, J. F. Synthesis 1972, 63. (c) Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9268. (d) Tamaki, A.; Magennis, S. A.; Kochi, J. K. ibid. 1973, 95, 6487.
[^19]: 38) (a) Curphey, T. J.; Kim, H. L. Tetrahedron Lett. 1968, 1441. (b) Keely, S. L.; Tahk, F. C. J. Am. Chem. Soc. 1968 , 90, 5584. (c) Stevens, R. V.; Wentland, M. P. ibid. 1968, 90, 5580; (d) Shamma, M.; Rodrigues, H. R. Tetrahedron 1968, 24, 6583.
[^20]: 39) The presence of a quaternary or bridgehead center along the construction path limits bond construction to those adjacent to the center.
[^21]: - use of cyclic ketones (cyclopentanone, cyclohexanone) result in moderate yield and diastereoselectivity, and up to 95% ee
 - enone products arise from a Mannich addition-elimination sequence

[^22]: Consonant difunctional relationships can be constructed from just the functions illustrated \& polar bond constructions.

[^23]: 33A-06-Sesquiterpenes 12/8/00 8:54 AM

