
1

F. Y. B. Sc.

(Computer Science)

Laboratory Course Work Book

Name

College Name

Roll No. Division

Academic Year

2

Introduction

1. About the work book

This workbook is intended to be used by F.Y.B.Sc (Computer Science) students for the two
Computer Science laboratory courses in their curriculum. In Computer Science, hands-on
laboratory experience is critical to the understanding of theoretical concepts studied in the theory
courses. This workbook provides the requisite background material as well as numerous
computing problems covering all difficulty levels.

The objectives of this book are
1) Defining clearly the scope of the course
2) Bringing uniformity in the way the course is conducted across different colleges
3) Continuous assessment of the course
4) Bring in variation and variety in the experiments carried out by different students in a

batch
5) Providing ready reference for students while working in the lab
6) Catering to the need of slow paced as well as fast paced learners

2. How to use this workbook

This workbook is mandatory for the completion of the laboratory course. It is a measure of the
performance of the student in the laboratory for the entire duration of the course.

2.1 Instructions to the students
Please read the following instructions carefully and follow them

1) You are expected to carry this book every time you come to the lab for computer science
practicals
2) A file should be maintained separately by each student which should contain the algorithms,
flowcharts, written answers, source code as well as the program output.
3) You should prepare yourself before hand for the Exercise by reading the material mentioned

under icon . Also go through the material given in ready reference icon .
4) If the self activity exercise or assessment work contains any blanks such as this , or

, get them filled by your instructor.

5) Instructor will specify which problems you are to solve by ticking box
6) Follow good programming practices like:

• Use appropriate file naming conventions

• Use meaningful variable names

• Use proper Indentation

• Use comments in the program

• Every program should contain in comments prgrammer’s name and date
7) You will be assessed for each exercise on a scale of 5

i) Not done 0
ii) Incomplete 1
iii) Late Complete 2

iv) Needs improvement 3
v) Complete 4
vi) Well Done 5

 Instruction to the Instructors

1) Explain the assignment and related concepts in around ten minutes using white board if
required or by demonstrating the software

3

2) Fill in the blanks with different values for each student

3) Choose appropriate problems to be solved by student by ticking box
4) Make sure that students follow the instruction as given above
5) After a student completes a specific set, the instructor has to verify the outputs and sign in the
provided space after the activity.
6) Ensure that students use good programming practices.
7) You should evaluate each assignment carried out by a student on a scale of 5 as specified
above by ticking appropriate box.
8) The value should also be entered on assignment completion page of the respective Lab course

 Instructions to the Lab administrator

You have to ensure that appropriate hardware and software is available to each student. The
operating system and software requirements on server side and also client side are as given
below
1) Server Side (Operating System)

a. * Fedora Core Linux
* Microsoft Windows Server 2003
b. Servers Side (software’s to be installed)
In Linux – C, C++, awk, shell, perl, postgresql/Mysql
In WinXP -- MSOffice

2). Client Side (Operating System)

a. * Red Hat Linux and Fedora Core
* Microsoft Windows XP
b. Client Side (software’s to be installed)
In Linux – C, C++, awk, shell, perl, postgresql/mysql
In WinXP -- MSOffice

The detail information about installation and configuring of the server and client are provided in
appendix A

3. Acknowledgements

The authors wish to express their gratitude to Dr. Narendra Jadhav, Vice Chancellor, University of
Pune, for his vision and guidance in bringing out this lab book, a first of its kind. Dr. Pandit
Vidyasagar, Director, Board of colleges and university department has played a pivotal role in
taking this project to completion. We are indebted to Dr. V. B. Gaikwad, Dean Science Faculty,
who extended his wholehearted support to this endeavor. Prof. Arun Gangarde, Chairperson,
Board of studies in Computer Science deserves a special mention for his untiring efforts during
the entire process.

We appreciate the efforts taken by Prof. Chitra Nagarkar , member, Board of studies in Computer
Science during initial phases of the project. We would like to acknowledge the role played by the
University authorities and the members of the Board of Studies in Computer Science.

Special thanks to Mr. Achyut Godbole, noted IT personality and renowned author who took a lot
of interest in this project.

Our heartfelt thanks to Dr. Sanjay Kadam, CDAC and Ms. Kishori Khadilkar, Patni Computer
Systems Ltd., for painstakingly reviewing the entire book and giving valuable inputs. Last but not
the least, we thank all the faculty members, who have been involved in this project and shared
their expertise.

4

Assignment Completion Sheet
Sr.

No.

Title of the Assignment Performed

 on

Submitted

on

Remark Marks

Obtained

A) Problem Solving and C programming.

1. To demonstrate use of data types ,simple

 operators & expressions.(errors and error handling)

2. To demonstrate decision making statements.

 (if , if –else, nested if, switch control statements).

3. To Demonstrate loop control statements.

 (while, do-while, for, nested looping structures).

4. To demonstrate use of functions.

 (user defined, standard library functions & recursion).

5. To demonstrate use of Arrays.(1-D,2-D arrays).

B) Database Management System.

1. To create simple tables using primary key constraint.

2. To create more than one tables with referential key

 Constraint, PK constraint.

3. To create one or more tables with General constraints.(UNIQUE,

NOT NULL,CHECK).

4. To query tables using DROP,ALTER statements on

tables.(Use of simple forms of INSERT,UPDATE,DELETE

Statements).

5. To query the tables using the simple forms of select

statements

6. To query the table, using SET operations.

(UNION,INTERSECT).

7. To query tables using nested queries.(Use of EXCEPT,

EXIST,NOT EXISTS,ALL clauses)

8. To create view.

Practical Incharge: 1) HoD

 2)

5

Section I

Using basic Linux commands

You should read following topics before starting this exercise
1. UNIX and LINUX operating system
2. cat with options, ls with options, mkdir,cd, rmdir, cp, mv, cal, pwd, wc, grep with options, I/O
redirection using >,>>,<,| etc.

About UNIX and LINUX
The success story of UNIX starts with the failure of the MULTICS project. The project failed and
the powerful GE-645 machine was withdrawn by GE. Two scientists at Bell Labs, Ken Thompson
and Dennis Ritchie, who were part of the MULTICS team, continued to work and succeeded and
named their Operating system UNIX, a pun on MULTICS.
The machine available at Bell Labs was a DEC PDP-7 with only 64 k memory while the
Operating system they were developing was meant for a larger machine. The problematic
situation was handled with an innovative solution. They developed most part of the software in a
higher level language, C, which helped them in porting their Operating system from one hardware
to another.
With the growing popularity of UNIX, it was available on a variety of machines, from personal
computers to mainframes. The most popular amongst them was UNIX System V from AT&T.
Each big player in the market came up with their own versions of UNIX. IBM had its own version
of UNIX called AIX, which was used on high-end servers. Sun’s version of UNIX called Solaris
was used on Sun workstations. Novell marketed UnixWare along with Netware, its Network
operating system.
LINUX is a version of UNIX , which though it resembles UNIX in looks and feels but differs from
other versions in the way it was developed and distributed. In contrast to large proprietary UNIX
versions, Linux was developed by Linus Torvalds, a Finnish student. He made the source code
available and invited partners via the internet in his development effort. He got professional help
from all quarters and Linux evolved rapidly. It was made freely available for everyone to use.
Linux that was initially meant for Personal computers is now available for a variety of hardware
platforms, from mainframes to handheld computers

Linux supports multiple users. Every user need to have an account in order to use the system.
One of the users called system administrator (root) is given the charge of creating user accounts
and managing the system normally works on the “#” prompt.

You will be given a username and password, using which you can login into Linux operating
system. For computer users, the operating system provides a user-command interface that is
easy to use, usually called the Shell. The user can type commands at the shell prompt and get
the services of the operating system. Linux operating system shell has the “$” prompt.

You can open a system terminal that gives you a $ prompt where you can type in various shell
commands.

LINUX system will usually offer a variety of shell types:

• sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX-related
environments. It is available on every Linux system for compatibility with UNIX programs.

• bash or Bourne Again shell: the standard GNU shell, is the standard shell for common users
on Linux and is a superset of the Bourne shell.

• csh or C shell: the syntax of this shell resembles that of the C programming language.

• tcsh or Turbo C shell: a superset of the common C shell, enhancing user-friendliness and

6

speed.

• ksh or the Korn shell: A superset of the Bourne shell

All LINUX commands are case sensitive single words optionally having arguments. One of the
argument is options which starts with “–“ sign immediately followed by one or more characters
indicating option. The wild-cards or metacharacters “*” and “?” have similar meaning as in
DOS.The “*” character matches any number of characters while”?” matches a single character.
The backquote “ ` ” is another metacharacter. Shell executes the command enclosed in
backquote in its place. Any wild-card is escaped with a \ character to be treated as it is

Shell Variables

There are number of predefined shell variables called system or environment variables which are
set by the system when the system boots up. Some important system variables are

PATH It contains set of paths where the system searches for
an executable file

HOME It is the home or login directory where the user is placed
initially

PS1 It is the primary shell prompt which is usually $

PS2 It is the secondary shell prompt which is usually >

Linux Files and directories

Linux defines three main types of files. Linux treats all devices also as files.
Ordinary or regular file A file containing data or program

Directory file A file containing the list of filenames and their unique
identifiers

Special or device file A file assigned to a device attached to a system

Linux files may or may not have extensions. A file can have any number of dots in its name. Linux
file names are case sensitive. The root directory represented by / is the topmost directory file
containing number of subdirectories which in turn contains subdirectories and files

Shell Commands

The following is the list of shell commands

Command Used for Example

date Displays both date and time $date

 The command can be used by the
system administrator to change date
and time.

Format specifiers can be used as
arguments

%m month in integer format

 %h Name of the month

 %d Day of the month

 %y Last two digits of the year

 %H hours

 %M Minutes

 %S Seconds

 $date +%H

 $date +”%h %m”

cal Displays the calendar $cal 8 2007

Displays the calendar for the month
august of year 2007

$cal aug

Displays the calendar for the month
august of current year

7

cat Displays the contents of the files used
with the command

$cat

Displays immediately what is typed
when you hit enter key

$ cat > abc.txt

Whatever number of lines typed till
you press ^D are placed in abc.txt file

$cat abc.txt

Displays contents of file abc.txt

ls Displays the contents of current
directory. A single dot (.) stands for the
current directory while a double dot(..)
indicates the parent directory

$ls

lists all files in the current directory

$ls –a

Lists also the hidden files

$ls –l

Lists the permission information
along with other information such as
date of last modification, size in
blocks etc. The first column of the
output exhibits the file type and
permissions.

File type: -, d, b respectively for
ordinary, directory and block device
file.

Permissions are of the form r, w, x, -
i.e. read, write, execute and none
respectively.

There are three groups of rwx.
Owner, group and public.

mkdir Creates specified directory in the
current directory, fails if a file or
directory by that name is already
present or user is not having
permissions to create a directory

$mkdir bin

Creates bin directory

$mkdir dir1 dir2 dir3

Creates three directories dir1, dir2
and dir3

cd Switches to specified directory, fails if
user is not having permissions to
access the directory

$cd /

Switches to root directory

$cd

Changes to HOME directory

rmdir Removes specified directory fails if the
directory is not empty

$rmdir dir1

Removes dir1 directory

$rmdir dir2 dir3

Removes dir2 and dir3 directories

cp Creates an exact copy of a file with a
different name

$cp abc.txt xyz.txt

Copies abc.txt into a new file named
xyz.txt

$cp abc.txt bin

Copies abc.txt into a new file with the
same name in bin directory

mv It renames a file or moves a group of
files to a different directory

$mv xyz.txt pqr

rm Deletes specified file. It can be used $rm pqr

 with wildcards * and ? as in DOS, to
delete all files of a specified type

8

pwd Displays the path of your present
working directory

$pwd

displays the directory in which you
are currently working

wc Counts words, lines and characters or
bytes

$wc –c abc.txt

Displays the number of bytes in the
file abc.txt

$wc –l abc.txt

Displays the number of lines in the
file abc.txt

$wc –w abc.txt

Displays the number of words in the
file abc.txt

$wc abc.txt

Displays the number of bytes, words
and lines in the file abc.txt

grep The syntax is

grep options pattern filename

It displays the lines in the file in which
the pattern is found

$grep Agarwal names.txt

Displays lines in the names.txt where
the string “Agarwal” is present

$grep –n Agarwal names.txt

Displays lines along with line
numbers in the names.txt where the
string “Agarwal” is present

man Offers help on the shell command $man ls

Shows entire manual page of Linux
manual pertaining to ls command

passwd It is used to change the password $passwd

When invoked by an ordinary user
asks for the old password and then
demands typing and retyping of new
password

#passwd user1

Used by administrator to change the
passwd of user1

echo Displays its arguments compressing the
spaces. To preserve the spaces the
words should be placed within quotes

$echo $HOME

$echo $PATH

$echo eats up the spaces

$echo The date to-day is `date`

$echo You can multiply using *

who Displays list of users currently looged in $who

tail Displays last lines of the file $tail -3 abc.txt

Displays last three lines of file abc.txt

head Displays top lines of the file $head -5 abc.txt

Displays top five lines of file abc.txt

Redirection and pipes
The most of the above commands take some input, do some processing and give the output or
give error message in case there is some error. For example the cat command is usually given as
$cat filename. Here cat command takes input from file named filename and gives output on the
console. If the file is not present then it gives appropriate error message. By default the cat
command writes the output or error message to the console. If we just type cat command without

9

any filename, it will wait for user to type characters that means, it by default is expecting input
also from console. The default files where a command reads its input, sends its output and error
messages are called standard input(stdin), standard output(stdout) and standard error(stderr)
respectively.

By default all the above three files are attached with the terminal on which the command is
executing. Therefore, every command, by default, takes its input from the keyboard and sends its
output and error messages to the display screen. Redirection is used to detach default file from
the command and attach some specific file. Pipes allow you to send output of one command as
input to the other command. The commands that are connected via a pipe are called filters

Command Symbol Description Format & Examples

Input Redirection < It detaches the keyboard from
the standard input of
command and attaches
specific file

$cat < abc.txt
Takes its input from abc.txt
and the output by default is
on console. The effect is
same as $cat tempfile

Output Redirection > It detaches the console from
the standard output of
command and attaches
specific file

$cat > file1
Takes its input from
keyboard by default and
writes the output to file1,
effectively whatever typed
at the keyboard goes into
tempfile
$cat file1 abc.txt > file2
The contents of file1 and
abc.txt will be
concatenated and send to
file2
$cat file1 > /dev/lp0
The contents of file file1
will be sent to printer
instead of console

Output Redirection
without overwriting

>> In output redirection the file is
cleared before writing to it.
The >> is used so that output
is appended and not
overwritten

$cat file1 > file1
The file1 contents will be
cleared
$cat file2 >> file2
The file2 will have its
contents appended to it

Pipe | The pipe character | is used
between two commands so
that output of first command
is send as input to the second
command

$ ls –l | grep “abc”
Displays the line in the
output of ls –l containing
pattern abc

Execute all the commands given in the example column of all the tables above in the same order
and understand the usage of the commands

Signature of the instructor Date / /

10

/ /

Set A

1 Using cat command, create a file named ‘names.txt’ containing at least ten names and
addresses of your friends (firstname , surname, street name, cityname). Type the following
commands and explain what the command is used for and give the output of the command

Command Explanation Output

wc –lw names.txt

mkdir ass1 ass2

cp names.txt ass2

cp names.txt list

tail -3 list

rmdir ass2

cd ass2

rm names.txt

cd

pwd

ls -l

mv list list.txt

grep _ names.txt

2 Using cat command create a file named college.txt containing at least ten names and location

of colleges (collegename, place , pincode). Type the following commands and explain what the
command is used for and give the output of the command

Command Explanation Output

mkdir s1 s2 s3 s4

cp college.txt coll

cp college.txt coll s1

head -5 coll

grep -n college.txt

rmdir s3 s4

cd s1

rm coll

pwd

cd

mv coll xy.txt

rm *.txt

ls –a

Signature of the instructor Date

Set B
Give the commands to perform the following actions and give the output

1 List the last three lines of the file

2 Create a file named containing abc.txt appended to itself

3 Display the current month(string) and year

4 Display the home directory followed by path

5 Write the contents of directory to a file

6 Append at the end of a file no of lines and the name of the file

7 Create a file named Manualcp containing manual for cp command

Signature of the instructor Date

/ /

11

Set C
Give the commands to perform the following actions and verify by executing the command

1 Display the number of lines containg pattern “_ “ in first five lines of the file _

2 Display the calendar of current month

3 Store the number of users logged-in in a file __

4 Create a file containing first three and last three lines of a file.

5 Create a file containing word count of each and every file in the current directory plus a total
at the end.

6 Create a single file containing the data from all .txt files in the current directory.

Signature of the instructor Date

/ /

12

Exercise 1 Start Date

To demonstrate the use of data types, simple operators and expressions

You should read following topics before starting this exercise

1. Different basic data types in C and rules of declaring variables in C

2. Different operators and operator symbols in C

3. How to construct expressions in C, operator precedence

4. Problem solving steps- writing algorithms and flowcharts

1. Data type Table

Data Data
Format

C Data
Type

C Variable
declaration

Input Statement Output
statement

quantity
month
credit-
card
number

Numeric int
Short
int
long int

int quantity;
short month;
long ccno;

scanf(“%d”,&quantity);
scanf(“%d”,&month);
scanf(“%ld”, &ccno);

printf(“The
quantity is %d”,
quantity);
printf(“The credit
card number is
%ld, ccno);

price



real float
double

float price;
const double
pi=3.141593;

scanf(“%f”,&price); printf(“The price is
%5.2f”, price);

grade character char grade; scanf(“%c”,&grade) printf(“The grade
is %c”,grade);

2. Expression Examples

Expression C expression

Increment by a 3 a = a + 3

Decrement b by 1 b = b-1 or b--

2 a2 + 5 b/2 2*a*a + 5*b/2

7/13(x-5) (float)7/13*(x-5)

5% of 56 (float)5/100*56

n is between 12 to 70 n>=12 && n<=70

r2h Pi*r*r*h

n is not divisible by 7 n % 7 != 0

n is even n%2== 0

ch is an alphabet ch>=’A’ && ch<=’Z’ || ch>=’a’ && ch<=’z’

Note: The operators in the above expressions will be executed according to precedence and
associativity rules of operators.

3. Sample program- to calculate and print simple interest after accepting principal sum, number of
years and rate of interest.

/ /

13

Program development steps

Step 1 : Writing
the Algorithm

Step 2 : Draw the
flowchart

Step 3 : Writing Program

1. Start
2. Accept

principal
sum, rate of
interest and
number of
years

3. Compute
Simple
interest

4. Output
Simple
Interest

5. Stop

start

Read ,principal
sum, rate and
no of years

Compute
Simple interest

Print Simple
Interest

stop

/* Program to calculate simple interest */
#include <stdio.h>
main()
{ /* variable declarations */
float amount, rateOfInterest, simpleInterest;
int noOfYears;
/* prompting and accepting input */
printf(“Give the Principal Sum”);
scanf(“%f”,&amount);
printf(“Give the Rate of Interest”);
scanf(“%f”,&rateOfInterest);
printf(“Give the Number of years”);
scanf(“%d”,&noOfYears);

 /* Compute the simple Interest*/
simpleInterest=amount*noOfYears*rateOfInterest /
100;

/* Print the result*/
printf(“The simple Interest on amount %7.2f for %d
years at the rate %4.2f is %6.2f”, amount,
noOfYears, rateOfInterest, simpleInterest);
}

1. Type the sample program given above. Execute it for the different values as given below and
fill the last column from the output given by the program.
Follow the following guidelines
a. At $ prompt type vi followed by filename. The filename should have .c as extension for
example
$vi pnr.c
b. Type the sample program given above using vi commands and save it
Compile the program using cc compiler available in Linux
$cc pnr.c
It will give errors if any or it will give back the $ prompt if there are no errors

A executable file a.out is created by the compiler in current directory. The program can be
executed by typing name of the file as follows giving the path.
$./a.out
Alternatively the executable file can be given name by using –o option while compiling as
follows
$cc pnr.c –o pnrexec
$./pnrexec

The executable file by specified name will be created. Note that you have to specify the path
of pnrexec as ./pnrexec , i. e., pnrexec in current (. Stands for current directory) directory
otherwise it looks for program by that name in the path specified for executable programs

Sr. No Principal sum No of years Rate of interest Simple Interest
1 2000 3

2 4500 4.5

3 _ 6 8.3

14

2. If you have not typed the program correctly,i.e., if there are syntactical errors in the program,
compiler will pinpoint the errors committed and are called compile-time errors. C compiler
gives line no along with error messages when it detects grammatical or syntactical errors in
the program. These messages are not so straightforward and you may find it difficult to
identify the error. You may miss a semicolon at the end of a statement and the compiler
points out error in the next statement. You may miss just a closing ‘*/’ of a comment and it will
show errors in several statements following it.
Another type of error which is quite common is the run-time or execution error. You are able
to compile the program successfully but you get run-time messages or garbage output when
you execute the program.
Modify the above program to introduce the following changes, compile, write the error
messages along with line numbers ,remove the error execute and indicate the type of error
whether it was compile-time or execution time error.

Modified line Error messages and line
numbers

Type of error

/* Program to calculate simple
interest

int noofYears;

scanf(“%f”,&amount)

scanf(“%f”, amount);

scanf(“%d”, noOfYears);

Signature of the instructor Date

Set A . Apply all the three program development steps for the following examples.

1. Accept dimensions of a cylinder and print the surface area and volume (Hint: surface area =

2r2 + 2rh, volume = r2h)

2. Accept temperatures in Fahrenheit (F) and print it in Celsius(C) and Kelvin (K) (Hint: C=5/9(F-
32), K = C + 273.15)

3. Accept initial velocity (u), acceleration (a) and time (t). Print the final velocity (v) and the
distance (s) travelled. (Hint: v = u + at, s = u + at2)

4. Accept inner and outer radius of a ring and print the perimeter and area of the ring (Hint:

perimeter = 2  (a+b) , area =  (a2-b2))

5. Accept two numbers and print arithmetic and harmonic mean of the two numbers (Hint: AM=
(a+b)/2 , HM = ab/(a+b))

6. Accept three dimensions length (l), breadth(b) and height(h) of a cuboid and print surface
area and volume (Hint : surface area=2(lb+lh+bh), volume = lbh)

7. Accept a character from the keyboard and display its previous and next character in order.
Ex. If the character entered is ‘d’, display “The previous character is c”, “The next character is e”.

8. Accept a character from the user and display its ASCII value.

Signature of the instructor Date

Set B . Apply all the three program development steps for the following examples.

/ /

/ /

15

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

1. Accept the x and y coordinates of two points and compute the distance between the two
points.

2. Accept two integers from the user and interchange them. Display the interchanged numbers.

3. A cashier has currency notes of denomination 1, 5 and 10. Accept the amount to be
withdrawn from the user and print the total number of currency notes of each denomination the
cashier will have to give.

Signature of the instructor Date

Set C. Write a program to solve the following problems

1. Consider a room having one door and two windows both of the same size. Accept
dimensions of the room, door and window. Print the area to be painted (interior walls) and area to
be whitewashed (roof).

2. The basic salary of an employee is decided at the time of employment, which may be
different for different employees. Apart from basic, employee gets 10% of basic as house rent,
30% of basic as dearness allowance. A professional tax of 5% of basic is deducted from salary.
Accept the employee id and basic salary for an employee and output the take home salary of the
employee.

.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

16

Exercise 2-a Start Date

To demonstrate use of decision making statements such as if and if-else.

You should read following topics before starting this exercise

1. Different types of decision-making statements available in C.

2. Syntax for these statements.

During problem solving, we come across situations when we have to choose one of the
alternative paths depending upon the result of some condition. Condition is an expression
evaluating to true or false. This is known as the Branching or decision-making statement. Several
forms of If and else constructs are used in C to support decision-making.

1) if statements
2) if – else
3) Nested if

Note: If there are more than one statement in the if or else part, they have to be enclosed in { }
braces

Sr.
No

Statement
Syntax

Flowchart Example

1. if statement

if (condition)
{
statement;

}

If False

condition ?

True

statement

if(n > 0)
printf(“Number

is positive”);

 New statement

2. if - else
statement

if (condition)
{

statement;
}
else
{

statement;

}

True If False

condition ?

statement statement

New statement

if(n % 2 == 0)
printf(“Even”);

else
printf(“Odd”);

/ /

17

3. Nested if

if (condition)
{

if (condition)

{ statement;}
else
{ statement;}

}
else

{
if (condition)

{ statement; }
else
{ statement; }

}

False

b>= c

False

c is b is
max max

a>=b

True

False

c is
max

True

a>=c
True

a is
max

If (a >= b)
{ if (a >= c)

printf(“ %d is
maximum”,a);
else

printf(“ %d is
maximum”,c);
}
else
{

if (b >= c)
printf(“ %d is

maximum”,b);
else

printf(“ %d is
maximum”,c);
}

4. Sample program- to check whether a number is within range.

Step 1: Writing the
Algorithm

Step 2 : Draw the flowchart Step 3 : Writing Program

1. Start
2. Accept the number
3. Check if number is
within range
4. if true

print “Number is
within range “
otherwise

print “number is out
of range”.
5. Stop

start

Read
number

False

If(n in range)

True

Number is
within range

Number is out

of range

stop

/* Program to check range */

#include <stdio.h>
main()
{ /* variable declarations */
int n;
int llimit=50, ulimit = 100;
/* prompting and accepting input */
printf(“Enter the number”);
scanf(“%d”,&n);
if(n>=llimit && n <= ulimit)

printf(“Number is within range”);
else

printf(“Number is out of range”);

}

18

1. Execute the following program for five different values and fill in the adjoining table

main()
{
int n;
printf(“Enter no.”);
scanf(“%d”,&n);
if(n% ==0)

printf(“divisible);
else

printf(“not divisible”);
}

 n output

2. Type the above sample program 4 and execute it for the following values.

n Output message

50

100

65

3. Using the sample code 3 above write the complete program to find the maximum of three

numbers and execute it for different set of values.

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set A: Apply all the three program development steps for the following examples.

1. Write a program to accept an integer and check if it is even or odd.

2. Write a program to accept three numbers and check whether the first is between the other
two numbers. Ex: Input 20 10 30. Output: 20 is between 10 and 30

3. Accept a character as input and check whether the character is a digit. (Check if it is in the
range ‘0’ to ‘9’ both inclusive)

4. Write a program to accept a number and check if it is divisible by 5 and 7.

5. Write a program, which accepts annual basic salary of an employee and calculates and
displays the Income tax as per the following rules.

Basic: < 1,50,000 Tax = 0

1,50,000 to 3,00,000 Tax = 20%

> 3,00,000 Tax = 30%

6. Accept a lowercase character from the user and check whether the character is a vowel or
consonant. (Hint: a,e,i,o,u are vowels)

Signature of the instructor Date / /

/ /

19

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Set B: Apply all the three program development steps for the following examples.

1. Write a program to check whether given character is a digit or a character in lowercase or
uppercase alphabet. (Hint ASCII value of digit is between 48 to 58 and Lowercase characters
have ASCII values in the range of 97 to122, uppercase is between 65 and 90)

2. Accept the time as hour, minute and seconds and check whether the time is valid. (Hint:
0<=hour<24, 0<=minute <60, 0<=second <60)

3. Accept any year as input through the keyboard. Write a program to check whether the year is
a leap year or not. (Hint leap year is divisible by 4 and not by 100 or divisible by 400)

4. Accept three sides of triangle as input, and print whether the triangle is valid or not. (Hint:
The triangle is valid if the sum of each of the two sides is greater than the third side).

5. Accept the x and y coordinate of a point and find the quadrant in which the point lies.

6. Write a program to calculate the roots of a quadratic equation. Consider all possible cases.

7. Accept the cost price and selling price from the keyboard. Find out if the seller has made a
profit or loss and display how much profit or loss has been made.

Signature of the instructor Date

Set C: Write programs to solve the following problems

1. Write a program to accept marks for three subjects and find the total marks secured ,

average and also display the class obtained. (Class I – above %, class II – % to _%,
pass class – _% to _% and fail otherwise)

2. Write a program to accept quantity and rate for three items, compute the total sales amount,
Also compute and print the discount as follows: (amount > – 20% discount, amount between
 to _ _ -- 15% discount, amount between – to _ -- 8 % discount)

3. A library charges a fine for every book returned late. Accept the number of days the member
is late, compute and print the fine as follows:(less than five days Rs fine, for 6 to 10 days Rs.
 fine and above 10 days Rs. _ fine)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

20

Exercise 2-b Start Date

To demonstrate decision making statements (switch case)

You should read following topics before starting this exercise

1. Different types of decision-making statements available in C.

2. Syntax for switch case statements.

The control statement that allows us to make a decision from the number of choices is called a
switch-case statement. It is a multi-way decision making statement.

1. Usage of switch statement

Statement Syntax Flowchart Example

switch(expression)
{
case value1: block1;

break;
case value2: block2;

break;
.
.
.
default : default block;

break;
}

start

True

case 1 Block 1

False

True

case 2 Block 2

False

True
case 3 Block 3

False

True
case 4 Block 4

False

Default Block

stop

switch (color)
{

case ’r’ :
case ’R’ :
printf (“RED”);
break;
case ’g’ :
case ’G’ :
printf (“GREEN”);
break;
case ’b’ :
case ’B’ :
printf (“BLUE”);
break;
default :
printf (“INVALID

COLOR”);
}

/ /

21

2. The switch statement is used in writing menu driven programs where a menu displays several
options and the user gives the choice by typing a character or number. A Sample program to
display the selected option from a menu is given below.

Step 1:
Writing the
Algorithm

Step 2: Draw the flowchart Step 3: Writing Program

1. Start
2. Display the
menu options
3. Read choice
4. Execute

statement
block
depending
on choice

5. Stop

start

Display
Options

Read choice

True
case 1 Statement 1

False

True

case 2 Statement 2

False

True

case 3 Statement 3

False True

Default statement

stop

/* Program using switch case and
menu */

#include <stdio.h>
main()
{ /* variable declarations */
int choice;
/* Displaying the Menu */
printf(“\n 1. Option 1\n”);
printf(“ 2. Option 2\n”);
printf(“ 3. Option 3\n”);
printf(“Enter your choice”);
scanf(“%d”,&choice);
switch(choice)
{
case 1:
printf(“Option 1 is selected”);
break;

case 2:
printf(“Option 2 is selected”);
break;

case 3:
printf(“Option 3 is selected”);
break;

default:
printf(“Invalid choice”);

}
}

1. Write the program that accepts a char–type variable called color and displays appropriate
message using the sample code 1 above. Execute the program for various character values and
fill in the following table. Modify the program to include all rainbow colours

Input character Output Message

V

I

B

G

R

Signature of the instructor Date / /

22

Set A: Apply all the three program development steps for the following examples.

1. Accept a single digit from the user and display it in words. For example, if digit entered is 9,

display Nine.

2. Write a program, which accepts two integers and an operator as a character (+ - * /),

performs the corresponding operation and displays the result.

3. Accept two numbers in variables x and y from the user and perform the following operations

Options Actions

1. Equality Check if x is equal to y

2. Less Than Check if x is less than y

3. Quotient and Remainder Divide x by y and display the quotient and remainder

4. Range Accept a number and check if it lies between x and y
(both inclusive)

5. Swap Interchange x and y

Signature of the instructor Date

Set B: Apply all the three program development steps for the following examples.

1. Accept radius from the user and write a program having menu with the following options and

corresponding actions

Options Actions

1. Area of Circle Compute area of circle and print

2. Circumference of Circle Compute Circumference of circle and print

3. Volume of Sphere Compute Volume of Sphere and print

2. Write a program having a menu with the following options and corresponding actions

Options Actions

1. Area of square Accept length ,Compute area of square and print

2. Area of Rectangle Accept length and breadth, Compute area of rectangle
and print

3. Area of triangle Accept base and height , Compute area of triangle and
print

Signature of the instructor Date / /

/ /

23

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Set C: Write a program to solve the following problems

1. Accept the three positive integers for date from the user (day, month and year) and check

whether the date is valid or invalid. Run your program for the following dates and fill the table.
(Hint: For valid date 1<=month<=12,1<= day <=no-of-days where no-of-days is 30 in case of
months 4, 6,9 and 11. 31 in case of months 1,3,5,7,8,10 and 12. In case of month 2 no-of-days is
28 or 29 depending on year is leap or not)

Date Output

12-10-1984

32-10-1920

10-13-1984

29-2-1984

29-2-2003

29-2-1900

2. Write a program having menu that has three options - add, subtract or multiply two fractions.

The two fractions and the options are taken as input and the result is displayed as output. Each
fraction is read as two integers, numerator and denominator.

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

24

Exercise 3-a Start Date

To demonstrate use of simple loops.

You should read following topics before starting this exercise

1. Different types of loop structures in C.

2. Syntax and usage of these statements.

We need to perform certain actions repeatedly for a fixed number of times or till some condition
holds true. These repetitive operations are done using loop control statements. The types of loop
structures supported in C are

1. while statement
2. do-while statement
3. for statement

Sr.
No

Statement Syntax Flowchart Example

1. while statement

while (condition)
{

statement 1;
statement 2;

.

.
}

Test

Condition

False

True

Loop Body

/* accept a number*/
scanf(“%d”, &n);
/* if not a single digit */
while (n > 9)
{
/* remove last digit
n = n /10;

}

2. do-while statement

do
{

statement 1;
statement 2;
.
.

} while (condition);

Loop Body

True

Test

Condition

False

/*initialize sum*/
sum =0;
do
{/* Get a number */
printf(“ give number”};
scanf(“%d”,&n);
/* add number to sum*/
sum=sum+n;
} while (n>0);
printf (“sum is %d”, sum);

/ /

25

3. for statement

for(expr1; expr2; expr3)
{
statement 1

.

.
}
expr1 = initialization
expression
expr2 = loop condition
expr3 = alteration
expression which alters
the loop variable

expr1

False

Test

expr2

True

Loop Body

Expr3

/* display first 10 multiples
of 2 */
for(i=1; i <= 10; i++)
{

printf (“2 X %d = %d\n”, i,
2*i);
}

Note: Usually the for loop is used when the statements have to executed for a fixed number of
times. The while loop is used when the statements have to be executed as long as some
condition is true and the do-while loop is used when we want to execute statements atleast once
(example: menu driven programs)

3. Sample program- to print sum of 1+2+3+…..n.

Step 1: Writing
the Algorithm

Step 2: Draw the flowchart Step 3: Writing Program

1. Start
2. Initialize sum to
0.
3. Accept n.
4. Compute
sum=sum+n
5. Decrement n by
1
6. if n > 0

go to step 4
7. Display value of
sum.
8. Stop

start

Sum = 0

Read n

Compute
Sum=sum+n

n>0 True

False

Print value

of sum

stop

/* Program to calculate sum of
numbers */

#include <stdio.h>
main()
{ /* variable declarations */
int sum = 0, n;
printf(“enter the value of n : “);
scanf(“%d”,&n);
while (n>0)
{
sum = sum + n;
n--;

}
printf(“\n The sum of numbers is
%d”, sum);
}

26

4. Sample program- To read characters till EOF (Ctrl+Z) and count the total number of characters
entered.

Step 1 : Writing
the Algorithm

Step 2 : Draw the flowchart Step 3 : Writing Program

1. Start
2. Initialize count
to 0.
3. Accept ch.
4. If ch !=EOF

Count = count
+1

Else
Go to step 6

5. Go to step 3
7. Display value of
sum.
8. Stop

start

count = 0

Read ch

True
Ch=EOF

False

Count = count+1

Print count

stop

/* Program to count number of characters
*/

#include <stdio.h>
main()
{

char ch;
int count=0;
while((ch=getchar())!=EOF)

count++;

printf(“Total characters = %d”, count);
}

1. Write a program that accepts a number and prints its first digit. Refer sample code 1 given
above. Execute the program for different values.

2. Write a program that accepts numbers continuously as long as the number is positive and
prints the sum of the numbers read. Refer sample code 2 given above. Execute the program for
different values.

3. Write a program to accept n and display its multiplication table. Refer to sample code 3 given
above.

4. Type the sample program to print sum of first n numbers and execute the program for
different values of n.

5. Write a program to accept characters till the user enters EOF and count number of times ‘a’
is entered. Refer to sample program 5 given above.

Signature of the instructor Date / /

27

Set A . Apply all the three program development steps for the following examples.

1. Write a program to accept an integer n and display all even numbers upto n.

2. Accept two integers x and y and calculate the sum of all integers between x and y (both
inclusive)

3. Write a program to accept two integers x and n and compute xn

4. Write a program to accept an integer and check if it is prime or not.

5. Write a program to accept an integer and count the number of digits in the number.

6. Write a program to accept an integer and reverse the number. Example: Input: 546, Output
645.

7. Write a program to accept a character, an integer n and display the next n characters.

Signature of the instructor Date

Set B. Apply all the three program development steps for the following examples.

1. Write a program to display the first n Fibonacci numbers. (1 1 2 3 5 ……)

2. Write a program to accept real number x and integer n and calculate the sum of first n terms
of the series x+ 3x+5x+7x+…

3. Write a program to accept real number x and integer n and calculate the sum of first n terms

1
of the series

x

2 3
+

x2
+

x3
+ ……

4. Write a program to accept characters till the user enters EOF and count number of alphabets
and digits entered. Refer to sample program 5 given above.

5. Write a program, which accepts a number n and displays each digit in words. Example: 6702
Output = Six-Seven-Zero-Two. (Hint: Reverse the number and use a switch statement)

Signature of the instructor Date

Set C. Write C programs to solve the following problems

1. Write a program to accept characters from the user till the user enters * and count the

number of characters, words and lines entered by the user. (Hint: Use a flag to count words.
Consider delimiters like \n \t , ; . and space for counting words)

2. Write a program which accepts a number and checks if the number is a palindrome (Hint

number = reverse of number)
Example: number = 3472 Output: It is not a palindrome

number = 262, Output : It is a palindrome

3. A train leaves station A at 4.00 a.m and travels at 80kmph. After every 30 minutes, it reaches

a station where it halts for 10 minutes. It reaches its final destination B at 1.00 p.m. Display a
table showing its arrival and departure time at every intermediate station. Also calculate the total
distance between A and B.

/ /

/ /

28

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

4. A task takes 4 ½ hours to complete. Two workers, A and B start working on it and take turns
alternately. A works for 25 minutes at a time and is paid Rs 50, B works for 75 minutes at a time
and is paid Rs. 150. Display the total number of turns taken by A and B, calculate their total
amounts and also the total cost of the task.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

29

Exercise3-b Start Date

To demonstrate use of nested loops

In the previous exercise, you used while, do-while and for loops. You should read following topics
before starting this exercise

1. Different types of loop structures in C.

2. Syntax for these statements.

3. Usage of each loop structure

Nested loop means a loop that is contained within another loop. Nesting can be done upto any
levels. However the inner loop has to be completely enclosed in the outer loop. No overlapping of
loops is allowed.

Sr.
No

Format Sample Program

1. Nested for loop /* Program to display triangle of numbers*/

for(exp1; exp2 ; exp3) #include <stdio.h>

 { …………………… void main()
 for(exp11; exp12 ; exp13) {
 { …………………… int n , line_number , number;
 } printf(“How many lines: ”);
 ……………………. scanf(“%d”,&n);
 } for(line_number =1 ;line_number <=n;
 line_number++)
 {
 for(number = 1; number <= line_number;
 number++)
 printf (“%d\t”, number);
 printf (“\n”);
 }
 }

2. Nested while loop / do while loop /* Program to calculate sum of digits till
 sum is a single digit number */
 while(condition1)

 { …………………… #include <stdio.h>
 while(condition2) void main()
 { …………………… {
 } int n , sum;
 ……………………. printf(“Give any number ”);
 } scanf(“%d”,&n);
 do
 do {
 { …………………… sum =0;
 while(condition1) printf(“%d --->”,n);
 { ……………….. while (n>0)
 } { sum +=n%10;

/ /

30

 ……………….
} while (condition2);

n= n/10;
}

n=sum;
} while(n >9);
printf (“ %d” , n);
}

Note: It is possible to nest any loop within another. For example, we can have a for loop inside a
while or do while or a while loop inside a for.

1. The Sample program 1 displays n lines of the following triangle. Type the program and
execute it for different values of n.

1
1 2

1 2 3
1 2 3 4

2. . Modify the sample program 1 to display n lines of the Floyd’s triangle as follows (here n=4).

1
2 3

4 5 6
7 8 9 10

3. The sample program 2 computes the sum of digits of a number and the process is repeated

till the number reduces to a single digit number. Type the program and execute it for different
values of n and give the output

Input number Output

6534

67

8

567

Signature of the instructor Date

Set A . Write C programs for the following problems.

1. Write a program to display all prime numbers between _ and _ _.

2. Write a program to display multiplication tables from to having n multiples each. The
output should be displayed in a tabular format. For example, the multiplication tables of 2 to 9
having 10 multiples each is shown below.

2  1 = 2 3  1 = 3 ………….9  1 = 9

2  2 = 4 3  2 = 6…………..9  2 = 18
…………. ………….

2  10 = 20 3  10 = 30………..9  10 = 90

3. . Modify the sample program 1 to display n lines as follows (here n=4).

A B C D
E F G
H I
J

/ /

31

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Signature of the instructor Date

Set B. Write C programs for the following problems.

1. Write a program to display all Armstrong numbers between 1 and 500. (An Armstrong

number is a number such that the sum of cube of digits = number itself Ex. 153 = 1*1*1 + 5*5*5
+ 3*3*3

2. Accept characters till the user enters EOF and count the number of lines entered. Also

display the length of the longest line. (Hint: A line ends when the character is \n)

3. Display all perfect numbers below 500. [A perfect number is a number, such that the sum of

its factors is equal to the number itself]. Example: 6 (1 + 2 + 3), 28 (1+2+4+7+14)

Signature of the instructor Date

Set C. Write C programs to solve the following problems

1. A company has four branches, one in each zone: North, South, East and West. For each of

these branches, it collects sales information once every quarter (four months) and calculates the
average sales for each zone. Write a program that accepts sales details for each quarter in the
four branches and calculate the average sales of each branch.

2. A polynomial in one variable is of the form a0 + a1x + a2x2 + …. For example, 6 - 9x + 2x5.
Write a program to calculate the value of a polynomial. Accept the number of terms n , the value
of x, and n+1coefficients.

3. The temperature of a city varies according to seasons. There are four seasons – spring,
summer, Monsoon and winter. The temperature ranges are: Spring (15-25 degrees), Summer
(25-40 degrees), Monsoon (20-35 degrees), Winter (5-20 degrees). Accept weekly temperatures
(12 weeks per season) for each season, check if they are in the correct range and calculate the
average temperature for each season.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

/ /

32

Exercise 4-a Start Date

To demonstrate menu driven programs and use of standard library functions

You should read following topics before starting this exercise

1. Use of switch statement to create menus as in exercise 3

2. Use of while and do while loops as in exercise 4

A function is a named sub-module of a program, which performs a specific, well-defined task. It
can accept information from the calling function in the form of arguments and return only 1 value.
C provides a rich library of standard functions. We will explore some such function libraries and
use these functions in our programs.

ctype.h : contains function prototypes for performing various operations on characters. Some
commonly used functions are listed below.

Function Name Purpose Example

isalpha Check whether a character is a alphabet if (isalpha(ch))

isalnum Check whether a character is alphanumeric if (isalnum(ch))

isdigit Check whether a character is a digit if (isdigit(ch))

isspace Check whether a character is a space if (isspace(ch))

ispunct Check whether a character is a punctuation
symbol

if (ispunct(ch))

isupper Check whether a character is uppercase alphabet if (isupper(ch))

islower Check whether a character is lowercase alphabet if (isupper(ch))

toupper Converts a character to uppercase ch = toupper(ch)

tolower Converts a character to lowercase ch = tolower(ch)

math.h : This contains function prototypes for performing various mathematical operations on
numeric data. Some commonly used functions are listed below.

Function Name Purpose Example

cos cosine a*a+b*b – 2*a*b*cos(abangle)

exp(double x) exponential function, computes ex exp(x)

log natural logarithm c= log(x)

log10 base-10 logarithm y=log10(x)

pow(x,y) compute a value taken to an
exponent, xy

y = 3*pow(x , 10)

sin sine z= sin(x) / x

sqrt square root delta=sqrt(b*b – 4*a*c)

Note: If you want to use any of the above functions you must include the library for example
#include <ctype.h>
#include <math.h>
In case of math library , it needs to be linked to your program. You have to compile the program
as follows
$ cc filename -lm

/ /

33

A program that does multiple tasks, provides a menu from which user can choose the appropriate
task to be performed. The menu should appear again when the task is completed so that the user
can choose another task. This process continues till the user decides to quit. A menu driven
program can be written using a combination of do-while loop containing a switch statement. One
of the options provided in a menu driven program is to exit the program.

Statement Syntax Flowchart Example

do
{
display menu;
accept choice;
switch(choice)
{
case value1:
block1;

break;

case value2:
block2;

break;
.
.
.
default : default
block;

}
}while(choice !=
exit);

start

Display menu

Accept choice

case 1
True block1

False

True

case 2 block 2

False

default block

False
choice=exit

True

stop

ch = getchar();

do

{

printf (“ \ n 1 : ISUPPER ”) ;

printf (“ \ n 2 : ISLOW ER ”) ;

printf (“ \ n 3 : ISDIGIT “);

printf (“ \ n 4 : EXIT”);

printf(“ Enter your choice

: ”);

scanf(“% d”, & choice);

switch (choice)

{

case 1 : i f (isupper(ch))

printf (“ Uppercase”);

break;

case 2 : i f (is lower(ch))

printf (“ Lowercase”);

break;

case 3 : i f (isd igit (ch))

printf(“ Digit”);

break;

}

} while (choice! = 4) ;

1. Write a menu driven program to perform the following operations on a character type variable.
i. Check if it is an alphabet
ii. Check if it is a digit.
iii. Check if it is lowercase.
iv. Check if it is uppercase.
v. Convert it to uppercase.
vi. Convert it to lowercase.

Refer to the sample code given above and use standard functions from ctype.h

Set A . Write C programs for the following problems

1. Write a program, which accepts a character from the user and checks if it is an alphabet, digit

or punctuation symbol. If it is an alphabet, check if it is uppercase or lowercase and then change
the case.

34

/ /

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

2. Write a menu driven program to perform the following operations till the user selects Exit.
Accept appropriate data for each option. Use standard library functions from math.h
i. Sine ii. Cosine iii. log iv. ex v. Square Root vi. Exit

3. Accept two complex numbers from the user (real part, imaginary part). Write a menu driven

program to perform the following operations till the user selects Exit.
i. ADD ii. SUBTRACT iii. MULTIPLY iv. EXIT

Signature of the instructor Date

Set B . Write C programs for the following problems

1. Accept x and y coordinates of two points and write a menu driven program to perform the

following operations till the user selects Exit.
i. Distance between points.
ii. Slope of line between the points.
iii. Check whether they lie in the same quadrant.
iv. EXIT

(Hint: Use formula m = (y2-y1)/(x2-x1) to calculate slope of line.)

2. Write a simple menu driven program for a shop, which sells the following items:

The user selects items using a menu. For every item selected, ask the quantity. If the quantity of
any item is more than 10, give a discount of %. When the user selects Exit, display the
total amount.

Item Price

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set C . Write C programs for the following problems

1. Write a program to calculate the total price for a picnic lunch that a user is purchasing for her

group of friends. She is first asked to enter a budget for the lunch. She has the option of buying
apples, cake, and bread. Set the price per kg of apples, price per cake, and price per loaf of bread
in constant variables. Use a menu to ask the user what item and how much of each item she
would like to purchase. Keep calculating the total of the items purchased. After purchase of an
item, display the remaining amount. Exit the menu if the total has exceeded the budget. In
addition, provide an option that allows the user to exit the purchasing loop at any time.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

35

/* Program to calculate area of circle and cylinder using function */

#include <stdio.h>
void main()
{

float areacircle (float r);
float areacylinder(float r, int h);
float area, r;
printf(“\n Enter Radius: “);
scanf(“%f”,&r);

area=areacircle(r);
printf(“\n Area of circle =%6.2f”, area);

printf(“\n Enter Height: “);

Exercise 4-b Start Date

To demonstrate writing C programs in modular way (use of user defined functions)

You should read following topics before starting this exercise
1. Declaring and Defining a function
2. Function call
3. Passing parameters to a function
4. Function returning a value

You have already used standard library functions. C allows to write and use user defined
functions. Every program has a function named main. In main you can call some functions which
in turn can call other functions.

The following table gives the syntax required to write and use functions

Sr.
No

Actions involving
functions

Syntax Example

1. Function declaration returntype function(type arg1,
type arg2 …);

void display();
int sum(int x, int y);

2. Function definition returntype function(type arg1,
type arg2 …)
{

/* statements*/
}

float calcarea (float r)
{

float area = Pi *r*r ;
return area;

}

3. Function call function(arguments);
variable = function(arguments);

display();
ans = calcarea(radius);

1. Sample code

The program given below calculates the area of a circle using a function and uses this function to
calculate the area of a cylinder using another function.

/ /

36

/* Program to count whitespaces using function */

#include <stdio.h>
void main()
{

int iswhitespace (char ch);
char ch;
int count=0;

printf(“\n Enter the characters. Type CTRL +Z to terminate: “);
while((ch=getchar())!=EOF)

if(iswhitespace(ch))
count++;

printf(“\n The total number of white spaces =%d”, count);
}
int iswhitespace (char ch)
{

switch(ch)
{

case ‘ ‘:
case ‘\t’ :
case ‘\n’ : return 1;
default : return 0;

}
}

2. Sample code

The function iswhitespace returns 1 if its character parameter is a space, tab or newline
character. The program accepts characters till the user enters EOF and counts the number of
white spaces.

1. Type the program given in sample code 1 above and execute the program. Comment
function declarations and note down the type of error and the error messages received. Add
another function to calculate the volume of sphere and display it.

2. Type the program given in sample code 2 above and execute the program. Comment
function declaration and note down the type of error and the error messages received. Modify the
function such that it returns 1 if the character is a vowel. Also count the total number of vowels
entered.

scanf(“%d”,&h);
area=areacylinder(r,h);
printf(“\n Area of cylinder =%6.2f”, area);

}

float areacircle (float r)
{

const float pi=3.142;
return(pi * r*r);

}
float areacylinder (float r, int h)
{

return 2*areacircle(r)*h;
}

37

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Set A . Write C programs for the following problems

1. Write a function isEven, which accepts an integer as parameter and returns 1 if the number is
even, and 0 otherwise. Use this function in main to accept n numbers and ckeck if they are even
or odd.

2. Write a function, which accepts a character and integer n as parameter and displays the next
n characters.

3. Write a function, which accepts a character and integer n as parameter and displays the next

n characters.

Signature of the instructor Date

Set B . Write C programs for the following problems

1. Write a function isPrime, which accepts an integer as parameter and returns 1 if the number
is prime and 0 otherwise. Use this function in main to display the first 10 prime numbers.

2. Write a function that accepts a character as parameter and returns 1 if it is an alphabet, 2 if it

is a digit and 3 if it is a special symbol. In main, accept characters till the user enters EOF and use
the function to count the total number of alphabets, digits and special symbols entered.

3. Write a function power, which calculates xy. Write another function, which calculates n! Using

for loop. Use these functions to calculate the sum of first n terms of the Taylor series:

sin(x) = x -
x3 x5

+
3! 5!

+ ……

Signature of the instructor Date

Set C . Write C programs for the following problems

1. Write a menu driven program to perform the following operations using the Taylor series.
Accept suitable data for each option. Write separate functions for each option.

i. ex

ii. sin(x)

iii. cos (x)

Define separate functions to calculate xy and n! and use them in each function.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

/ /

38

Exercise 4-c Start Date

To demonstrate Recursion.

You should read the following topics before starting this exercise

1. Recursive definition

2. Declaring and defining a function

3. How to call a function

4. How to pass parameters to a function

Recursion is a process by which a function calls itself either directly or indirectly. The points to be
remembered while writing recursive functions
i. Each time the function is called recursively it must be closer to the solution.
ii. There must be some terminating condition, which will stop recursion.
iii. Usually the function contains an if –else branching statement where one branch makes

recursive call while other branch has non-recursive terminating condition
Expressions having recursive definitions can be easily converted into recursive functions

Sr.
No

Recursive definition Recursive Function Sample program

1. The recursive definition
for factorial is given
below:

n!= 1 if n = 0 or 1
= n * (n-1)! if n > 1

long int factorial (int n)
{
If (n==0)||(n==1))

/* terminating condition */
return(1);

else
return(n* factorial(n-

1));
/* recursive call */

}

#include <stdio.h>
main()
{
int num;
/* function declaration */
long int factorial(int n);
printf(“\n enter the
number:”);
scanf(“%d”,&num);
printf(“\n The factorial of
%d is
%ld”,num,factorial(num));
}
/* function code*/

2. The recursive definition
for nCr (no of
combinations of r objects
out of n objects) is as
follows
nCn = 1
nC0 = 1
nCr = n-1Cr + nCr-1

long int nCr(int n, int r)
{ if(n==r || r==0)
/* terminating condition */

return(1);
else

return (nCr(n-1,r) +
nCr(n, r-1));

/* recursive call */
}

#include <stdio.h>
/* function code*/
main()
{
int n, r;

printf(“\n enter the total
number of objects:”);
scanf(“%d”,&n);
printf(“\n enter the number
of objects to be selected”);
scanf(“%d”,&r);
printf(“\n The value
%dC%d is %ld”,n, r,
nCr(n,r));
}

/ /

39

1. Write the sample program 1 given above and execute the program. Modify the program to

define a global integer variable count and increment it in factorial function. Add a printf statement
in main function for variable count. Execute the program for different values and fill in the
following table.

Sr. No. num factorial Count

1. 0

2 1

3 5

4

5

2. Write the sample program 2 given above and execute the program for different values of n

and r. Modify the program to define a global integer variable count and increment it in nCr
function. Add a print statement in main function for variable count. Execute the program for
different values and fill in the following table

Sr. No. n r nCr Count

1. 5 0

2 5 5

3 5 2

4 5

5

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set A . Write C programs for the following problems

1. Write a recursive C function to calculate the sum of digits of a number. Use this function in

main to accept a number and print sum of its digits.

2. Write a recursive C function to calculate the GCD of two numbers. Use this function in main.

The GCD is calculated as :

gcd(a,b) = a if b = 0

= gcd (b, a mod b) otherwise

3. Write a recursive function for the following recursive definition. Use this function in main to
display the first 10 numbers of the following series

an = 3 if n = 1 or 2

= 2* an-1 + 3*an-2 if n > 2

4. Write a recursive C function to calculate xy. (Do not use standard library function)

Signature of the instructor Date / /

/ /

40

Set B . Write C programs for the following problems

1. Write a recursive function to calculate the nth Fibonacci number. Use this function in main to

display the first n Fibonacci numbers. The recursive definition of nth Fibonacci number is as
follows:

fib(n) = 1 if n = 1 or 2
= fib(n-2) + fib(n-1) if n>2

2. Write a recursive function to calculate the sum of digits of a number till you get a single digit

number. Example: 961 -> 16 -> 5. (Note: Do not use a loop)

3. Write a recursive C function to print the digits of a number in reverse order. Use this function

in main to accept a number and print the digits in reverse order separated by tab.

Example 3456

6 5 4 3

(Hint: Recursiveprint(n) = print n if n is single digit number

= print n % 10 + tab + Recursiveprint(n/10)

Signature of the instructor Date

Set C . Write C programs for the following problems

1. The “Towers of Hanoi” problem: The objective is to move a set of disks arranged in

increasing sizes from top to bottom from the source pole to a destination pole such that they are
in the same order as before using only one intermediate pole subject to the condition that

• Only one disk can be moved at a time

• A bigger disk cannot be placed on a smaller disk.
Write a recursive function which displays all the steps to move n disks from A to C.

disks

Source
Needle

(A)

Intermediate
needle

(B)

Destination
Needle

(C)

Signature of the instructor Date

Assignment Evaluation Signature

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

1
2
3
4
5

/ /

/ /

41

Exercise 5-a Start Date

To demonstrate use of 1-D arrays and functions.

You should read the following topics before starting this exercise

1. What are arrays and how to declare an array?

2. How to enter data in to array and access the elements of an array.

3. How to initialize an array and how to check the bounds of an array?

4. How to pass an array to a function

An array is a collection of data items of the same data type referred to by a common name. Each
element of the array is accessed by an index or subscript. Hence, it is also called a subscripted
variable.

Actions involving
arrays

syntax Example

Declaration of array data-type array_name[size]; int temperature[10];
float pressure[20];

Initialization of array data-type array_name[]={element1,
element2, ……, element n};

data-type
array_name[size]={element-1,
element-2, ……, element-size};

You cannot give more number of
initial values than the array size. If
you specify less values, the
remaining will be initialized to 0.

int marks[]={45,57,87,20,90};
marks[3] refers to the fourth
element which equals 20

int count[3]={4,2,9};
count[2] is the last element 9
while 4 is count[0]

Accessing elements of
an array

The array index begins from 0
(zero) To access an array element,
we need to refer to it as
array_name[index].

Value = marks[3];
This refers to the 4th element
in the array

Entering data into an
array.

 for (i=0; i<=9; i++)
scanf(“%d”, &marks[i]);

Printing the data from
an array

 for(i=0; i<=9; i++)
printf(“%d”, marks[i]);

Arrays and function We can pass an array to a function
using two methods.
1. Pass the array element by
element
2. Pass the entire array to the
function

/* Passing the whole array*/
void modify(int a[5])
{

int i;
for(i=0; i<5 ; i++)

a[i] = i;
}

/ /

42

/* Program to find largest number from array */

#include<stdio.h>
int main()
{

int arr[20]; int n;
void accept(int a[20], int n);
void display(int a[20], int n);
int maximum(int a[20], int n);

printf(”How many numbers :”);
scanf(“%d”, &n);
accept(arr,n);
display(arr,n);
printf(“The maximum is :%d” , maximum(arr,n));

}

void accept(int a[20], int n)
{

int i;
for(i=0; i<n ; i++)

scanf(“%d”, &a[i]);
}

void display(int a[20], int n)
{

int i;
for(i=0; i<n ; i++)

printf(“%d\t”, a[i]);
}
int maximum(int a[20], int n)

{
int i, max = a[0];

for(i=1; i<n ; i++)

if(a[i] > max)
max = a[i];

return max;
}

Sample program to find the largest element of an array

1. Write a program to accept n numbers in an array and display the largest and smallest
number. Using these values, calculate the range of elements in the array. Refer to the sample
code given above and make appropriate modifications.

2. Write a program to accept n numbers in an array and calculate the average. Refer to the

sample code given above and make appropriate modifications.

Signature of the instructor Date / /

43

Set A. Write programs to solve the following problems

1. Write a program to accept n numbers in the range of 1 to 25 and count the frequency of

occurrence of each number.

2. Write a function for Linear Search, which accepts an array of n elements and a key as

parameters and returns the position of key in the array and -1 if the key is not found. Accept n
numbers from the user, store them in an array. Accept the key to be searched and search it using
this function. Display appropriate messages.

3. Write a function, which accepts an integer array and an integer as parameters and counts

the occurrences of the number in the array.

4. Write a program to accept n numbers and store all prime numbers in an array called prime.

Display this array.

Signature of the instructor Date

Set B. Write programs to solve the following problems

1. Write a program to accept n numbers from the user and store them in an array such that the

elements are in the sorted order. Display the array. Write separate functions to accept and display
the array. (Hint: Insert every number in its correct position in the array)

2. Write a function to sort an array of n integers using Bubble sort method. Accept n numbers

from the user, store them in an array and sort them using this function. Display the sorted array.

3. Write a program to accept a decimal number and convert it to binary, octal and hexadecimal.

Write separate functions.

4. Write a program to find the union and intersection of the two sets of integers (store it in two

arrays).

5. Write a program to remove all duplicate elements from an array.

Signature of the instructor Date / /

/ /

44

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Set C. Write programs to solve the following problems

1. Write a program to merge two sorted arrays into a third array such that the third array is also

in the sorted order.

a 1 10 25 90

a 2 9 16 22 26 10
 0

a 3 9 10 16 22 25 26 90 100

2. Write a program to accept characters from the user till the user enters EOF and calculate the

frequency count of every alphabet. Display the alphabets and their count.
Input: THIS IS A SAMPLE INPUT
Output: Character Count

T 2
H 1
I 3
…….

3. Write a recursive function for Binary Search, which accepts an array of n elements and a key

as parameters and returns the position of key in the array and -1 if the key is not found. Accept n
numbers from the user, store them in an array and sort the array. Accept the key to be searched
and search it using this function. Display appropriate messages

Signature of the instructor Date

Assignment Evaluation Signature

/ /

45

Exercise 5-b Start Date

To demonstrate use of 2-D arrays and functions.

You should read the following topics before starting this exercise
1. How to declare and initialize two-dimensional array
2. Accessing elements
3. Usage of two dimensional arrays

/ /

Actions involving
2-D arrays

syntax Example

Declaration of 2-D
array

data-type array_name[size][size]; int mat[10][10];
float sales[4][10];

Initialization of 2-D
array

data-type array_name[rows][cols]={
{elements of row 0},{ elements of row
1},…..};
data-type array_name[][cols]={element1,
element2, ……, element size};

int num[][2] = {12, 34, 23,
45, 56, 45};
int num[3][2] = { {1,2},
{3,4}, {5,6}};
int num[3][2] = { 1,2,3,4,
5,6};

Accessing
elements of 2-D
array

Accessing elements of an two-
dimensional array - in general, the array
element is referred as
array_name[index1][index2] where index1
is the row location of and index2 is the
column location of an element in the
array.

int m[3][2];

m is declared as a two
dimensional array (matrix)
having 3 rows (numbered 0
to 2) and 2 columns
(numbered 0 to 1). The
first element is m[0] [0] and
the last is m [2][1].
value = m[1][1];

Entering data into
a 2-D array.

 int mat[4][3];
for (i=0; i<4; i++)
/* outer loop for rows */
for (j=0;j<3; j++)

/* inner loop for columns */
scanf(“%d”, &mat[i][j]);

Printing the data
from a 2-D array

 for (i=0; i<4; i++)
/* outer loop for rows */
{

for (j=0;j<3; j++)
/* inner loop for columns */

printf(“%d\t” , mat[i][j]);
printf(”\n”);

}

46

/* Program to calculate sum of rows of a matrix*/

#include<stdio.h>
int main()
{

int mat[10][10], m, n;
void display(int a[10][10], int m, int n);
void accept(int a[10][10], int m, int n);
void sumofrows(int a[10][10], int m, int n);

printf(“How many rows and columns? ”);
scanf(“%d%d”,&m, &n);

printf(“Enter the matrix elements :”);
accept(mat, m, n);
printf(“\n The matrix is :\n”);
display(mat, m, n);
sumofrows(mat,m,n);

}

void accept(int a[10][10], int m, int n)
{

int i,j;
for (i=0; i<m; i++) /* outer loop for rows */

for (j=0;j<n; j++) /* inner loop for columns */
scanf(“%d”, &a[i][j]);

}
void display(int a[10][10], int m, int n)
{

int i,j;
printf(”\nThe elements of %d by %d matrix are\n”, m, n);
for (i=0; i<m; i++) /* outer loop for rows */
{
for (j=0;j<n; j++) /* inner loop for columns */

printf(“%d\t” , a[i][j]);
printf(”\n”);

}

}
void somofrows(int a[10][10], int m, int n)
{

int i,j, sum;
for (i=0; i<m; i++) /* outer loop for rows */
{ sum=0’
for (j=0;j<n; j++) /* inner loop for columns */

sum= sum+a[i][j];
printf(“Sum of elements of row %d = %d”, i, sum);

}
}

Sample program to accept, display and print the sum of elements of each row of a matrix.

1. Write a program to accept, display and print the sum of elements of each row and sum of
elements of each column of a matrix. Refer to sample code given above.

Signature of the instructor Date / /

47

Set A . Write C programs for the following problems.

1. Write a program to accept a matrix A of size mXn and store its transpose in matrix B. Display

matrix B. Write separate functions.

2. Write a program to add and multiply two matrices. Write separate functions to accept,

display, add and multiply the matrices. Perform necessary checks before adding and multiplying
the matrices.

Signature of the instructor Date

Set B . Write C programs for the following problems.

1. Write a menu driven program to perform the following operations on a square matrix. Write

separate functions for each option.
i) Check if the matrix is symmetric.
ii) Display the trace of the matrix (sum of diagonal elements).
iii) Check if the matrix is an upper triangular matrix.

2. Write a menu driven program to perform the following operations on a square matrix. Write

separate functions for each option.
i) Check if the matrix is a lower triangular matrix.
ii) Check if it is an identity matrix.

3. Write a program to accept an mXn matrix and display an m+1 X n+1 matrix such that the

m+1th row contains the sum of all elements of corresponding row and the n+1th column contains
the sum of elements of the corresponding column.
Example:
A B

1 2 3 1 2 3 6
4 5 6 4 5 6 15
7 8 9 7 8 9 24

 12 15 18 45

Signature of the instructor Date

Set C. Write programs to solve the following problems

1. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle. It is

named after Blaise Pascal. Write a program to display n lines of the triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

/ /

/ /

48

2. A magic square of order n is an arrangement of n² numbers, in a square, such that the n
numbers in all rows, all columns, and both diagonals sum to the same constant. A normal magic
square contains the integers from 1 to n². The magic constant of a magic square depends on n
and is M(n) = (n3+n)/2. For n=3,4,5, the constants are 15, 34, 65 resp. Write a program to
generate and display a magic square of order n.

Signature of the instructor Date

Assignment Evaluation Signature

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

/ /

49

Section II

50

Exercise 1 Start Date

To create simple tables , with only the primary key constraint (as a table level constraint & as a
field level constraint) (include all data types)

You should read following topics before starting this exercise
1. Designing relations into tables
2. Using DDL statements to create tables

A table is a database object that holds data. A table must have unique name, via which it can be
referred. A table is made up of columns. Each column in the table must be given a unique name
within that table. Each column will also have size a data-type and an optional constraint.
The data types permitted are

Data type Syntax Description Example

Character data types char(n) It is fixed length
character string of
size n, default value
1 byte if n is not
specified.

account_type char(6)

varchar(n) It is variable length
character string with
maximum size n.

employee_name
varchar(50)

Text It is used to store
large text data, no
need to define a
maximum

work_experience text

Numeric data types Integer , int , serial Serial is same as int,
only that values are
incremented
automatically

Eno int
Eno serial

Numeric A real number with P
digits, S of them after
decimal point.

Sal numeric(5,2)
Sal numeric(n)

Float Real number Weight Float

Date and time type Date Stores date
information

Birthdate date

 Time Stores time
information

Birthtime time

 Timestamp Stores a date & time Birth timestamp

Boolean and Binary
type

Boolean, bool Stores only 2 values :
true or false, 1 or 0,
yes or no, y or n, t or
f

Flag Boolean

Constraints can be defined as either of the following :

Name Description Example

Column level When data constraint is
defined only with respect to
one column & hence defined
after the column definition, it

Create tablename (
attribute1 datatype primary
key , attribute2 datatype
constraint constraint-name

/ /

51

 is called as column level
constraint

,……)

Table Level When data constraint spans
across multiple columns &
hence defined after defining
all the table columns when
creating or altering a table
structure, it is called as table
level constraint

Create tablename (attribute1
datatype , attribute2
datatype2 ,……, constraint
pkey primary
key(attribute1,atrribute2))

Syntax for table creation :
Create tablename (attribute list);
Attribute list : ([attribute name data type optional constraint] ,)

Primary key concept :
Description Properties Example

A primary key is made up of
one or more columns in a
table, that uniquely identify
each row in the table.

A column defined as a
primary key, must conform to
the following properties :
a) The column cannot have

NULL values.
b) The data held across the

column MUST be
UNIQUE.

Create tablename (attribute1
datatype primary key , attribute2
datatype ,……)
Create tablename (attribute1
datatype , attribute2 datatype
,……, constraint pkey primary
key(attribute1))
Create tablename (attribute1
datatype, attribute2 datatype
,……, constraint
constraint_name
primarykey(attribute1,attribute2))

Steps to Use DDL statements
1. Login to linux server

2. Type the connection string to connect to database
psql –h IP address of server -d database-name

3. Type in the DDL statement at the sql> prompt

1. Type \h and go through the commands listed.

2. Type \h command-name & read through the help data given for each
command.

Type the following Create table Statements to create the tables . If the table creation is successful
you get ‘create table’ as output.
Then Type \d <table name> and write the output

3. Create table emp (eno integer primary key, ename varchar[50] , salary float);

4. Create table books(id integer UNIQUE, title text NOT NULL, author_id integer,sub_id
integer,CONSTRAINT books_id_pkey PRIMARY KEY(id));

5. Create table sales_order(order_no char[10] PRIMARY KEY, order_date date, salesman_no
integer);

6. Create table client_master(client_no integer CONSTRAINT
p_client PRIMARY KEY, name varchar[50], addr text, bal_due

integer);

7. Create table inventory(inv_no integer PRIMARY KEY,in_stock
Boolean);

52

8. create table sales_order1(order_no char[10], product_no char[10], ,
qty_ordered integer,product_rate numeric(8,2),PRIMARY
KEY(order_no,product_no));

Signature of the instructor Date

Set A

1.
Create a table with details as given below
Table Name PLAYER

Columns Column Name Column Data Type Constraints

1 player_id Integer Primary key

2 Name varchar (50)

3 Birth_date date

4 Birth_place varchar(100)

Table level constraint

2.

Create a table with details as given below
Table Name Student

Columns Column Name Column Data Type Constraints

1 Roll_no integer

2 Class varchar (20)

3 Weight numeric (6,2)

4 Height numeric (6,2)

Table level constraint Roll_no and class as primary key

3.

Create a table with details as given below
Table Name Project

Columns Column Name Column Data Type Constraints

1 project_id integer Primary key

2 Project_name varchar (20)

3 Project_
description

text

4 Status boolean

Table level constraint

4.

Create a table with details as given below
Table Name Donor

Columns Column Name Column Data Type Constraints

1 Donor_no integer Primary key

2 Donor_name varchar (50)

3 Blood_group Char(6)

4 Last_date date

Table level constraint

Set B
Create table for the information given below by choosing appropriate data types and also
specifying proper primary key constraint on fields which are underlined

1. Property (property_id, property_desc , area, rate, agri_status)

2. Actor (actor_id, Actor_name, birth_date)

/ /

53

3. Movie(movie-no, name, release-year)

4. Hospital(hno,hname,hcity)

Signature of the instructor Date

Set C
Create table for the information given below by choosing appropriate data types and also
specifying proper primary key constraint on fields which are underlined

1. Table (_, _ , _, _ ,
Primary key : _

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Assignment Evaluation Signature

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

/ /

/ /

54

Exercise 2 Start Date

To create more than one table, with referential integrity constraint, PK constraint.

You should read following topics before starting this exercise
1. Referential Integrity constraints, relationship types (1-1,1-m,m-1,m-m)
2. Handling relationships while converting relations into tables in RDB, so that there are no
redundancies.

The integrity constraints help us to enforce business rules on data in the database. Once an
integrity constraint is specified for a table or a set of tables, all data in the table always conforms
to the rule specified by the integrity constraint.

Referential integrity constraints designates a column or grouping of columns in a table called
child table as a foreign key and establishes a relationship between that foreign key and specified
primary key of another table called parent table.

The following is the list of constraints that can be defined for enforcing the referential integrity
constraint.

Constraint Use Syntax and Example

Primary key Designates a column or
combination of columns
as primary key

PRIMARY KEY
(columnname[,columnname])

Foreign key designates a column or
grouping of columns as
a foreign key with a
table constraint

FOREIGN KEY
(columnname[,columnname])

References Identifies the primary
key that is referenced
by a foreign key. If only
parent table name is
specified it automatically
references primary key
of parent table

columnname datatype REFERENCES
tablename[(columnname[,columnname])

On delete Cascade The referential integrity
is maintained by
automatically removing
dependent foreign key
values when primary
key is deleted

columnname datatype REFERENCES
tablename[(columnname)][ON DELETE
CASCADE]

On update set null If set, makes the foreign
key column NULL,
whenever there is a
change in the primary
key value of the referred
table

Constraint name foreign key column-
name references referred-table(column-
name) on update set null

Rules to Handle relationships , attributes , enhanced E-R concepts during table creation :

Name Description Handling Example Create
statement

One-to-one A member from The key Room & guest. Create table

/ /

55

 an entity set is
connected to
atmost one
member from
the other entity
set & vice-versa

attribute from
anyone entity
set goes to the
other entity set
(may be the
entity set that
has full
participation in
relation) , as a
foreign key.

Room no is
foreign key in
guest
relation.guest
has full
participation in
relation.

room(rno int
primary key,
desc char(30));
Create table
guest(gno int,
name
varchar(20), rno
int references
room unique);

One-to-many,
many-to-one

A member from
the entity set on
the one side is
connected to
one or more
members from
the other entity
set, but a
member from
the entity set on
the many side ,
is connected to
atmost one
member of the
entity set on one
side.

The key
attribute of the
entity set on one
side is put as
foreign key in
the entity set on
the many side.

Department &
employee. Here
department is
on the one side
& employee is
on the many
side.

Create table
dept(dno int
primary key,
dname char(20);
Create table
emp(eno int
primary key,
name char(30),
dno int
references dept);

May-to-many A member from
one entity set
connected to
one or more
members of the
other entity set
& vice-versa

A new relation is
created that will
contain the key
attributes of
both the
participating
entity sets.

Student &
subject . a
student can opt
for many
subjects & a
subject has
many students
opting for it.

Create table
student(sno int
primary key,
name
varchar(20);
Create table
subject(sbno int
primary key,
name
varchar(20));
Create table st-
sub(sno int
references
student, sbno int
references
subject,
constraint pkey
primary
key(sno,sbno));

A multivalued
attribute

an attribute
having multiple
values for each
member of the
entity set

A new relation is
created , which
will contain a
place holder for
the multivalued
attribute and
the key
attributes of the
entity set that
contains the
multivalued
attribute

An employee
having multiple
contact
numbers, like
home phone,
mobile number,
office number
etc. hence the
phone-no
attribute in
employee
relation
becomes a
multivalued
attribute.

Create table
emp(eno int
primary key,
name char(30));
Create table
emp-ph(eno int
references emp,
phno int ,
constraint pkey
primary
key(eno,phno));

56

A multivalued,
composite
attribute

A composite
attribute having
multiple values ,
for each
member of the
entity set

A new relation is
created, which
will contain a
place holder for
each part of the
composite
attribute and the
key attributes of
the entity set
that contains the
composite
multivalued
attribute

An employee
having multiple
addresses ,
where each
address is made
up of a block no,
street no, city,
state. Hence the
address
attribute
becomes a
composite
multivalued
attribute.

Create table
emp(eno int
primary key,
name char(30));
Create table
emp-add(eno int
references emp,
addno int, hno
int, street
char(20), city
char(20),
constraint pkey
primary
key(eno,addno));

Generalization /
specialization

The members of
an entity set can
be grouped into
several
subgroups,
based on an
attribute/s
vaue/s.
Each subgroup
becomes an
entity set.
Depicts a
parent-child type
of relationship.

New relations
for each
subgroup , if the
subgroups have
its own
attributes, other
than the parent
attributes. The
parent entity
set’s key is
added to each
subgroup.
If no specific
attributes for
each subgroup,
then only the
parent relation is
created.

A person (
parent entity
set) can be an
employee, a
student, a
retired person.
Here employee
has its own set
of attributes like
company, salary
etc. a student
has its won set
of attributes like
college/ school,
course etc. a
retired person
has its own set
of attributes like
hobby, pension
etc. so we
create a person
relation , a
student relation,
an employee, a
retire person.
The student ,
employee,
retired person
entity sets will
have the key of
the person entity
set added to it.

Create table
person(ssno int
primary key,
name char(30));
Create table
emp(ssno int
references
person, eno int,
cname char(20),
sal float, primary
key(ssno));
Create table
student(ssno int
references
person, class
char(10), school
varchar(50),
primary
key(ssno));

You can type the following Create table Statements to create the tables satisfying referential
integrity constraints. On table creation type \d <table name> and write the output.

1. Consider two tables department & employee. One department can have one or more

employees, but an employee belongs to exactly one department (1-m relation). It’s pictorially
shown as follows :

 employee

has department

57

allot guest room

To handle the above relation, while creating the tables, ‘deptno’ is a foreign key in the employee
table. The statement for creating the tables are as follows :

Create table department (deptno integer primary key, deptname text);
Create table employee(empno integer primary key, ename varchar(50), salary float, dno integer
references department(deptno) on delete cascade on update set null);

2. Consider the department table created above & another table called project. A project is
controlled by exactly one department , but a department can control one or more projects(a m-1
relation). It’s pictorially shown as follows :

To handle the above relationship, control-dno is a foreign key in project. The statement for
creating the project table is as follows :
Create table project(pno int primary key, pname char(10), control-dno int,
foreign key(control-dno) references department(dno))

3. Consider the project & employee relations created above. An employee can work in one or

more projects, and a project can have one or more employees working in it .(a m-m relation). It’s
shown pictorially as follows :

hrs

 Works

-on
employee

To handle the above relationship, we create a new table , works-on , as given below :

create table works(eno int references employee, pno int references project, hrs int, constraint
pkey primary key(eno,pno))

4. Consider the relations guest and room. A guest is allocated exactly one room, and a room
can contain exactly one guest in it. (a 1-1 relation). It’s pictorially shown as follows :

To handle the above relation, we add room-no as foreign key to guest, since a guest cannot be
without being allocated to a room (guest has full participation in relation). The statements for
creating these relations are as follows
Create table room(room-no integer primary key , description char(20, charge integer);
Create table guest(guest-no integer primary key, name varchar(30), room-no references room
unique);

Signature of the instructor Date

Control

by project department

/ /

project

58

Set A
Create tables for the information given below by giving appropriate integrity constraints as
specified.

1. Create the following tables :
Table Name Property

Columns Column Name Column Data Type Constraints

1 Pnumber Integer Primary key

2 description varchar (50) Not null

3 Area Char(10)

Table Name Owner

Columns Column Name Column Data Type Constraints

1 Owner-name Varchar(50) Primary key

2 Address varchar (50)

3 Phoneno Integer

Relationship ➔ A one-many relationship between owner & property. Define reference keys
accordingly .

2. Create the following tables :

Table Name Hospital

Columns Column Name Column Data Type Constraints

1 Hno Integer Primary key

2 Name varchar (50) Not null

3 City Char(10)

Table Name Doctor

Columns Column Name Column Data Type Constraints

1 Dno Integer Primary key

2 Dname varchar (50)

3 City Char(10)

Relationship ➔ A many-many relationship between hospital & doctor.

3. Create the following tables :

Table Name Patient

Columns Column Name Column Data Type Constraints

1 pno Integer Primary key

2 Name varchar (50) Not null

3 Address Varchar(50)

Table Name Bed

Columns Column Name Column Data Type Constraints

1 Bedno integer Primary key

2 Roomno integer Primary key

3 description Varchar(50)

Relationship ➔ a one–to-one relationship between patient & bed.

Signature of the instructor Date / /

59

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Set B
Create table for the information given below by choosing appropriate data types and integrity
constraints as specified.

1. Table (, _, _ , _
 (_ , _, _ , _

Constraints: _ __, __

2. Table (, _, _ , _

 (_ , _, _ , _
Constraints: _ __, __

Relationship → _ _ _

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

60

Exercise 3 Start Date

To create one or more tables with Check constraint , Unique constraint, Not null constraint
, in addition to the first two constraints (PK & FK)

You should read following topics before starting this exercise
1. Different integrity constraints
2. Specification of different integrity constraints , in create table statement .

The following is the list of additional integrity constraints.
Constraint Use Syntax and Example

NULL Specifies that the column can
contain null values

CREATE TABLE
client_master

(client_no text NOT NULL ,
name text NOT NULL,
addr text NULL ,
bal_due integer));

NOT NULL Specifies that the column can
not contain null values

CREATE TABLE
client_master

(client_no text NOT NULL ,
name text NOT NULL,
addr text NOT NULL ,
bal_due integer));

UNIQUE Forces the column to have
unique values

CREATE TABLE
client_master

(client_no text UNIQUE,
name text ,addr text, bal_due
integer));

CHECK Specifies a condition that
each row in the table must
satisfy. Condition is specified
as a logical expression that
evaluates either TRUE or
FALSE.

CREATE TABLE
client_master
(client_no text
CHECK(client_no like ’C%’),
name text
CHECK(name=upper(name)),
addr text));

1. create client master by using any one DDL statement given above. On table creation type \d
<table name> and write the output

Signature of the instructor Date / /

/ /

61

Set A

1.
Create a table with details as given below
Table Name Machine

Columns Column Name Column Data Type Constraints

1 Machine_id integer Primary key

2 Machine_name varchar (50) NOT NULL, uppercase

3 Machine_type varchar(10) Type in (‘drilling’, ‘milling’,
‘lathe’, ‘turning’, ‘grinding’)

4 Machine_price float Greater than zero

5 Machine_cost float

Table level constraint Machine_cost less than Machine_price

2.

Create a table with details as given below
Table Name Employee

Columns Column Name Column Data Type Constraints

1 Employee_id integer Primary key

2 Employee_name varchar (50) NOT NULL, uppercase

3 Employee_desg varchar(10) Designation in (‘Manager’,
‘staff’, ‘worker’)

4 Employee_sal float Greater than zero

5 Employee_uid text Unique

Table level constraint Employee_uid not equal to Employee_id

Signature of the instructor Date

Set B

1.
Create a table with details as given below
Table Name

Columns Column Name Column Data Type Constraints

1

2

3

4

5

Table level constraint

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Assignment Evaluation Signature

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

/ /

/ /

62

Exercise 4-a Start Date

To drop a table from the database, to alter the schema of a table in the

Database.

You should read following topics before starting this exercise
1 Read through the drop, Alter DDL statement

The Drop & Alter DDL statements :
Name Description Syntax Example

Drop Deletes an object
(table/view/constraint)
schema from the database

Drop object-type
object-name;

Drop table
employee;
Drop table sales;
Drop constraint
pkey;

Alter ALTER TABLE command
of SQL is used to modify
the structure of the table
It can be used for
following purposes
a) adding new column
b) modifying existing
columns
c) add an integrity
constraint
d) To redefine a column

Restrictions on the alter
table are that, the
following tasks cannot be
performed with this clause
a) Change the name of the
column
b) Drop a column
c) Decrease the size of a
column if table data exists

Alter table
tablename Add (
new columnname
datatype(size), new
columnname
datatype(size)…);

Alter table
tablename modify
(columnname new
datatype(new
size),..);

Alter table emp(
add primary key
(eno));
alter table
student(add
constraint city-
chk check city in
(‘pune’,
‘mumbai’));

alter table
student modify
(city
varchar(100));

Create the table given below . Assume appropriate data types for attributes.
Modify the table, as per the alter statements given below, type \d <table name>
and write the output.
Supplier_master(supplier_no, supplier_name,city,phone-no,amount)

1. Alter table supplier_master

add primary key (supplier_no);

2. Alter table supplier_master add constraint city-check check city in(‘pune’, ‘mumbai’,
‘calcutta’);

3. alter table supplier_master drop phone-no;

/ /

63

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

4. alter table supplier_master modify (supplier_name varchar(50));

5. alter table supplier_master drop constraint city-check;

6. drop table supplier_master;

Signature of the instructor Date

Set A

1. Remove employee table from your database. Create table employee(eno, ename, sal). Add
designation column in the employee table with values restricted to a set of values.

2. Remove student table from your database. Create table student(student_no, sname,
date_of_birth). Add new column into student relation named address as a text data type with NOT
NULL integrity constraint and a column phone of data type integer.

3. Consider the project relation created in the assignment 12. Add a constraint that the project
name should always start with the letter ‘R’

4. Consider the relation hospital created in assignment 12. Add a column hbudget of type int ,
with the constraint that budget of any hospital should always > 50000.

Signature of the instructor Date

Set B

1. Remove _ table from your database. Create table (__________ ,
 , _). Add ____________

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

/ /

64

Exercise 4-b Start Date

To insert / update / delete records using tables created in previous

Assignments. (use simple forms of insert / update / delete statements)

You should read following topics before starting this exercise
1. Read through the insert , update, delete statement.
2. Go through the variations in syntaxes of the above statements.
3. Go through some examples of these statements
4. Go through the relationship types & conversion of relations to tables in RDB.
5. Normal forms ➔ 1NF, 2NF, 3NF

The insert / update / delete statements
Name Description Syntax Example

Insert The insert statement
is used to insert
tuples or records
into a created table
or a relation.

INSERT INTO
tablename
VALUES (list of
column values);

Insert into emp
values(1,’joshi’,4000,’pune);

We specify a list of
comma-separated
column values,
which must be in the
same order as the
columns in the table.

To insert character
data we must
enclose it in single
quotes(‘). If a single
quote is part of the
string value to be
inserted , then
precede it with a
backslash(\).

INSERT INTO
tablename(list
of column
names)
VALUES (list of
column values
corresponding
to the column
names);

Insert into emp(eno,city)
values(2,’mumbai’);

When we don’t have
values for every
column in the table,
or the data given in
insert is not in the
same column order
as in the table, then
we specify the
column names also
alongwith the values
(2nd syntax)

/ /

65

Update The UPDATE
command is used to
change or modify
data values in a
table.
To specify update of
several columns at
the same time, we
simply specify them
as a comma-
separated list

UPDATE
tablename

SET
columnname =
value where
condition;

Update emp set sal = sal
+0.5*sal;

Update emp set sal = sal+1000
where eno =1;

Delete The DELETE
statement is used
to remove data from
tables.

DELETE FROM
table name
where
condition;

Delete from emp ;

Delete from emp where eno = 1;

Consider the tables created in assignments 11,12,13,14. type and execute the below statements
for these tables. Write the output of each statement & justify your answer

1. INSERT INTO sales_order(s_order_no,s_order_date,client_no)
VALUES (‘A2100’, now() ,’C40014’);

2. INSERT INTO client_master values(‘A2100’,’NAVEEN’,’Natraj apt’,’pune_nagar
road’,’pune’,40014);

3. insert into client_master values (‘A2100’,’NAVEEN’,NULL,’pune_nagar road’,’pune’,40014);

4. UPDATE emp SET netsal= net_sal_basic_sal*0.15;

5. UPDATE student
SET name=’SONALI’,address=’Jayraj apartment’
WHERE stud_id=104 ;

6. DELETE from emp;

7.DELETE from emp
WHERE net_sal <1000;

Signature of the instructor Date

Set A

1. Create the following tables (primary keys are underlined.).
Property(pno,description, area)
Owner(oname,address,phone)

An owner can have one or more properties, but a property belongs to exactly one owner . Create
the relations accordingly ,so that the relationship is handled properly and the relations are in
normalized form (3NF).
a) Insert two records into owner table.
b) insert 2 property records for each owner .
c) Update phone no of “Mr. Nene” to 9890278008
d) Delete all properties from “pune” owned by “ Mr. Joshi”

2 . Create the following tables (primary keys are underlined.).

Emp(eno,ename,designation,sal)
Dept(dno,dname,dloc)

There exists a one-to-many relationship between emp & dept.

/ /

66

Create the Relations accordingly, so that the relationship is handled properly and the relations are
in normalized form (3NF).
a) Insert 5 records into department table
b) Insert 2 employee records for each department.
c) increase salary of “managers” by 15%;
d) delete all employees of deparment 30;
e) delete all employees who are working as a “clerk”
f) change location of department 20 to ‘KOLKATA’

3 . Create the following tables (primary keys are underlined.).

Sales_order(s_order_no,s_order_date)
Client(client_no, name, address)

A clinet can give one or more sales_orders , but a sales_order belongs to exactly one client.
Create the Relations accordingly, so that the relationship is handled properly and the relations are
in normalized form (3NF).
a) insert 2 client records into client table
b) insert 3 sales records for each client
c) change order date of client_no ’C004’ to 12/4/08
d) delete all sale records having order date before 10th feb. 08
e) delete the record of client “joshi”

Signature of the instructor Date

Set B

1. Design a set of tables with the following constraints. Add any new attributes , as required by
the queries.

Table name :
Field name Data Type Constraints

Table name :
Field name Data Type Constraints

Relationship ➔ _ _
Write & execute insert/ update / delete statements for following business tasks
a)

b)

c)

d)

e)

f)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date / /

/ /

67

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Set C
Create an appropriate set of tables in normalized form to keep some business information.
Populate the tables with information for the business process. State the updations that can be
done to the data in the table .Write and execute update / delete statements for the same. The
names of tables & fields should be self-explanatory (i.e . their names should depict the kind of
data being stored.)

Signature of the instructor Date

Assignment Evaluation Signature

/ /

68

Exercise 5 Start Date

To understand & get a Hands-on on Select statement

You should read following topics before starting this exercise
1. Creating relations as tables and inserting tuples as records into the table.
2. The use of select statement in extracting information from the relation.
3. Insert/update/delete with subquery.
4. Relationship types & their conversion to RDB.
5. Normal forms ➔ 1NF, 2NF, 3NF.

The select statement :

/ /

Name Description Syntax Example

Select statement Used to read a tuple,
tuples, parts of a tuple
from a relation in the
database. Tuple means a
record in an RDB & a
relation means a table.

The basic structure of a
Select statement
consists of 3 clauses :
The select clause ➔

corresponds to the
projection operation in
relational algebra. It is
used to list the attributes
desired in the query.
The from clause ➔

corresponds to the
Cartesian product
operation of RA. It lists
the relations to be
scanned in the
evaluation of the
expression.
The where clause ➔

corresponds to the
selection operation of
RA. It consists of a
predicate involving the
attributes of the relations
that appear in the select
clause.

select <attribute-
list> from <relation-
list> [where
<condition> [group
by <attribute list>
[having <condition>
] order by <attribute
list>]];

Select * from emp;
Select eno,name
from emp;
Select eno name
from emp where
sal > 4000 order by
eno;
Select sum(sal)
from emp group by
dno having
sum(sal)> 100000;

The other clauses
are :

Order by clause ➔
causes the result of the

69

 query to appear in a
sorted order.

Group by clause ➔

used to form groups of
tuples , of the result . It
is used when using
aggregate functions.

Having clause ➔

Used with group by
clause, to force a
condition on the groups
formed after applying
group by clause, &
selects only those groups
in the output that satisfy
the condition.

The order of execution of
the clauses is the same
as given in the syntax.

The aggregate functions supported by SQL are as follows:

Name Description Usage Example

Sum() Gets the sum or total
of the values of the
specified attribute.

Sum(attribute-name) Select sum(sal) from
emp;
Select dno, sum(sal)
from emp group by
dno;

Count() Gives the count of
members in the
group

Count(attribute);
Count(*)

Select count(*) from
emp;
Select count(*) from
emp where sal >
5000;

Max() Gives the maximum
value for an attribute,
from a group of
members

Max(attribute) Select max(sal) from
emp;
Select dno, max(sal)
from emp group by
dno having count(*)
>10;

Min() Gives the minimum
value for an attribute,
from a group of
members

Min(attribute) Select min(sal) from
emp;
Select dno, min(sal)
from emp group by
dno having min(sal)
>100;

Avg() Gives the average
value for an attribute,
from a group of
members

Avg(attribute) Select avg(sal) from
emp;
Select dno, avg(sal)
from emp group by
dno having count(*)
>10;

70

As part of the self activity in exercise you have created a table employee with attributes empno,
name, address, salary and deptno. You have also inserted atleast 10 records into the same.
To execute each query

type each query into the database prompt or
type queries in a file and cut and copy each query at the database prompt or
type queries in a file and type \i filename at SQL prompt. (all queries in the file will get

executed one by one).

Execute following select queries & write the business task performed by each query.

1. Select * from emp;

2. Select empno, name from emp;

3. Select distinct deptno from emp;

4. Select * from emp where deptno = _ ;

5. Select * from emp where address = ‘pune’ and sal > _ _;

6. Select * from emp where address = ‘pune and salary between and ;

7. Select * from emp where name like ‘---%’

8. Select * from emp where name like ‘%and%’

9. Select * from emp where salary is null;

10. Select * from emp order by eno;

11. Select * from emp order by deptno, eno desc;

12. Select deptno as department, sum(salary) as total from emp group by deptno order by
deptno;

13. Select deptno as department , count(eno) as total_emp from emp group by deptno having
count(eno) > order by deptno;

14. select avg(salary) from emp;

15. select max(salary),deptno from emp group by deptno having max(sal) > __ _;

16. select deptno, min(salary) from emp order by deptno;

17. update emp set salary = salary + 0.5*salary where deptno = (select deptno from department
where dname = ‘finance’);

18. update emp set deptno = (select deptno from department where dname = ‘finance’)
Where deptno = (select deptno from department where dname = ‘inventory’);

19. insert into emp_backup(eno,ename) values(select eno,ename from emp);

20. delete from emp where deptno = (select deptno from department where
dname=’production’);

Signature of the instructor Date

Set A
Consider the relations Person (pnumber, pname, birthdate, income), Area(aname,area_type).
An area can have one or more person living in it , but a person belongs to exactly one area. The
attribute ‘area_type’ can have values as either urban or rural.
Create the Relations accordingly, so that the relationship is handled properly and the relations are
in normalized form (3NF).
Assume appropriate data types for all the attributes. Add any new attributes as required,
depending on the queries. Insert sufficient number of records in the relations / tables with
appropriate values as suggested by some of the queries.
Write select queries for following business tasks and execute them.

1. List the names of all people living in ‘ ’ area.

2. List details of all people whose names start with the alphabet ‘_’ & contains maximum _
alphabets in it.

3. List the names of all people whose birthday falls in the month of _.

4. Give the count of people who are born on ‘ _’

5. Give the count of people whose income is below _ _.

6. List names of all people whose income is between and ;

/ /

71

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

7. List the names of people with average income

8. List the sum of incomes of people living in ‘ ’

9. List the names of the areas having people with maximum income (duplicate areas must be
omitted in the result)

10. Give the count of people in each area

11. List the details of people living in ‘_ ’ and having income greater than ;

12. List the details pf people, sorted by person number

13. List the details of people, sorted by area, person name

14. List the minimum income of people.

15. Transfer all people living in ‘pune’ to ‘mumbai’.

16. delete information of all people staying in ‘urban’ area

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set B

1. Design a table with the following constraints. Add any new attributes , as required by the
queries.

Table name :
Field name Data Type Constraints

Insert sufficient number of records in the relations / tables with appropriate values as
suggested by some of the queries.
Write & execute select queries for following business tasks
a)

b)

c)

d)

e)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set C
Create an appropriate table to keep some business information. Populate the table with
information for the business process. State the business tasks that you need to perform to extract
information. Write and execute queries for the same. The names of tables & fields should be self-
explanatory (i.e. their names should depict the kind of data being stored.)

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

/ /

72

Exercise 6 Start Date

To understand & get a Hands-on on using set operations (union ,intersect and except) with select
statement.

You should read following topics before starting this exercise

1. Relation algebra operation  ,  and - .
2. SQL operations union, intersect & except

SQL Set operations :

Name description Syntax Example

Union Returns the union of
two sets of values,
eliminating
duplicates.

<select query>
Union

<select query>

Select cname from
depositor

Union
Select cname from
borrower;

Union all Returns the union of
two sets of values,
retaining all
duplicates.

<select query>
Union all

<select query>

Select cname from
depositor

Union all
Select cname from
borrower;

Intersect Returns the
intersection of two
sets of values,
eliminating duplicates

<select query>
intersect

<select query>

Select cname from
depositor

intersect
Select cname from
borrower;

Intersect all Returns the
intersection of two
sets of values,
retaining duplicates

<select query>
Intersect all

<select query>

Select cname from
depositor

Intersect all
Select cname from
borrower;

except Returns the
difference between
two set of values, I.e
returns all values
from set1 , not
contained in set2
.eliminates duplicates

<select query>
except

<select query>

Select cname from
depositor

except
Select cname from
borrower;

Except all Returns the
difference between
two set of values, i.e.
returns all values
from set1 , not
contained in set2
.Retains all
duplicates

<select query>
Except all

<select query>

Select cname from
depositor

Except all
Select cname from
borrower;

The relations participating in the SQL operations union, intersect & except must be compatible i.e.
the following two conditions must hold :

a) The relation r and s must be of the same arity. That is , they must have the same number of
attributes.

/ /

73

/ /

b) The domains of the ith attribute of r and the ith attribute of s must be the same , for all i.

Consider the following relations, non-teaching, teaching, department.
One deparment can have one or more teaching & non-teaching staff, but a teaching or non-
teaching staff belongs to exactly one department. Hence dno is a foreign key in the both the
relations. Create these relations in your database .

Non-teaching (empno int primary key, name varchar(20), address varchar(20), salary int,dno
references department)
Teaching(empno int primary key, name varchar(20), address varchar(20), salary int,dno
references department)
Department(dno int primary key,dname)

• insert at least 10 records into both the relations.

• type the following select queries & write the output and the business task performed by
each query

1. Select empno from non-teaching union select empno from teaching;

2. Select empno from non-teaching union all select empno from teaching;

3. Select name from non-teaching intersect select name from teaching;

4. Select name from non-teaching intersect all select name from teaching;

5. Select name from non-teaching except select name from teaching;

6. Select name from non-teaching except all select name from teaching;

Signature of the instructor Date

Set A
Create the following relations, for an investment firm

emp(emp-id ,emp-name, address, bdate)
Investor(inv-name , inv-no, inv-date, inv-amt)

An employee may invest in one or more investments, hence he can be an investor.
But an investor need not be an employee of the firm.
Create the Relations accordingly, so that the relationship is handled properly and the relations are
in normalized form (3NF).
Assume appropriate data types for the attributes. Add any new attributes , as required by the
queries. Insert sufficient number of records in the relations / tables with appropriate values as
suggested by some of the queries.

Write the following queries & execute them.

1. List the distinct names of customers who are either employees, or investors or both.

2. List the names of customers who are either employees , or investors or both.

3. List the names of emloyees who are also investors.

4. List the names of employees who are not investors.

Signature of the instructor Date

Set B

1. Design following two tables with the following constraints . Add any new attributes, as
required by the queries.

Table name 1:
Field name Data Type Constraints

/ /

74

Table name 2:
Field name Data Type Constraints

Relationship ➔ _ _

Insert sufficient number of records in the relations / tables with appropriate values as
suggested by some of the queries.
Write & execute queries for following business tasks
a)

b)

c)

d)

e)

f)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set C
Create two compatible tables having similar set of attributes, to keep some business information.
Populate the tables with information for the business process. State the business tasks that you
need to perform on these tables involving information from both the tables. Write and execute
queries for the same. The names of tables & fields should be self-explanatory (i.e. their names
should depict the kind of data being stored.)

Signature of the instructor Date

Assignment Evaluation Signature

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

/ /

/ /

75

Exercise7-a Start Date

To understand & get a Hands-on on nested queries & subqueries, that involves joining of tables.

You should read following topics before starting this exercise
1. Nesting of SQL queries and subqueries
2. SQL statements involving set membership, set comparisons and set cardinality operations.
3. Descriptive attributes & how they are handled while creating RDB.

A subquery is a select-from-where expression that is nested within another query.
Set membership the ‘in’ & ‘not in’ connectivity tests for set membership & absence

of set membership respectively.

Set comparison the < some, > some, <= some, >= some, = some, <> some are the
constructs allowed for comparison. = some is same as the ‘in’
connectivity. <> some is not the same as the ‘not in’ connectivity.
Similarly sql also provides < all, >all, <=all, >= all, <> all
comparisons. <>all is same as the ‘not in’ construct.

Set cardinality The ‘exists’ construct returns the value true if the argument
subquery is nonempty. We can test for the non-existence of tuples
in a subquery by using the ‘not exists’ construct. The ‘not exists ‘
construct can also be used to simulate the set containment
operation (the super set). We can write “relation A contains relation
B” as “not exists (B except A)”.

The complete Syntax of select statement containing connectivity or Comparison operators is as
follows
select <attribute-list> from <relation-list>

where <connectivity / comparison > { sub-query };

Create the following relation in your database(primary keys underlined)

Employee(ename, street, city)
Works(ename, company-name, salary)
Company(company-name, city)
Manages(ename, manager-name)

An employee can work in one or more companies, a company can have one or more employees
working in it. Hence the relation ‘works’ with key attributes as ename,
company-name.
An employee manages one or more employees, but an employee is managed by exactly one
employee (a recursive relationship), hence the relation ‘manages’ with key ename.
Insert sufficient number of records in the relations / tables with appropriate values as suggested
by some of the queries.
Type the following queries , execute them and give the business task performed by each query

1. select ename from works w where salary >= all (select max(salary) from works));

2. select ename form works w where salary = (select max(salary) from works w1 where
w1.company-name = w.company-name));

3. select manager-name from manages where manager-name in(select ename from works
where company-name = “_ _”);

4. select manager-name from manages where manager-name not in(select ename from works
where company-name = “_ ”);

/ /

76

5. select ename from works w where salary > some (select salary from works where company-
name not in (select company-name from company where city = “ _”));

6. select ename from employee e where city = (select city from employee e1 , manages m
where m.ename = e.ename and m.manager-name = e1.ename);

7. select * from employee where ename in (select manager-name from manages)

8. select city count(*) from employee group by city having count(*) >= all (select count(*) from
employee group by city)

9. select ename from works w where salary <> all (select salary from works where ename <>
w.ename);

10. select company-name, sum(salary) from works w group by company-name having sum(sal)
>= all (select sum(sal) from works group by company-name)

11. select ename from employee e where city in(‘_ ’,’ ’);

12. select ename from employee e where city = (select city from company c, works w where
w.ename = e.name and c.company-name = w.company-name);

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set A
Create the following relations :

Emp(eno,name,dno,salary)
Project(pno,pname,control-dno,budget)

Each employee can work on one or more projects, and a project can have many employees
working in it. The number of hours worked on each project , by an employee also needs to be
stored.
Create the Relations accordingly, so that the relationship is handled properly and the relations are
in normalized form (3NF).
Assume appropriate data types for the attributes. Add any new attributes , new relations as
required by the queries.
Insert sufficient number of records in the relations / tables with appropriate values as suggested
by some of the queries.
Write the queries for following business tasks & execute them.

1. list the names of departments that controls projects whose budget is greater than .

2. list the names of projects, controlled by department No __, whose budget is greater than
atleast one project controlled by department No .

3. list the details of the projects with second maximum budget

4. list the details of the projects with third maximum budget.

5. list the names of employees, working on some projects that employee number is working.

6. list the names of employees who do not work on any project that employee number works
on

7. list the names of employees who do not work on any project controlled by ‘ ’
department

8. list the names of projects along with the controlling department name, for those projects
which has atleast employees working on it.

9. list the names of employees who is worked for more than 10 hrs on atleast one project
controlled by ‘ ’ dept.

10. list the names of employees , who are males , and earning the maximum salary in their
department.

11. list the names of employees who work in the same department as ‘_ _’.

12. list the names of employees who do not live in or .
Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date / /

/ /

77

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

Set B

1. Design a set of tables with the following constraints. Add any new attributes , as required by
the queries.

Table name :
Field name Data Type Constraints

Table name :
Field name Data Type Constraints

Table name :

Field name Data Type Constraints

Relationship ➔ _ _ _
Insert sufficient number of records in the relations / tables with appropriate values as
suggested by some of the queries.
Write & execute queries for following business tasks. (business tasks should be using
set operations & should be similar to the ones given in set A)

a)

b)

c)

d)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set C
Create an appropriate set of tables to keep some business information. Populate the tables with
information for the business process. State the business tasks that involve set of operations that
you need to perform to extract information. Write and execute queries for the same. The names of
tables & fields should be self-explanatory (i.e. their names should depict the kind of data being
stored.)

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

78

Exercise 7-b Start Date

To understand & get a Hands-on on nested queries & subqueries, that involves joining of tables,
to demonstrate set cardinality.

You should read following topics before starting this exercise
1. Nesting of SQL queries and subqueries
2. SQL statements involving set membership, set comparisons and set cardinality operations.

SQL includes a feature for testing whether a subquery has any tuples in its result, using the
following clauses :.
Name Description Syntax Example

Exists The ‘exists’ construct
returns the value true if
the argument subquery
is nonempty

select <attribute-
list> from <relation-
list>

where
<exists> { sub-
query} ;

Select cname from
borrower b where
exists(select * from
depositor where
dname = b.cname);

Not exists We can test for the
non-existence of tuples
in a subquery by using
the ‘not exists’
construct.
The ‘not exists ‘
construct can also be
used to simulate the
set containment
operation (the super
set).
We can write “relation
A contains relation B”
as “not exists (B except
A)”

select <attribute-
list> from <relation-
list>
where <not exists>
{ sub-query};

Select cname from
borrower b where not
exists(select * from
depositor where
dname = b.cname);

Consider the table you have prepared as part of self activity of exercise 18, Type the following
queries , execute them and give the business task performed by each query

1. Select company-name from company c where not exists (select city from company where
company-name = “ _” except (select city from company where company-name =
c.company-name));

2. Select ename from employee e where exists (select manager-name from manages where
manager-name = e.ename group by manager-name having count(*) >3);

3. Select company-name from company c where not exists (select city from company where
company-name = c.company-name except (select city from company where company-name =
“ ”));

4. Select ename from employee e where exists (select city from employee where city = e.city
and ename <> e.ename group by city having count(*) > 5)

/ /

79

5. Select company-name from company c where not exists (select company-name from
company where city = c.city and company-name <> c.company-name)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set A
Consider the table you have prepared as part of Assessment work set A of exercise 18, Type the
following queries, execute them and give the business task performed by each query

1. List the names of employees who work in all the projects that “ _” works on.

2. List the names of employees who work on only some projects that “ ” works on

3. List the names of the departments that have atleast one project under them .(write using
‘exists ‘ clause)

4. List the names of employees who do not work on “sales” project (write using ‘not exists’)
clause

5. List the names of employees who work only on those projects that are controlled by their
department .

6. List the names of employees who do not work on any projects that are controlled by their
department

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set B

1. Design tables with the following constraints. Add any new attributes , as required by the
queries.

Table name :
Field name Data Type Constraints

Table name :
Field name Data Type Constraints

Relationship ➔ _ _

Insert sufficient number of records in the relations / tables with appropriate values as
suggested by some of the queries.
Write & execute queries for following business tasks. (business tasks should be using
set cardinality operations & should be similar to the ones given in set A)

a)

b)

/ /

/ /

80

0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

c)

d)

e)

f)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor Date

Set C
Create an appropriate set of tables to keep some business information. Populate the tables with
information for the business process. State the business tasks that involve set cardinality
operations that you need to perform to extract information. Write and execute queries for the
same. The names of tables & fields should be self-explanatory (i.e. their names should depict the
kind of data being stored.)

Signature of the instructor Date

Assignment Evaluation Signature

/ /

/ /

81

Exercise8 Start Date

Assignment to create views

/ /

82

83

