
Semester-II 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Assignment Completion Sheet 

 
Sr. 

No. 

Title of the Assignment Performed 

          on 

Submitted 

on 

Remark Marks 

Obtained  

A) Advanced ‘C’ Programming 

1.  To demonstrate use of Pointer     

2.  To demonstrate dynamic memory allocation     

3.  To demonstrate String using standard library functions.     

4.  To demonstrate  Structure and Unions.     

5.   File Handling.     

6.  To demonstrate  C Preprocessors.     

B) Relational Database Management  System. 

1.  Assignment on Stored Function     

2.  Assignment on Cursor.     

3.  Assignment on Exception handling.     

4.  Assignment on Triggers     

5.  Assignment on Stored procedures     

 

Practical Incharge:  1) 

    2) 

 

 

 

 
 



 

 

Exercise 1 Start Date 

 

To demonstrate use of pointers in C. 
 

 

You should read the following topics before starting this exercise 
1. What is a pointer? 
2. How to declare and initialize pointers. 

3. ‘*’ and ‘&’ operators. 
5. Pointer to a pointer. 
6. Relationship between array and pointer. 
7. Pointer to array and Array of pointers. 
8. Dynamic memory allocation (malloc, calloc, realloc, free). 

 
A Pointer is a variable that stores the memory address of another variable 

 
Actions involving 
Pointers 

syntax Example 

Declaration of pointers data_type * pointer_name int *p1,*p2; 
float *temp1; 

Initialization of pointers pointer =&variable 
p1=&n; 

int a, *p= &a; 

Pointer Arithmetic The C language allow 
arithmetic operations to be 
performed on pointers: 
Increment, Decrement, 
Addition, Subtraction 
When a pointer is incremented ( 
or decremented) by 1, it 
increments by sizeof(datatype). 
For example, an integer pointer 
increments by sizeof(int). 

 

Pointers and Functions We can pass the address of a 
variable to a function. The 
function can accept this 
address in a pointer and use 
the pointer to access the 
variable’s value. 

 

Arrays And Pointers An array name is a pointer to 
the first element in the array. It 
holds the base address of the 
array. Every array expression is 
converted to pointer expression 
as follows: a[i] is same as 
*(a+i) 

int n; 
*n , *(n + 0 ) represents 0th 
element 
n[ j ], *(n+ j ),* (j + n) , j [ n ] : 
represent the value of the jth 
element of array n 

/ / 



Pointer To Pointer  int a; 
int * p; 
int **q; 
p = &a; 



  q = *p ; 

To allocate memory The functions used are : malloc, int * p,*p1; 
dynamically calloc, realloc p = (int *) malloc(10 * 

 ptr = ( cast-type * ) malloc ( sizeof(int)); 
 byte-size) ; p1 = (int *) calloc(10, 
 Allocates a block of contiguous sizeof(int)); 
 bytes. If the space in heap is p1=realloc(p1,20*sizeof(int)); 
 not sufficient to satisfy request,  

 allocation fails, returns NULL.  

 ptr1 = ( cast-type * ) calloc (  

 byte-size);  

 Similar to malloc, but initializes  

 the memory block allocated to  

 0.  

 ptr = realloc ( ptr, new size );  

 To increase / decrease memory  

 size.  

 

1. Sample program 

 

/* Program to swap two numbers*/ 
main() 
{ 

int a = 10, b = 20; 
void swap1( int x, int y); 
void swap2( int *ptr1, int *ptr2); 

 

printf(“\nBefore swapping : a=%d, b=%d”, a,b); 
swap1(a, b); 
printf(“\nAfter swapping by swap1 : a=%d, b=%d”, a,b); 
swap2(&a, &b); 
printf(“\nAfter swapping by swap2 : a=%d, b=%d”, a,b); 

} 
 
void swap1( int x, int y) 
{ 

int temp; 
temp = x; 
x = y; 
y = temp; 

} 
 

void swap2( int *ptr1, int *ptr2) 
{ 

int temp; 
temp = *ptr1; 
*ptr1 = *ptr2; 
*ptr2 = temp; 

} 



2. Sample program 

 
 

1. Type the sample program 1 given above, execute it and write the output. 

2. Sample program 2 allocates memory dynamically for n integers and accepts and displays the 
values. Type the sample program 2 given above, execute it. Modify the program to allocate 
memory such that the allocated memory is initialized to 0. 

Set A . Write C programs for the following problems. 

 
1. Write a function which takes hours, minutes and seconds as parameters and an integer s 

and increments the time by s seconds. Accept time and seconds in main and Display the new 
time in main using the above function. 

 
2. Write a program to display the elements of an array containing n integers in the reverse 

order using a pointer to the array. 

 
3. Write a program to allocate memory dynamically for n integers such that the memory is 

initialized to 0. Accept the data from the user and find the range of the data elements. 

 
Signature of the instructor Date 

 
 

Set B . Write C programs for the following problems. 

1. Accept n integers in array A. Pass this array and two counter variables to a function which 
will set the first counter to the total number of even values in the array and the other to the total 
number of odd values. Display these counts in main. (Hint: Pass the addresses of the counters to 
the function) 

 
2. Write a function which accepts a number and three flags as parameters. If the number is 

even, set the first flag to 1. If the number is prime, set the second flag to 1. If the number is 
divisible by 3 or 7, set the third flag to 1. In main, accept an integer and use this function to check 
if it is even, prime and divisible by 3 or 7. (Hint : pass the addresses of flags to the function) 

 

 
Signature of the instructor Date 

/* Program to allocate memory for n integers dynamically*/ 
#include <stdlib.h> 
void main() 
{ 

int *p, n,i; 
printf(“How many elements :”); 
scanf(“%d”,&n); 

 
p = (int *)malloc(n*sizeof(int)); 
/* Accepting data */ 
for(i=0; i<n;i++) 

scanf(”%d”,p+i); 
 

/* Displaying data */ 
for(i=0; i<n;i++) 

printf(”%d\t”,*(p+i)); 
} 

/ / 

/ / 



0: Not done  2: Late Complete  4: Complete 
     

1: Incomplete  3: Needs improvement  5: Well Done 

 

Set C. Write programs to solve the following problems 

 
1. Accept the number of rows (m) and columns (n) for a matrix and dynamically allocate 

memory for the matrix. Accept and display the matrix using pointers. Hint: Use an array of 
pointers. 

 

n integers 

 
 

    

 
m pointers 

    

 
 
 
 

 
2. There are 5 students numbered 1 to 5. Each student appears for different number of 

subjects in an exam. Accept the number of subjects for each student and then accept the marks 
for each subject. For each student, calculate the percentage and display. (Hint: Use array of 5 
pointers and use dynamic memory allocation) 

 

 
Signature of the instructor Date 

 
 

 
Assignment Evaluation Signature 

/ / 

    

 



Exercise 2-a Start Date 
 

To demonstrate strings in C. 
 

You should read the following topics before starting this exercise 
1. String literals 
2. Declaration and definition of string variables 
3. The NULL character 
4. Accepting and displaying strings 
5. String handling functions 

 

 
A string is an array of characters terminated by a special character called NULL character(\0). 
Each character is stored in 1 byte as its ASCII code. 

 
Actions Involving 
strings 

Explanation Example 

Declaring Strings  char message[80]; 

Initializing Strings  char message[]= { ’H’, ’e’, ’l’, ’l’, 
’o’, ’\0’ } ; 

char message [ ] = “Hello”; 

Accepting Strings scanf and gets can be used 
to accept strings 

char name[20], address[50]; 
printf(“\n Enter your name :); 
scanf(“%s”, name); 
printf(“\n Enter your address :); 
gets(address); 

Displaying Strings printf and puts can be used to 
display strings. 

printf(“\n The name is %s:”, 
name); 
printf(“\n The address is :”); 
puts(address); 

String functions All string operations are 
performed using functions in 
“string.h”. Some of the most 
commonly used functions are 
a. strlen – Returns the 

number of characters in 
the string (excluding \0) 

b. strcpy – Copies one 
string to another 

c. strcmp – Compares two 
strings. Returns 0 (equal), 
+ve (first string > 
second), -ve (first string < 
second ). It is case 
sensitive 

d. strcmpi – Same as 
strcmp but ignores case 

e. strcat – Concatenates the 
second string to the first. 

#include <string.h> 
main( ) 
{ 
char str1[50], str2[50],str3[100]; 
printf(“\n Give the first string:”); 
gets(str1); 
printf(“\n Give the second string 
string:”); 
gets(str2); 
if (strlen(str1) == strlen(str2) 
{strcpy(str3, strrev(str1)); 
strcat(str3, strupr(str2)); 
puts(strupr(str3)); 

} 
else 

puts(strlwr(str2); 
} 

/ / 



 Returns the concatenated 
string. 

f. strrev – Reverses a string 
and returns the reversed 
string. 

g. strupr – Converts a string 
to uppercase. 

h. strlwr - Converts a string 
to lowercase 

 

 

Sample program : 
The following program demonstrates how to pass two strings to a user defined function and copy 
one string to other using pointers 

 
 

1. Write a program to accept two strings str1 and str2. Compare them. If they are equal, display 
their length. If str1 < str2, concatenate str1 and the reversed str2 into str3. If str1 > str2, convert 
str1 to uppercase and str2 to lowercase and display. Refer sample code for string functions 
above. 

2. Type the sample program above and execute it. Modify the program to copy the characters 
after reversing the case. (Hint: First check the case of the character and then reverse it) 

 

Signature of the instructor Date 
 
 

Set A . Write C programs for the following problems. 

 
1. Write a menu driven program to perform the following operations on strings using standard 

library functions: 

Length Copy Concatenation Compare 

Reverse Uppercase Lowercase Check case 

 
2. Write a program that will accept a string and character to search. The program will 

call a function, which will search for the occurrence position of the character in the 

void string_copy (char *t,char *s) 
{ 

while (*s !=’\0’) /* while source string does not end */ 
{ *t=*s; 

s++; 
t++; 

} 
*t =’\0’; /* terminate target string */ 

} 
 

void main() 
{ 

char str1[20], str2[20]; 
printf(“Enter a string :”); 
gets(str1); 
string_copy(str2, str1); 
printf(“The copied string is :”); 
puts(str2); 

} 

/ / 



/ / 

string and return its position. Function should return –1 if the character is not found in 
the string. 

 
3. A palindrome is a string that reads the same-forward and reverse. Example: “madam” is a 

Palindrome. Write a function which accepts a string and returns 1 if the string is a palindrome and 
0 otherwise. Use this function in main. 

 
4. For the following standard functions, write corresponding user defined functions and write a 

menu driven program to use them. strcat, strcmp, strrev, strupr 

 
5. Write a program which accepts a sentence from the user and alters it as follows: 

Every space is replaced by *, case of all alphabets is reversed, digits are replaced by ? 
 

 
Signature of the instructor Date 

 
 

Set B . Write C programs for the following problems. 

 
1. Write a menu driven program which performs the following operations on strings. Write a 

separate function for each option. Use pointers 
i. Check if one string is a substring of another. 
ii. Count number of occurrences of a character in the string. 
iii. Replace all occurrences of a character by another. 

 
2. Write a program in C to reverse each word in a sentence. 

 
3. Write a function which displays a string in the reverse order. (Use recursion) 

Signature of the instructor Date 

 
 

Set C. Write programs to solve the following problems 

 
1. Write a program that accepts a sentence and returns the sentence with all the extra 

spaces trimmed off. (In a sentence, words need to be separated by only one space; if 
any two words are separated by more than one space, remove extra spaces) 

 

2. Write a program that accepts a string and displays it in the shape of a kite. Example: “abcd” 
will be displayed as : 

aa 

abab 

abcabc 

abcdabcd 

abcabc 

abab 

aa 
 

3. Write a program that accepts a string and generates all its permutations. For example: ABC, 
ACB, BAC, BCA, CAB, CBA 

 
4. Write a program to display a histogram of the frequencies of different characters in a 

sentence. Note: The histogram can be displayed as horizontal bars constructed using * character. 
Example: this is a single string 

/ / 



0: Not done  2: Late Complete  4: Complete 
     

1: Incomplete  3: Needs improvement  5: Well Done 

 

t * * 

h * 

i * * * * 

s * * * * 

a * * 

n * * 

g * * 

l * 

e * 

r * 

 
 

Signature of the instructor Date 
 
 

 
Assignment Evaluation Signature 

/ / 



Exercise 2.b Start Date 
 

To demonstrate array of Strings. 

 
You should read the following topics before starting this exercise 
1. How to declare and initialize strings. 
2. String handling functions 
3. How to create and access an array of strings. 
4. Dynamic memory allocation 

 
An array of strings is a two dimensional array of characters. It can be treated as a 1-D array such 
that each array element is a string. 

Actions Involving 
array of strings 

Explanation Example 

Declaring String array char 
array[size1][size2]; 

char cities[4][10] 

Initializing String array  char cities[4][10] = { “Pune”, “Mumbai”, 
“Delhi”, “Chennai”}; 

 

Sample program- 
The following program illustrates how to accept ‘n’ names , store them in an array of strings and 
search for a specific name. 

 

/* Program to search for name from array */ 

#include <stdio.h> 

void main( ) 

{ 

char list[10][20]; /*list is an array of 10 strings */ 

char name[20]; 

int i,n; 

printf(“\n How many names ?:”); 

scanf(“%d”, &n); 

for (i=0;i<n; i++) 

{ 

printf(“\n Enter name %d,”i); 

scanf(“%s”, list[i]); 

} 

printf(“\n The names in the list are : \n”); 

for (i=0; i<n; i++) 

printf(”%s”, list[i]); 

printf(“\n Enter the name to be searched “); 

scanf(“%s”, name); 

for (i=0; i<n; i++) 

if(strcmp(list[i],name)==0) 

{ 

printf(“Match found at position %d”, i); 

break; 

} 

if(i==n) 

printf(“Name is not found in the list”); 

} 

/ / 



0: Not done  2: Late Complete  4: Complete 
     

1: Incomplete  3: Needs improvement  5: Well Done 

 

 
1. Type the above sample program and execute the same for different inputs. 

 
Signature of the instructor Date 

 
 

Set A . Write C programs for the following problems. 

 
1. Write a program that accepts n words and outputs them in dictionary order. 

2. Write a program that accepts n strings and displays the longest string. 

3. Write a program that accepts a sentence and splits the sentence into words. Sort each word 
and reconstruct the sentence. 
Input – this is a string Output – hist is a ginrst 

 
Signature of the instructor Date 

 
 

Set B . Write C programs for the following problems. 

 
1. Write a function, which displays a given number in words. 

For Example: 129 One Hundred Twenty Nine 
2019 Two Thousand Nineteen 

2. Define two constant arrays of strings, one containing country names (ex: India, France etc) 
and the other containing their capitals. (ex: Delhi, Paris etc). Note that country names and capital 
names have a one-one correspondence. Accept a country name from the user and display its 
capital. Example: Input: India , Output: Delhi. 

 
Signature of the instructor Date 

 

 
Set C. Write programs to solve the following problems 

 
1. Create a mini dictionary of your own. Each entry in the dictionary contains three parts (word, 

its meaning, similar word). The entries are stored in the sorted order of words. Write a menu 
driven program, which performs the following operations. 

i. Add a new word (Insert new word and its details in the correct position) 
ii. Dictionary look-up 
iii. Find similar word 
iv. Delete word 
v. Display All words starting with a specific alphabet (along with their meaning). 

(Hint: Use 2-D array of strings having n rows and 3 columns) 

Signature of the instructor Date 
 

 
Assignment Evaluation Signature 

/ / 

/ / 

/ / 

/ / 



Exercise 3-a Start Date 
 

Structures in C 
 

You should read the following topics before starting this exercise 
1. Concept of structure 
2. Declaring a structure 
3. Accessing structure members 
4. Array of structures 
5. Pointer to a structure. 
6. Passing structures to functions 

 

A structure is a composition of variables possibly of different data types, grouped together under a 
single name. Each variable within the structure is called a ‘member’. 

 
Operations 
performed 

Syntax / Description Example 

Declaring a structure struct structure-name 

{ 

type member-1 ; 

type member-2; 

. 

. 

type member-n ; 

}; 

struct student 

{ 

char name[20]; 

int rollno; 

int marks; 

}; 

Creating structure 
variables 

struct structurename variable; struct student stud1; 

Accessing structure 
members 

variable.member stud1.name 

stud1.rollno 

stud1.marks 

initializing a structure 
variable 

the initialization values have to be 
given in {} and in order 

struct student stud1 = 
{“ABCD”,10,95}; 

Pointer to a structure struct structure-name * pointer- 
name; 

struct student *ptr; 

ptr = &stud1; 

Accessing members 
using Pointer 

pointer-name -> member-name; ptr->name; ptr->rollno; 

Array of structures struct structure-name array- 
name[size]; 

struct student stud[10]; 

passing Structures to 
Functions 

return-type function-name ( struct 
structure-name variable); 

void display(struct student s); 

pass an array of 
structures to a function 

return-type function-name ( struct 
structure-name array[size]); 

void display(struct student 
stud[10]); 

/ / 



/* Program for student structure */ 

 
#include<stdio.h> 
struct student 
{ char name[20]; 

int rollno; 
int marks[3]; 
float perc; 

}; 
void main( ) 
{ 

int i, sum j; 
struct student s[10]; 

printf(“\n Enter the details of the 10 students \n”); 
for (i=0;i<10;i++) 
{ 

printf(“\n Enter the name and roll number \n”); 
scanf(“%s%d”,s[i].name, &s[i].rollno); 
printf(“\n Enter marks for three subjects:”); 
sum = 0 ; 
for { j=0;j<3;j++) 
{ 

scanf(“%d”,&s[i].marks[j]); 
sum = sum + s[i].marks[j]; 

} 
s[i].perc = (float)sum/3; 

} 
/* Display details of students */ 
printf(“\n\n Name \t Roll no\t Percentage”); 
printf(“\n================================\n”); 
for(i=0;i<10;i++) 
{ 

printf(“\n%s\t%d\t%f”,s[i].name,s[i].rollno,s[i].perc); 
} 

} 

Sample Code: 
 

 

1. The program in Sample code 1 demonstrates an array of structures of the type student. Type 
the above program and run it. Modify the program to display the details of the student having the 
highest percentage. 

 
Signature of the instructor Date 

 
 

Set A . Write C programs for the following problems. 

1. Create a structure student (roll number, name, marks of 3 subjects, percentage). Accept 
details of n students and write a menu driven program to perform the following operations. Write 
separate functions for the different options. 

i) Search 
ii) Modify 
iii) Display all student details 
iv) Display all student having percentage >    
v) Display student having maximum percentage 

/ / 



0: Not done  2: Late Complete  4: Complete 
     

1: Incomplete  3: Needs improvement  5: Well Done 

 

2. Create a structure employee (id, name, salary). Accept details of n employees and write a 
menu driven program to perform the following operations. Write separate functions for the 
different options. 

i) Search by name 
ii) Search by id 
iii) Display all 
iv) Display all employees having salary >    
v) Display employee having maximum salary 

Instructor should fill in the blanks with appropriate values. 

 
Signature of the instructor Date 

 

 
Set B . Write C programs for the following problems. 

 
1. Create a structure having the following fields: 

Structure name: _ 
Fields: , , _, _ , _ , _ 
Accept details of n variables of the above structure and write a menu driven program to perform 
the following operations. Write separate functions for the different options. 

i) _ ii) _ iii) iv) _ _ 

 
2. Create a structure Fraction (numerator, denominator). Accept details of n fractions and write 

a menu driven program to perform the following operations. Write separate functions for the 
different options. Use dynamic memory allocation. Note: While accepting fractions, store the 
fractions in the reduced form. 

i) Display the largest fraction 
ii) Display the smallest fraction 
iii) Sort fractions 
iv) Display all 

 
Signature of the instructor Date 

 

 
Set C. Write programs to solve the following problems 

1. Accept book details of ‘n’ books viz, book title, author, publisher and cost. Assign an 
accession numbers to each book in increasing order. (Use dynamic memory allocation). 
Write a menu driven program for the following options. 
i. Books of a specific author 
ii. Books by a specific publisher 
iii. All books having cost >= _ . 
iv. Information about a particular book (accept the title) 
v. All books. 

 
2. The government of a state wants to collect census information for each city and store the 

following information : city name, population of the city, literacy percentage. After collecting data 
for all cities in the state, the government wants to view the data according to : 

i. Literacy level 
ii. Population 
iii. Details of a specific city. 

Write a C program using structures and dynamic memory allocation. 

Signature of the instructor Date 

 

Assignment Evaluation Signature 

/ / 

/ / 

/ / 



Exercise 3-b Start Date 

 

Nested Structures and Unions 
 

You should read the following topics before starting this exercise 
1. Creating and accessing structures 
2. Array of structures 
3. Dynamic memory allocation 
4. Structure within a structure 
5. Creating and accessing unions 

 

 
Nested structures: The individual members of a structure can be other structures as well. This is 
called nesting of structures. 

 
Operations 
performed 

Syntax Example 

Creating a nested struct structure1 

{ 

. . . 

struct structure2 

{ 

. . . 

} variable; 

. . . 

}; 

 
Method 2 

struct structure2 

{ 

. . . 

}; 

 
struct structure1 

{ 

. . . 

struct structure2 
variable; 

. . . 

}; 

struct student 

structure { 
 int rollno; char name[20]; 
 struct date 
 { 
 int dd, mm, yy; 
 } bdate, admdate; 

 }; 

  
struct date 

 { 
 int dd, mm, yy; 

 }; 

 
struct student 

 { 
 int rollno; char name[20]; 
 struct date bdate, admdate; 

 }; 

Accessing nested 
structure members 

nested structure members can 
be accessed using the (.) 
operator repeatedly. 

stud1.bdate.dd, stud1.bdate.mm 

self referential 
structure 

A structure containing a pointer 
to the same structure 

struct node 

{ 

int info; 

struct node *next; 

/ / 



/* Program for demonstrating structure and union */ 

 
struct library_book 

{ 

int id; 

char title[80],publisher[20] ; 

int code; 

union u 

{ 

int no_of_copies; 

char month[10]; 

int edition; 

}info; 

int cost; 

}; 

void main( ) 

{ 

struct library_book book1; 

printf(“\n Enter the details of the book \n”); 

 
printf(“\n Enter the id, title and publisher \n”); 

scanf(“%d%s%s”,&book1.id, book1.title, book1.publisher); 

printf(“\n Enter the code: 1-Text Book, 2-Magazine, 3-Reference”); 

scanf(“%d”,book1.code); 

switch(book1.code) 

{ 

case 1: printf(“Enter the number of copies :”); 

scanf(“%d”,&book1.info.no_of_copies); 

break; 

case 2: printf(“Enter the issue month name :”); 

scanf(“%s”,book1.info.month); 

break; 

case 3: printf(“Enter the edition number:”); 

scanf(“%d”,&book1.info.edition); 

break; 

} 

printf(“Enter the cost :”); 

scanf(“%d”,&book1.cost); 

/* Display details of book */ 

printf(“\n id = %d”, book1.id); 

  }; 

Unions A union is a variable that 
contains multiple members of 
possibly different data types 
grouped together under a single 
name. However, only one of 
the members can be used at a 
time. They occupy the same 
memory area. 

union u 

{ 

char a; 

int b; 

}; 

 

Sample Code 1: 
Example: The following structure is for a library book with the following details : id, title, publisher, 
code ( 1 – Text book, 2 – Magazine, 3 – Reference book). If the code is 1, store no-of-copies. If 
code = 2, store the issue month name. If code = 3, store edition number. Also store the cost. 

 



NULL 

/* Program to create a linked list of 5 nodes */ 

 
#include <stdio.h> 

struct node 

{ 

int info; 

struct node *next; 

}; 

struct node *list = NULL; /* list is a pointer to the linked list */ 

 
void createlist() 

{ 

struct node *temp, *p; 

int i; 

for(i=1;i<=5;i++) 

{ 

p=(struct node *)malloc(sizeof(struct node)); /* create a node */ 

p->info = i; 

p->next=NULL; 

if(list == NULL) 

list=temp=p; /* list points to the first node */ 

else 

{ 

temp->next=p; /* link new node to the last */ 

temp=p; 

} 

} 

void displaylist() 

{ 

struct node *temp; 

 
 

Sample Code 2: 
A linked list is a collection of data elements which are linked to one another by using pointers i.e. 
the every node stores the address of the next node. The advantage of using a linked list over an 
array is that it is easy to insert and delete elements from the list. 
To create a linked list, we have to use a self referential structure (See table above). Each element 
of the list is called a node. 

info  next        info  next        info   next        info  next 
  list  

 

node node node node 

To create a node, we have to allocate memory dynamically. The following program creates 5 
nodes , stores the numbers 1…5 in them and displays the data. 

 

printf(“\n Title = %s”, book1.title); 

printf(“\n Publisher = %s”, book1.publisher); 

switch(book1.code) 

{ 

case 1: printf(“Copies = %d:”, book1.info.no_of_copies); 

break; 

case 2: printf(“Issue month name = %s”,book1.info.month); 

break; 

case 3: printf(“Edition number =%d:”,book1.info.edition); 

break; 

} 

printf(“\n Cost = %d”, book1.cost); 

} 



 
 

 

1. The sample code 1 given above demonstrates how we can create a variable of the above 
structure and accept and display details of 1 book. Type the program and execute it. Modify the 
program to accept and display details of n books. 

 
2. The sample code 2 given above demonstrates how we can create a linked list and traverse 

the list. Type the program and execute it. Modify the displaylist function to display only the even 
numbers from the list. 

 
Signature of the instructor Date 

 

 

 

Set A . Write C programs for the following problems. 

 
1. Modify the sample program 1 above to accept details for n books and write a menu driven 

program for the following: 

 
i) Display all text books 

ii) Search Text Book according to Title 

iii) Find the total cost of all books (Hint: Use no_of_copies). 

 
2. Modify the sample program 1 to accept details for n books and write a menu driven program 

for the following: 

 
i) Display all magazines 

ii) Display magazine details for specific month. 

iii) Find the “costliest” magazine. 

 
3. Modify the sample program 1 to accept details for n books and write a menu driven program 

for the following: 

 
i) Display all reference books 

ii) Find the total number of reference books 

iii) Display the edition of a specific reference book. 
 

 
Signature of the instructor Date 

for(temp=list; temp!=NULL; temp=temp->next) /* use a temporary pointer */ 

printf(%d \t”, temp->info); 

} 

 
void main( ) 

{ 

createlist(); 

displaylist(); 

} 

/ / 

/ / 



Set B. Write programs to solve the following problems 
 

1. Create a structure named having the following fields: 
Field name Description 

  

  

  

  

  

 

Write a menu driven program to perform the following operations : 
i) _  ii) _ iii) iv) _ v)     _   

 

 
2. Write a program to create a linked list of n nodes and accept data from the user for each 

node. Display the list. Accept a number from the user and search for the element in the list. 

 
Signature of the instructor Date 

 

 
Set C. Write programs to solve the following problems 

 
1. A shop sells electronic items. Each item has an id, company name, code (1-TV, 2-Mobile 

phones, 3-Camera) and cost. The following additional details are stored for each item. 

• TV - size, type ( CRT-1 / LCD- 2 / Plasma-3) 

• Mobile Phone - type ( GSM – 1 / CDMA – 2) , model number. 

• Camera – resolution, model number. 
The shop wants to maintain a list of all items and perform the following operations for each of the 
item types: 

i) Display all 
ii) Search for specific item 
iii) Sort according to cost 

 
2. Write a program to create a linked list of n nodes and accept data from the user for each 

node. Write a menu driven program to perform the following operations: 
i) Display the list 
ii) Search for specific number 
iii) Display the element after    
iv) Find the maximum / minimum 

 

 
Signature of the instructor Date 

 
 
 

 
Assignment Evaluation Signature 

0: Not done 2: Late Complete 4: Complete 
 

1: Incomplete 3: Needs improvement 5: Well Done 

/ / 

/ / 



Exercise 4-a Start Date 

 

To demonstrate  files using C 
 

You should read the following topics before starting this exercise 
1. Concept of streams 
2. Declaring a file pointer 
3. Opening and closing a file 
4. Reading and Writing to a text file 
5. Command line arguments 

 

Operations 
performed 

Syntax Example 

Declaring File pointer FILE * pointer; FILE *fp; 

Opening a File fopen(“filename”,mode); 

where mode = “r”, “w”, 

“a”, “r+”, “w+”, “a+” 

fp=fopen(“a.txt”, “r”); 

Checking for 
successful open 

if (pointer==NULL) if(fp==NULL) 

exit(0); 

Checking for end of file feof if(feof(fp)) 

printf(“File has ended”); 

Closing a File fclose(pointer); 

fcloseall(); 

fclose(fp); 

Character I/O fgetc, fscanf 

fputc, fprintf 

ch=fgetc(fp); 

fscanf(fp, ”%c”,&ch); 

fputc(fp,ch); 

String I/O fgets, fscanf 

fputs, fprintf 

fgets(fp,str,80); 

fscanf(fp, ”%s”,str); 

Reading and writing 
formatted data 

fscanf 

fprintf 

fscanf(fp, ”%d%s”,&num,str); 

fprintf(fp, “%d\t%s\n”, num, str); 

Random access to 
files 

ftell, fseek, rewind fseek(fp,0,SEEK_END); /* end of file*/ 

long int size = ftell(fp); 

Sample Code 1 
The following program reads the contents of file named a.txt and displays its contents on the 
screen with the case of each character reversed. 

 

/* Program revrese case of characters in a file */ 
 

#include <stdio.h> 
#include <ctype.h> 
void main() 
{ 

FILE * fp; 
fp = fopen(“a.txt”, “r”); 
if(fp==NULL) 
{ 

printf(“File opening error”); 

/ / 



/* Program to display size of a file */ 
 

#include <stdio.h> 
void main(int argc, char *argv[]) 
{ 

FILE * fp; 
long int size; 
fp = fopen(argv[1], “r”); 
if(fp==NULL) 
{ 

printf(“File opening error”); 
exit(0); 

} 
fseek(fp, 0, SEEK_END); /* move pointer to end of file */ 
size = ftell(fp); 
printf(“The file size = %ld bytes”, size); 
fclose(fp); 

} 

#include <stdio.h> 
void main() 
{ 

FILE * fp; 

char str[20]; int num; 
fp = fopen(“student.txt”, “w+”); 
if(fp==NULL) 
{ 

printf(“File opening error”); 
exit(0); 

} 
fprintf(fp,“%s\t%d\n”, “ABC”, 1000); 
fprintf(fp,“%s\t%d\n”, “DEF”, 2000); 
fprintf(fp,“%s\t%d\n”, “XYZ”, 3000); 

 
 

Sample Code 2 
The following program displays the size of a file. The filename is passed as command line 
argument. 

 

 

Sample Code 3 
The following program writes data (name, roll number) to a file named student.txt , reads the 
written data and displays it on screen. 

 

exit(0); 
} 
while( !feof(fp)) 
{ 

ch = fgetc(fp); 
if(isupper(ch)) 

putchar(tolower(ch)); 
else 

if(islower(ch)) 
putchar(toupper(ch)); 

else 

putchar(ch); 
} 
fclose(fp); 

} 



 
 

 

1. Create a file named a.txt using the vi editor. Type the sample program 1 given above and 
execute the program. Modify the program to accept a character from the user and count the total 
number of times character occurs in the file. 

 
2. Type the sample program 2 above and execute it. Modify the program to display the last n 

characters from the file. 

 
3. Type the sample program 3 above and execute it. Modify the program to accept details of n 

students and write them to the file. Read the file and display the contents in an appropriate 
manner. 

 

Signature of the instructor Date 
 

 

Set A . Write C programs for the following problems. 

 
1. Write a program to accept two filenames as command line arguments. Copy the contents of 

the first file to the second such that the case of all alphabets is reversed. 

 
2. Write a program to accept a filename as command line argument and count the number of 

words, lines and characters in the file. 

 
3. Write a program to accept details of n students (roll number, name, percentage) and write it 

to a file named “student.txt”. Accept roll number from the user and search the student in the file. 
Also display the student details having the highest percentage. 

 
Signature of the instructor Date 

 

 
Set B. Write programs to solve the following problems 

 
1. A file named numbers.txt has a set of integers. Write a C program to read this file and 

convert the integers into words and write the integer and the words in another file named 
numwords.txt. 
Example: 
numbers.txt numwords.txt 

 
11 Eleven 
261 Two hundred Sixty One 

9 Nine 

 
2. Write a program which accepts a filename and an integer as command line arguments and 

encrypts the file using the key. (Use any encryption algorithm) 

rewind(fp); 
while( !feof(fp)) 
{ 

fscanf(fp,“%s%d”, str, &num); 
printf(“%s\t%d\n”, str, num); 

} 
fclose(fp); 

} 

/ / 

/ / 



Signature of the instructor Date 
 
 

Set C . Write C programs for the following problems. 

 
1. A text file contains lines of text. Write a program which removes all extra spaces from the 

file. 

 
2. Write a menu driven program for a simple text editor to perform the following operations on a 

file, which contains lines of text. 
i. Display the file 
ii. Copy m lines from position n to p 
iii. Delete m lines from position p 
iv. Modify the nth line 
v. Add n lines 

 
3. Write a program which reads the contents of a C program and replaces all macros occurring 

in the program with its value. Assume only simple substitution macros (ex: #define FALSE 0 ). 
 

 
Signature of the instructor Date 

 
 
 

 
Assignment Evaluation Signature 

0: Not done 2: Late Complete 4: Complete 
 

1: Incomplete 3: Needs improvement 5: Well Done 

/ / 

/ / 



Exercise 4-b Start Date 
 

To demonstrate binary file handling using C. 
 

You should read the following topics before starting this exercise 
1. Concept of streams 
2. Declaring a file pointer 
3. Opening and closing files 
4. File opening modes 
5. Random access to files 
6. Command line arguments 

 

In binary files, information is written in the form of binary . All data is written and read with no 
interpretation and separation i.e. there are no special characters to mark end of line and end of 
file. 
I/O operations on binary files 

 

Reading from a 
binary file 

fread(address,size-of-element,number 
of elements,pointer); 

fread (&num,sizeof(int),1,fp); 

fread 

(&emp,sizeof(emp),1,fp); 
fread(arr,sizeof(int),10,fp); 

Writing to a binary 
file 

fwrite(address,size-of-element,number 
of elements,pointer); 

fwrite (&num,sizeof(int),1,fp); 

fwrite 

(&emp,sizeof(emp),1,fp); 

 

Sample Code 

 

/* Program to demonstrate binary file */ 

 
struct employee 

{ char name[20]; 

float sal; 

}; 

main( ) 

{ 

FILE *fp; 

struct employee e; 

int i; 

if((fp=fopen (“employee.in”,“wb”))==NULL) 

{ printf(“Error opening file”); 

exit( ); 

} 

 
for(i=0;i<5;i++) 

{ 

printf(”\n Enter the name and salary”); 

scanf(“%s%f”,e.name,&e.sal); 

fwrite(&e,sizeof(e),1,fp); 

} 

/ / 



 
 

 

1. Type program given above, writes data of 5 employees to a binary file and then reads the file. 
Modify the program to search an employee by name. 

 
Signature of the instructor Date 

 
 
 

 

Set A . Write C programs for the following problems. 

 
1. Create a structure student (roll number, name, percentage) Write a menu driven program to 

perform the following operations on a binary file- “student.dat”. Write separate functions for the 
different options. 

1. Add a student (Note: Students should be assigned roll numbers consecutively) 
2. Search Student 

a. according to name 
b. according to roll number 

3. Display all students 

2. Create a structure student (roll number, name, percentage) Write a menu driven program to 
perform the following operations on a binary file- “student.dat”. Write separate functions for the 
different options. 

 

1. Add a student (Note: Students will be assigned roll numbers consecutively) 
2. Modify details 

a. according to name 
b. according to roll number 

3. Display all students 

3. Create a structure student (roll number, name, percentage). Write a menu driven program to 
perform the following operations on a binary file- “student.dat”. Write separate functions for the 
different options. 

1. Add a student (Note: Students will be assigned roll numbers consecutively) 
2. Delete student 

a. according to name 
b. according to roll number 

3. Display all students 

fclose(fp); 

fp=fopen(“employee.in”,”rb”); 

if(fp==NULL) 

/* reopen file */ 

{ fprintf(stderr, “Error opening file); 

exit( ); 

} 

for(i=0;i<5;i++) 

{ 

fread(&e,sizeof(e),1,fp); 

printf(“\n Name = %s Salary = %f”,e.name,e.sal); 

} 

fclose(fp); 

} 

/ / 



/ / 

0: Not done  2: Late Complete  4: Complete 
     

1: Incomplete  3: Needs improvement  5: Well Done 

 

Signature of the instructor Date 
 

 
Set B . Write C programs for the following problems. 

 
1. Create two binary files such that they contain roll numbers, names and percentages. The 

percentages are in ascending orders. Merge these two into the third file such that the third file still 
remains sorted on percentage. Accept the three filenames as command line arguments. 

 
2. Create a structure having the following fields: 

Structure name: _ 
Fields  ____________________________________________________________    
Store information for n variables of the above structure in a binary file. Write a menu driven 
program to perform the following operations Write separate functions for the different options. 

 

i) _ ii) _ iii) iv) _ _ 
 

 
Signature of the instructor Date 

 

 
Set C . Write C programs for the following problems. 

 
1. Create a binary file which contains details of student projects namely roll number, project 

name, project guide. The first line of the file contains an integer indicating the total number of 
students. When the program starts, read all these details into an array and perform the following 
menu driven operations. When the user selects Exit from the menu, store these details back into 
the file. 
1. Add  2. Delete 3. Search 2. Modify  3. Display all 4. Exit 

Signature of the instructor  Date 

 
 

Assignment Evaluation Signature 

/ / 

/ / 



Exercise 5 Start Date 

 

Assignment to demonstrate command line arguments and preprocessor directives. 
 

You should read the following topics before starting this exercise 
1. Passing arguments from the command line to main 
2. Accessing command line arguments 
3. File inclusion, macro substitution and conditional compilation directives. 
4. Argumented and Nested macros 

 

 

Preprocessor 
directives 

They begin with a # which must 
be the first non-space character 
on the line. 
They do not end with a 
semicolon. 

 

Macro Substitution 
Directive 

# define MACRO value # define PI 3.142 

Argumented 
macro 

# define MACRO(argument) 
value 

# define SQR(x) x*x 

#define LARGER(x,y) ((x)>(y)?(x):(y)) 

Nested macro one macro using another #define CUBE(x) (SQUARE(x)*(x)) 

File Inclusion 
directive 

#include <filename> 
#include “filename” 

#include <stdio.h> 

Conditional 
Compilation 
directive 

# if, # else, # elif, # endif #ifdef #ifdef PI 

#undef PI 

#endif 

Command Line 
Arguments 

int argc - argument counter 
char *argv[]-argument vector 

void main(int argc, char *argv[]) 
{ 
printf(“There are %d arguments in all”, 
argc); 
for (i=0; i<argc; i++) 
printf(”Argument %d =%s”,i,argv[i]); 

} 

To run a program 
using command 
line arguments 

Compile the program using cc 
Execute the program using 
a.out followed by command line 
arguments 

Example: a.out ABC 20 
Here, ABC and 20 are the two command 
line arguments which are stored in the 
form of strings. To use 20 as an integer, 
use function atoi . 
Example: int num = atoi(argv[2]); 

/ / 



/* Program for argumented macros */ 
 

#define INRANGE(m) ( m >= 1 && m<=12) 
#define NEGATIVE(m) (m<0) 
#define ISLOWER(c) (c>=’a’&&c<=’z’) 
#define ISUPPER(c) (c>=’A’&&c<=’Z’) 
#define ISALPHA(c) (ISUPPER(c)||ISLOWER(c)) 
#define ISDIGIT(c) (c>=’0’&&c<=’9’) 

 
void main() 
{ 

int m; char c; 
printf(“Enter an integer corresponding to the month”); 
scanf(“%d”,&m); 
if(NEGATIVE(m)) 

printf(“Enter a positive number”); 
else 
if(INRANGE(m)) 

printf(“You Entered a valid month”); 

 
printf(“Enter a character :”); 
c=getchar(); 
if(ISAPLHA(c)) 

printf(“You entered an alphabet”); 
else 
if(ISDIGIT(c)) 

printf(“You Entered a digit”); 
} 

Sample Code 1 
 

 
 

 

1. Write a program to display all command line arguments passed to main in the reverse order. 
Hint: See table above. 

 
2. Sample code 1 above demonstrates the use of argumented and nested macros. Type the 

program and execute it. 

 
Signature of the instructor Date 

 
 

 

Set A . Write C programs for the following problems. 

 
1. Write a program to accept three integers as command line arguments and find the minimum, 

maximum and average of the three. Display error message if invalid number of arguments are 
entered. 

 
2. Write a program which accepts a string and two characters as command line arguments and 

replace all occurrences of the first character by the second. 

/ / 



0: Not done  2: Late Complete  4: Complete 
     

1: Incomplete  3: Needs improvement  5: Well Done 

 

3. Define a macro EQUALINT which compares two parameters x and y and gives 1 if 
equal and 0 otherwise. Use this macro to accept pairs of integers from the user. Calculate 
the sum of digits of both and continue till the user enters a pair whose sum of digits is not 
equal. 

 
4. Define a macro EQUALSTR which compares two strings x and y and gives 1 if equal and 

0 otherwise. Use this macro to accept two strings from the user and check if they are equal. 
 

 
Signature of the instructor Date 

 

 
Set B . Write C programs for the following problems. 

 
1. Write a program to accept two strings as command line arguments and display the union 

and intersection of the strings. If the user enters invalid number of arguments, display 
appropriate message. 

 
2. Write a program which accepts a string and an integer (0 or 1) as command line 

arguments. If the integer entered is 0, sort the string alphabetically in the ascending order and if 
it is 1, sort it in the descending order. If the user enters invalid number of arguments, display 
appropriate message. (Hint – use atoi) 

 
Signature of the instructor Date 

 
 

 
Set C . Write C programs for the following problems. 

 
1. Create a header file “mymacros.h” which defines the following macros. 

ii. SQR(x) ii. CUBE(x) - nested   iii. GREATER2(x,y) iv. GREATER3 (x,y,z) – nested 
v. FLAG ( value = 1) (which may or may not be defined) 

 

Include this file in your program. Write a menu driven program to use macros SQR, CUBE, 
GREATER2 and GREATER3. Your program should run the first two macros if the macro called 
FLAG has been defined. If it is not defined, execute the other two macros. Run the program 
twice 
– with FLAG defined and with FLAG not defined. 

 

 
Signature of the instructor Date 

 
 

 
Assignment Evaluation Signature 

 

 

 

 

 

/ / 

/ / 

/ / 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise6 Start Date 
 

Assignment to demonstrate bitwise operators. 
 

You should read the following topics before starting this exercise 
1. Bitwise operators and their usage ( &, |, ^, ~, <<, >>) 

 

1. Bitwise operators: C provides 6 operators to perform operations on bits. These operators 
operate on integer and character but not the float and double. Ones complement operator (~) 
is unary while the others are binary. 

 

 

Operator 
 

Purpose 
 

Example 

~ 
One’s 
complement 

~a : Complements each bit of variable a 

 
 

 

Right shift a=a>>1; Shifts bits of a one position to the right 

 Left Shift a=a<<n; Shifts bits of a n positions to the left 

& Bitwise AND 
a = b&c; performs bitwise AND on b and c 
a = a&0xFF00; Masks the lower order 8 bits of a 

| Bitwise OR a = a!b; performs bitwise OR on b and c 

/ / 



void displaybits(unsigned int n) 
{ 

unsigned int mask = 32768; 
/*set MSB of mask to 1 */ 
while (mask>0) 
{ 

if((n&mask)==0) 
printf(“0”); 

else 
printf(“1”); 

mask = mask >>1; /* shift mask right */ 
} 

^ Bitwise XOR 
x = x^y; y=x^y; x=x^y; Swaps x and y by 
performing bitwise XOR. 

 
 

Sample code: The following function accepts an integer argument and displays it in 
binary format. It uses shift operator and AND masking. 

 

 

1. Write a program to accept n integers and display them in binary. Use the function 
given above. 

 

Signature of the instructor Date 

 
 
 
 

 
 

Set A . Write C programs for the following problems. 

 
1. Write a program to accept 2 integers and perform bitwise AND, OR, XOR and 

Complement. Display the inputs and results in binary format. Use the function in the above 
exercise. 

 
2. Write a program to swap two variables without using a temporary variable. (Hint: Use XOR) 

 
3. Write a program which accepts two integers x and y and performs x<<y and x>>y. 

Display the result in binary. 
 

 
Signature of the instructor Date 

 

 
Set B . Write C programs for the following problems. 

 
1. Write functions to calculate the size of an integer, character, long and short integer using 

/ / 

/ / 



bitwise operators. Store their declaration in file “myfunctions.h” and their definitions in file 
“myfunctions.c”. Include these files in your program and use these functions to display the size 
of each. 

 
2. Write a program to perform the following operations on an unsigned integer using 

bitwise operators and display the result in hexadecimal format. 
i. Swap the and _ nibble ( 4 bits) 
ii. Remove the lower order nibbles from the number. 

For example: Input: A3F1 Output 00A3 

iii. Reverse the nibbles 
For example: Input: A3F1 Output 1F3A 

 
 
 

3. Write a program which accepts an integer and checks whether it is a power of 2. 

 
Signature of the instructor Date 

 
 

Set C. Write programs to solve the following problems 

 
1. Write a program to add, subtract, multiply and divide two integers using bitwise operators. 

2. Packing and Unpacking Data: A date consists of three parts : day, month, year. To store 
this information, we would require 3 integers. However, day and month can take only limited 
values. Hence, we can store all three in a single integer variable by packing bits together. If we 
are using the dd-mm-yy format, the date will be stored in memory as an unsigned integer (16 
bits) in the following format. Year (Bits 15-9), Month (bits 8 – 5), Day (Bits 4 - 0). 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

y y y y y y y m m m m d d d d d 

hour Month day 

 
Accept day, month and year from the user and pack them into a single unsigned int. Unpack 
and display them in the binary format. (Hint: for packing, use: 512 * year + 32 * month + day ) 
The output should be: 
Enter the date, month and year –dd mm 
yy : 31 12 89 
Packed date = 
1011001110011111 Day = 31 
0000000000011111 

 

Month = 12 
0000000000001100 
Year = 89 
0000000001011001 

 

3. Packing and Unpacking Data: Time consists of three parts : hours, minutes, seconds. To 
store this information, we would require 3 integers. However, all these three variable take only 
limited values. Hence, we can store all three in a single integer variable by packing bits 
together. Time being 0 to 23 hours, it will require maximum 5 bits, minutes being 0 to 59 will 
require 6 bits. The two together take up 11 bits. The remaining 5 bits cannot store seconds 
which are also in the range 0 to 59 hence we store double seconds which are in the range 0 to 
29 

 

/ / 



0: Not done  2: Late Complete  4: Complete 
     

1: Incomplete  3: Needs improvement  5: Well Done 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

h h h h h m m m m m m ds ds ds ds ds 

hour Minutes Double seconds 

 
Accept hour, minute and double seconds from the user and pack them into a single unsigned int. 
Unpack and display them in the binary format. 
The output should be: 
Enter the hour, minutes and double seconds –hh mm 
ss : 07 12 20 
Packed date = 
0011100110010100 Hour = 07 
0000000000000111 
Minutes = 12 
0000000000001100 
Double seconds = 
20 
000000000001010
0 

 

Signature of the instructor Date 
 
 

 
Assignment Evaluation Signature 

 

 

 

 

 

 

 

 

 

 

/ / 


