
Lecture Notes in Physics
Editorial Board

R. Beig, Wien, Austria
W. Beiglböck, Heidelberg, Germany
W. Domcke, Garching, Germany
B.-G. Englert, Singapore
U. Frisch, Nice, France
P. Hänggi, Augsburg, Germany
G. Hasinger, Garching, Germany
K. Hepp, Zürich, Switzerland
W. Hillebrandt, Garching, Germany
D. Imboden, Zürich, Switzerland
R. L. Jaffe, Cambridge, MA, USA
R. Lipowsky, Golm, Germany
H. v. Löhneysen, Karlsruhe, Germany
I. Ojima, Kyoto, Japan
D. Sornette, Nice, France, and Los Angeles, CA, USA
S. Theisen, Golm, Germany
W. Weise, Garching, Germany
J. Wess, München, Germany
J. Zittartz, Köln, Germany

The Editorial Policy for Monographs
The series Lecture Notes in Physics reports new developments in physical research and
teaching - quickly, informally, and at a high level. The type of material considered for
publication includes monographs presenting original research or new angles in a classical
field. The timeliness of a manuscript is more important than its form, which may be
preliminary or tentative. Manuscripts should be reasonably self-contained. They will often
present not only results of the author(s) but also related work by other people and will
provide sufficient motivation, examples, and applications.

Acceptance
The manuscripts or a detailed description thereof should be submitted either to one of
the series editors or to the managing editor. The proposal is then carefully refereed. A
final decision concerning publication can often only be made on the basis of the complete
manuscript, but otherwise the editors will try to make a preliminary decision as definite
as they can on the basis of the available information.

Contractual Aspects
Authors receive jointly 30 complimentary copies of their book. No royalty is paid on Lecture
Notes in Physics volumes. But authors are entitled to purchase directly from Springer other
books from Springer (excluding Hager and Landolt-Börnstein) at a 331

3% discount off the
list price. Resale of such copies or of free copies is not permitted. Commitment to publish
is made by a letter of interest rather than by signing a formal contract. Springer secures
the copyright for each volume.

Manuscript Submission
Manuscripts should be no less than 100 and preferably no more than 400 pages in length.
Final manuscripts should be in English. They should include a table of contents and an
informative introduction accessible also to readers not particularly familiar with the topic
treated. Authors are free to use the material in other publications. However, if extensive
use is made elsewhere, the publisher should be informed. As a special service, we offer
free of charge LATEX macro packages to format the text according to Springer’s quality
requirements. We strongly recommend authors to make use of this offer, as the result
will be a book of considerably improved technical quality. The books are hardbound, and
quality paper appropriate to the needs of the author(s) is used. Publication time is about ten
weeks. More than twenty years of experience guarantee authors the best possible service.

LNP Homepage (springerlink.com)
On the LNP homepage you will find:
−The LNP online archive. It contains the full texts (PDF) of all volumes published since
2000. Abstracts, table of contents and prefaces are accessible free of charge to everyone.
Information about the availability of printed volumes can be obtained.
−The subscription information. The online archive is free of charge to all subscribers of
the printed volumes.
−The editorial contacts, with respect to both scientific and technical matters.
−The author’s / editor’s instructions.

Dieter Britz

Digital Simulation
in Electrochemistry
Third Completely Revised and Extended Edition
With Supplementary Electronic Material

123

Author

Dieter Britz
Kemisk Institut
Århus Universitet
8000 Århus C
Denmark
Email: britz@chem.au.dk

Dieter Britz, Digital Simulation in Electrochemistry,
Lect. Notes Phys. 666 (Springer, Berlin Heidelberg 2005), DOI 10.1007/b97996

Library of Congress Control Number: 2005920592

ISSN 0075-8450
ISBN 3-540-23979-0 3rd ed. Springer Berlin Heidelberg New York

ISBN 3-540-18979-3 2nd ed. Springer-Verlag Berlin Heidelberg New York
ISBN 3-540-10564-6 1st ed. published as Vol. 23 in Lecture Notes in Chemistry
Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package
Cover design: design & production, Heidelberg

Printed on acid-free paper
2/3141/jl - 5 4 3 2 1 0

This book is dedicated to H. H. Bauer, teacher and friend

Preface

This book is an extensive revision of the earlier 2nd Edition with the same
title, of 1988. The book has been rewritten in, I hope, a much more didac-
tic manner. Subjects such as discretisations or methods for solving ordinary
differential equations are prepared carefully in early chapters, and assumed
in later chapters, so that there is clearer focus on the methods for partial
differential equations. There are many new examples, and all programs are
in Fortran 90/95, which allows a much clearer programming style than earlier
Fortran versions.

In the years since the 2nd Edition, much has happened in electrochemical
digital simulation. Problems that ten years ago seemed insurmountable have
been solved, such as the thin reaction layer formed by very fast homogeneous
reactions, or sets of coupled reactions. Two-dimensional simulations are now
commonplace, and with the help of unequal intervals, conformal maps and
sparse matrix methods, these too can be solved within a reasonable time.
Techniques have been developed that make simulation much more efficient,
so that accurate results can be achieved in a short computing time. Stable
higher-order methods have been adapted to the electrochemical context.

The book is accompanied (on the webpage www.springerlink.com/
openurl.asp?genre=issue&issn=1616-6361&volume=666) by a number of ex-
ample procedures and programs, all in Fortran 90/95. These have all been
verified as far as possible. While some errors might remain, they are hopefully
very few.

I have a debt of gratitude to a number of people who have checked the
manuscript or discussed problems with me. My wife Sandra polished my Eng-
lish style and helped with some of the mathematics, and Tom Koch Sven-
nesen checked many of the mathematical equations. Others I have consulted
for advice of various kinds are Professor Dr. Bertel Kastening, Drs. Les�law
Bieniasz, Ole Østerby, Jörg Strutwolf and Thomas Britz. I thank the various
editors at Springer for their support and patience. If I have left anybody out,
I apologize. As is customary to say (and true), any errors remaining in the
book cannot be blamed on anybody but myself.

Århus, Dieter Britz
February 2005

Contents

1 Introduction . 1

2 Basic Equations . 5
2.1 General . 5
2.2 Some Mathematics: Transport Equations 6

2.2.1 Diffusion . 6
2.2.2 Diffusion Current . 7
2.2.3 Convection . 8
2.2.4 Migration . 9
2.2.5 Total Transport Equation . 10
2.2.6 Homogeneous Kinetics . 10
2.2.7 Heterogeneous Kinetics . 12

2.3 Normalisation – Making the Variables Dimensionless 12
2.4 Some Model Systems and Their Normalisations 14

2.4.1 Potential Steps . 14
2.4.2 Constant Current . 24
2.4.3 Linear Sweep Voltammetry (LSV) 25

2.5 Adsorption Kinetics . 28

3 Approximations to Derivatives . 33
3.1 Approximation Order . 33
3.2 Two-Point First Derivative Approximations 34
3.3 Multi-Point First Derivative Approximations 36
3.4 The Current Approximation . 38
3.5 The Current Approximation Function G 39
3.6 High-Order Compact (Hermitian) Current Approximation . . . 39
3.7 Second Derivative Approximations . 43
3.8 Derivatives on Unevenly Spaced Points . 44

3.8.1 Error Orders . 47
3.8.2 A Special Case . 48
3.8.3 Current Approximation . 48
3.8.4 A Specific Approximation . 48

X Contents

4 Ordinary Differential Equations . 51
4.1 An Example ode . 51
4.2 Local and Global Errors . 52
4.3 What Distinguishes the Methods . 52
4.4 Euler Method . 52
4.5 Runge-Kutta, RK . 54
4.6 Backwards Implicit, BI . 56
4.7 Trapezium or Midpoint Method . 56
4.8 Backward Differentiation Formula, BDF 57

4.8.1 Starting BDF . 58
4.9 Extrapolation . 61
4.10 Kimble & White, KW . 62

4.10.1 Using KW as a Start for BDF . 64
4.11 Systems of odes . 65
4.12 Rosenbrock Methods . 67

4.12.1 Application to a Simple Example ODE 70
4.12.2 Error Estimates . 71

5 The Explicit Method . 73
5.1 The Discretisation . 73
5.2 Practicalities . 74
5.3 Chronoamperometry and -Potentiometry 76
5.4 Homogeneous Chemical Reactions (hcr) 77

5.4.1 The Reaction Layer . 79
5.5 Linear Sweep Voltammetry . 80

5.5.1 Boundary Condition Handling . 81

6 Boundary Conditions . 85
6.1 Classification of Boundary Conditions . 85
6.2 Single Species: The u-v Device . 86

6.2.1 Dirichlet Condition . 86
6.2.2 Derivative Boundary Conditions . 86

6.3 Two Species . 90
6.3.1 Two-Point Derivative Cases . 93

6.4 Two Species with Coupled Reactions. U-V 94
6.5 Brute Force . 100
6.6 A General Formalism . 101

7 Unequal Intervals . 103
7.1 Transformation . 104

7.1.1 Discretising the Transformed Equation 105
7.1.2 The Choice of Parameters . 107

7.2 Direct Application of an Arbitrary Grid 107
7.2.1 Choice of Parameters . 110

7.3 Concluding Remarks on Unequal Spatial Intervals 110

Contents XI

7.4 Unequal Time Intervals . 111
7.4.1 Implementation of Exponentially Increasing Time

Intervals . 112
7.5 Adaptive Interval Changes . 112

7.5.1 Spatial Interval Adaptation . 113
7.5.2 Time Interval Adaptation . 116

8 The Commonly Used Implicit Methods 119
8.1 The Laasonen Method or BI . 121
8.2 The Crank-Nicolson Method, CN . 121
8.3 Solving the Implicit System . 122
8.4 Using Four-Point Spatial Second Derivatives 124
8.5 Improvements on CN and Laasonen . 126

8.5.1 Damping the CN Oscillations . 127
8.5.2 Making Laasonen More Accurate 131

8.6 Homogeneous Chemical Reactions . 134
8.6.1 Nonlinear Equations . 135
8.6.2 Coupled Equations . 140

9 Other Methods . 145
9.1 The Box Method . 145
9.2 Improvements on Standard Methods . 148

9.2.1 The Kimble and White Method . 148
9.2.2 Multi-Point Second Spatial Derivatives 151
9.2.3 DuFort-Frankel . 152
9.2.4 Saul’yev . 154
9.2.5 Hopscotch . 156
9.2.6 Runge-Kutta . 158
9.2.7 Hermitian Methods . 159

9.3 Method of Lines (MOL)
and Differential Algebraic Equations (DAE) 165

9.4 The Rosenbrock Method . 167
9.4.1 An Example, the Birk-Perone System 170

9.5 FEM, BEM and FAM (briefly) . 172
9.6 Orthogonal Collocation, OC . 173

9.6.1 Current Calculation with OC . 180
9.6.2 A Numerical Example . 180

9.7 Eigenvalue-Eigenvector Method . 182
9.8 Integral Equation Method . 184
9.9 The Network Method . 185
9.10 Treanor Method . 186
9.11 Monte Carlo Method . 187

XII Contents

10 Adsorption . 189
10.1 Transport and Isotherm Limited Adsorption 190
10.2 Adsorption Rate Limited Adsorption . 191

11 Effects Due to Uncompensated Resistance
and Capacitance . 193
11.1 Boundary Conditions . 195

11.1.1 An Example . 197

12 Two-Dimensional Systems . 201
12.1 Theories . 202

12.1.1 The Ultramicrodisk Electrode, UMDE 202
12.1.2 Other Microelectrodes . 208
12.1.3 Some Relations . 209

12.2 Simulations . 210
12.3 Simulating the UMDE . 212

12.3.1 Direct Discretisation . 213
12.3.2 Discretisation in the Mapped Space 221
12.3.3 A Remark on the Boundary Conditions 232

13 Convection . 235
13.1 Some Fluid Dynamics . 235

13.1.1 Layer Relations . 239
13.2 Electrodes in Flow Systems . 239
13.3 Simulations . 240
13.4 A Simple Example: The Band Electrode

in a Channel Flow . 241
13.5 Normalisations . 242

14 Performance . 247
14.1 Convergence . 247
14.2 Consistency . 250
14.3 Stability . 251

14.3.1 Heuristic Method . 251
14.3.2 Von Neumann Stability Analysis 252
14.3.3 Matrix Stability Analysis . 254
14.3.4 Some Special Cases . 260

14.4 The Stability Function . 261
14.5 Accuracy Order . 263

14.5.1 Order Determination . 264
14.6 Accuracy, Efficiency and Choice . 266
14.7 Summary of Methods . 270

Contents XIII

15 Programming . 273
15.1 Language and Style . 273
15.2 Debugging . 274
15.3 Libraries . 275

16 Simulation Packages . 277

A Tables and Formulae . 281
A.1 First Derivative Approximations . 281
A.2 Current Approximations . 282
A.3 Second Derivative Approximations . 282
A.4 Unequal Intervals . 282

A.4.1 First Derivatives . 283
A.4.2 Second Derivatives . 284

A.5 Jacobi Roots for Orthogonal Collocation 285
A.6 Rosenbrock Constants . 285

B Some Mathematical Proofs . 289
B.1 Consistency of the Sequential Method . 289
B.2 The Feldberg Start for BDF . 290
B.3 Similarity of the Feldberg Expansion

and Transformation Functions . 295

C Procedure and Program Examples . 299
C.1 Example Modules . 299
C.2 Procedures . 301

C.2.1 Procedures for Unequal Intervals 302
C.2.2 JCOBI . 304

C.3 Example Programs . 304

References . 313

Index . 331

1 Introduction

This book is about the application of digital simulation to electrochemical
problems. What is digital simulation? The term “simulation” came into wide
use with the advent of analog computers, which could produce electrical
signals that followed mathematical functions to describe or model a given
physical system. When digital computers became common, people began to
do these simulations digitally and called this digital simulation. What sort
of systems do we simulate in electrochemistry? Most commonly they are
electrochemical transport problems that we find difficult to solve, in all but
a few model systems – when things get more complicated, as they do in real
electrochemical cells, problems may not be solvable algebraically, yet we still
want answers.

Most commonly, the basic equation we need to solve is the diffusion equa-
tion, relating concentration c to time t and distance x from the electrode
surface, given the diffusion coefficient D:

∂c

∂t
= D

∂2c

∂x2 . (1.1)

This is Fick’s second diffusion equation [242], an adaptation to diffusion of
the heat transfer equation of Fourier [253]. Technically, it is a second-order
parabolic partial differential equation (pde). In fact, it will mostly be only the
skeleton of the actual equation one needs to solve; there will usually be such
complications as convection (solution moving) and chemical reactions taking
place in the solution, which will cause concentration changes in addition to
diffusion itself. Numerical solution may then be the only way we can get
numbers from such equations – hence digital simulation.

The numerical technique most commonly employed in digital simulation
is (broadly speaking) that of finite differences and this is much older than
the digital computer. It dates back at least to 1911 [468] (Richardson). In
1928, Courant, Friedrichs and Lewy [182] described what we now take to be
the essentials of the method; Emmons [218] wrote a detailed description of
finite difference methods in 1944, applied to several different equation types.
There is no shortage of mathematical texts on the subject: see, for example,
Lapidus and Pinder [350] and Smith [514], two excellent books out of a large
number.

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 1–4 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

2 1 Introduction

It should not be imagined that the technique became used only when dig-
ital computers appeared; engineers certainly used it long before that time,
and were not afraid to spend hours with pencil and paper. Emmons [218]
casually mentions that one fluid flow problem took him 36 hours! Not surpris-
ingly, it was during this early pre-computer era that much of the theoretical
groundwork was laid and refinements worked out to make the work easier –
those early stalwarts wanted their answers as quickly as possible, and they
wanted them correct the first time through.

Electrochemical digital simulation is almost synonymous with Stephen
Feldberg, who wrote his first paper on it in 1964 [234]. It is not always
remembered that Randles [460] used the technique much earlier (in 1948),
to solve the linear sweep problem. He did not have a computer and did the
arithmetic by hand. The most widely quoted electrochemical literature source
is Feldberg’s chapter in Electroanalytical Chemistry [229], which describes
what will here be called the “box” method. Feldberg is rightly regarded as
the pioneer of digital simulation in electrochemistry, and is still prominent
in developments in the field today. This has also meant that the box method
has become standard practice among electrochemists, while what will here
be called the “point” method is more or less standard elsewhere. Having
experimented with both, the present author favours the point method for the
ease with which one arrives at the discrete form of one’s equations, especially
when the differential equation is complicated.

A brief description will now be given of the essentials of the simulation
technique. Assume (1.1) above. We wish to obtain concentration values at a
given time over a range of distances from the electrode. We divide space (the
x coordinate) into small intervals of length h and time t into small time steps
δt. Both x and t can then be expressed as multiples of h and δt, using i as
the index along x and j as that for t, so that

xi = ih (1.2)

and
tj = jδt . (1.3)

Figure 1.1 shows the resulting grid of points. At each drawn point, there
is a value of c. The digital simulation method now consists of developing
rows of c values along x, (usually) one t-step at a time. Let us focus on
the three filled-circle points ci−1, ci and ci+1 at time tj . One of the various
techniques to be described will compute from these three known points a new
concentration value c′i = ci(t = (j + 1)δt) (empty circle) at xi for the next
time value tj+1, by expressing (1.1) in discrete form:

c′i − ci

δt
=

D

h2 (ci−1 − 2ci + ci+1) . (1.4)

1 Introduction 3

Fig. 1.1. Discrete sample point grid

The only unknown in this equation is c′i and it can be explicitly calculated.
Having obtained c′i, we move on to the next x point and compute c′ for it, etc.,
until all c values for that row, for the next time value, have been computed.

In the remainder of the book, the various schemes for calculating new
points will often be graphically described by isolating the marked circles seen
in Fig. 1.1; in this case, the scheme would be represented by the following
diagram

This follows the convention seen in such texts as Lapidus and Pinder [350]
(who call it the “computational molecule”, which will also be the name for
it in this book). It is very convenient, as one can see at a glance what a
particular scheme does. The filled points are known points while the empty
circles are those to be calculated.

Several problems will become apparent. The first one is that of the method
used to arrive at (1.4); this will be dealt with later. There is, in fact, a
multiplicity of methods and expressions used. The second problem is the
concentration value at x = 0; there is no x−1 point, as would be needed
for i = 1. The value of c0 is a boundary value, and must be determined by
some other method. Another boundary value is the last x point we treat.
How far out into the diffusion space should (need) we go? Usually, we know
good approximations for concentrations at some sufficiently large distance
from the electrode (e.g., either “bulk” concentration, or zero for a species
generated at the electrode), and we have pretty good criteria for the distance
we need to go out to. Another boundary lies at the row for t = 0: this is the
row of starting values. Again, these are supplied by information other than

4 1 Introduction

the diffusional process we are simulating (but, for a given method, can be
a problem, as will be seen in a later chapter). Boundary problems are dealt
with in Chap. 6. They are, in fact, a large part of what this book is about,
or what makes it specific to electrochemistry. The discrete diffusion equation
we have just gone through could just as well apply to heat transfer or any
other diffusion transport problems.

Throughout the book, the following symbol convention will be used: di-
mensioned quantities like concentration, distance or time will be given lower-
case symbols (c, x, t, etc.) and their non-dimensional equivalents will be given
the corresponding upper-case symbols (C, X, T , etc.), with a few unavoidable
exceptions.

2 Basic Equations

2.1 General

In this chapter, we present most of the equations that apply to the systems
and processes to be dealt with later. Most of these are expressed as equations
of concentration dynamics, that is, concentration of one or more solution
species as a function of time, as well as other variables, in the form of differ-
ential equations. Fundamentally, these are transport (diffusion-, convection-
and migration-) equations but may be complicated by chemical processes
occurring heterogeneously (i.e. at the electrode surface – electrochemical re-
action) or homogeneously (in the solution bulk – chemical reaction). The
transport components are all included in the general Nernst-Planck equation
(see also Bard and Faulkner 2001) for the flux Jj of species j

J j = −Dj∇Cj −
zjF
RT DjCj∇φ + Cjv (2.1)

in which J j is the molar flux per unit area of species j at the given point in
space, Dj the species’ diffusion coefficient, Cj its concentration, zj its charge,
F , R and T have their usual meanings, φ is the potential and v the fluid
velocity vector of the surrounding solution (medium). The symbol ∇ denotes
the differentiation operator and it is directional in 3-D space. This equation
is a more general form of Fick’s first diffusion equation, which contains only
the first term on the right-hand side, the diffusion term. The second term
on that side is the migration term and the last, the convection term. These
will now be discussed individually. At the end of the chapter, we go through
some models and electrode geometries, and present some known analytical
solutions, as well as dimensionless forms of the equations. There is no term
in the equation to take account of changes due to chemical reactions taking
place in the solution, since these do not give rise to a flux of substance. Such
terms come in later, in the equations relating concentration changes with
time to the above components (see (2.15) and Sect. 2.2.6).

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 5–32 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

6 2 Basic Equations

2.2 Some Mathematics: Transport Equations

2.2.1 Diffusion

For a good text on diffusion, see the monograph of Crank [183]. Consider
Fig. 2.1. We imagine a chosen coordinate direction x in a solution volume
containing a dissolved substance at concentration c, which may be different
at different points – i.e., there may be concentration gradients in the solution.
We consider a very small area δA on a plane normal to the x-axis. Fick’s first
equation now says that the net flow of solute (flux fx, in mol s−1) crossing
the area is proportional to the negative of the concentration gradient at the
plane, in the x-direction

fx =
dn

dt
= −δA D

dc

dx
(2.2)

with D a proportionality constant called the diffusion coefficient and n the
number of moles. This can easily be understood upon a moment’s thought;
statistically, diffusion is a steady spreading out of randomly moving particles.
If there is no concentration gradient, there will be an equal number per unit
time moving backward and forward across the area δA, and thus no net flow.
If there is a gradient, there will be correspondingly more particles going in one
direction (down the gradient) and a net increase in concentration on the lower
side will result. Equation (2.2) is of precisely the same form as the first heat
flow equation of Fourier [253]; Fick’s contribution [242] lay in realising the
analogy between temperature and concentration, heat and mass (or number
of particles). The quantity D has units m2s−1 (SI) or cm2s−1 (cgs).

Fig. 2.1. Diffusion across a small area

Equation (2.2) is the only equation needed when using the box method and
this is sometimes cited as an advantage. It brings one close to the microscopic
system, as we shall see, and has – in theory – great flexibility in cases where
the diffusion volume has an awkward geometry. In practice, however, most
geometries encountered will be – or can be simplified to – one of but a few

2.2 Some Mathematics: Transport Equations 7

standard forms such as cartesian, cylindrical or spherical – for which the full
diffusion equation has been established (see, e.g., Crank [183]). In cartesian
coordinates this equation, Fick’s second diffusion equation, in its most general
form, is

∂c

∂t
= Dx

∂2c

∂x2 + Dy
∂2c

∂y2 s + Dz
∂2c

∂z2 . (2.3)

This expresses the rate of change of concentration with time at given coordi-
nates (t, x, y, z) in terms of second space derivatives and three different diffu-
sion coefficients. It is theoretically possible for D to be direction-dependent
(in anisotropic media) but for a solute in solution, it is equal in all directions
and usually the same everywhere, so (2.3) simplifies to

∂c

∂t
= D

(
∂2c

∂x2 +
∂2c

∂y2 +
∂2c

∂z2

)
, (2.4)

that is, the usual three-dimensional form. Even this is rather rarely applied –
we always try to reduce the number of dimensions, preferably to one, giving

∂c

∂t
= D

∂2c

∂x2 . (2.5)

If the geometry of the system is cylindrical, it is convenient to switch to
cylindrical coordinates: x along the cylinder, r the radial distance from the
axis and θ the angle. In most cases, concentration is independent of the angle
and the diffusion equation is then

∂c

∂t
= D

(
∂2c

∂x2 +
∂2c

∂r2 +
1
r

∂c

∂r

)
. (2.6)

Often there is no gradient along x (the axis), so only r remains

∂c

∂t
= D

(
∂2c

∂r2 +
1
r

∂c

∂r

)
. (2.7)

For a spherical system, assuming no concentration gradients other than away
from the centre (radially), the equation becomes

∂c

∂t
= D

(
∂2c

∂r2 +
2
r

∂c

∂r

)
. (2.8)

2.2.2 Diffusion Current

Equation (2.2) gives the flux in mol s−1 of material as the result of a concen-
tration gradient. If there is such a gradient normal to an electrode/electrolyte
interface, then there is a flux of material at the electrode and this takes place
via the electron transfer. An electroactive species diffuses to the electrode,

8 2 Basic Equations

takes part in the electron transfer and becomes a new species. The electrical
current i flowing is then equal to the molar flux multiplied by the number of
electrons transferred for each molecule or ion (2.2), and the Faraday constant

i = nFAD

(
∂c

∂x

)
x=0

(2.9)

for a reduction current. The flux and the current are thus, in a sense, syn-
onymous and will, in fact, profitably be expressed simply in terms of the
concentration gradient itself or its dimensionless equivalent, to be discussed
later (Sect. 2.3).

2.2.3 Convection

If we cannot arrange for our solution to be (practically) stagnant during
our experiment, then we must include convective terms in the equations.
Figure 2.2 shows a plot of concentration against the x-coordinate at a given
instant. Let x1 be a fixed point along x, with concentration c1 at some time
t, and let the solution be moving forward along x with velocity vx, so that
after a small time interval δt, concentration c2 (previously at x2) has moved
to x1 by the distance δx. If δt and δx are chosen sufficiently small, we may
consider the line PQ as straight and we have, for the change δc at x1

δc = −δx
dc

dx
(2.10)

Dividing by δt, taking vx = δx/δt and going to the infinitesimal limit, we get
for the x-term

∂c

∂t
= −vx

∂c

∂x
. (2.11)

If there is convection in all three directions, this expands to

∂c

∂t
= −vx

∂c

∂x
− vy

∂c

∂y
− vz

∂c

∂z
. (2.12)

Fig. 2.2. Convection

2.2 Some Mathematics: Transport Equations 9

This treatment ignores the diffusional processes taking place simultaneously;
the two transport terms are additive in the limit.

Convection terms commonly crop up with the dropping mercury elec-
trode, rotating disk electrodes and in what has become known as hydrody-
namic voltammetry, where the electrolyte is made to flow past an electrode
in some reproducible way (e.g. the impinging jet, channel and tubular flows,
vibrating electrodes, etc). This is discussed in Chap. 13.

2.2.4 Migration

Migration is included here more or less for completeness – the electrochemist
is usually able to eliminate this transport term (and will do so for practical
reasons as well). If our species is charged, that is, it is an ion, then it may
experience electrical forces due to potential fields. This will be significant
in solutions of ionic electroactive species, not containing a sufficiently large
excess of inert electrolyte.

In general (see Vetter [559]), for an electroactive cation with charge +zA

and anion with charge −zB, an inert electrolyte with the same two charges
on its ions, and with r the concentration ratio electrolyte/electroactive ion,
we have the rather awkward equation

i

i0
=
(

1 +
∣∣∣∣zA

zB

∣∣∣∣
)

(1 + r)
(

1 −
(

r

1 + r

)p)
(2.13)

where

p =
(

1 +
∣∣∣∣zA

zB

∣∣∣∣
)−1

(2.14)

and i0 is the pure diffusion current, without migration effects. To illustrate,
let us take |zA| = |zB | = 1. Then i/i0 = 2 for r = 0 (no inert electrolyte),
1.17 for r = 1, 1.02 for r = 10 and 1.002 for r = 100. For very accurate
studies, then, inert electrolyte should be in excess by a factor of 100 or more,
and this will be assumed in the remainder of the book.

There is one situation in which migration can have an appreciable effect,
even in the presence of excess inert electrolyte. For the measurement of very
fast reactions, one must resort to techniques involving very small diffusion
layers (see Sect. 2.4.1 for the definition) – either by taking measurements
at very short times or forcing the layer thickness down by some means. If
that thickness becomes comparable in magnitude with that of the diffuse
double layer, and the electroactive species is charged, then migration will
play a part in the transport to and from the electrode. The effect has been
clearly explained elsewhere [83]. A rough calculation for a planar electrode in
a stagnant solution, assuming the thickness of the diffuse double layer to be
of the order of 10−9m and the diffusion coefficient of the electroactive species
to be 10−12 m2s−1 (which is rather slow) shows that migration effects are
expected during the first µs or so. The situation, then, is rather extreme and

10 2 Basic Equations

we leave it to the specialist to handle it. Recently, this has been discussed [513]
in the context of ultramicroelectrodes, where this may need to be investigated
further.

2.2.5 Total Transport Equation

This section serves merely to emphasise that for a given cell system, the full
transport equation is the sum of those for diffusion, convection and migration.
We might write, quite generally,

∂c

∂t
=
(

∂c

∂t

)
diff

+
(

∂c

∂t

)
conv

+
(

∂c

∂t

)
migr

(2.15)

with the “diff” term as defined by one of the (2.3)–(2.8), the “conv” term
by (2.11) and “migr” related to (2.13). At any one instant, these terms are
simply additive. Digitally, we can “freeze” the instant and evaluate the sum
of the separate terms. There may be non-transport terms to add as well, such
as kinetic terms, to be discussed next.

2.2.6 Homogeneous Kinetics

Homogeneous reactions are chemical reactions not directly dependent upon
the electrode/electrolyte interface, taking place somewhere within the elec-
trolyte (or, in principle, the metal) phase. These lead to changes in con-
centration of reactants and/or products and can have marked effects on the
dynamics of electrochemical processes. They also render the dynamic equa-
tions much more difficult to solve and it is here that digital simulation sees
much of its use. Whereas analytical solutions for kinetic complications are
difficult to obtain, the corresponding discrete expressions are obtained sim-
ply by extending the diffusion equation by an extra, kinetic term (although
practical problems arise, see Chaps. 5, 9). The actual form of this depends
upon the sort of chemistry taking place. In the simplest case, met with in
flash photolysis, we have a single substance generated by the flash, then de-
caying in solution by a first- or second-order reaction; this is represented by
equations of the form

∂c

∂t
= −k1c (2.16)

or
∂c

∂t
= −2k2c

2 (2.17)

and these can be added to the transport terms. Very often, we have several
substances interacting chemically, as in the example of the simple electro-
chemical reaction

A + ne− ⇔ B (2.18)

2.2 Some Mathematics: Transport Equations 11

followed by chemical decay of the product B. If this is first-order and we have
a simple one-dimensional diffusion system, we then have the two equations
(cA and cB denoting concentrations of, substances A and B, respectively; DA

and DB the two respective diffusion coefficients)

∂cA

∂t
= DA

∂2cA

∂x2

∂cB

∂t
= DB

∂2cB

∂x2 − k1cB . (2.19)

There is a great variety of such reactions including dimerisation, dispropor-
tionation and catalytic reactions, both preceding and following the electro-
chemical step(s) and it is not useful to attempt to list them all here. The point
is merely to stress that they are (with greater or lesser difficulty) digitally
tractable, as will be shown in Chaps. 5 and 9.

There is one problem that makes homogeneous chemical reactions espe-
cially troublesome. Most often, a mechanism to be simulated involves species
generated at the interface, that then undergo chemical reaction in the solu-
tion. This leads to concentration profiles for these species that are confined
to a thin layer near the interface – thin, that is, compared with the diffusion
layer (see Sect. 2.4.1, the Nernst diffusion layer). This is called the reaction
layer (see [74, 257, 559]). Simulation parameters are usually chosen so as to
resolve the space within the diffusion layer and, if a given profile is much
thinner than that, the resolution of the sample point spacing might not be
sufficient. The thickness of the reaction layer depends on the nature of the
homogeneous chemical reaction. In any case, any number given for such a
thickness – as with the diffusion layer thickness – depends on how the thick-
ness is defined. Wiesner [572] first derived an expression for the reaction layer
thickness µ,

µ =

√
D

k
. (2.20)

(Wiesner’s expression used different symbols, but this is not important.) This
expression strictly holds only for a first-order reaction and Vetter [559] pro-
vides a more general expression. However, the above expression is sufficient
for most simulation purposes. The equation for µ holds in practice only for
rather large values of the rate constant; for small values below unity, µ be-
comes greater than the diffusion layer thickness, which will then dominate the
concentration profile. At the other end of the scale of rate constants, for very
fast reactions, µ can become very small. The largest rate constant possible
is about 1010s−1 (the diffusion limit) and this leads to a µ value only about
10−5 the thickness of the diffusion layer, so there must be some sample points
very close to the electrode. This problem has been overcome only in recent
years, first by using unequal intervals, then by the use of dynamic grids, both
of which are discussed in Chap. 7.

12 2 Basic Equations

2.2.7 Heterogeneous Kinetics

In real (as opposed to model) electrochemical cells, the net current flowing
will often be partly determined by the kinetics of electron transfer between
electrode and the electroactive species in solution. This is called heteroge-
neous kinetics, as it refers to the interface instead of the bulk solution. The
current in such cases is obtained from the Butler-Volmer expressions relating
current to electrode potential [73,74,83,257,559]. We have at an electrode the
process (2.18), with concentrations at the electrode/electrolyte interface cA,0
and cB,0, respectively. We take as positive current that going into the elec-
trode, i.e., electrons leaving it, which corresponds to the reaction (2.18) going
from left to right, or a reduction. Positive or forward (reduction) current if
is then related to the potential E by

if = nFAcA,0k0 exp
(
−αnF
RT

(
E − E0

))
(2.21)

with A the electrode area, k0 a standard heterogeneous rate constant, α the
so-called transfer coefficient which lies between 0 and 1 and E0 the system’s
standard potential. For the reverse (oxidation) current ib,

ib = −nFAcB,0k0 exp
(

(1 − α)
nF
RT

(
E − E0

))
. (2.22)

Both processes may be running simultaneously. The net current is then the
sum (if + ib) and this will, through (2.9), fix the concentration gradients at
the electrode in these cases.

If a reaction is very fast, it may be simpler to make the assumption of
complete reversibility or electrochemical equilibrium at the electrode, at a
given potential E. The Nernst equation then applies:

E = E0 − RT
nF ln

(
cB,0

cA,0

)
(2.23)

or, for the purpose of computation,

cA,0

cB,0
= exp

(
nF
RT

(
E − E0

))
. (2.24)

Just how this is applied in simulation will be seen in later chapters.
The foregoing ignores activity coefficients. If these are known, they can

be inserted. Most often they are taken as unity.

2.3 Normalisation – Making
the Variables Dimensionless

In most simulations, it will be advantageous to transform the given equation
variables into dimensionless ones. This is done by expressing them each as a

2.3 Normalisation – Making the Variables Dimensionless 13

multiple of a chosen reference value, so that they no longer have dimensions.
The time variable t, for example, is expressed as a multiple of some charac-
teristic time τ , which may be different things depending upon the experiment
to be simulated. Sometimes it might be the total duration of an experiment
(the observation time) or, in the case of a linear sweep experiment, the length
of time it takes for the voltage to change by some specified amount. The dis-
tance from an electrode x can be conveniently expressed as a multiple of
some characteristic distance δ, which will be defined below. Concentrations
are normally expressed as multiples of some reference concentration, usually
the initial bulk concentration of a certain species involved in the reaction,
say c∗. The convention adopted in the rest of the book is, then, that the new
dimensionless variables, written in capitals, are

C = c/c∗

X = x/δ

T = t/τ .

(2.25)

The reference time scale τ depends on the system to be simulated, as will be
seen in the next section, where some model systems are described. There, the
characteristic distance δ will also be defined as used in this book (Sect. 2.4.1).
Other variables that are normalised are the current and electrode potential.
Current i is proportional to the concentration gradient, by Fick’s first equa-
tion (2.2), as expressed in (2.9). We introduce the dimensionless gradient or
flux, defined as

G =
∂C

∂X

∣∣∣∣
X=0

. (2.26)

This will now represent the current in dimensionless form. The actual current
can be calculated by denormalisation, that is,

i = nF AD G
c∗

δ
. (2.27)

The standard heterogeneous rate constant, seen in (2.21) and (2.22), with
dimensions m s−1, is normalised by

K0 = k0
√

τ/D . (2.28)

Potential values (in V) are normalised by the RT /nF unit and usually by
referring to some reference value E0, using (in this book) the symbol p:

p =
nF
RT

(
E − E0) (2.29)

so that one p-unit corresponds to 25.69n mV. Thus, the two Butler-Volmer
components in (2.21) and (2.22) can be expressed in terms of dimensionless
current G as

14 2 Basic Equations

G = KfCA,0 − KbCB,0 (2.30)

with

Kf = K0 exp{−αp}
Kb = K0 exp{(1 − α)p} (2.31)

and the Nernst equation very simply as

CA,0

CB,0
= ep . (2.32)

With certain rules and tricks, as will be shown, this will lead to equa-
tions whose solutions are much more general and useful than if we solve the
dimensioned equation for our particular parameter set of values.

2.4 Some Model Systems and Their Normalisations

When developing a new simulation method, it is good to have a number of
model systems at hand, for which there are known results, whether these be
in the form of analytical solutions (concentration profiles, current) or well es-
tablished series solutions (as in the case of linear sweep voltammetry, where
some parameters have been calculated to quite high precision). The test mod-
els should be chosen, as far as possible, to challenge the method. If the new
method’s primary purpose, for example, is simply greater efficiency, then
a simple model like the Cottrell system and chronopotentiometry may be
enough to demonstrate that; these two differ fundamentally in their bound-
ary conditions, the Cottrell system having a so-called Dirichlet boundary
condition (given concentrations at the boundary), while chronopotentiome-
try has a derivative or Neumann condition, where gradients are specified at
the boundary. If a method under development is expected to give high res-
olution (small intervals) along x – usually at the boundary – a model that
provides marked concentration changes very close to the boundary is the best
for testing that.

Along with a group of models that have shown themselves useful, their
particular normalisations will be presented. The first model, the Cottrell
system, will also serve to introduce the concept of the Nernst diffusion layer.

2.4.1 Potential Steps

Potential step experiments are a popular way to look at electrochemical ki-
netics. The oldest known is the Cottrell system, where the potential stepped
to is so far negative that the resulting current is limited by the transport of
the active substance. If the step is not so far negative, one then has either

2.4 Some Model Systems and Their Normalisations 15

Nernstian boundary conditions, or those for quasireversible or irreversible
systems. All of these cases have been analytically solved. As well, there are
two systems involving homogeneous chemical reactions, from flash photolysis
experiments, for which there exist solutions to the potential step experiment,
and these are also given; they are valuable tests of any simulation method,
especially the second-order kinetics case.

Cottrell System

We introduce here the diffusion-controlled potential-step experiment, here-
after called the Cottrell experiment [181]. Consider Fig. 2.3, showing a long
thin tube representing an electrochemical cell, bounded at one end by an
electrode and filled with electrolyte and an electroactive substance initially
at concentration c∗ (the bulk concentration). We place the electrode at x = 0
and the other, counter-electrode (not shown), at a large distance so that what
happens there is of no consequence to us. We apply, at t = 0, a potential such
that our electroactive substance reacts at the electrode infinitely fast – that is,
its concentration c0 at the electrode (x = 0) is forced to zero and kept there.

Fig. 2.3. A semi-infinite one-dimensional cell

Clearly, there will be flow of substance towards the electrode by diffusion (we
assume no convection here) and we will gradually cause some depletion of
material in the solution near x = 0; this depletion region will grow out from
the electrode with time. Mathematically, this is described by the diffusion
equation

∂c

∂t
= D

∂2c

∂x2 (2.33)

with the boundary conditions

t < 0, all x : c = c∗

t ≥ 0, x = 0 : c = 0

all t, x → ∞ : c = c∗ .

(2.34)

This classical equation with the boundary conditions as shown has an an-
alytical solution (Cottrell [181], see also standard texts such as Bard and
Faulkner [73,74] or Galus [257]):

c(x, t) = c∗ erf
(

x

2
√

Dt

)
. (2.35)

16 2 Basic Equations

In electrochemical experiments, we usually want the current or, since it is
related simply by (2.9) to ∂c/∂x at x = 0, we want (∂c/∂x)0. This is obtained
by differentiating (2.35) and setting x = 0, resulting in

(
∂c

∂x

)
0

=
c∗√
πDt

(2.36)

and the current itself is given by

i =
nFA

√
Dc∗√

πt
, (2.37)

the Cottrell equation.
The function erf is the error function, for which tables exist [28], and

which can be numerically computed (see the function ERF in the examples).
The solution, (2.35), is shown in Fig. 2.4 for three values of t, increasing as
the curves go to the right.

Fig. 2.4. Concentration profile changing with time for the Cottrell experiment

These so-called concentration profiles agree with our intuitive picture of
what should happen. Note that the concentration gradient at x = 0 decreases
with time. The current function declines with the inverse square root of time
(2.36). If, for a particular t value, we wish to know the current, we can insert
c∗, D and t into this equation and use (2.9) to get it.

It is clear from Fig. 2.4 that we should be able to define a distance that
roughly corresponds, at a given time, to the distance over which much of
the concentration change has taken place. One possible choice for this is the
distance δ as shown in Fig. 2.5, obtained by continuing the concentration
gradient at x = 0 straight up to c∗. Since this tangent line has the equation

c =
(

∂c

∂x

)
0
x =

c∗x√
πDt

, (2.38)

δ will be obtained by substituting c = c∗ and x = δ; this leads to

2.4 Some Model Systems and Their Normalisations 17

Fig. 2.5. The diffusion layer thickness δ

δ =
√

πDτ (2.39)

now expressed for the particular observation time τ . This quantity – a length
scale – was defined by Nernst (and Brunner) in 1904 [158,410], and is named
after the former. We find that, at any given time, there will be noticeable
concentration changes in the solution within a space extending only a few
multiples of δ.

This definition of δ is one of several possible. The way it is defined above
yields that distance for which the concentration has moved from zero to c∗

by a fraction erf(1
2

√
π) ≈ 0.8 or in other words, about 80% of the change has

happened at that point. Although this might be the most rational definition,
others can be agreed upon. In the present context, it turns out that a smaller
distance is the most convenient:

δ =
√

Dτ . (2.40)

At this distance, about 52% of the total change has happened. This definition
of δ will be used in the remainder of the book.

This scale is now used. The three variables c, x and t are rendered dimen-
sionless by the normalisations in (2.25) and applying these to (2.33) results
in the new dimensionless diffusion equation

∂C

∂T
=

∂2C

∂X2 (2.41)

and for the Cottrell system in these terms, the dimensionless boundary con-
ditions,

T < 0, all X : C = 1 ,

T ≥ 0,X = 0 : C = 0 ,

all T,X → ∞ : C = 1 .

(2.42)

From both the diffusion equation and the boundary conditions, such para-
meters as D and c∗ have now been eliminated. The solution is then

18 2 Basic Equations

C(X,T) = erf
(

X

2
√

T

)
(2.43)

for the concentrations and(
∂C

∂X

)
0

= G =
1√
πT

. (2.44)

This might be called the dimensionless Cottrell equation, for “current” G,
which in fact is the dimensionless concentration gradient at X = 0.

Potential Step, Reversible System

In the Cottrell experiment, as described in the last section, we have a step
to a very negative potential, so that the concentration at the electrode is
kept at zero throughout. It is possible also to step to a less extreme poten-
tial. If the system is reversible, and we consider the two species A and B,
reacting as in (2.18), then we have the Nernstian boundary condition as in
(2.24). Using (2.29) and assigning the symbols CA and CB , respectively, to
the dimensionless concentrations of species A and B, we now have the new
boundary conditions for the potential step,

T < 0, all X : CA = 1, CB = 0 ,

T ≥ 0,X = 0 : CA/CB = ep ,

all T,X → ∞ : CA = 1, CB = 0 ,

(2.45)

in which species B is not initially present. Note that substance A is now the
reference species and the values of its diffusion coefficient DA and its initial
bulk concentration c∗A are the ones used in the normalisations (2.25) and
(2.40). Similarly, if the diffusion coefficients are different for the two species,
we also define the ratio

d = DB/DA . (2.46)

There is now the additional boundary condition (flux condition),

fA + fB = 0 (2.47)

or, in terms of concentration gradients at the electrode,

DA
∂cA

∂x

∣∣∣∣
x=0

+ DB
∂cB

∂x

∣∣∣∣
x=0

= 0 (2.48)

which, in its dimensionless form and using (2.46), becomes

∂CA

∂X

∣∣∣∣
X=0

+ d
∂CB

∂X

∣∣∣∣
X=0

= 0 . (2.49)

The solution to all this is, as given in Galus [257], is

2.4 Some Model Systems and Their Normalisations 19

CA(X,T) =
d−1/2ep + erf

(
X

2
√

T

)
1 + d−1ep

(2.50)

and for CB

CB(X,T) =
d−1/2 erfc

(
X

2
√

dT

)
1 + d−1ep

(2.51)

and the current (expressed as the dimensionless gradient for A) is

G = GCott/(1 + d−1ep) (2.52)

where GCott is the G-value for the simple Cottrell case as in (2.44).
If the two species’ diffusion coefficients are assumed equal (d = 1), the

above equations simplify in an obvious way. In fact, then the problem is
mathematically equivalent to the simple Cottrell case. Cottrell pointed out
[181] that then, initially the concentrations at the electrode of the two species
will instantly change to their Nernstian values and remain there after that.

A final point concerns the fact that, if indeed d = 1, then at any point X,

CA(X,T) + CB(X,T) = CA(X, 0) + CB(X, 0) . (2.53)

This equation could be used to simplify the simulation, reducing it to only
a single species to be simulated. Agreeing with Feldberg however (private
communication), this is not a good idea. Rather, the above equation should
be used as a check on a given simulation, to make sure that all is well.

Potential Step, Quasi- and Irreversible System

For the quasireversible case, two species A and B must again be consid-
ered and the two boundary conditions are the flux condition (2.49) and the
dimensionlesss form of the Butler-Volmer equation. The forward and back-
ward heterogeneous rate constants kf and kb are normalised:

Kf = kf

√
τ

DA
(2.54)

Kb = kb

√
τ

DA
(2.55)

and the dimensionless current G is as given in (2.30). With suitable discreti-
sation, G becomes one of the two boundary conditions, the other one being
the usual flux expression (2.47).

This case was studied and published in 1952–3 by several groups inde-
pendently, some giving the solution for the case of both Kf and Kb being
nonzero and some treating the totally irreversible case, Kb = 0. See [257]
for the references. Texts tend to give only the solution for the current, but

20 2 Basic Equations

by continuing the treatments in [257] (p. 235) or [73, 74], the solution, in
dimensionless form, is

CA(X,T) = 1 − Kf

H∗

{
− exp(H∗X) exp(H∗2T) erfc

(
H∗√T +

X

2
√

T

)

+ erfc
(

X

2
√

T

)}
(2.56)

for the concentration profile of species A and

CB(X,T) =
Kf

H∗

{
− exp(H∗X) exp(H∗2T) erfc

(
H∗√T +

X

2
√

dT

)

+ erfc
(

X

2
√

dT

)}
(2.57)

for species B, where the dimensionless variable H∗ is defined as

H∗ = H
√

τ (2.58)

using the symbol H as defined in [73,74],

H =
kf√
DA

+
kb√
DB

. (2.59)

The dimensionless current then is

G = Kf exp(H∗2T) erfc(H∗√T) . (2.60)

Modification to the totally irreversible case (kb = 0) is trivial, as is the
simplification to equal diffusion coefficients (d = 1).

Potential Step, Homogeneous Chemical Reactions

Three examples are popular here. The first two start with flash photolysis,
where an intense flash irradiates the whole cell at t = 0, instantly producing
an electrochemically active species that decays chemically in time, either
by a first-order reaction, or a second-order reaction. The labile substance is
assumed to be formed uniformly in the cell space with a bulk concentration
of c∗. These are cases where the concentration at the outer boundary is
not constant, falling with time. The third case, the catalytic or EC′ system
(see [73, 74]), is of special interest because of the reaction layer it gives rise
to.

The Reinert-Berg system is the one in which the reactions are

A + e− → B

A → prod ,
(2.61)

2.4 Some Model Systems and Their Normalisations 21

the two reactions taking place simultaneously. We need only consider the
single species A. This system poses no special problems. Reinert and Berg
solved it [464] for a potential step to very negative potentials, that is, doing
a Cottrell experiment on this system. The diffusion equation becomes

∂c

∂t
= D

∂2c

∂x2 − kc (2.62)

where k is the rate constant of the homogeneous chemical reaction and bound-
ary conditions are

t = 0 , all x : c = c∗

t ≥ 0 , x = 0 : c = 0

all t, x → ∞ : c = c∗e−kt .

(2.63)

Note the difference from (2.34). Normalising as usual, with the additional
normalisation of rate constant k to K:

K = kτ (2.64)

so that these equations become

∂C

∂T
=

∂2C

∂X2 − KC (2.65)

and
T = 0 , all X : C = 1

T ≥ 0 , X = 0 : C = 0

all T,X → ∞ : C = e−KT .

(2.66)

The solution of this is the one for the simple Cottrell system, multiplied by
the decay factor

C(X,T) = exp(−KT) erf
(

X

2
√

T

)
(2.67)

and
G(T) = exp(−KT)

1√
πT

. (2.68)

Obviously, one must choose the characteristic (observation) time τ reason-
ably – several multiples of the half-life – so that even out in the bulk, there is
still some substance left at that time, or else the calculation will be operating
on values very close to zero. This will depend on the value of K. When sim-
ulating the plain Cottrell experiment, it is customary to simulate to T = 1,
but here, one might only go to T = n/K, with n some smallish number, so
that exp(−KT) does not become too small.

In the Reinert-Berg system, the homogeneous chemical reaction involves
a bulk species, and there is no reaction layer (Sect. 2.2.6).

22 2 Basic Equations

The Birk-Perone system, a flash photolysis experiment with subsequent
second-order decay, is a little more interesting because it can, with an unsuit-
able simulation method, lead to negative concentration values. The simulta-
neous reactions are

A + e− → B

2A → prod
(2.69)

and this has the governing equation

∂c

∂t
= D

∂2c

∂x2 − 2kc2 , (2.70)

where k is the rate constant of the homogeneous chemical reaction and bound-
ary conditions are

t = 0 , all x : c = c∗

t ≥ 0 , x = 0 : c = 0

all t, x → ∞ : c = c∗/(1 + 2ktc∗) .

(2.71)

The boundary condition at X → ∞ is the solution of the simple homogeneous
reaction taking place there. Normalising all variables, and k normalised using

K = 2kc∗τ , (2.72)

these become
∂C

∂T
=

∂2C

∂X2 − KC2 , (2.73)

with
T = 0 , all X : C = 1

T ≥ 0 , X = 0 : C = 0

all T,X → ∞ : C = (1 + KT)−1 .

(2.74)

A solution for this system was first attempted by Birk and Perone [121], who
however oversimplified their assumptions. This was pointed out later [146]
and the more rigorous solution (current only) was found to be

ik
ik=0

=
1

1 + θ

{
1 +

∞∑
n=1

an

(
θ

1 + θ

)n
}

, (2.75)

in which ik=0 is the plain Cottrell solution, θ is defined as 2kc∗t = KT and
the first 10 coefficients an are [146]

2.4 Some Model Systems and Their Normalisations 23

a1 = 4/π − 1 = 0.27324
a2 = 0.08327
a3 = 0.02893
a4 = 0.01162
a5 = 0.00540
a6 = 0.00286
a7 = 0.00169
a8 = 0.00108
a9 = 0.00074

a10 = 0.00053 .

Another system of interest in connection with potential steps (and, see
below, LSV) is the catalytic or EC′ system, described in simplified form by

A + e− ⇔ B

B → A ,
(2.76)

where the product B reverts, with pseudo-first-order rate constant k, to the
original A. The first reaction is conveniently taken to be diffusion limited
(that is, the potential is very negative as in the Cottrell experiment). Normal-
ising as usual (rate constant k as above, (2.64)) and assuming equal diffusion
coefficients (d = 1), the boundary conditions are

T < 0, all X : CA = 1, CB = 0

T ≥ 0,X = 0 : CA = 0

all T,X → ∞ : CA = 1, CB = 0 .

(2.77)

The solution, derived by Delahay and Stiehl [202] in dimensionless form:

CA(X,T) = 1 − 1
2 exp(X

√
K) erfc

(
X

2
√

T
+
√

KT

)

− 1
2 exp(−X

√
K) erfc

(
X

2
√

T
−
√

KT

)

CB(X,T) = 1
2 exp(X

√
K) erfc

(
X

2
√

T
+
√

KT

)
(2.78)

+ 1
2 exp(−X

√
K) erfc

(
X

2
√

T
−
√

KT

)

and the current

G =
√

K erf
√

KT +
exp(−KT)√

πT
. (2.79)

This system will be discussed again in a later chapter, because it is of special
interest, both species A and B forming a reaction layer. The thickness µ of

24 2 Basic Equations

this layer was given in Sect. 2.2.6 and this can now be normalised, for a
first-order homogeneous reaction, for which we have the dimensionless rate
constant as in (2.64), giving the dimensionless reaction layer thickness

µ∗ =
1√
K

. (2.80)

Note that for large K and T , the current G approaches the constant value√
K.

2.4.2 Constant Current

While the Cottrell system might be regarded as the simplest possible model
with a Dirichlet boundary condition (that is, in which boundary concentra-
tions are specified), the constant current case is the simplest possible for the
Neumann boundary condition, in which a concentration gradient is specified
at the boundary. This model can also be called the chronopotentiometric ex-
periment since here, the current is given and it is the electrode potential that
is measured against time. Mathematically this model is defined by the usual
(2.33), here with the boundary conditions

t < 0, all x : c = c∗

t ≥ 0, x = 0 : dc/dx = const .

all t, x → ∞ : c = c∗ .

(2.81)

The solution to this, that is, the concentration profile as a function of x and
t, is [74]

c(x, t) = c∗ − i

nFAD

{
2

√
Dt

π
exp
(
− x2

4Dt

)
− x erfc

(
x

2
√

Dt

)}
, (2.82)

where i is the constant current that is applied, D is the diffusion coefficient
of the electroactive species. Some concentration profiles at three time values
are shown in Fig. 2.6 and the constant concentration gradient at x = 0 can
be seen. Also, the concentration c(0, t) decreases with time t; it is in fact

c(0, t) = c∗ − 2i
√

t

nFA
√

πD
(2.83)

and reaches zero at some time, as shown in the figure. This time is the
transition time (so named because the electrode potential undergoes a sharp
transition at this point). It is given the symbol τ and is related to the current
i by the Sand equation:

2.4 Some Model Systems and Their Normalisations 25

Fig. 2.6. Concentration profile changing with time for chronopotentiometry

i
√

τ

c∗
=

nFA
√

πD

2
(2.84)

first given by Sand [493] and, with more detail, by Karaoglanoff [331].
To normalise this system, the previous definition (2.40) is used for the

distance x, and c∗, the bulk concentration, for the concentration c; for
the time unit, it is natural to use the transition time τ itself. This makes
the boundary conditions

T < 0, all X : C = 1 ,

T ≥ 0,X = 0 : dC/dX = 1
2

√
π

all,X → ∞ T : C = 1 .

(2.85)

Interestingly, here the constant current becomes the dimensionless constant
concentration gradient at the electrode, with the value 1

2

√
π. The dimension-

less concentration profile is

C(X,T) = 1 −
√

T

{
exp
(
−X2

4T

)
−

√
πX

2
√

T
erfc

(
X

2
√

T

)}
(2.86)

and, very simply,
C(0, T) = 1 −

√
T . (2.87)

In Fig. 2.6, the profiles shown are for t = 0.1τ , t = 0.3τ and t = τ ; that is,
for T = 0.1, T = 0.3 and T = 1.

2.4.3 Linear Sweep Voltammetry (LSV)

This is another useful system with which methods can be tested, one reason
being that it demands more iterations than those mentioned above and is
thus notoriously time-consuming. We again consider the simple reaction

A + ne− ⇔ B (2.88)

26 2 Basic Equations

and assume reversibility. The electrode potential E(t) is time-dependent,

E(t) = E1 + vt (2.89)

in which E1 is the starting potential and v is the scan rate in V s−1. The
diffusion equations are as for the potential step with a reversible system (2.18)
with the boundary conditions, for the classical case,

t < 0 : E = E1

t < 0, all x : cA = c∗, cB = 0

t ≥ 0 : E(t) = E1 + vt

t ≥ 0, x = 0 : cA/cB = exp
{

nF
RT

(
E(t) − E0

)}
t ≥ 0, x → ∞ : cA = c∗, cB = 0 ,

(2.90)

where c∗ is the initial bulk concentration of species A and species B is not
present initially. A common diffusion coefficient for both species, D, is as-
sumed. In practice, the sweep terminates at some (more negative) potential
E2, but this is not part of the description. This system is interesting in that
it was in fact the first to be simulated, by Randles, in 1948 [460] using hand
calculations. In the same year, Ševč́ık [505] worked towards an analytical so-
lution, ending in an integral equation he was forced to solve numerically. The
current function is therefore called the Randles-Ševč́ık function. The integral
equation was developed in 1964 by Nicholson and Shain [417] and solved nu-
merically with greater accuracy. Their calculations were later improved by
Oldham [426], Mocak [400] and Mocak & Bond [401] who used series solu-
tions. The Oldham values have not been improved upon. The current function
(which will be seen below to be the dimensionless flux for species A at the
electrode), given the symbol χ, was found by Oldham to have a peak value
at the dimensionless potential pmax (for the definition see (2.29)) of −1.1090,
corresponding to −28.493/n mV (at 25oC and using the Diehl value [211] for
the Faraday, 96486.0 C/mol), the peak χ (or G) value there being 0.44629.
These numbers are useful to know as standards for comparing simulations,
and refer only to the LSV case (that is, no reverse sweep is described).

To render the LSV system dimensionless, the usual reference values for
concentration, time and distance from the electrode are needed, as well as
that for potential (2.29) (and thus, sweep rate). Both species’ concentrations
are normalised by the initial bulk concentration of A, c∗, as always, and the
potential to dimensionless p as in (2.29), (2.89) thus becoming

p = p1 − at (2.91)

with p1 being the dimensionless starting potential, and the variable a given
by

a =
nF
RT v , (2.92)

2.4 Some Model Systems and Their Normalisations 27

the dimensionless sweep rate (and now sweeping in the cathodic direction). A
reference time τ can now be defined, being simply the time it takes to sweep
through one p-unit,

τ = a−1 (2.93)

so that we have, as usual,
T = t/τ (2.94)

and also the reference distance δ, as before,

δ =
√

Dτ (2.95)

and thus
X = x/δ (2.96)

so that we now have the two diffusion equations

∂CA

∂T
=

∂2CA

∂X2

∂CB

∂T
=

∂2CB

∂X2

(2.97)

with the boundary conditions

T = 0 : p = p1

T ≤ 0 , all X : CA = 1, CB = 0

T ≥ 0 : p(T) = p1 − T

T ≥ 0 , X = 0 : CA/CB = exp(p(T))

T ≥ 0 , X → ∞ : CA = 1, CB = 0 .

(2.98)

Note the rather simple form of the Nernst equation here, and the fact that
the dimensionless sweep rate is now unity, that is, one p-unit per one T -unit.

When solving this system by computer, the dimensionless results can then
be translated back into dimensioned values. The above χ function is the same
as dimensionless ∂CA/∂X (X = 0) or G, and becomes a real current via the
equation

i(t) = nFADG = nFADχ (2.99)

at the actual potential

E(t) =
RT
nF p(t) + E0 . (2.100)

With LSV, the quasireversible and irreversible cases might also be inter-
esting models, both of which have mixed boundary conditions, lying some-
where between the extremes of Dirichlet and Neumann conditions, because
here we have fluxes at the electrode, determined by heterogeneous rate con-
stants (depending on potential) and concentrations at the electrode. Also,

28 2 Basic Equations

as will be seen in a later chapter, these models give rise, with some simula-
tion methods, to surprising instabilities. These models are described in the
standard texts such as [73,74] and [257].

The quasireversible LSV case was treated by Matsuda and Ayabe [389],
who used a series sum as an approximation to the integral equation obtained
from the Laplace-transform solution of the problem. The result depends on
the heterogeneous rate constant, both the peak current and the peak po-
tential varying with this parameter. Basha et al. [82] tried to improve on
the results but it seems that those of Nicholson and Shain [417] were better.
These also provided results for the totally irreversible case, first described by
Delahay [199]. For this, the χ(at)-function has a constant maximum, given to
four figures in [73,74], 0.4958, from the tables in [417]. Peak potential varies
with rate constant, as with the quasireversible case.

Thus, for these two cases, we do not have high-precision comparisons. In
such a case, one recourse is to do convergence computations, going to finer
and finer intervals until there is no further change in the values, which can
then be used for reference. This of course rests on the assumption that one
has a method that is guaranteed to work; and often, this is reasonable. One
uses a tried-and-true method with such a guarantee but which is not neces-
sarily highly efficient. The values are then used to check whatever method
one is working on, that might be more efficient. If this strikes the reader as
somewhat unsatisfactory, note that, for LSV, there are in fact no analytical
solutions at all, except those based on numerical methods of some kind, by
either solving the associated integral equation numerically, or evaluating var-
ious series sums that are considered good approximations to the solution of
such integral equations. It can be considered that digital simulation is one
further method for doing this job.

Another case of interest with LSV is the catalytic system, described above
in the section on potential steps. The equations are the same except that the
potential here is not constant and very negative, following (2.29) in its dimen-
sionless form. For small and intermediate rates of the homogeneous chemical
reaction (dimensionless constant K), the same procedure as mentioned above,
that is, convergence simulations, must be used. For large K, however, the LSV
curves become sigmoid, with a plateau equal to the current for the potential
step, G =

√
K. This can be used to test methods. Figure 2.7 shows LSV

curves for some K-values, where this effect is seen.

2.5 Adsorption Kinetics

Adsorption is often present in electrochemical systems, both unintended and
intended for certain purposes. The rate at which adsorbed layers form is of
interest and must be simulated in most cases, as it is mathematically difficult,
although a few simple cases have been solved. Modern texts [74, 257] give
adsorption kinetics quite brief treatment, and the classic literature is rather

2.5 Adsorption Kinetics 29

Fig. 2.7. LSV curves, catalytic system

old. Textbooks devoted to the subject (Damaskin et al. [191] or Jehring
[315]) deal very briefly with the kinetics of adsorption. The recent focus is on
self-assembled monolayers (SAMs; for a review, see for example [243]), and
the kinetics of their formation are complicated by changes that take place
after adsorption [74]. It used to be thought that the adsorption step itself is
fast on mercury, but slower on solid metals [257]. The insight gained from the
study of SAMs suggests that on solid metals, too, adsorption as such is fast,
but the rearrangement that takes place afterwards, is a slow process [243].

There are some important general relations for a substance adsorbed from
solution on an electrode. These pertain to the equilibrium state and the
kinetics of the process leading to equilibrium. Adsorption kinetics receives
rather intermittent attention in the electrochemical literature. One of the
clearest discussions is by Mohilner [403]; see also Delahay [200], Bard and
Faulkner [74].

The degree of adsorption is expressed either by Γ , the surface concentra-
tion, in units of moles per unit area, or in terms of the fractional coverage
θ:

θ = Γ/Γm , (2.101)

where Γm is the maximum possible surface concentration at saturation, in
many cases corresponding to a complete monolayer of the substance on the
electrode. At equilibrium, Γ or θ are related to the adsorbed substance’s
concentration c0 adjacent to the electrode, by the adsorption isotherm I,
customarily written in the inverse form

bc0 = I(θ) (2.102)

or, in dimensionless terms,
BC0 = I(θ) (2.103)

with B = bc∗. It may be that while the state of adsorption is in momen-
tary equilibrium with c0, there are nevertheless concentration gradients in

30 2 Basic Equations

the solution. The isotherms take many forms; a large list was presented by
Mohilner [403]. A few examples are

I(θ) = θ (2.104)

which is the linear or Henry isotherm, sometimes applicable for θ � 1; or the
Langmuir isotherm

I(θ) =
θ

1 − θ
. (2.105)

If there is interaction between the particles (attractive or repulsive), the
Frumkin isotherm may apply:

I(θ) =
θ

1 − θ
exp(−2aθ) (2.106)

with a the attraction parameter. The logarithmic Temkin isotherm [403] is

I(θ) = exp(aθ) . (2.107)

There are other, more complicated isotherms but the above examples suffice.
In order to reach a certain surface concentration Γ or fractional coverage θ,

the substance in question must first arrive at the electrode by some transport
process. The diffusion equation applies for this part. The rate of increase of
Γ (per unit area) is proportional to the unit area flux at the electrode

dΓ

dt
= −f (2.108)

(flux being regarded as away from the electrode). From (2.2) and our defini-
tion of g this becomes

dΓ

dt
= Dg . (2.109)

We prefer to work with θ and so get (using (2.101))

dθ

dt
= Dg/Γm . (2.110)

In dimensionless form, using the transformations (2.25) as before, this is

dθ

dT
=

c∗
√

Dτ

Γm
G , (2.111)

τ being the observation time as before. Some model systems with solutions
exist for adsorption kinetics. The simplest case is that of a very large B
parameter in (2.103), and a Cottrellian experiment. For B → ∞, there is
then the set of boundary conditions

2.5 Adsorption Kinetics 31

T < 0 : C(X,T) = 1; θ = 0

T ≥ 0 : C(0, T) = 0; θ = c∗
√

Dτ
Γm

∫ T

0 GdT

all T,X → ∞ : C = 1 .

(2.112)

In other words, adsorption is so strong, that every particle of the substance
arriving at the electrode is adsorbed immediately, forcing the concentra-
tion there, in solution, to zero. So the adsorbate simply accumulates by the
Cottrellian flux given by the potential step experiment, and the solution,
given first by Koryta [342], is

θ(T) =
2cb

√
Dτ

Γm
√

π

√
T . (2.113)

If adsorption is fast but not sufficiently strong to justify the assump-
tion C0 ≈ 0, then C0 will, at any instant, be determined by the adsorption
isotherm (2.103). This boundary condition leads to mathematical problems;
the integral equation resulting from (2.110) then becomes a Volterra equa-
tion. This has been solved for only some very simple isotherms. Delahay and
Trachtenberg [203] solved it for the Henry isotherm (2.104), the solution
being

C = 1 − exp
[
X

K
+

T

K2

]
erfc

[
X

2
√

T
+

√
T

K

]
, (2.114)

in which the dimensionless K = bΓm/
√

Dτ .
Reinmuth [465] arrived at a solution for the Langmuir isotherm in the

form of a series, involving the beta function. Levich et al. [362] had an
approximate solution for a general adsorption isotherm.

If the adsorption step itself is rate-limiting, one must have available rate
expressions for the adsorption and the desorption steps. The flux in (2.108)
is then split into two opposing components. Using the notation of Delahay
and Mohilner [201,403], there is a forward flux vf , adding to the adsorbate’s
surface concentration and backward flux vb, the rate of redissolution of ad-
sorbed substance. These obey rate equations rather analogous to those for
electron transfer, the Butler-Volmer equation, in the sense that there are rate
constants that are potential dependent. For the forward and backward rates,
we have

vf = kff1(c0, Γ)
vb = kbf2(Γ) , (2.115)

where kf and kb are the forward and backward rate constants and f1 and f2
are functions whose forms depend on the adsorption isotherm assumed. Note
that the two constants have different units. If the forward and backward rates
are equal, then there is equilibrium and the isotherm is obtained by equating

32 2 Basic Equations

the right-hand sides of (2.115). If the rates are not equal, there will be a net
flux of substance between the two phases.

Various workers [201,370,371,403] have presented particular forms of the
functions f1 and f2, for various isotherms. For all these equations, one needs
to know the k parameters and possibly more. In all cases, we have

dΓ

dt
= vf − vb (2.116)

which we would usually normalise to the dimensionless form

dθ

dT
= Vf − Vb (2.117)

with V = vτ/Γm, τ being, as before, a chosen experimental time scale.
Two examples are given here, to be followed up in Chap. 10. Lovrić

and Komorsky-Lovrić [371] expressed (2.115) for the simple Henry isotherm
(2.104), as

vf = kfc0

vb = kbΓ , (2.118)

which is linear in both c0 and Γ , while Lorenz [370] expressed the equation
for the Langmuir isotherm (2.105) as

vf = kfc0(Γm − Γ)
vb = kbΓ (2.119)

where we now have a nonlinear term in the first equation. These can be
normalised conveniently. The v are normalised to V as above. Letting Kf =
kfτc∗/Γm and Kb = kbτc∗ (note the different normalisations of the two rate
constants), we obtain

Vf = KfC0

VB = Kbθ (2.120)

for the Henry isotherm, and

Vf = KfC0(1 − θ)
Vb = Kbθ (2.121)

for the Langmuir isotherm. These two cases – one linear and the other nonlin-
ear – are good examples for the simulation process. More complex isotherms
such as the Frumkin isotherm also lead to nonlinear equations, so that this
one nonlinear example suffices to point the way. How all this is simulated is
described in Chap. 10.

3 Approximations to Derivatives

In this chapter, all the discrete approximations required for simulation are
established, that is, for first and second derivatives, both central and asym-
metric forms, and for a range of numbers of points used.

3.1 Approximation Order

Consider Fig. 3.1 and assume that the marked points on the x-axis are
equidistant with length h between them. For the moment, consider a sim-
ple first derivative “around the region” between x1 and x2 (to be made more
precise in later sections). The function shown as a line is known only in the
form of the fat points on it. Intuitively, one thinks of the approximation in
that region as

dy

dx
=

y2 − y1

h
(3.1)

and this can be used to define the concept of order. The above expression is
that for the slope of the straight line drawn from the first point (at x1) to
the second (at x2), and is slightly in error. The error depends on where on
the curve we mean the expression to apply. In later sections all this will be
developed precisely, but here it suffices to say that the error will usually be
a function of the interval h, and will become smaller, as we make h smaller.
The order then tells us how much smaller. The relation between the error e
and h is approximately given by

e = const × hp (3.2)

and the power p is the order (while the constant is of lesser importance). For
example, it is seen below that, if we mean (3.1) to apply at the position x1 or
x2, then p is equal to unity, and one says that the approximation is first-order
with respect to h, expressed as O(h). In other words, if we attempt to make
the error smaller by halving h, then we also halve the error. If we mean the
approximation to apply to the point midway between the interval, that is, at
x = (x1 + x2)/2, it turns out that p = 2, and the error is O(h2). Thus, if we
halve h, the error becomes a quarter as large. This is better than first-order
and generally, one seeks approximations of high order.

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 33–49 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

34 3 Approximations to Derivatives

Fig. 3.1. Arbitrary function with 3 points marked

In digital simulation, when discretising the diffusion equation, we have
a first derivative with respect to time, and one or more second derivatives
with respect to the space coordinates; sometimes also spatial first derivatives.
Efficient simulation methods will always strive to maximise the orders.

3.2 Two-Point First Derivative Approximations

Consider again Fig. 3.1, and the point at x2, expressed as a Taylor series
development going from x1. Note that the symbols y2, f(x2) and f(x1 + h)
are all synonymous. The Taylor expansion is

y2 = y1 + hy′
1 +

h2

2!
y′′
1 +

h3

3!
y′′′
1 + . . . (3.3)

where y′
1 etc are the progessively higher spatial derivatives of the function at

the point (x1, y1). This equation can be rearranged to

y′
1 =

y2 − y1

h
− h

2!
y′′
1 − h2

3!
y′′′
1 − . . . (3.4)

where the first term on the right-hand side is in fact (3.1) above. However,
now we know more about this approximation: we note that it refers to the
point (x1, y1), and that if we write

y′
1 = y′(x1) =

y2 − y1

h
(3.5)

then this has an error equal to the sum of the further terms on the right-hand
side of (3.4). That is, the error is

e = − h

2!
y′′
1 − h2

3!
y′′′
1 − (3.6)

3.2 Two-Point First Derivative Approximations 35

This is a polynomial in h, and since h is normally rather small, the lowest
power in h will contribute most to the sum. Thus we see that the error is
O(h) (the actual coefficients do not matter as much as the order).

The approximation (3.5) is called a forward difference because the values
used to approximate it lie forward of the point (x1) where it is meant to
apply.

It is possible to develop the point at x1 going backward from that at x2,
again using the Taylor expansion:

y1 = y2 − hy′
2 +

h2

2!
y′′
2 − h3

3!
y′′′
2 + . . . (3.7)

where there is now an alternation of sign because of the negative value −h.
Rearranging this yields

y′
2 =

y2 − y1

h
+

h

2!
y′′
2 − h2

3!
y′′′
2 + . . . (3.8)

giving the approximation

y′
2 = y′(x2) =

y2 − y1

h
(3.9)

which is also O(h) (with different polynomial coefficients) and, as it refers to
the point (x2, y2) using a preceding other point, is a backward difference.

It will now become clear why Fig. 3.1 has three points on it. We focus
on the point at x2 and use Taylor’s expansions around this point for both y1
(see 3.7) and y3:

y3 = y2 + hy′
2 +

h2

2!
y′′
2 +

h3

3!
y′′′
2 + (3.10)

Subtracting (3.7) from (3.10) and rearranging yields

y′
2 =

y3 − y1

2h
+

h2

3!
y′′′
2 + . . . (3.11)

that is,

y′
2 =

y3 − y1

2h
+ O(h2) (3.12)

a second-order central difference approximation to the first derivative, which
is much better than either the forward or backward formulae in the above.
Clearly, we could have done this, focussing on a point midway between x1
and x2 (let us call it x1.5) and Taylor-expanding around it for the two points
y1 and y2, thus arriving at the approximation, y1.5 at x1.5,

y′
1.5 =

y2 − y1

h
+ O(h2) (3.13)

which is also second-order with respect to h.

36 3 Approximations to Derivatives

We now have three two-point approximations for a first derivative, all in
fact being the same expression, (y2 − y1)/h, but depending on where this
formula is intended to apply, being, respectively a forward difference of O(h)
if applied at x1, a backward difference of O(h) if applied at x2 and a central
difference of O(h2) if applied at (x1 +x2)/2. In subsequent chapters, all these
will be used to approximate, among others (2.3)–(2.8).

3.3 Multi-Point First Derivative Approximations

The above approximations to a first derivative used only two points, which
sets a limit on the approximation order. By using more points, higher-order
approximations can be achieved. In the context of this book, forward and
backward multi-point formulae are of special interest, as well as some asym-
metric and central multi-point ones. To this end, a notation will be defined
here. Figure 3.2 shows the same curve as Fig. 3.1 but now seven points are
marked on it. The notation to be used is as follows. If a derivative is approx-
imated using the n values y1 . . . yn, lying at the x-values x1 . . . xn (intervals
h) and applied at the point (xi, yi), then it will be denoted as y′

i(n) (for a
first derivative) and y′′

i (n) (for a second derivative).

Fig. 3.2. Arbitrary function with 7 points marked

For a given number n of points to be included in an approximation for y′

applied at point index i within the group, the procedure is to calculate the
β coefficients in the general expression

y′
i(n) =

1
h

n∑
i=1

βiyi . (3.14)

This is done by writing the Taylor expansions around the point at index i
for all the other (n − 1) points, to a sufficient number of terms, and solving
for the derivatives, discarding all but the numbers for the first derivative.

3.3 Multi-Point First Derivative Approximations 37

A single example will illustrate the method. Assume that we want y′
2(4),

that is, the derivative y′ at point (x2, y2) out of points at x1 . . . x4 in Fig. 3.2.
Taylor expansions are written for points at x1, x3, x4, going to the third
derivative (in general, for n points, to the (n − 1)st derivative):

y1 = y2 − hy′
2 +

h2y′′
2

2!
− h3y′′′

2

3!
+ O(h4)

y3 = y2 + hy′
2 +

h2y′′
2

2!
+

h3y′′′
2

3!
+ O(h4) (3.15)

y4 = y2 + 2hy′
2 +

4h2y′′
2

2!
+

8h3y′′′
2

3!
+ O(h4) .

The above can be rewritten as a matrix equation,

−1 1

2! − 1
3!

1 1
2!

1
3!

2 4
2!

8
3!

h 0 0

0 h2 0

0 0 h3

y′
2

y′′
2

y′′′
2

 =

y1 − y2

y3 − y2

y4 − y2

 (3.16)

(remembering the O(h4) terms but not writing them). This can be written
as

AHd = b (3.17)

where A is the main matrix, H the diagonal matrix of terms in h, d the
solution vector of derivatives

[
y′
2 y′′

2 y′′′
2
]T and b the right-hand side vector

of knowns. The next step is to multiply by the inverses of the two left-hand
matrices

d = A−1H−1b . (3.18)

All that is wanted here is the top row of the inverted matrix, since

y′
2 = h−1 [c11 c12 c13

]

y1 − y2

y3 − y2

y4 − y2

 (3.19)

(with c11 etc being the first row elements of the inverse C = A−1). When
inverting matrix A, the numbers come out as decimal fractions, in this case[
− 1

3 1 − 1
6

]
. We prefer whole-number fractions. It is an easy programming

job to find a multiplier that makes whole numbers out of all entries in the
top row of A−1; in this case, it is 6 and the result of the computation is

y′
2 =

1
6h

[
−2 6 −1

]

y1 − y2

y3 − y2

y4 − y2

 (3.20)

38 3 Approximations to Derivatives

which, when multiplied out and after sorting, gives the result

y′
2 =

1
6h

{−2y1 − 3y2 + 6y3 − y4} + O(h3) (3.21)

in which the order term indicates that this approximation is third-order with
respect to h.

In this way, the coefficients for any y′
i(n) can be calculated. Table A.1 in

Appendix A shows them all, as whole numbers mβi, where m is the multiplier
mentioned above. For each n, the Table shows forward differences (at index 1),
backward derivatives (at index n) and derivatives applying at points between
the two ends. For n up to 6, all possible forms are included, as they will be
needed later, while for n = 7, only the forward and backward formulae are
shown, as only these are needed. In case the reader wonders why all this
is of interest: the forms y′

1(n) will be used to approximate the current in
simulations (see the next section); the backward forms y′

n(n) will be used
in the section on the BDF method in Chaps. 4 and 9, and the intermediate
forms shown in the Table will be used for the Kimble & White (high-order)
start of the BDF method, also described in these chapters. The coefficients
have a long history. Collatz [169] derived some of them in 1935 and presents
more of them in [170]. Bickley tabulated a number of them in 1941 [88]. The
three-point current approximation, essentially y′

1(3) in the present notation,
was first used in electrochemistry by Randles [460] (preempted by two years
by Eyres et al. [225] for heat flow simulations), then by Heinze et al. [301],
and schemes of up to seven-point were provided in [133].

3.4 The Current Approximation

As shown in Chap. 2, (2.26), the current in its dimensionless form G is the
dimensionless gradient of C with respect to X at X = 0. This implies that
a forward difference must be used, as we normally have C-values starting at
X = 0. There are algorithms with points at negative X values, but they are
not generally very successful or popular. The approximation can therefore be
expressed as the n-point approximation

G ≈ 1
H

n−1∑
i=0

βiCi . (3.22)

The symbol Gn will sometimes be used, to mark n, the number of points
used. The simplest formula is the two-point form,

G ≈ 1
H

(C1 − C0) (3.23)

which seems a poor, low-order approximation. It can be justified, however,
in cases where H is very small, as is in fact so with most useful programs

3.6 High-Order Compact (Hermitian) Current Approximation 39

these days, since these use unequal intervals, usually spaced very closely near
the electrode. As will be seen, this two-point form makes the discretisation of
boundary conditions much easier. There are even cases in which the current
approximation becomes worse as more points are introduced. This happens
with severely stretched grids (see “unequal intervals”, elsewhere), so the n-
point formula should probably be used only with equal intervals. It has also
been argued [100] that the three-point formula,

G ≈ 1
2H

(−3C0 + 4C1 − C2) (3.24)

is most compatible with the usual three-point second-order approximation
to the second space derivative, being itself second-order. This is a matter of
taste.

3.5 The Current Approximation Function G

The above (3.22) is now generalised to operate on any array or vector v =
[v0, v1, . . . , vn−1]T , that is, we define the function

G(v, n,H) =
1
H

n−1∑
i=0

βivi (3.25)

which will be used extensively in this book. Mostly, the second and third
arguments will be taken as understood, and the function will then simply
be written as G(v) for the general vector v, which in many cases will be
concentration C (but, as will be seen in Chap. 6, not always).

3.6 High-Order Compact (Hermitian)
Current Approximation

There is a trick by which one can increase the order, and thereby the accuracy,
of current approximations for a given number of points used. It is related
mathematically to the Numerov method, to be discussed in a later chapter.
The device is based on the particular form of what we are trying to solve
for. It was introduced to electrochemistry by Bieniasz [108,110], referring to
some earlier work in other fields. The device belongs to a class of schemes
given various names, among them “compact stencil” or “high-order compact
(HOC) scheme”, or Hermitian. The latter term is possibly the best. It refers to
Hermite’s interpolation method, clearly described by Kopal [341]. Its essence
is the use in an approximation, not only of function values at grid points
but also function derivatives. This is now generally applied in other contexts
outside interpolation. The English translation of Collatz’ book [170] uses the

40 3 Approximations to Derivatives

term to translate the original “Mehrstellenverfahren” and notes that this does
not imply that Hermite used the method in this way. The Hermitian method
can not only be used to obtain better current approximations, but also for
simulations with derivative boundary conditions, to be described in Chap. 9.
Another example of a Hermitian method is the Numerov method [421], also
described in Chap. 9.

The information on derivatives that the device makes use of is the pde
itself, which can be written in the form

∂2C

∂X2 = F (X,T,C, ∂C/∂T) (3.26)

writing it out for a normalised equation for simplicity (Bieniasz makes it
very general, as a system of such equations, each one with its own diffusion
coefficient). The F term always contains the time derivative, but may also
contain, for example, homogeneous chemical terms in concentration. In what
follows, the function will be simply written as Fi, where it is understood that
this refers to the point at X = iH.

First we consider the current approximation presented in the above two
sections. A question left untouched, for example, the equation for the current
approximation (3.25) above, is just what terms were dropped when generating
a particular form. The order of what was dropped is given in Sect. 3.3, but
not extended to actual higher terms. This must be done now. Bieniasz [108]
presents a table of these and we can write the first few of these. For this, it
is convenient to use a more compact notation for the higher derivatives: let

Dk
x ≡ ∂kC

∂Xk

∣∣∣∣
x

(3.27)

and recall that Gn denotes a current approximation using n points as defined
above (3.25), that is, neglecting higher terms. This gives us, for n = 2,

D1
0 = G2 − 1

2HD2
0 − 1

6H2D3
0 − . . . (3.28)

and for n = 3,
D1

0 = G3 + 1
3H2D3

0 + 1
4H3D4

0 + . . . (3.29)

and so on for the higher-n forms. An extended table is seen in Bieniasz’s
paper [108], but these two will suffice here. In order to improve the two
approximations G, clearly we need information on the higher derivatives.

One further new notation is useful here, used by Bieniasz. A given current
approximation is denoted as n(m), where n is the number of points used to
approximate it, and m is the order with respect to H, the intervals in X.
Thus, the formulae used so far make, for example, G2 a 2(1) form and G3
a 3(2) form. It will be seen that we can easily obtain, for example, 2(3) and
3(4), etc.

3.6 High-Order Compact (Hermitian) Current Approximation 41

In order to obtain the missing higher derivatives, or approximations to
them, we write (3.26) for X = 0:

∂2C

∂X2

∣∣∣∣
0

= D2
0 = F (0, T, C, ∂C/∂T) = F0 . (3.30)

This can be applied directly to (3.28), neglecting the term in D3
0 there and

replacing the term in D2
0 as in (3.30), obtaining a new approximation,

D1
0 ≈ G2 − 1

2HF0 (3.31)

which is 2(2), an improvement on the old form. Bieniasz’ treatment results
in a general equation that can be written as

D1
0 = Gn + H

n−1∑
i=0

φiFi (3.32)

or, in words, with the old formulae of the above two sections, all n(n − 1),
improved by the addition of (up to) an equal number n of Fi values with
weighting coefficients φi. In the above simple 2(2) example, we have φo =
− 1

2 , φ1 = 0. In the table of φ coefficients in Bieniasz [108], it is seen that for
all n, there is a set of coefficients that give n(n), and they all have the last
one, φn−1, equal to zero. These all fail to make use of the last Fn−1 value,
but do have the advantage of an easy calculation of the φ coefficients, and
easy implementation.

We can go further with the above two-point case, to get 2(3). For this,
expressions for Fi are generated from (3.30) by Taylor expansion. Here we
use just one:

F1 = F0 + HD3
0 +

H2

2
D4

0 + . . . (3.33)

and cutting this off (for the moment) from the fourth derivative onwards, the
third derivative is obtained:

D3
0 ≈ 1

H
(F1 − F0) (3.34)

which, together with (3.30) can be inserted in (3.29) (neglecting the fourth-
order derivative term) and upon rearranging, we get

D1
0 ≈ G2 + H

(
− 1

3F0 − 1
6F1
)

(3.35)

which is 2(3), with coefficients φ0 = − 1
3 , φ1 = − 1

6 .
We can go further, taking the three-point approximation. As well as

(3.33), we write the Taylor expansion for F2:

F2 = F0 + 2HD3
0 +

4H2

2
D4

0 + (3.36)

42 3 Approximations to Derivatives

The simpler formula simply makes use of (3.34) and inserting it into (3.36),
D4

0 is obtained and after some rearrangement of the F terms, we get the 3(3)
form

D1
0 ≈ G3 + H

(
− 1

3F0 + 1
3F1
)

. (3.37)

Here, φ0 = − 1
3 , φ1 = + 1

3 , φ2 = 0 and we thus have the 3(3) form. Again, the
last (third) point in F is unused. To involve it as well, write out the Taylor
expansions for both F1 and F2 to the fourth derivative term:

F1 = F0 + HD3
0 +

H2

2
D4

0 + . . .

F2 = F0 + 2HD3
0 +

4H2

2
D4

0 + . . . (3.38)

and solve this little system for both derivative terms. One way to do this
is to express D3

0 from the first equation in terms of the other terms and to
substitute that in the second. This is a recursive process as described by
Bieniasz [108], but what one does is in fact to solve such systems. Doing
this, one obtains for this case the 3(4) form

D1
0 ≈ G3 + H

(
− 1

4F0 + 1
6F1 + 1

12F2
)

, (3.39)

with the coefficients obvious from the formula. This treatment can be ex-
tended to higher numbers of points and the reader is invited to look up
Table 3 in Bieniasz [108], where this has been done up to n = 5, up to the
5(6) form. The results of using these are given in that paper for a number
of different electrochemical problems and, not unexpectedly, it seems that
the n(n) forms are inferior to the n(n + 1) forms, so the latter seem to be
the logical choice. There are arguments for the 2(3) form in particular. It
is third-order, and this goes well together with higher-order methods, which
however rarely recommend themselves, in terms of computing time and pro-
gramming effort, above that order. Also, with unequal intervals, there are no
ready-calculated coefficients for more than two points and thus two points
recommend themselves. The 2(3) formula can be applied as it stands in (3.35).

There remains one problem, that of the values of Fi needed for the ap-
proximations. Their determination depends on the simulation method used,
but at this point, it can be said that the major term, ∂C/∂T , always present,
can be approximated simply as

∂Ci

∂T
≈ Ci −′Ci

δT
(3.40)

where Ci is the present value, just calculated, and ′Ci is the last value before
the step taken. This is a backward difference, and something better than this
can be achieved and is described in Chap. 8. If other terms are contained in
F , their most recent values are simply used.

3.7 Second Derivative Approximations 43

3.7 Second Derivative Approximations

Clearly, some approximations to second derivatives are also needed, although
not as many forms. The most widely used approximation is derived as follows.
Regard Fig. 3.2 and focus on the point at x2, where the derivative is to
apply. We already have Taylor expansions for the points at x1 and x3 (3.7)
and (3.10), both of which have a neglected term of O(h4). Adding the two
equations and rearranging leads to the approximation formula

y′′
2 =

y1 − 2y2 + y3

h2 + O(h2) , (3.41)

a second-order approximation. Until recently, this has always been used in
digital simulation. In 1990, Kimble & White [338] suggested a higher-order
formula using five points (and six at the electrode), together with an unusual
way of simulating, described in a later chapter. While the method itself is
somewhat demanding in terms of computer memory and has not become
popular (it solves the whole grid in (X,T) as one large system), the five-
point approximation for the second derivative does seem promising, and has
been explored [152, 531]. Therefore, both the central five-point scheme and
a few asymmetrical multipoint schemes are needed. The procedure is the
same as described above for the first derivative. For example, in the case of
the central five-point scheme, centered on the point (x3, y3) in Fig. 3.2, we
write Taylor expansions for the surrounding four points, going out to terms in
h4y′′′′

3 , and solving the system of four equations. In this case, it is the second
row of the matrix inverse that provides the coefficients, since we seek y′′

3 of
the unknowns vector. The result is the matrix equation

−2 4
2!

−8
3!

16
4!

−1 1
2!

−1
3!

1
4!

1 1
2!

1
3!

1
4!

2 4
2!

8
3!

16
4!

h 0 0 0

0 h2 0 0

0 0 h3 0

0 0 0 h4

y′
3

y′′
3

y′′′
3

y′′′′
3

 =

y1 − y3

y2 − y3

y4 − y3

y5 − y3

 . (3.42)

Inverting the matrices and multiplying out the second row with the coefficient
vector finally yields the approximation, presented in Table A.2 in Appendix
A, together with a few others. It turns out that in the process, the terms in h5

drop out and the final approximation is of O(h4), arising from the neglected
terms in h6. The formula has been given as early as 1935 by Collatz [169], who
also presented some asymmetric forms in his 1960 book [170], and Bickley in
1941 [88]. Noye [423] also provides a number of multipoint second derivatives
for use in the solution of pdes.

For reasons that become clear in Chap. 9, we also need an asymmetric
form, centered on the point (x2, y2), since in a simulation (index 1 being
the electrode) this point is also subject to diffusional changes. The obvious
course here is to use an asymmetric five-point formula, but this, as pointed

44 3 Approximations to Derivatives

out by Collatz [170], is only of O(h3). Presumably for this reason, Kimble
& White chose a six-point asymmetric scheme here, not provided by Collatz
(who goes to a seven-point scheme). The six-point scheme is indeed O(h4)
and is included in Table A.2. At the outer end of the diffusion space, this is
needed again at the second-last point and it is given as y′′

5 (6) in the Table,
meaning the second derivative applied to point (x5, y5). The coefficients are
those for y′′

2 (6) in reverse order but without sign flip.

3.8 Derivatives on Unevenly Spaced Points

Some simulation techniques make use of points along x, and indeed sometimes
along t, that are spaced unevenly, either in some smooth transformational
progression or more or less arbitrarily. A general treatment is given in this
section, as well as a few particular algebraic solutions.

The need for such formulae and algorithms became clear upon publication
of the paper by Rudolph [478], showing that direct discretisation of deriva-
tives on an exponentially expanding grid is in fact better than discretisation
on an equally spaced transformed grid. This is in contrast with what the com-
puter science community is agreed upon, based on early works [186,328,422].
One reason for this is, as Rudolph points out, that the concentration profiles
in electrochemical work are normally almost linear near the electrode, so that
current approximations or other first derivative expressions in that region in
fact operate on a curved function in transformed space. This does not explain
why second derivatives in the diffusion space, too, are more accurate when
discretised directly on an unequal grid, as they have been found to be by
some numerical experiments. There have been a few publications lately pre-
senting derivative approximations on unequal grids in the form of algebraic
solutions [149, 260, 478]. Bieniasz, in his introductory paper [112] on adap-
tive grids, used a 4-point formula for a second derivative, which was that of
Blom [122]. This was found later to be inconsistent, and Bieniasz presented
a corrected expression [96]. Britz and Strutwolf [153] showed a derivation of
such formulae and a few particular examples. For approximations on just a
few (3 or 4) points, such formulae can be useful but for higher-order forms,
a numerical approach is better.

Figure 3.3 shows a few points along some function u = f(x). The symbol
u is used for this, to indicate that intervals are unequal. The points are again
numbered from 1 to n in general, and a given derivative might be referred
to a point at index i among the n points. They will, as above, following
the convention for equal intervals, be denoted by the symbols u′

i(n) for first
derivatives or u′′

i (n) for second derivatives. A one-sided first derivative, for
example a current approximation, will then be u′

1(n) and a central second
derivative as is often employed, referring to the middle point, is u′′

2(3). First
derivatives will be given in terms of linear sums of the form

3.8 Derivatives on Unevenly Spaced Points 45

Fig. 3.3. Arbitrary function with unevenly spaced points

u′ =
n∑

i=1

βi ui (3.43)

and second derivatives by a similar expression,

u′′ =
n∑

i=1

αi ui . (3.44)

The coefficients are used to compute the derivatives, but can also be useful
in the discretisation of derivative boundary conditions or in the setting up of
discretisation matrices in some problems.

Define a sequence of displacements hk, k = 1 . . . n, given by

hk = xk − xi (3.45)

where the reference point xi is fixed. Clearly, hi = 0. This is the set of
displacements from the reference point. Taylor expansions are written for all
points around the ith point, which is the reference point. Derivatives higher
than the second are involved in the expansion, and Dju denotes the jth
derivative operator on u. For the kth point, we have

uk = ui + hkDui +
h2

k

2!
D2ui +

h3
k

3!
D3ui + . . . ,+

hn−1
k

(n − 1)!
Dn−1ui + O(hn

k) .

(3.46)
Just n − 1 derivatives are needed on the right-hand side, and the dominant
error term is indicated. The resulting system can be cast in vector/matrix
form

Hd = r + e (3.47)

where

46 3 Approximations to Derivatives

H ≡

h1 h2
1 h3

1 . . . hn−1
1

h2 h2
2 h3

2 . . . hn−1
2

. . .

hi−1 h2
i−1 h3

i−1 . . . hn−1
i−1

hi+1 h2
i+1 h3

i+1 . . . hn−1
i+1

. . .

hn h2
n h3

n . . . hn−1
n

, (3.48)

d denotes the vector of derivatives [Dui
D2ui

2! . . . Dn−1ui

(n−1)!]T , r stands for
the vector of the knowns (uk−ui), and e for the vector of the last, error terms
in (3.46). The vector d has been chosen as it was, with the factorials glued to
the terms, because this avoids the very small inverse factorials in the matrix.
The matrix H, as it is, already has elements of greatly varying magnitudes
because of the powers of intervals, which can be small; this leads to inaccurate
inversion, and the problem might be compounded by the factorials. These
must be multiplied by appropriately after inversion.

Matrix H can be automatically generated and its inverse then yields the
solution for the derivatives. We require only the first two derivatives, which
arise from the first two rows of the inverse. If the inverse be V and its elements
at indices i, j be vi,j , then we have, by expanding d = V r (neglecting the
error terms V e for the moment),

u′
i(n) = Dui = v1,1(u1 − ui) + v1,2(u2 − ui) + · · · + v1,n−1(un − ui) . (3.49)

There is no term in v1, i(ui − ui) and so there is a break at index i in the
sequence of terms. For k < i, the terms are v1, k(uk −ui), while for k > i, the
terms are v1,k−1(uk − ui). Comparing with (3.43), it is clear that the row of
v1, k represents the βk coefficients, bar βi. We have

βk =
{

v1,k , k < i
v1,k−1 , k > i

(3.50)

(omitting βi). Finally,

βi = −
n∑

k=1
(k �=i)

βk . (3.51)

Similarly, the α coefficients in (3.44) are obtained from the second row of the
inverse, so that

αk =
{

2! v2,k , k < i
2! v2,k−1 , k > i

(3.52)

(remembering to multiply by 2!) and

3.8 Derivatives on Unevenly Spaced Points 47

αi = −
n∑

k=1
(k �=i)

αk . (3.53)

The above has been programmed as a general subroutine U_DERIV (see
Appendix C), which returns both the wanted derivative (first or second) as
well as the coefficients that produced it.

3.8.1 Error Orders

From the above treatment, the error orders of the approximations can be
determined. First, a definition of what is meant here is required. With equal
intervals of length h, orders are expressed as powers of that length. Here we
have arbitrarily spaced points, and thus a set of different hk. In computations
to confirm error order expectations, the following scheme can serve. Refer all
hk as displacements from point i, as above (3.45). A given derivative can then
be computed. Then, all points around the reference point xi are moved to a
given fraction a of their original displacements from the reference point, so
that now there is a new set of displacements,

h′
k = ahk , (3.54)

new values are set at the new set of points and a new derivative is computed.
The two derivative estimates then yield the order, as usual.

Another way of expressing this is to take the average of all hk, calling this
simply h. The Taylor expansions (3.46) then each contain an error term of
O(hn), which becomes the vector e in (3.47). When producing the respective
derivative by multiplying the first or second row of the inverse matrix with
the vector of knowns, an error term will arise by the multiplication of the
same row with vector e. Some consideration of matrix H and its inverse V
reveals that the top row of V (which gives the first derivative) consists of
elements, all of which are O(h−1) and this, multiplied with the error terms,
results in an error of O(hn−1). Similarly, the second row, which gives the
second derivative, has all terms of O(h−2), so that second derivatives are
O(hn−2) accurate.

Some numerical tests show that for first derivatives using n points, the
error is indeed of order n−1, while for second derivatives, it is of order n−2.
If the intervals are equal and the approximations are central (this is possible
only for odd n), the order goes up by unity for both derivatives.

Theoretically, there is no limit on the number n of points used in the
approximations. In practice, however, a limit is set by roundoff in the com-
putations, making an increase in n useless, and the factorials in the matrix
H will increase to impractical levels. In any case, there seems little point in
n values greater than about 8, although for the usual 32-bit computers in use
today, up to 12-point formulas can be accommodated.

48 3 Approximations to Derivatives

3.8.2 A Special Case

The above has considered arbitrarily spaced grids, whereas in practice, the
spacing is often that of Feldberg [231]. In terms of points, the special case is
a sequence of positions given by an exponentially expanding series of spatial
intervals. This will be detailed in Chap. 7. Here, it is sufficient to mention
that this special case makes the derivation of the coefficients for various deriv-
ative approximations easier and the expressions themselves more compact,
as was reported by Mart́ınez-Ortiz [385]. That author also found that there
is a particular value for the expansion parameter, γ =

√
2, for which the

asymmetric four-point second derivative, referred to the second of the four
points u′′(2, 4), is third-order accurate, rather than second-order as for other
parameter values or arbitrary placement of points. This can be of use in sim-
ulation. The four-point approximation has some good properties besides this,
as will be explained in Chap. 7.

3.8.3 Current Approximation

The above treatment includes the current approximation on an unequal grid,
and the subroutine U_DERIV can compute it. It is, however, a little unwieldy,
and a simpler interface to it is also mentioned in the same Appendix, function
GU, which only requires the three arguments (C, x, n). Similarly, the func-
tion CU computes C0 from a given concentration profile and a known current
G.

It should be noted here that Bieniasz [93] used what amounts to our
G, designed for equal intervals, to calculate current approximations on an
arbitrary grid. The idea is that the spatial axis is mapped onto an imagined,
equally spaced, new axis and the approximation then becomes, using the
notation of Sect. 3.5,

G =

(
n−1∑
i=0

βiui

)(
n−1∑
i=0

βixi

)−1

=
G(u, n, 1)
G(x, n, 1)

. (3.55)

Interesting though this trick is, the results using it are disappointing.

3.8.4 A Specific Approximation

For a small number n of points, it may be worthwhile using the algebraic so-
lutions for the coefficients. The procedure is as described above, but instead
of inserting actual hk values into the matrix in (3.48), that matrix is inverted
algebraically and the coefficients expressed as a general formula. These are
given, for a few approximations, both for first and second derivatives (re-
stricted to those that are deemed to be of practical interest) in Appendix A.
All the current approximations up to n = 4 are provided there, as well as

3.8 Derivatives on Unevenly Spaced Points 49

some second derivatives up to the same limit. The author has derived forms
up to n = 6, and it soon becomes clear that the disadvantage of these is
that every specific u′

i(n) or u′′
i (n) requires its own expression set, and for the

larger n, the resulting subroutines become rather long.
To give an idea of how the tabulated formulae are derived, the derivation

for the “central” second derivative on three points, u′′
2(3) is shown here. We

have the two h displacements h1 and h3 (see their definitions in (3.45)), and
the matrix H to be inverted is then

H =

h1

h2
1

2!

h3
h2
3

2!

 . (3.56)

This is easily manually inverted. The determinant is

∆ = 1
2

(
h1h

2
3 − h3h

2
1
)

(3.57)

and the inverse V is then

V =
1
∆

[
1
2h3 − 1

2h1

−h3 h1

]
. (3.58)

The solution is then the same as (3.52) and (3.53), which directly leads to
the coefficients for the linear sum,

u′′
2(3) = α1u1 + α2u2 + α3u3 (3.59)

with

α1 =
−2

h1(h3 − h1)

α2 = −(α1 + α3) =
2

h1h3
(3.60)

α3 =
2

h3(h3 − h1)
. (3.61)

In all these cases, the coefficient for the reference point is the negative sum
of all the others, as is clear from the form of (3.52) and (3.53). A similar
formula has been given by Gavaghan [260], except that his notation for
the displacements was such that all distances from the reference point are
positive, so that the final formula differs in the signs of some of the terms.

4 Ordinary Differential Equations

In this chapter, the numerical solution of ordinary differential equations
(odes) will be described. There is a direct connection between this area and
that of partial differential equations (pdes), as noted in, for example [558].
The ode field is large; but here we restrict ourselves to those techniques that
appear again in the pde field. Readers wishing greater depth than is pre-
sented here can find it in the great number of texts on the subject, such as
the classics by Lapidus & Seinfeld [351], Gear [264] or Jain [314]; there is a
very clear chapter in Gerald [266].

We begin with single odes. At the end of this chapter, systems of odes are
dealt with, as they are in fact one way of handling pdes, using the Method
of Lines (MOL, see Chap. 9), which has a system of odes as an intermediate
stage, or something close to it.

The kind of odes most relevant in the present context is of the form

y′ = f(y) (4.1)

with the boundary condition

y(t = 0) = y0 . (4.2)

There is a more general form in which the time variable t also appears in the
brackets on the right-hand side of (4.1), but in the present context, it almost
never does. The simplified form will be our model.

In what follows below, the discussion assumes that a point y(tn) at time
tn = nδt is known (as well as previous points), and that we wish to calculate
the next point y(t + δt) or y(tn+1). These will also be denoted by yn, yn+1
etc, interchangeably with the other notations.

4.1 An Example ode

In what follows, the following specific ode will often be used as an example:

y′ = −y (4.3)

with the single boundary condition

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 51–71 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

52 4 Ordinary Differential Equations

y(0) = 1 . (4.4)

In numerical texts, the right-hand side of (4.3) often has a multiplier, but
this can be normalised out. We note that this is an instance of (4.1) with
f(y) = −y. It has a known solution,

y(t) = exp(−t) (4.5)

and is a very convenient ode with which to test methods. Here it will be used
to illustrate the implementations.

4.2 Local and Global Errors

A note is in order here on errors in the numerical solution of an ode. There
are (regarding errors in a certain light) two kinds of errors. One is the local
error, being the error added by a single step. The solution is always carried
forward to a final point in t, using a number N of steps, and at that point we
have a final, or global error. Unfortunately, this is always of a lower order
than the local error.

4.3 What Distinguishes the Methods

For most of the methods used to solve odes (at least, those described here), the
way in which the methods differ hinges on how the following three questions
are answered:

1. How is y′ approximated (how many points are used)?
2. To what value of t is that approximation intended to apply?
3. How is the right-hand side of (4.1) expressed or approximated?

It is very important to be clear on these points in devising simulation strate-
gies, especially (when going on to pdes) the boundary conditions, which must
conform to these points as well.

It will be seen that for the three methods Euler, BI and the trapezium
method, the same approximation expression is used for the left-hand side of
(4.1) but because of points made in questions (2) and (3) above, the methods
are very different.

4.4 Euler Method

Consider Fig. 4.1. The curve is the underlying function f(y) that we are
trying to find and we have two pieces of information: one point on the curve,
here at t = 0, the fat point marked in the figure, and the gradient at any

4.4 Euler Method 53

Fig. 4.1. The Euler method

point, for example, at the same point, drawn as a tangent. The procedure
is now to find a point y1, at a subsequent chosen time t, for example δt,
as shown. The picture represents the mathematical problem of finding the
solution to the ode, (4.1).

The simplest way to find other points on the curve, or approximations to
such points, is to move along the tanget drawn, to t = δt, as shown in the
figure. Clearly, this will not land on the curve, if it is indeed curved as shown,
but hopefully somewhere close to it, producing the new point y1. This will
then be repeated, because from (4.1) we can obtain a new tangent, using y1
and so on. If we have chosen δt not too large (much smaller, for example, than
in Fig. 4.1), this will result in a series of discrete points yi, i = 1, 2, . . . , N that
will be an approximation to the desired solution. The method just described
is the Euler method and is the basis for what in digital simulation is called
the explicit method.

Expressing this mathematically, y′ is approximated by the simple two-
point formula (3.1), written as

y′(t) =
y(t + δt) − y(t)

δt
+ O(δt) . (4.6)

It turns out that the order of this approximation is also the global error order
of the calculation using the Euler method. An alternative way to proceed is
to go from the Taylor expansion for y(t + δt), as in (3.3),

yn+1 = yn + δt y′
n + O(δt2) (4.7)

and substituting for y′ from (4.1),

yn+1 = yn + δt f(yn) + O(δt2) (4.8)

which we note is O(δt2). The order refers to the local error due to a single
step. In [266] there is clear derivation of the order of the global error from
that of the local error, which is not reproduced here. Broadly, the idea is that
when taking N steps of length δt, each contributing a local error of O(δt2),

54 4 Ordinary Differential Equations

the order is reduced to O(δt), the same as the order of the approximation of
the derivative, as seen in (4.6).

What we have here, with the Euler method, is the definition of the deriv-
ative as pertaining to time t (or nδt) and thus f(y(t)) or f(yn) on the right-
hand side. For our specific example (4.3), this becomes approximately

yn+1 = yn − δt yn (4.9)

or
yn+1 = yn(1 − δt) . (4.10)

4.5 Runge-Kutta, RK

Figure 4.2 illustrates an improvement on the Euler method. The point marked
by × is the same as point y1 in Fig. 4.1, having moved up the tangent from
t = 0, line 1 in the present figure. This point is just an intermediate result.
Using (4.1), we calculate the slope y′, that is, f(y1) and draw that slope,
line 2. We can hope that it will be an approximation to the slope at δt. We
now have two slopes, lines 1 and 2. Drawing a third slope midway between
these two, (dashed) line 3, might be a better approximation to the slope we
should have used, and we use it now, line 4, parallel to line 3, starting from
the point y0, and this line hits the δt line at the new point y1. This turns
out to be a much better approximation to the underlying curve. The reason
for this is that the slope of line 4 closely approximates the slope which, if
we had known it, would have given us the exact solution, namely that of the
line drawn from y0 to the point on the underlying curve at δt. The above
describes the second-order Runge-Kutta (RK) method (there are other,
higher-order variants of Runge-Kutta). This is still an explicit method; the
word “explicit” means that at each step, the new point is calculated from
previously calculated points only.

Fig. 4.2. Second-order Runge-Kutta

4.5 Runge-Kutta, RK 55

For the mathematics of this, consider the discrete equation resulting from
the Euler method, as in (4.8). Note that the new point, yn+1 is formed
from the old point yn by the addition of a term, here δtf(yn). With RK,
these terms are given the symbols ki, there are from one to several of them,
and they are added in a weighted manner. The procedure is to generate a
number of these k’s. One begins with an Euler step,

k1 = δtf(yn) . (4.11)

(Note that the Euler method can be regarded as a first-order RK form, if we
write (4.8) as

yn+1 = yn + k1 (4.12)

which is the same thing). Following the description of Fig. 4.2, the mathemat-
ical procedure for second-order RK is now to generate k2 from the tentative
point at yn + k1:

k2 = δtf(yn + k1) (4.13)

and then the final corrected point is

yn+1 = yn + 1
2 (k1 + k2) . (4.14)

This formula has a global error of O(δt2) and will here be called RK2. We
can do even better, generating more k’s and getting higher orders. All these
RK formulae, including RK2, have variants that have the same error orders.
For example, RK2 can also be carried out by generating k2 as

k2 = δtf
(
yn + 1

2k1
)

(4.15)

following with
yn+1 = yn + k2 . (4.16)

Here, only certain of all the variants are given. One variant of third-order RK
uses k1 as defined above (4.11), then (4.15) for k2, and finally a third,

k3 = δtf(yn − k1 + 2k2) (4.17)

giving the third-order scheme RK3

yn+1 = yn + 1
6 (k1 + 4k2 + k3) . (4.18)

Numerical professionals, when using the term “Runge-Kutta”, usually mean
fourth-order RK, and the classical scheme, here RK4, is k1 as above, then
k2 as in (4.15), then

k3 = δtf(yn + 1
2k2) , (4.19)

then a fourth k,
k4 = δtf(yn + k3) (4.20)

and finally the result, of global fourth-order

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4) . (4.21)

These formulas can all be applied to pdes in a simple manner, easy to pro-
gram, but have certain drawbacks, as described in a later chapter.

56 4 Ordinary Differential Equations

4.6 Backwards Implicit, BI

Another possibility is to let the same derivative approximation pertain to the
next time; this is the backward implicit (BI) method:

yn+1 = yn + δtf(yn+1) (4.22)

which again leads to a global error order O(δt), and becomes, for our specific
example (4.3), rearranging,

yn+1 = yn
1

1 + δt
. (4.23)

This method seems at first sight unpromising, because of its low error
order, the same as that for Euler. However, it has some very useful stability
properties (see later) and forms the basis for several high-order methods, as
will be seen.

4.7 Trapezium or Midpoint Method

We know from (3.13) in Chap. 3, how that same derivative approximation is
of higher order O(δt2) when applied at the midpoint, and this leads to the
trapezium method or midpoint rule, in which we must find an expression
for the right-hand side of (4.1) at time t + 1

2δt. This can be approximated as
the average of the values at both ends:

f(y(t + 1
2δt)) ≈ f(y(t)) + f(y(t + δt))

2
(4.24)

giving

yn+1 = yn + δt
f(yn) + f(yn+1)

2
. (4.25)

This can be awkward to go on with, being implicit in yn+1; in our specific
example (4.3), however, there is no problem, the above equation becoming

yn+1 = yn − δt
yn + yn+1

2
(4.26)

or, after rearranging,

yn+1 = yn

1 − 1
2δt

1 + 1
2δt

(4.27)

which turns out to be (global) O(δt2). It is the basis of the Crank-Nicolson
method when applied to pdes, as will be seen.

4.8 Backward Differentiation Formula, BDF 57

4.8 Backward Differentiation Formula, BDF

The BDF method is ascribed to Curtiss & Hirschfelder [188], who described
it in 1952, although Bickley [88] had essentially, albeit briefly, mentioned it
already in 1941. Considering Fig. 4.3, the method can be seen as a multipoint
extension of BI; the derivative y′ is formed by using a number k of points from
yn−k+2 to yn+1, but referred to the new point yn+1. This implies a backward
derivative, with formulas of the form y′

n(n) as in Appendix A, Table A.1. For
example, using the three points shown in Fig. 4.3 (in other words, k = 3),
the table yields the formula

y′
n+1 ≈

1
2yn−1 − 2yn + 3

2yn+1

δt
. (4.28)

For this value of k, then, (4.1) is discretised as

yn−1 − 4yn + 3yn+1 = 2δtf(yn+1) (4.29)

(note that the case k = 2 is equivalent to BI). This is implicit, as with BI.
For our example (4.3), the function on the right-hand side is simply −yn+1
and rearrangement then produces

yn+1 =
−yn−1 + 4yn

3 + 2δt
(4.30)

which is of (global) O(δt2). The order can be increased by increasing k, the
number of time levels (points) used for the backward difference approximation
(see Table A.1 for the coefficients y′

n(n)).

Fig. 4.3. BDF

It turns out that although the BDF schemes achieve higher and higher
orders as k increases, the solution begins to oscillate (certainly when the
method is adapted to pdes) at about k = 5 and becomes unstable for k > 7.
As applied to diffusion simulations by the Feldberg school [236,402], a value
of 5 is normally used. The choice of this parameter is discussed in a later
chapter.

58 4 Ordinary Differential Equations

Note that the parameter k as defined here, being the number of time
points used for the backward difference, which is the convention in electro-
chemistry since [402], differs from the usage in computer science, where k
refers to the number of intervals (“levels”) between these points, and is thus
smaller by one. It is the electrochemical usage that is adhered to in this book.

4.8.1 Starting BDF

BDF presents the problem of how to start it. If using, for example, a 5-point
formula, it is not possible to use it for time points earlier than 4δt. At earlier
times, an insufficient number of points for the application of the formula is
known. This problem is mentioned in, among others, [129, 284, 302]. There
are various ways of dealing with this, and four possible strategies will be
described here. The simplest way is to ignore the problem, and to artificially
assume some points at times t < 0, all equal to the initial value given for
t = 0, and starting directly, generating the point at δt. This is the simple
start, which is favoured by Feldberg and coworkers [402], originally without
justification other than convenience (private communication, Feldberg 2001).
It is illustrated graphically in Fig. 4.4. In the figure, the vertical height of
the points indicates the time level, the base line being the level t = 0. Filled
points are known values while empty points are those to be calculated. Four
steps are shown for a sequence using k = 4. The sequence starts with the
set to the far left, where the three known points are those for t = 0. The
next set uses two of these and the one just calculated. After this, all required
points for subsequent iterations are available. Surprisingly, it turns out, that
although this yields rather poor results in itself (as will be seen below), a
small trick used by Feldberg turns it into a highly accurate method. The
trick consists in correcting the time value given to each completed iteration
by subtracting from it half a time interval. That is, the iteration numbers
1, 2, . . . which normally are taken as indicating the times δt, 2δt, . . . , are taken
to indicate the values 1

2δt, 3
2δt, This will be called the simple start with

correction, to be described later.

Fig. 4.4. Simple BDF start schematic

Among computing professionals solving odes, the usual practice has been
what might be called the rational start, see Fig. 4.5. This starts with the
method BI, which can be regarded as 2-point BDF, to generate the first
point, then uses 3-point BDF to generate the next, then 4-point, and so on,
until the desired k has been reached, and continues from there. Inevitably,
the first few points will then have errors of a lower order than later points.

4.8 Backward Differentiation Formula, BDF 59

Fig. 4.5. Rational BDF start schematics

This does a little better in terms of accuracy than the simple start (without
the correction).

There is a high-order start provided by the method of Kimble & White,
which will be called the KW method here. The method was originally de-
signed [338] for the solution of partial differential equations, computing a
whole grid in space and time in one large system of equations. It is described
as applied to odes below, in detail, in Sect. 4.10. In the context of starting a
BDF iteration, it can be applied to solve for the first k − 1 new values as a
system of equations. It is illustrated in Fig. 4.6. The figure shows that (again,
k = 4) all three unknown points are calculated at once. Briefly, what is done
is to apply, at each of the unknown time levels, a four-point approximation
to the derivative referred to that level; in the present case (Fig. 4.6), all three
are asymmetrical forms, being the three y′

i(4), i = 2, 3, 4 of Table A.1 in Ap-
pendix A. This gives k − 1 (here, 3) equations in as many unknowns. This
is a truncated application of the general Kimble & White method described
below.

Fig. 4.6. KW BDF start schematics

Time Shifts

We allow ourselves a short digression here, in order to make a special point.
There are two ways of presenting an error in a numerical solution of a dif-
ferential equation. The usual way is to refer to the error in the quantity
computed at each new time interval; that is, the difference between the nu-
merical approximation and the exact solution (if it is known). Another way is
to compute, for each calculated value, the time at which that value is exact,
and to express the error as a time shift, the difference between the calculated
time and the exact time at that iteration number. It is called a time shift
because in many kinds of simulations dealt with in this book, time itself does
not enter the equations and, once a simulated sequence of values has become
shifted along in time, that shift is permanent. Putting this another way, there
is no clock inherent in the method. It will be seen (Chap. 8) that in fact, in

60 4 Ordinary Differential Equations

cyclic voltammetry, it does enter the equations indirectly, and no time shifts
are encountered in these simulations.

It turns out that there are characteristic time shifts associated with the
various methods for solving differential equations [140]. For example, both
the Euler method and backwards implicit have a linearly increasing time
shift, reaching respectively +1

2δt and − 1
2δt at (normalised) t = 1, whereas a

higher-order method such as the trapezium method has a time shift close to
zero. It was found [140] that for BDF with the simple start, the time shift
appeared to converge to − 1

2δt. This seemed to justify empirically the Feld-
berg time correction, but there was no explanation for the effect at the time.
Such an explanation was found recently [142, 155] and the proof is repro-
duced in Appendix B. Remarkably, for any function on the right-hand side
of a differential equation such as (4.1), whether ordinary or partial (as long
as time is not a parameter in the function), and for any BDF value of k,
there is a convergence to a time shift of exactly − 1

2δt. It will be seen that
this makes the Feldberg starting protocol for BDF a very efficient way of
applying BDF.

Testing the Starting Protocols

To illustrate the points made above, some test computations were run, solv-
ing the usual ode (4.3). Ten steps were taken over the interval 0 < t ≤ 1,
using BDF with k = 4. Fig. 4.7 shows the results, plotting the error against
iteration number. The simple start produces the largest error (curve 1), fol-
lowed by the rational start (curve 2). The KW start is a line that might be
mistaken for the zero axis (curve 3). Remarkably, curve 4, showing the sim-
ple start with the time correction, converges to the second-best error of the
four. Since this is also as easy to program as the simple method, it is clearly
preferable. It was found by some numerical experiments that this method is
also the most efficient for electrochemical digital simulations [154]. In that
work, the KW method was optimised, and indeed produced highly accurate
results. However, this was at considerable computational cost. Efficiency is
determined in terms of achieving a target accuracy using the shortest possi-
ble computing time, and in these terms, the simple start with the correction
was the most efficient. This should be received with some relief, as the KW
method is not trivial to implement with pdes, especially when optimised for
speed, using sparse matrix techniques.

Finally, Lambert [344] describes a high-order start for general multi-level
methods, based on Taylor expansions using higher derivatives. This seems
less practical to use as, for example, KW.

4.9 Extrapolation 61

0

0.05

1 2 3 4 5 6 7 8 9 10

error

1

2

3

4

Fig. 4.7. Errors for the four starting methods (see text)

4.9 Extrapolation

Extrapolation is an old technique invented by Richardson in 1927 [469].
Generally it makes use of known error orders to increase accuracy. In the
present context, its application is based on the first-order method BI, men-
tioned above. One defines a notation in terms of operations L on the variable
y(t), the operation being that of taking a step forward in time. Thus, the
notation L1y(t) or, in terms of discrete time steps where one whole interval
is δt, L1yn, means a single step of one interval (the 1 being indicated by the
subscript on L). The simplest variant is then the application of operation
L1, followed by two operations, L2

1/2, that is, two consecutive steps of half δt

(again starting the first from yn), and finally a linear combination of the two
results:

yn+1 =
(
2L2

1/2 − L1

)
yn . (4.31)

The reason why this provides a better estimate of yn+1 is that the (global)
error e from a series of single steps of size δt is a polynomial

e = a1δt + a2δt
2 + . . . (4.32)

with the shown (unknown) coefficients. Clearly, (4.31) will eliminate the first
term in that polynomial, leaving only higher terms. The above scheme thus
provides an estimate for yn+1 that is O(δt2).

Likewise it is possible to eliminate even higher order error terms as well,
by using more complicated combinations of step sequences. A full description
of these is given by Lawson & Morris [356] (second-order only) and Gourlay &
Morris [277]; these authors adapted the method to the solution of pdes and
more is said on that in a later chapter. With the higher-order forms, there
are again variants, as with Runge-Kutta. Gourlay & Morris carried out some

62 4 Ordinary Differential Equations

analyses and numerical experiments and the two “winning” schemes are as
follows. The third-order scheme is

yn+1 =
(

9
2L3

1/3 − 9
2L2/3L1/3 + L1

)
yn (4.33)

where the sequence L2/3L1/3 means one step of 2
3δt followed by one more of

1
3δt. The best fourth order scheme is

yn+1 =
(
8L4

1/4 + 40
9 L3/4L1/4 − 32

3 L1/2L
2
1/4 − 7

9L1

)
yn . (4.34)

In the literature, the schemes are usually described not in terms of frac-
tional steps but with a number of whole-interval steps; the two descriptions
are equivalent, however, and it seems that a combination of fractional steps,
ending with a new value at the next time interval, is more convenient.

4.10 Kimble & White, KW

The method due to Kimble & White [338] is not actually a method designed
for odes, but was devised by the authors for electrochemical pdes. The method
can however be easily adapted to odes and in fact might be more appropriate
there. The method described in 1990 had a precursor in 1987 [414] and this
section will start with a description of its expression for odes, because it is
simpler and makes the point more clearly. A cut-down application of it has
already been outlined in Sect. 4.8.1.

The essence of KW is that multi-point central differences are used as
derivatives along most of the t scale, with some asymmetric expressions nec-
essarily added at the ends. Rather than using the time-marching method that
is common to all the methods described in previous sections, KW puts all
the approximations into one large system of equations, and solves the lot. It
turns out that this results in a fortuitous stability [141].

The method is based on another time-marching scheme not mentioned in
the above sections: the leapfrog method, using central differences. Equation
(4.1) can be approximated as

yn+1 − yn−1

2δt
= f(yn) (4.35)

where the derivative y′ is formed from the central difference spanning two
time intervals, and is referred to time tn. This seems intuitively satisfactory
and indeed the resulting formula,

yn+1 = yn−1 + 2δtf(yn) , (4.36)

has a local error of O(δt3) and a global error of O(δt2). Its “only” drawback
is that, used in this manner (time-marching), it is unstable and the solution

4.10 Kimble & White, KW 63

soon diverges. In the KW scheme, however, applied at (almost) all points in
time, it generates an equation system. Clearly, if we have N points in time
for which we want values of yi, starting with the initial value y0, we can
write expressions like (4.35) for all yi, i = 1 . . . N − 1. There is an expression
missing for the point at Nδt, for which there is no central difference. Here,
Nguyen & White [414] would use a BDF form and in this case, a three-point
form is appropriate, as it has the same error order as the central difference.

The equations then are the following. For i = 1 we have, for the general
ode (4.1),

y2 − y0

2δt
= f(y1) (4.37)

which includes the boundary value y0. For points yi, i = 2 . . . N − 1, we have

yi+1 − yi−1

2δt
= f(yi) (4.38)

and for the last point, the BDF form

yN−2 − 4yN−1 + 3yN

2δt
= f(yN) (4.39)

completing the system, which can now be arranged suitably, writing out the
functions f(y). In the present example ode (4.3), we have f(yi) = −yi, and
the system becomes

2δt 1
−1 2δt 1

.
−1 2δt 1
1 −4 (3 + 2δt)

y1
y2
...

yN−1
yN

=

y0
0
...
0
0

. (4.40)

The interesting thing is that all but the last equation are leap-frog forms,
which by themselves result in an unstable solution; the mere addition of the
last (4.39) renders the system stable, and the solution is of O(δt2).

In their 1990 paper, Kimble & White [338] extended this idea to a
higher-order formula. They replaced the second-order central difference with
a fourth-order central difference using five points (and, as well, for the pde
they were solving, a five-point second derivative with respect to x). This ne-
cessitates more asymmmetric formulae, both for the start and at the end. As
with the former scheme, the five-point central difference approximation for y′

(see Table A.1, form y′
3(5)), if used as a time-march, is unstable; and as with

that scheme, the BDF form at the top end stabilises it and yields a high-order
solution [141]. The formulae, again for a row of points yi, i = 1 . . . N (given
the boundary or initial value y0) are the following.

For i = 1, a 5-point asymmetrical form, called y′
2(5) in the Table, is

applied to the point y1:

64 4 Ordinary Differential Equations

−3y0 − 10y1 + 18y2 − 6y3 + y4

12δt
= f(y1) (4.41)

and from there on for all i = 2, . . . , N − 2, the central form y′
3(5) is used,

yi−2 − 8yi−1 + 8yi+1 − yi+2

12δt
= f(yi) (4.42)

leaving the asymmetric form y′
4(5) at i = N − 1,

−yN−4 + 6yN−3 − 18yN−2 + 10yN−1 + 3yN

12δt
= f(yN−1) (4.43)

and finally, the BDF form y′
5(5) at the top end,

3yN−4 − 16yN−3 + 36yN−2 − 48yN−1 + 25yN

12δt
= f(yN) . (4.44)

Again replacing the function terms f(.) in these equations with our specific
example function (4.3), f(y) = −y, and rearranging, this becomes the system

(−10 + 12δt) 18 −6 1
−8 12δt 8 −1

1 −8 12δt 8 −1

. . .
. . .

1 −8 12δt 8 −1
−1 6 −18 (10 + 12δt) 3

3 −16 36 −48 (25 + 12δt)

y1

y2

y3

...
yN−2

yN−1

yN

=

3y0

−y0

0
...
0
0
0

.

(4.45)

This, as has been mentioned above, was not the way Kimble & White applied
the method, but it works rather well and may well be more practical for odes.
In their application to pdes, the authors reduced the field to only a few points
in both time and space, because otherwise the matrix to be solved, even when
restricted to the pentadiagonal form, becomes very large.

4.10.1 Using KW as a Start for BDF

In the present author’s view, the KW method might find its most useful ap-
plication in providing high-order starting values for the BDF method, both
for odes and pdes, where this idea has been dubbed a “hyperimplicit” al-
gorithm by Feldberg & Goldstein [236], presumably because it computes a
number of time levels simultaneously. The idea was broadly explained above
in Sect. 4.8.1 but can now be detailed. In order to start the BDF steps, the
first few points need to be known; using k-point BDF, this means, strictly
speaking, the initial value y0 plus the next points up to yk−2. When analysing
this, however, it becomes clear that it is better to generate new points up to
yk−1, in order to get as high an error order as the BDF method itself. For
example, to start a 5-point BDF simulation, we compute points y1 . . . y4. To

4.11 Systems of odes 65

get them, we can use KW. We restrict the discussion to the 5-point exam-
ple. It has four unknowns, for which we must write four 5-point equations. It
turns out that there are more possibilities than we require, and we can choose
which four we use; all but the central one at y2 are asymmmetrical, and so
we choose a pure BDF form at y4, and choose not to refer to y0 (although we
could do so). The equations are then, for the indicated i’s, using again the
5-point forms in Table A.1 (and moving the divisor 12δt to the right-hand
side)

− 3y0 − 10y1 + 18y2 − 6y3 + y4 = 12δtf(y1)
y0 − 8y1 + 8y3 − y4 = 12δtf(y2)

−y0 + 6y1 − 18y2 + 10y3 + 3y4 = 12δtf(y3) (4.46)
3y0 − 16y1 + 36y2 − 48y3 + 25y4 = 12δtf(y4)

which, applied again to the example ode y′ = −y, produces the system

(−10 + 12δt) 18 −6 1
−8 12δt 8 −1

6 −18 (10 + 12δt) 3
−16 36 −48 (25 + 12δt)

y1

y2

y3

y4

 =

3y0

−y0

y0

−3y0

 . (4.47)

This works rather well with odes, as also seen in Fig. 4.7. For use with pdes,
however, it may be considered too much trouble to program, especially as
there are easier options, for example extrapolation, which produce results
that are just as good. Also, if BDF is nonetheless chosen, it was found in
Sect. 4.8.1 and proved mathematically in Appendix B, that the simple start
with a simple time correction produces about equally good results for much
less effort.

4.11 Systems of odes

All the techniques described above can also be applied to the numerical so-
lution of systems of odes, and here we are getting closer to what happens
when we solve pdes, because in effect, one reduces them to ode systems when
discretising them.

Instead of a single variable y, there is now a number n of variables,
y1, y2, . . . , yn, represented by the vector y. Each of these variables has its
own differential equation, involving some function, on the function side, of
the whole vector:

66 4 Ordinary Differential Equations

y′
1 = f1(y)
...

y′
i = fi(y) (4.48)
...

y′
n = fn(y)

(4.49)

where each fi is some linear combination of the elements of the vector y. We
are concerned here only with linear systems; in those cases where a pde gives
rise, upon discretisation, to a nonlinear system of odes, tricks are normally
used to avoid them, as will be seen in later chapters. The system is then
conveniently written in vector-matrix form,

y′ = f(y) (4.50)

or, since this is linear, as
y′ = Ay , (4.51)

where A is the matrix of coefficients in the n functions fi. The system requires
a set of boundary conditions (for example, initial values) for its solution, or

y′(0) = y0 . (4.52)

In principle, all the methods described above for single odes can be used
for the solution of such a system, when extended suitably. In the case of
explicit methods such as Euler or RK, this is very simple to implement,
whereas with implicit methods such as BI or the trapezium method, there
are some choices to be made.

For brevity, the Euler method will be treated as a special case of RK,
considered as RK1. The method is then to start by calculating a vector of k1
values, one for each y element. Discretising directly from (4.51), this is

k1 = δtAy (4.53)

followed by
yn+1 = yn + k1 (4.54)

for the Euler method, where yn+1 is the next value of the whole vector y in
the iteration. The extension to RK is obvious. Note that the vector k1 (and,
for higher RKn, the other ki vectors) can be computed one element after the
other, from known elements of y, this being an explicit method.

Of implicit methods, two will be mentioned here, the first being BI. As
outlined in Sect. 4.6, this involves equating the same time derivative used
in all the methods, with the function on the right-hand side, referred to the
next time interval. For the system, then,

4.12 Rosenbrock Methods 67

yn+1 − yn

δt
= Ayn+1 (4.55)

or
yn+1 = yn + δtAyn+1 (4.56)

an implicit equation. The solution can be expressed as

yn+1 = (I − δtA)−1
yn (4.57)

in which I stands for the identity matrix. Similarly, the trapezium method
starts with the discretisation

yn+1 − yn

δt
= (Ayn+1 + Ayn) /2 (4.58)

leading finally to

yn+1 =
(
I − 1

2δtA
)−1 (

I + 1
2δtA

)
yn . (4.59)

These solutions are rather formal statements, and are rarely used as such,
because the matrices involved are almost always either tridiagonal or pen-
tadiagonal, making such direct solutions wasteful. It has been done in some
cases [68,138], without any attempt at optimisation. It is possible to use solu-
tion methods that recognise the sparse nature of these systems and many pro-
fessional program packages are available. One of these will be mentioned be-
low. For methods for pdes corresponding to BI, trapezium and BDF, there are
more efficient procedures for the solution, to be described in a later chapter.

In some cases, for example electrochemical pdes with derivative boundary
conditions, the discretisation process for both the pde and the boundary
conditions leads to a mix of a differential equation system and one or more
plain algebraic equations. They might be, for example, equations of the form

f(y) = 0 . (4.60)

The resulting system is called a set of differential-algebraic equations
(DAE) and their solution is now a specialised field with its own texts [130,
286] and there is a package program, DASSL [441], for their solution. This
can be of use in the present context, for example with the method of lines,
which indeed often results in a DAE system. This is gone into in some detail
in Chap. 9, in the context of Rosenbrock methods.

With most of the implicit methods to be described, however, the solution
is found by specialised techniques that make the process efficient, and these
will be described in their proper place.

4.12 Rosenbrock Methods

This section is left to the last because it pertains to systems of odes (or
DAEs), although Rosenbrock methods are a kind of Runge-Kutta method

68 4 Ordinary Differential Equations

(Sect. 4.5). In RK, a number of trial changes ki are explicitly computed, and
a weighted sum of them applied to the variable (or vector). As noted in that
Section, such explicit RK methods can be highly accurate, but are not stable
for all step-sizes, a limiting factor when applying them to diffusion problems.
A better way is to use implicit Runge-Kutta formulae. With these, assuming,
say, s trial ki, the s equations contain expressions in all ki (some of them
perhaps left out, that is, with zero coefficients). This gives rise to a system of
s equations in the vector k, which can be troublesome. The advantage is that
these implicit methods can lead to highly accurate, and stable, responses.

An alternative, called “semi-implicit methods” in such texts as [351],
avoids the problems, and some of the variants are L-stable (see Chap. 14
for an explanation of this term), a desirable property. This was devised by
Rosenbrock in 1962 [474]. There are two strong points about this set of for-
mulae. One is that the constants in the implicit set of equations for the k’s
are chosen such that each ki can be evaluated explicitly by easy rearrange-
ment of each equation. The other is that the method lends itself ideally to
nonlinear functions, not requiring iteration, because it is, in a sense, already
built-in. This is explained below.

Consider the problem of a nonlinear ode

y′ = f(t, y) . (4.61)

We might wish to solve it using an implicit method, for example, BI (Sect.
4.6). Discretising (4.61) then gives

yn+1 − yn = δt f(t + δt, yn+1) (4.62)

and the function on the right-hand side might not be known, nor might we
be able to isolate the unknown, yn+1, as was possible with the simple ode,
y′ = −y. The essence of Rosenbrock is now to take a single Taylor step,
expanding f(t + δt, yn+1) around f(t, yn) (and given that yn+1 = yn + k1),

f(t + δt, yn+1) = f(t, yn) + k1fy(t, yn) + δtft(t, yn) (4.63)

where the fy denotes differentiation by y, and ft that by t. We need to know
these differentials, but this is always easy. Now (4.62) can be written in the
more amenable form,

yn+1 − yn = δt
(
f(t, yn) + k1fy(t, yn) + δtft(t, yn)

)
. (4.64)

The right-hand side is in fact the expression for k1, and contains it; hence
the equation for k1,

k1 = δt
(
f(t, yn) + k1fy(t, yn) + δtft(t, yn)

)
, (4.65)

is indeed implicit, but note that now k1 can be isolated on the left-hand side,
leaving only terms on the right-hand side that can be evaluated. We get

4.12 Rosenbrock Methods 69

(1 − δtfy(t, yn))k1 = δtf(t, yn) + δt2ft(t, yn) , (4.66)

easily solved for k1. The formula might be called a one-stage Rosenbrock
variant, and can in fact be used, although it is not highly accurate. Applied
to our ode, y′ = −y, for which fy = −1 and ft = 0, it results in the formula

yn+1 =
yn

1 + δt
(4.67)

which is seen to be identical with BI (in this case). Better than BI, however,
(4.65) can be used for nonlinear equations, and also (including ft) to odes
where t plays a role, the so-called nonautonomous odes. This is an important
point later, when applying Rosenbrock to diffusion problems, where time
sometimes enters the equations through boundary conditions (for example
LSV).

Before moving on to real Rosenbrock methods, consider again (4.66). The
left-hand side contains a term in fy; if we are dealing with a system of odes,
this is called the Jacobian of the system. It is often constant, evaluable in
advance. It will be seen in Chap. 9 that unless the diffusion problem has
nonlinear concentration terms (for example from higher-order homogeneous
reactions), the Jacobian is constant. If not, it must be evaluated at every
step.

There are several Rosenbrock variants, and a profusion of symbols used.
Rosenbrock originally described a second-order variant, that is, with errors
of O(δt2). It was for an autonomous ode, not involving t in the function on
the right-hand side of (4.61), and the formula can be readily extended to the
nonautonomous case (involving t) by a procedure described in [351] and [286],
among others. Briefly, the procedure consists in adding the time variable to
the vector y, and taking into account that t′ = 1, and then expanding the
formula appropriately. The formula given by Rosenbrock (and in [351]) then
expands to that given in Appendix A. In this book, the profusion of symbols
is reduced to one consistent set, as used in Hairer & Wanner [286], and this
set is used exclusively in the table of constants in the Appendix. It is also
the set adopted by Lang in his publications [345, 346, 347]. Lang, as will be
noted, is the source of two new variants, at least one of them L-stable, and
a modification of an existing one, as well as updated tables of coefficients,
correct to 16 decimals in an Appendix in [347]. They are reproduced in the
present Appendix A.

In general, a Rosenbrock method consists of a number s of stages. At each
stage, a Runge-Kutta-type ki value is calculated, from explicit rearrangement
of implicit equations for these. At stage i, the equation is

k′
i = δt f

(
t + αiδt, y +

i−1∑
j=1

αijk
′
j

)

+ δtfy(t, y)
i∑

j=1

γijk
′
j + γiδt

2ft(t, y) .

(4.68)

70 4 Ordinary Differential Equations

The reason for writing k′ is that this equation, applied to ode systems, has a
small problem, in that the middle of the three terms on the right-hand side
contains, in the sum, products of the form fy(t, y)γijk

′
j , which forode systems

would mean multiplication of a Jacobian (the equivalent of fy(t, y)) with the
vectors k′

j . Hairer and Wanner [286] show that by a transformation of the
k′ values into new k values,

ki =
i∑

j=1

γijk
′
j , (4.69)

a new equation using the ki can be developed, avoiding this problem. Appli-
cation of this transformation to (4.68) and rearranging, then leads to a new
equation. We now assume that this concerns a system of odes with vectors y
and k. Also, all γii are conveniently chosen equal and are now simply called
γ, and new constants γi, aij and cij appear. The final result is the explicit
form,

(I − δtγfy)ki = γ

δtf

(
t + αiδt,y +

i−1∑
j=1

aijkj

)
+ γiδt

2f t +
i−1∑
j=1

cijkj

(4.70)
(we write fy and f t without their arguments for brevity). Note that in texts
such as [286, 347], the equation presented is divided on both sides by γδt.
There are practical reasons for not doing this in the present context. The
equation must be applied s times, according to the variant employed. Most
variants seek to make the calculation convenient, by allowing some of the con-
stants to be zero. A useful (and L-stable) second-order formula was described
by Lang [347], called ROS2. A favourite third-order variant is ROWDA3,
described by Roche [473] and later developed by Lang [346], making it more
efficient. This is the variant favoured by Bieniasz, who introduced Rosenbrock
methods to electrochemical digital simulation [100,113] (using different sym-
bols).

Having calculated the s ki values (vectors), the solution is

yn+1 = yn +
s∑

i=1

miki , (4.71)

where the mi are weighting factors, included in the tables of constants for
each method.

4.12.1 Application to a Simple Example ODE

A simple example serves to illustrate the use of Rosenbrock, using the ode

y′ = t + y ; y(0) = 1 (4.72)

4.12 Rosenbrock Methods 71

which has the analytical solution [266]

y(t) = 2 exp(t) − t − 1 . (4.73)

This is of interest because it contains t, so that we must use both fy and ft,
both equal to unity. Applying the ROS2 variant to this (see Appendix A for
the coefficient values), (4.70) (now for a single variable y) translates to the
two equations

k1 =
γ
(
δtf(t, y) + γ1δt

2ft

)
1 − γδtfy

=
γ
(
δt(t + yn) + γ1δt

2
)

1 − γδt
(4.74)

and

k2 =
γ
(
δtf(t + α2δt, y + a21k1) + γ2δt

2 + c21k1
)

(1 − γδtfy)

=
γ
(
δt(t + α2δt + y + a21k1) + γ2δt

2 + c21k1
)

(1 − γδt)
(4.75)

containing the (now) known k1. Then applying

yn+1 = yn + m1k1 + m2k2 (4.76)

yields the solution. This works out rather well, and tests show that errors are
O(δt2).

4.12.2 Error Estimates

In publications providing Rosenbrock coefficients such as [100,347], there ap-
pear alternative coefficients, “hatted”, such as m̂1 etc. These always provide
another variant with an order smaller by one than the one used. The purpose
of this is that the difference between the two forms provides an (over)estimate
of the error. The practice is not followed in this book, as we are generally
mainly interested in the error order. So these alternative, lower-order coeffi-
cients are not included in Appendix A.

5 The Explicit Method

The simplest method of simulating for pdes, and in particular for odes, is the
Euler method, in the present context usually called the “explicit method”,
or EX hereafter. It has many drawbacks (to be outlined) but it does have
the advantage of simplicity of programming and if you are willing to let your
computer do the hard work, it can yield adequate results in many cases.
There are recent examples of the use of the method even for rather complex
systems [324, 349] and a textbook on cyclic voltammetry [274] advocates
the method (and provides a program in Pascal). One might thus choose the
method as such, or choose to use it as a learning tool. The present author
prefers the latter. Having learned how to use EX and aware of its drawbacks,
one might be ready to learn something more advanced.

5.1 The Discretisation

The discussion will be restricted to the point method and to the one-
dimensional case. We will now work in normalised variables, see Sect. 2.3.
We then have concentration points C0, C1, . . . CN , CN+1, at the locations
X = 0,H, . . . NH, (N + 1)H, H being the interval in X, see Fig. 5.1. The
end points at X = 0 and X = (N +1)H are boundary points with concentra-
tions C0 and CN+1 respectively. It is the concentrations between these, that
are subject to diffusional changes, as follows.

Fig. 5.1. Discrete sample point sequence

At any point with index i, that is at X = iH, the diffusion (1.1) is
discretised on the left-hand side in the Euler manner (4.4, or in other words
the forward difference formula 3.1) and on the right-hand side with the central
three-point approximation (3.41), giving for the iteration going from time T
to the next time T + δT ,

Ci(T + δT) − Ci(T)
δT

=
1

H2 (Ci−1(T) − 2Ci(T) + Ci+1(T)) . (5.1)

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 73–83 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

74 5 The Explicit Method

The notation is now simplified by always assuming that we are at time T and
are going to time T + δT and writing C(T + δT) as C ′. The equation then
rearranges to

C ′
i = Ci + λ (Ci−1 − 2Ci + Ci+1) (5.2)

which is explicit for C ′
i, the new concentration (noting that we have combined

δT and H into λ = δT/H2). This equation can be simply applied at all points.
At the first and last points (i = 1 and N), the expression on the right contains
a boundary term. For i = 1 we thus have

C ′
1 = C1 + λ (C0 − 2C1 + C2) (5.3)

and for i = N ,

C ′
N = CN + λ (CN−1 − 2CN + CN+1) . (5.4)

The outer point CN+1 is normally equal to the bulk initial value, and thus
equal to unity, since concentrations have been normalised by the bulk value
(in cases involving more than one diffusing species, their respective initial
bulk values, normalised by that of the chosen main species). The value of
C0 is a little more complicated to set. It depends on the experiment to be
simulated, and for simplicity at this point the discussion will be postponed to
a later section in this chapter. Assume that we know the value C0. Then we
need only go through all concentrations C1 . . . CN , applying formula (5.2),
and obtain the new row of values C ′

1 . . . C ′
N .

5.2 Practicalities

In a given computer program, the section in which the above formula (5.2)
appears, will normally be the shortest part of the program. Other parts of the
program will read in the required parameters or print out the current where
needed. This raises the question of which parameters to choose. Among these
are the length of time assumed for the experiment to be simulated or, in our
dimensionless terms, the number of units of the time used for normalisation,
Tmax. If the experiment is a step technique, this will mostly be unity. In the
case of linear sweep voltammetry (where, due to the normalisation, time and
potential have the same magnitude), it will be the number of potential units
to be swept through (see Sect. 2.3). In either case, we must decide how many
intervals (NT) there are to be per time unit or (conversely) the interval length
δT . Other parameters to be decided are the interval H and the number N of
points along X. This is best done in terms of the largest X-value, which in
turn is set, via (2.40) and (2.43), such that there are no diffusional changes
beyond this point. In view of the properties of the error function and (2.43),
a value of Xmax given by

Xmax = 6
√

Tmax (5.5)

5.2 Practicalities 75

is recommended. Next, we need the interval H or conversely, the number of
points N along the X-axis. The recommendation here is to set this indirectly
by means of the value of λ, since this value is known to affect the stability of
the simulation critically. For the above formula, the largest usable value for
it is 0.5. Having set its value, as well as that of either NT (preferred) or δT ,
λ then sets N and H.

One also needs to think about at which points in time to output the cur-
rent, being almost always the aim of the simulation. If this is to be plotted,
it might be output at every new time into a plotting file. If one is testing a
method, one might only output the current at a selected number of intervals.
The present author finds it most convenient to output it at expanding time
intervals, as this always gives a compact output list. The current itself can
be calculated from the concentration profile by a number of approximations,
depending upon how many points one takes. In Chap. 3 (page 39), the func-
tion G was defined to evaluate the gradient G. The simplest is the two-point
forward difference formula (3.1) which is G(C, 2,H) or

G ≈ C1 − C0

H
(5.6)

preferred by many (G here is the dimensionless current or gradient). It is,
however, as described in Chap. 3, first-order with respect to H and, with
very little effort, one can do much better than that. Since the three-point
approximation to the second derivative, the right-hand side of the diffusion
equation as shown above in (5.2), is second-order with respect to H, there
are good arguments [100] for using a second order formula for G, the form
y′
1(3) in Table A.1, or

G ≈ −3C0 + 4C1 − C2

2H
. (5.7)

The present author prefers to use an even larger number of points, having
established a function subroutine (see the collection discussed in Appendix
C) G0FUNC, which implements the function G(C, n,H) and allows up to seven
points (n = 7). One can then be sure that there are no significant error terms
from the approximation to G, no matter which method is used. Furthermore,
although the calculation does take a little longer than the simple two-point
one, this is never a lot compared with the simulation iteration itself, so it
does not matter.

Eyres et al. [225] used a three-point flux approximation for heat flow sim-
ulations; the earliest electrochemist to use simulation was Randles [460] and
he also used a three-point current. Amatore and Savéant [50] used a six-point
approximation, as did Bellamy et al. [85]. The latter authors also inverted
the six-point formula to calculate C0, in the manner of C0FUNC discussed in
Appendix C.

76 5 The Explicit Method

5.3 Chronoamperometry and -Potentiometry

The program COTTEX (see Appendix C) is an example of a simulation of the
Cottrell experiment, using method EX. In this simplest of experiments,
the boundary concentration C0 is held at zero from T = 0 onwards (see
Sect. 2.4.1). Boundary conditions will be dealt with in detail in the next
chapter, but here it is mentioned only that this condition is the Dirichlet
boundary condition, in which, in general, the value of C0 is given. The other
extreme condition is the Neumann condition, in which the gradient G is given
(a derivative boundary condition). An example of this is given by chronopo-
tentiometry, where a constant current is imposed on the electrode. There is
an important point to make here in this regard. When stepping forward in
time, one starts with a known array of concentration values C and uses them
explicitly (in this case of method EX) to compute the new row, C ′. Thus,
since the old boundary values, C0 and CN+1 also go into the (5.3) and (5.4),
they must be available, and they must be appropriate to the other values.
Therefore, in chronopotentiometry, when a given C-row has been computed,
that value of C0 must be computed which yields the correct gradient G, the
boundary condition. This can be done readily by inverting the approximation
for G. For the two-point approximation (5.6) this becomes

C0 = C1 − GH (5.8)

while for the three-point G as in (5.7), it is

C0 =
1
3

(4C1 − C2 − 2GH) . (5.9)

In general, for n points, it becomes

C0 =
1
β0

(
GH −

n−1∑
i=1

βiCi

)
. (5.10)

This last general equation is implemented in the function C0FUNC, described
in Appendix C. The formula is applied in the seven-point form in the example
program CHRONOEX described in Appendix C, simulating chronopotentiome-
try. It must be applied before every new iteration, in order for the C0 value
to be in line with the other C values. In this program, the current is constant
and it is the value of C0 which is displayed and this should go to zero at T = 1
(Sect. 2.4.2). A more appropriate display might be the electrode potential,
which is always the measured quantity, but this will be dealt with together
with the more detailed discussion of boundary conditions in Chap. 6.

A final practical point is the following. When computing the new row C ′,
it must be computed from the old row. Therefore in a program, we cannot
replace each Ci with the new value in the array immediately, for each i,
because the neighbouring Ci−1 has just been changed to C ′

i−1. One can either

5.4 Homogeneous Chemical Reactions (hcr) 77

declare two separate arrays, which might be considered slightly wasteful of
space, or use the small trick seen in the example programs (Appendix C),
where both COTTEX and CHRONOEX use a trio of scalar points that have the
current three values Ci−1, Ci, Ci+1 that are needed. In this way, the new value
C ′

i can replace the old one in the array, which is preserved in the scalar point
trio. This must of course be shifted along at the bottom of the loop, and the
point Ci+1 picked up at every new loop restart. This device is possibly less
important these days, since computers have more memory and an extra array
can be easily accommodated.

5.4 Homogeneous Chemical Reactions (hcr)

One of the simplest examples of a homogeneous chemical reaction (hcr) is
the Reinert-Berg system [464], in which an electroactive species is generated,
for example by means of a light flash, and then reduced as a Cottrell system,
while the species decays chemically with a first-order reaction. The reactions
are then

A + e− → B

A → prod (5.11)

with k the rate constant of the second reaction, the hcr. This gives rise to
the single governing equation, for substance A

∂C

∂T
=

∂2C

∂X2 − KC (5.12)

where everything, including the rate constant (K = kτ) as described in
Sect. 2.4, (2.64), has been normalised. The analytical solution of this equa-
tion with Cottrell boundary conditions is given in Chap. 2, Sect. 2.4, (2.67)
and (2.68). This system is very simple to discretise in the EX manner; the
chemical term is added to the equations above, (5.2)–(5.4). For the ith con-
centration (5.2) this becomes

C ′
i = Ci + λ (Ci−1 − 2Ci + Ci+1) − KδTCi . (5.13)

If several species are involved (in this case there is the product prod, but we
are not interested in it), the equations are extended in an obvious manner,
apart from some tricks to be seen in a later chapter in connection with implicit
methods. This is one of the attractive aspects of method EX. If the hcr is
second order, there will be a term in C2

i in the discrete equation, and it will
present no problem in the discretisation step [146].

There are, however, several problems here. The first is that in writing
the governing equation in discrete form as above, we are in effect uncoupling
diffusional changes from chemical changes. Numerically, they appear to take

78 5 The Explicit Method

place independently of each other, whereas in fact, they interact during the
time interval. This leads to inaccuracies, and Nielsen et al. [418] proposed
using the (explicit) Runge-Kutta method (RK) to overcome this problem, if
the chemical changes during a single time interval amount to a few percent
of the concentration itself or, in mathematical terms, if the quantity KδT
in (5.13) exceeds 0.01 or so. In [418] the method adopted was to use RK for
the chemical reaction only, following earlier suggestions in the literature [247],
whereas in [135] the method is applied to the whole equation, to be described
in Chap. 9. This turns out, in either case, to give only a modest improvement
in efficiency, which can however be improved a little, see the 5-point method,
Chap. 9.

The above manner of computing the two components, that is, diffusional
and chemical changes separately, is sometimes called the parallel method.
Another way to improve efficiency slightly is to use instead what has been
called [418] the sequential method. It was intuitively applied at first, with-
out any real justification other than that it gave better results. The method
consists of calculating the diffusional change first, augmenting the concen-
trations by these amounts, and then to apply the chemical reaction to these
augmented values. As pointed out in [418], this gives rather good results, but
it was not clear at that time why this should be so. Feldberg in fact used this
method and describes it in his original monograph [229]. It turns out that,
by coincidence (of which we have several in digital simulation), the parallel
method does have a mathematical justification and is consistent with the
model equations that the discrete expressions approximate. A mathematical
proof of this consistency was given in 1991 [485] and is reproduced in Ap-
pendix B. The improvement is not great, however, and other methods were
sought.

If one is computing the two changes separately (the parallel method), and
given that the chemical reaction itself is usually tractable analytically, this
component need not be simulated. For a first-order reaction as seen in (5.11)
and (5.12), the last part in (5.12) has the general solution for a first-order
reaction,

C(T) = C(0) exp(−KT) (5.14)

which becomes, over the interval δT , for the concentration Ci

Ci(T + δT) = Ci(T) exp(−KδT) (5.15)

and if KδT is not large, this converges to

Ci(T + δT) = Ci(T)(1 − KδT) (5.16)

which is indeed the chemical component in (5.13). Feldberg and Auerbach
used the analytical method [234] in 1964, as did Flanagan and Marcoux
[246] in 1973 and Amatore and Savéant in 1979. It has since then given
way to other, better methods, due to the recognition that it is not justified

5.4 Homogeneous Chemical Reactions (hcr) 79

to assume that diffusional and chemical changes are separate. One of these
better methods is the explicit Runge-Kutta method (RK) applied to the
whole discrete equation set (5.12), and will be described in Chap. 9.

5.4.1 The Reaction Layer

All the above methods, when hcrs are present, have one very serious draw-
back: many hcrs give rise to a compact reaction layer, as described in Chap. 2.
The above Reinert-Berg reaction does not, but the EC reaction,

A + e− → B

B → C (5.17)

does. It turns out that the concentration profile for B extends less far into
the solution than that of A, which follows the normal rules. Figure 5.2 il-
lustrates this for the above mechanism, where concentration profiles for all
three species are shown for the Cottrell experiment run on this system, at
(dimensionless) unity time, and a dimensionless rate constant K = 10. The
profile for species A is unchanged, that is, it is the same as if there were no
following reaction, and shows the normal Nernst diffusion layer thickness δ.
Species B, however, is confined to a narrower region and its interface con-
centration is smaller than it would be without the following reaction; species
C contains the deficit in B. The problem here is that, if the rate constant is
large, the reaction layer is very thin and in order to be able to approximate
such a concentration profile, close spacing of points is required, increasing
computer time. There are ways to overcome this, but the EX method with
equally spaced intervals is not one of them.

Fig. 5.2. Concentration profiles with reaction layers

80 5 The Explicit Method

5.5 Linear Sweep Voltammetry

One of the main uses of digital simulation – for some workers, the only appli-
cation – is for linear sweep (LSV) or cyclic voltammetry (CV). This is more
demanding than simulation of step methods, for which the simulation usually
spans one observation time unit, whereas in LSV or CV, the characteristic
time τ used to normalise time with is the time taken to sweep through one
dimensionless potential unit (see Sect. 2.4.3) and typically, a sweep traverses
around 24 of these units and a cyclic voltammogram twice that many. Thus,
the explicit method is not very suitable, requiring rather many steps per unit,
but will serve as a simple introduction. Also, the groundwork for the handling
of boundary conditions for multispecies simulations is laid here.

The sequence of steps in a CV simulation program is as follows. A simple
two-species reaction

A + e− ↔ B (5.18)

is our example, assumed to be quasireversible with dimensionless heteroge-
neous standard rate constant K0:

1. Read in starting potential pstart and reversal potential prev (both in dimen-
sionless potential units), nTper, the number of time intervals per potential
unit swept, and λ, the simulation parameter, and K0, the dimensionless
heterogeneous rate constant.

2. Calculate some numbers derived from these inputs, such as N, the number
of points in space (see below) and H, the interval along X and the total
number of time steps nT , as well as the time interval δt. Initialise arrays
etc.

3. Open the required output files.
4. Set the potential step δp to −δt, and the current potential p to pstart; that

is, the sweep starts in the negative direction.
5. Enter the loop, each time increasing the potential by δp, and comput-

ing the new concentrations. When these have been calculated, apply the
boundary conditions for the current potential, to get the boundary values
at X = 0; write out the potential and current into the file (perhaps only
if there has been a change in current greater than some set value, to re-
duce the volume of output). If half the total number of time steps nT has
been done, flip the sign of δp, so that the next half will go in the reverse
direction, for CV.

6. During the loop, monitor the current to detect when it passes through a
peak (negative sweep) or a trough (return sweep), and keep these values
and the potential where they occurred.

7. Finish up by writing out the required numbers such as maximum and
minimum currents and potentials.

Some remarks on the above are in order. In the example program CV_EX
mentioned in Appendix C, a quasiversible reaction is indeed assumed, but if

5.5 Linear Sweep Voltammetry 81

K0 exceeds the value 1000, the boundary conditions are taken to be those for
a reversible reaction. How these two different boundary conditions are applied
to calculate the concentrations CA,0 and CB,0 is described below. Note that
before new concentrations are to be computed, all old concentrations, includ-
ing the boundary values, must be known. When a new potential is stepped
to, it comes into effect only after the concentrations are renewed, after which
C0 is calculated. This might be thought of as less than satisfactory, but it
is consistent with the explicit method. In Chaps. 8 and 9, more satisfactory
methods will be presented.

Regarding the number N of points in space, the rule shown in (5.5) is
used; the total time Tmax here is equal to the total number of potential
units swept through. If we, for example, set pstart equal to 12 and prev equal
to –12, then Tmax = 48. One could in principle save a little computing time
by recognising the fact that after a given number ns of steps taken, only that
many concentrations can have changed, due to the way changes propagate
through the concentration profiles in the explicit method, so while ns < N ,
one need only recompute ns points; but this is a small saving in computing
time and is not worth the effort, or the risk of introducing a program error
in the process.

Monitoring for peak and trough currents is seen in the example program
EX_CV, by the device that a trio of current values G1, G2, G3 is always kept
(G3 being the most recently computed value), and a check is made whether
G2 is maximum or minimium. If it is, the true peak or trough is computed,
using the routine MINMAX described in Appendix C, which uses a parabolic
fit to detect the values, as well as the position. This is converted to potential
units in the program. There is a small device to prevent spurious peak/trough
detections, by means of the restriction that only those taking place within
the potential range −2 < p < 2 are accepted.

The number of steps for a complete CV simulation will generally be quite
large, especially for the explicit method, where one must set the δp values
down around at most 0.01, so that if currents are output for later plotting
at each iteration, the file becomes unnecessarily large. For this reason, EX_CV
checks that there has been a minimum change in current since the last, before
writing the current out. Setting this value to 0.001 gave a reasonably reduced
number of outputs in some test runs (1435, out of a total of 48000, with δp
set to 0.001).

5.5.1 Boundary Condition Handling

In the example program EX_CV, as mentioned, two kinds of boundary condi-
tions are accommodated: those for a quasireversible reaction, and for a fully
reversible reaction. The division is made on the basis of the dimensionless
heterogeneous rate constant K0; if it exceeds 1000, the reaction is considered
reversible.

82 5 The Explicit Method

For the quasireversible case, the procedure is as follows. At a given stage
in the simulation, assume that the two concentration profiles, CA,i and CB,i,
with i = 1, 2, . . . , N , have been calculated and that the potential is p. The
dimensionless form of the Butler-Volmer equation applies (2.30) and provides
the concentration gradient GA, proportional to the current:

GA = KfCA,0 − KbCB,0 (5.19)

where the two constants, the forward and backward rate constants, are as
given previously (2.31), functions of the potential. The left-hand side of this
equation can be discretised as the n-point current approximation, leading to

1
H

n−1∑
i=0

βiCA,i = G(CA, n,H) = KfCA,0 − KbCB,0 (5.20)

which can be dissected as

1
H

(
β0CA,0 +

n−1∑
i=1

βiCA,i

)
= KfCA,0 − KbCB,0 . (5.21)

There are two unknowns, so we need one more equation. This comes from
the fact that the flux of substance A at the electrode must be equal and
opposite to that of substance B. If we assume equal diffusion coefficients for
the moment, this means

GA + GB = 0 (5.22)

and employing the current approximations for both species and dissecting
as above, this and the former (5.21) rearranged, gives us the two-unknowns
system

[
(KfH − β0) −KbH

β0 β0

][
CA,0

CB,0

]
=

n−1∑
i=1

βiCA,i

−
n−1∑
i=1

βiCA,i−
n−1∑
i=1

βiCB,i

 (5.23)

which is readily solved for the two boundary values. The sums can be obtained
using the function G0FUNC discussed in Appendix C and a small trick. The
function requires a number of Ci values, including the (unknown) C0. How-
ever, since we are calculating it and do not need the old value, we can afford
to set it to zero, so that the function represents the sum for i = 1, 2, . . . , n−1,
leaving out the zeroth element, as required in the above equations. This is
made use of in the example program.

For the reversible case, the Nernst equation applies instead of the Butler-
Volmer equation, that is, in dimensionless terms as in (2.32), rewritten as

CA,0 − epCB,0 = 0 (5.24)

5.5 Linear Sweep Voltammetry 83

paired again with the flux equality condition (5.22). This gives the system in
two unknowns

[
1 −ep

β0 β0

][
CA,0

CB,0

]
=

0

−
n−1∑
i=1

βiCA,i−
n−1∑
i=1

βiCB,i

 (5.25)

which is even easier to render as an explicit expression for CA,0 and thereby
for CA,0 from (5.24).

More will be said about boundary conditions in Chap. 6.

6 Boundary Conditions

In this chapter, boundary conditions and how to handle them in simulations
are described. Of necessity, some material here overlaps with that in other
chapters, especially Chaps. 8 and 9; but this cannot be avoided.

Adsorption kinetics has its own boundary conditions and is treated en-
tirely separately in Chap. 10.

6.1 Classification of Boundary Conditions

In the world of numerical analysis, one distinguishes formally between three
kinds of boundary conditions [283,528]: the Dirichlet, Neumann (derivative)
and Robin (mixed) conditions; they are also sometimes called [283, 350] the
first, second and third kind, respectively. In electrochemistry, we normally
have to do with derivative boundary conditions, except in the case of the
Cottrell experiment, that is, a jump to a potential where the concentration
is forced to zero at the electrode (or, formally, to a constant value different
from the initial bulk value). This is pure Dirichlet only for a single species
simulation because if other species are involved, the flux condition must be
applied, and it involves derivatives. Therefore, in what follows below, we
briefly treat the single species case, which includes the Cottrell (Dirichlet)
condition as well as derivative conditions, and then the two-species case,
which always, at least in part, has derivative conditions. In a later section in
this chapter, a mathematical formalism is described that includes all possible
boundary conditions for a single species and can be useful in some more
fundamental investigations.

In this chapter, the current approximation function G, defined in Chap. 3,
(3.25), will be used extensively. Note also that since this function is a linear
combination of the array argument (for example, C as in G(C, n,H)), the
function of a weighted sum of two arrays, such as the arrays u and v (to be
met later), the following holds (a being some scalar factor):

G(u + av, n,H) = G(u, n,H) + aG(v, n,H) . (6.1)

This will prove useful in connection with the “u-v” device, see below.

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 85–102 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

86 6 Boundary Conditions

6.2 Single Species: The u-v Device

If the simulation only involves a single substance (species), the situation is
relatively simple, and this is the starting point. Some of this has already
been described in Chap. 5 but will be repeated here, more generally, and
with reference to implicit methods, not yet described. Recall the convention
that a concentration denoted as Ci is a “present” value at the (spatial) index
i, that is, a known concentration at time T , whereas C ′

i denotes a value, yet
to be calculated, at time T + δT .

6.2.1 Dirichlet Condition

Here the value of the boundary concentration is specified. A familiar exam-
ple in the present context is the outer boundary, beyond the diffusion space,
where the concentration usually remains at the initial bulk value during the
whole period over which the simulation is carried out. This also applies to
the case of the Reinert-Berg mechanism (page 20), in which the bulk con-
centration itself changes with time, but we know the bulk value at any time,
because chemical reaction kinetics, uncomplicated by transport effects, is
well understood. In such cases, we can set a given bulk concentration, albeit
time-varying. Another familiar example arises from the Cottrell experiment,
in which the concentration at the electrode, C0, is set to zero. This is a par-
ticular case of that concentration being set to a definite value, not necessarily
zero.

6.2.2 Derivative Boundary Conditions

For a single species, there are only two cases of interest, arising from the two
kinds of experiments in which either the current is controlled or the potential
is controlled, and the reaction is irreversible (if it is not irreversible, two
species must be considered). These two cases can serve as a kind of tutorial
for the more complex two-species systems.

The chronopotentiometry (controlled current) case has already been de-
scribed for the EX method, where one simply finds a C0 value that fits the
known gradient G and the concentration points already established, as shown
in (5.10). The situation is not quite so simple for implicit methods, and we
introduce here both a preview of these, and the u-v device, which will be
used extensively.

As will be seen in Chap. 8, implicit methods all lead (for the normal 3-
point approximation of the term ∂2C/∂X2) to a system of N equations, each
with three unknowns. Generally, this can be written in the form, for the ith

equation out of the N ,

C ′
i−1 + a1(i)C ′

i + a2(i)C ′
i+1 = bi (6.2)

6.2 Single Species: The u-v Device 87

where the coefficients a1(i) and a2(i) depend on the particular implicit
method employed, and the bi term is some weighted sum of known con-
centrations, again depending on the method. Because of the fact that the
last equation, where i = N , includes the bulk value C ′

N+1 which is known,
it is possible to reduce the set of equations recursively to one in which each
equation has two unknowns, to be outlined in Chap. 8, going backwards from
the outer value, and ending in the new equation system:

C ′
0 + a′

1C
′
1 = b′1

C ′
1 + a′

2C
′
2 = b′2 . (6.3)

C ′
2 + a′

3C
′
3 = b′3

. . .

The details of how to get from the system (6.2) to (6.3) are described in
Chap. 8. We can use (6.3) to solve for all C ′

i, if we know the boundary value
C ′

0. In the case of the Cottrell system, we do know it; it is zero, thus giving
us C ′

1 directly, and then C ′
2, etc. This is essentially the Thomas algorithm

(see Chap. 8).
If there is a derivative boundary condition, things are a little more com-

plicated. There are two kinds of cases. The first of these arises with controlled
current, where we know the gradient G, as already seen in Chap. 5. Here,
however, we cannot simply calculate C ′

0, because we do not yet know the
other concentrations. One way to handle this is to add an expression for the
boundary condition to a few equations out of (6.3) and to solve. A simple
example is to use the 2-point G-approximation in the case, for example, of
controlled current (G), and the first equation from (6.3)

C ′
1 − C ′

0 = GH

C ′
0 + a′

1C
′
1 = b′1 (6.4)

and to solve for C ′
0 (and C ′

1), giving

C ′
0 =

b′1 − a′
1GH

1 + a′
1

. (6.5)

This is convenient for the simple 2-point approximation but if n > 2, more
equations out of (6.3) are needed, and the solution is less straightforward.

Another, more convenient way is the u-v device. We establish a relation
between the concentrations C ′

i and C ′
0, in order to obtain the extra informa-

tion needed to solve for C ′
0. Taking the first equation in (6.3), we rewrite it

explicitly for C ′
1:

C ′
1 = b′1/a′

1 − C ′
0/a′

1 (6.6)

or as a linear function of C ′
0,

C ′
1 = u1 + v1C

′
0 (6.7)

88 6 Boundary Conditions

where
u1 = b′1/a′

1 ; v1 = −1/a′
1 . (6.8)

Equation 2 of the system (6.3) is then reorganised explicitly for C ′
2, giving

C ′
2 = b′2/a′

2 − C ′
1/a′

2 (6.9)

and we substitute for C ′
1 from (6.7), getting

C ′
2 = b′2/a′

2 − (u1 + v1C
′
0)/a′

2 (6.10)

which again can be expressed as a linear expression in C ′
0,

C ′
2 = u2 + v2C

′
0 (6.11)

where now
u2 = (b′1 − u′

1)/a′
1 ; v2 = −v1/a′

1 . (6.12)

This can be continued and we can recursively express all C ′
i as linear functions

of C ′
0. For the ith concentration,

C ′
i = ui + viC

′
0 (6.13)

and the coefficients are given by the recursive expressions

ui = (b′i − ui−1)/a′
i ; vi = −vi−1/a′

i . (6.14)

This is easily programmed as a loop process. If we want to avoid a special
expression for u1 and v1, there is a trick: we start formally with a tautological
equation,

C ′
0 = u0 + v0C

′
0 (6.15)

in which, obviously, u0 = 0 and v0 = 1. Then the loop process, applying
(6.14) for i = 1, 2, . . . , can be set running. We do not need many iterations –
in fact, n− 1 are sufficient, n being the number of concentrations used in the
approximation for G. This is

G = G(C ′, n,H) (6.16)

and substituting for all C ′
i from (6.13), noting (6.1) and defining the vectors

(arrays) u ≡ [u0 u1 . . . un−1]
T and v ≡ [v0 v1 . . . vn−1]

T , we get

G = G(u, n,H) + C ′
0 G(v, n,H) (6.17)

or multiplying by H,

GH = G(u, n, 1) + C ′
0 G(v, n, 1) (6.18)

which can now be rearranged to the explicit equation for C ′
0,

6.2 Single Species: The u-v Device 89

C ′
0 =

GH − G(u, n, 1)
G(v, n, 1)

(6.19)

yielding C ′
0. It is now also seen that the little trick (6.15) has another advan-

tage, enabling the use of the sums for i = 0, 1, . . . , n − 1, which our function
G and thus procedure G0FUNC evaluates. G0FUNC(u, n, 1.0_dbl) must be
called as shown and u and v are arrays with bounds (0:n-1).

Formally, the above process is equivalent to (6.4), extended for any n
and solving that system. The u-v device is a more efficient way of solving it
than any linear equation solver that might otherwise have been used, as n
becomes larger. The u-v device will be extensively used in this book, even
with implicit methods for coupled equation systems, where we must solve for
a number of concentration profiles (see below). There are practitioners who
believe that n = 2, that is the two-point G-approximation, is good enough.
This is justified in cases where H is very small, as it often is, at least near
the electrode, when unequal intervals are used (see Chap. 9). In that case,
one can simply use (6.5).

Another case, if we have just one species, besides controlled current, is the
irreversible, controlled potential case. The gradient G is then given by half of
the Butler-Volmer equation and for the as yet unknown concentrations and
the potential p′ at the new time, this is

G′ = KfC ′
0 (6.20)

(where we write G′, since the gradient is now time dependent and we are
referring to the new time level) with Kf given by

Kf = K0 exp(−αp′) . (6.21)

G′ itself must then be replaced by the right-hand side of (6.16) and the
resulting equation,

G(C ′, n,H) = KfC ′
0 (6.22)

decomposed by applying (6.13) to the left-hand side. After some rearrange-
ment, this yields the solution,

C ′
0 =

G(u, n, 1)
HKf − G(v, n, 1)

. (6.23)

Again, if a two-point approximation is used, this simplifies to

C ′
0 =

b′1
1 + a′

1(1 + HKf)
. (6.24)

Lastly, in Chap. 9, Sect. 9.2.7, an improvement in the above is described,
based on Hermitian schemes for a better gradient approximation.

90 6 Boundary Conditions

6.3 Two Species

In Chap. 5, the two-species cases were described for the explicit method. Here
we add those for the implicit case. Both Dirichlet and derivative boundary
conditions are of interest, the latter both with controlled current or quasire-
versible and systems under controlled potential.

When two species are involved, they may have different diffusion coeffi-
cients. Here it will be assumed that the two species might be two out of more
than two species in a given mechanism, and that normalisation is referred
to some species other than these two. Therefore both their diffusion coeffi-
cients need to be normalised. Let the two species be called O and R, and the
reference species be called A. Then the normalisations are

dO = DO/DA , dR = DR/DA (6.25)

and, of course, the concentrations are normalised as usual by the initial bulk
concentration of the reference species A.

Often, for convenience, diffusion coefficients of all species in a mechanism
are assumed equal, however unrealistic this probably is. If the reader wants
to assume this, the d’s in what follows can simply be set equal to unity. A
recent paper [504] underlines the point, finding significant effects of unequal
diffusion coefficients, and Pedersen et al. [438] in fact measured differences
of about 20% between the diffusion coefficients of some organic compounds
and the radical anions formed by their reduction. Such differences may well
be significant in a simulation.

We consider here two species connected by the reduction reaction

O + e− → R . (6.26)

We begin with the simpler case of the two species not being coupled, that
is, each of their discrete equations contains only terms from one of the species.
The coupled case is given below, being rather more complicated. There is of
course coupling of the two species by the boundary conditions.

As with the single-species case above, we anticipate the treatment given
in Chap. 8 for implicit methods. At each point i in space, there is an equation
like (6.2) for each species:

C ′
O,i−1 + aO,1(i)C ′

O,i + aO,2(i)C ′
O,i+1 = bO,i

C ′
R,i−1 + aR,1(i)C ′

R,i + aR,2(i)C ′
R,i+1 = bR,i (6.27)

where the coefficients may be different (often some of them at least are com-
mon to the two). The two equations are of the same form as (6.2), except that
there are now twice as many. Again, the bulk concentrations will be known
and can be used to reduce the whole set to a new set in which each equation
has only two unknowns, and we write out the first few of these:

6.3 Two Species 91

C ′
O,0 + a′

O,1C
′
O,1 = b′O,1

C ′
R,0 + a′

R,1C
′
R,1 = b′R,1

C ′
O,1 + a′

O,2C
′
O,2 = b′O,2 (6.28)

C ′
R,1 + a′

R,2C
′
R,2 = b′R,2 .

C ′
O,2 + a′

O,3C
′
O,3 = b′O,3

C ′
R,2 + a′

R,3C
′
R,3 = b′R,3

. . .

It might have been clearer to write these two systems separately but it was
decided to mix them in the above manner, as this serves a certain purpose
later, with coupled systems.

The u-v device can now be applied as before, the only complication being
that there will be two sets of u’s and v’s; the treatment is identical to the
above one and results in the two equations

C ′
Z,i = uZ,i + vZ,iC

′
Z,0 (6.29)

in which Z can be either O or R. The equations that generate the coefficients
are the same as (6.14).

It is now possible to bring in the particular boundary conditions, start-
ing with the Cottrell case, which is the simplest. For all mechanisms and
boundary conditions, we require two equations involving the two unknown
boundary concentrations. As with all cases, one of these is the flux condition,

fO + fR = 0 (6.30)

mentioned in Chap. 5, Sect. 5.5.1. We must take the possibly different dif-
fusion coefficients into account, since it is the fluxes, not the concentration
gradients, that must be equal and opposite:

DOGO + DRGR = 0 (6.31)

or, applying the normalisations of the diffusion coefficients,

dOGO + dRGR = 0 . (6.32)

This then becomes, for the usual n-point G-approximation,

dOG(C ′
O, n,H) + dRG(C ′

R, n,H) = 0 (6.33)

(where C ′
O stands for the vector of the values C ′

O,0 . . . and similarly for C ′
R)

and substituting (6.14) for C ′
O,i and C ′

R,i, and rearranging, this gives the
equation

dOG(vO, n, 1)C ′
O,0 + dRG(vR, n, 1)C ′

R,0 = −dOG(uO, n, 1) − dRG(uR, n, 1)
(6.34)

92 6 Boundary Conditions

where the H has been divided out, but this is a matter of preference. The
equation will be written in a briefer form,

dOG(vO)C ′
O,0 + dRG(vR)C ′

R,0 = −dOG(uO) − dRG(uR) (6.35)

where the missing arguments (and the substitution of H with unity) are
assumed. The other equation depends on the boundary conditions and these
will now be gone through. They are controlled current, controlled potential
with quasireversible and reversible reactions.

With controlled current, the value of dO GO is controlled (not GO itself!).
Let the (dimensionless) value of this current be G. This yields the second
equation simply as

G = dOG(C ′
O, n,H) = dO

(
G(uO, n,H) + C ′

O,0dOG(vO, n,H)
)

(6.36)

or, multiplying both sides by H and rearranging (using the briefer form)

dOC ′
O,0G(vO) = GH − dOG(uO) (6.37)

which can be used directly to obtain C ′
O and thus, from (6.35), C ′

R. Never-
theless for consistency with the other cases to follow, the equation system is
given here:

[
dOG(vO) dRG(vR)
dOG(vO) 0

] [
C ′

O,0
C ′

R,0

]
=
[
−dOG(uO) − dOG(uR)

GH − dOG(uO)

]
. (6.38)

Controlled potential can be either a potential step or some potential
program such as LSV/CV, staircase voltammetry or even ac voltammetry, see
the standard texts [74,257] for details. In all of these, we have (dimensionless)
potential p at time T and the new potential p′ at the next time level; p′ might
thus be a constant (as in potential step) or varying with time. One can then
distinguish between the cases quasireversible (including irreversible) systems
or fully reversible ones. Some simulation packages such as DigiSim [482] do
not include the reversible case, arguing that it does not exist, and is in fact a
quasireversible reaction with a large heterogeneous rate constant. This makes
some sense but on the other hand, setting that rate at some some arbitrarily
very high value to ensure reversible behaviour is no more justifiable than
assuming Nernstian equilibrium, that is, reversibility.

A quasireversible system is characterised by the Butler-Volmer equation,
here in dimensionless form,

dOG′ = KfC ′
O,0 − KbC

′
R,0 (6.39)

with
Kf = K0 exp(−αp′), Kb = K0 exp([1 − α]p′) . (6.40)

(Note that in (6.39), dOG′ is once again used, taking into account the diffusion
coefficient of species O being different from that of the reference species).

6.3 Two Species 93

Equation (6.39) is expanded for G′ as before, the u-v substitutions made
and rearranged, to give

(Kf − dOG(vO, n,H)) C ′
O,0 − KbC

′
R,0 = dOG(uO, n,H) (6.41)

which, multiplying by H and adopting the previous shorthand for G, and
adding the flux condition (6.35), results in the system
[

−dOG(vO) −dRG(vR)
HKf − dOG(vO) −HKb

] [
C ′

O,0
C ′

R,0

]
=
[
dO (G(uO) + G(uR))

dOG(uO)

]
. (6.42)

This can easily be made into the irreversible case by setting Kb = 0 and, in
principle, into the reversible case by setting K0 very large. However, another
way to ensure reversibility is to specify it as such, by the Nernst equation as
in Chap. 2, page 14,

C ′
O,0/C ′

R,0 = exp(p′) (6.43)

or
C ′

O,0 − exp(p′)C ′
R,0 = 0 (6.44)

which, added to the flux condition produces the system
[
dOG(vO) dRG(vR)

1 − exp(p′)

] [
C ′

O,0
C ′

R,0

]
=
[
−dO (G(uO) + G(uR))

0

]
. (6.45)

6.3.1 Two-Point Derivative Cases

For those who prefer to keep the derivative approximation of G down to the
two-point form, the above can perhaps be simplified a little; the u-v device
is not needed as such, as only the first substitution (6.6) is required.

The flux condition (6.32) is represented in two-point form as

dO

H

(
C ′

O,1 − C ′
O,0
)

+
dR

H

(
C ′

R,1 − C ′
R,0
)

= 0 (6.46)

and (6.6) applied to the first two equations of (6.28), the C ′ at X = H can
be eliminated, to give, after some cleaning up, the flux condition equation

dO

(
1 +

1
a′

O,1

)
C ′

O,0 + dR

(
1 +

1
a′

R,1

)
C ′

R,0 = dO

b′O,1

a′
O,1

+ dR

b′R,1

a′
R,1

(6.47)

which is the one always needed out of the two. For controlled current, (6.36)
becomes (again invoking (6.6))

GH = −
(

1 +
1

a′
O,1

)
C ′

O,0 +
b′O,1

a′
O,1

(6.48)

or

94 6 Boundary Conditions

(
1 +

1
a′

O,1

)
C ′

O,0 = −GH +
b′O,1

a′
O,1

(6.49)

and thus, together with the first (6.47), this results in the system

dO

(
1 + 1

a′
O,1

)
dR

(
1 + 1

a′
R,1

)
(
1 + 1

a′
O,1

)
0

[
C ′

O,0
C ′

R,0

]
=

dO

b′O,1
a′

O,1
+ dR

b′R,1
a′

R,1

−GH + b′O,1
a′

O,1

 . (6.50)

It is arguable whether this is in fact simpler than the form for general n,
(6.38), but it does avoid calling a function.

The quasireversible case, analogous to (6.39), (6.40) and (6.41), becomes
[
HKf + dO

(
1 +

1
a′

O,1

)]
C ′

O,0 − HKbC
′
R,0 = dO

b′O,1

a′
O,1

(6.51)

and the system to be solved,

 dO

(
1 + 1

a′
O,1

)
dR

(
1 + 1

a′
R,1

)
HKf + dO

(
1 + 1

a′
O,1

)
−HKb

[
C ′

O,0
C ′

R,0

]
=

dO

b′O,1
a′

O,1
+ dR

b′R,1
a′

R,1

dO
b′O,1
a′

O,1

 .

(6.52)
Again, the irreversible case is accommodated by setting Kb to zero.

The reversible case gives rise to the same equation as for higher n as in
(6.44) and thus to the system
[
dO

(
1 + 1

a′
O,1

)
dR

(
1 + 1

a′
R,1

)
1 − exp(p′)

] [
C ′

O,0
C ′

R,0

]
=

[
dO

b′O,1
a′

O,1
+ dR

b′R,1
a′

R,1

0

]
. (6.53)

6.4 Two Species with Coupled Reactions. U-V

Up to this point, the treatments have involved reactions for which the discrete
form of the reaction-diffusion equations involve only terms in concentration
of the species to which the discrete equation applies. That is, if there were
two substances involved, O and R as above, then the discrete equation at a
point i had terms only in C ′

O,. for species O, and only C ′
R,. for species R.

This made it possible to use the Thomas algorithm to reduce a system like
(6.27) to (6.28), treating the two species’ systems separately. They then get
coupled through the boundary conditions.

When homogeneous reactions take place, it often happens that some of
the discrete equations contain terms in concentration for more than the one
species, and it is then not generally possible to use the Thomas algorithm to
reduce the systems. These systems are said to be coupled. An example will
illustrate this situation.

6.4 Two Species with Coupled Reactions. U-V 95

Consider the catalytic or EC′ reaction pair as described in Sect. 2.4,
page 23, (2.76). For generality, the species designations A and B are now
written as O and R, and the reaction pair then is

O + e− ⇔ R

R → O .
(6.54)

The derivation of the discrete equations corresponding to this reaction pair
will be given in Chap. 8 and it will suffice here to provide the general form
they will take:

C ′
O,i−1 + aO,1(i)C ′

O,i + ak(i)C ′
R,i + aO,2(i)C ′

O,i+1 = bO,i

C ′
R,i−1 + (aR,1(i) − ak(i))C ′

R,i + aR,2(i)C ′
R,i+1 = bR,i . (6.55)

The coefficients a.,1(i) and a.,2(i) arise from the particular spatial approxi-
mation of the second derivative, while the ak(i) come from the homogeneous
chemical reaction rate, as will be described in Chap. 8.

It will always be the case that the extra term, as seen here in the first
equation for species O, lies at index i only. As stated above, it is not generally
possible to start at the outer limit for X and reduce these two equations to
fewer unknowns, as with uncoupled cases. In fact, in this particular case, this
can be done, using a slightly complicated trick but this will not be dealt with
here.

There are the usual boundary conditions depending on the experiment
performed on this system. One possible way to handle all this is simply to
write out the whole system as a large linear system, expand that to include
the boundary conditions, and solve. This, “brute force” approach (see below),
has in fact been used [138] and can even be reasonably efficient if the number
of equations is kept low, by use, for example, of unequal intervals, described
in Chap. 7. If the equations in such a system are arranged in the order as
above (6.55), it will be found that it is tightly banded, except for the first
two rows for the boundary conditions, which may have a number of entries
up to the number n used for the current approximation.

A better alternative approach is what will be called the Rudolph method
[476], after the person who introduced it into electrochemical simulation.
It was known before 1991 under various names, notably block-tridiagonal
[280, 412, 470, 471, 528, 570]. This comes from the fact that if one lumps the
large matrix into a matrix of smaller matrices and vectors, the result is a
tridiagonal system that is amenable to more efficient methods of solution. In
the present context, we define some vectors

C ′
x ≡

[
C ′

O,x

C ′
R,x

]
(6.56)

where x can be i − 1, i or i + 1. The equation pair (6.55) can be partitioned
into three vertical slices involving such vectors, and then rewritten in the
matrix-vector form,

96 6 Boundary Conditions

C′
i−1 + AiC

′
i + a2C

′
i+1 = Bi (6.57)

in which we have another vector and two matrices for the coefficients:

Bi ≡
[
bO,i

bR,i

]
, (6.58)

Ai ≡
[
aO,1(i) ak(i)

0 aR,1(i) − ak(i)

]
, (6.59)

and

a2(i) ≡
[
aO,2(i) 0

0 aR,2(i)

]
. (6.60)

The point of this exercise is that (6.57) now is very like the previous single-
species (6.2), except that it involves concentration vectors and coefficient
vectors and matrices, rather than all scalars as in (6.2). In Chap. 8, details
will be given on how this equation can be reduced to two terms; suffice it to
say here that the process is analogous to that for a single species, making use
of the Nth equation containing the outer boundary vector CN+1. The result
is that the system (6.57) is replaced by a new reduced system, the first few
equations of which are

C′
0 + A′

1C
′
1 = B′

1

C′
1 + A′

2C
′
2 = B′

2 , (6.61)

C′
2 + A′

3C
′
3 = B′

3

. . .

very similar in form to the system (6.3). Not surprisingly, the u-v device used
for the single-species case can be devised for the matrix-vector case, and will
be called the U-V device. It turns out that U becomes a vector and V a
matrix. We start by defining starting values:

U0 =
[
0
0

]
(6.62)

and

V 0 =
[
1 0
0 1

]
(6.63)

which clearly allows the tautological statement analogous to (6.15),

C′
0 = U0 + V 0C

′
0 . (6.64)

Looking at (6.62), first line, we can, analogously to (6.6), write the vector
C′

1 as a linear function of C′
0, that is,

C′
1 = A′−1B′

1 − A′−1C′
0 (6.65)

6.4 Two Species with Coupled Reactions. U-V 97

which is then rewritten as

C′
1 = U1 + V 1C

′
0 (6.66)

with obvious definitions for the U1 and V 1, in view of (6.65) and (6.64).
This process can be repeated for indices i equal to 2, 3, . . . , and the general
recursive formulae for the U and V are as follows:

U i = A′−1 (B′
i − U i−1) (6.67)

and
V i = −A′−1V i−1 . (6.68)

The process (which, as will be seen and already seen in the uncoupled case
of the u-v device above) needs to be carried forward only to i = n − 1. It
yields n − 1 equations

C ′
i = U i + V iC

′
0 (6.69)

which can finally be used for the boundary conditions.
We are still dealing with two species as in the uncoupled case and the

same boundary conditions apply; they are reformulated in the present matrix-
vector form here. As noted above, there is a common condition for all ex-
periments, the flux condition (6.30), generalised to include the normalised
diffusion coefficients, to the gradient condition (6.32), and we now write out
its discrete form fully, pairing the two species’ terms for each spatial index:

dOβ0C
′
O,0 + dRβ0C

′
R,0 + · · · + dOβn−1C

′
O,n−1 + dRβn−1C

′
R,n−1 = 0 (6.70)

and invoking vector notation, writing C ′
i for [C ′

O,i C ′
R,i]

T , this becomes

β0[dO dR]C ′
0 + β1[dO dR]C ′

1 + · · · + βn−1[dO dR]C ′
n−1 = 0 (6.71)

which will be one of the two equations needed for all cases. It will be combined
with the particular equations for the cases Cottrell, quasi/irreversible and
controlled current.

For the simple Cottrell case, we have

C ′
O,0 = 0 (6.72)

and, for convenience in what follows, this is expanded to include the other
species,

C ′
O,0 +

(
0 · C ′

R,0
)

= 0 (6.73)

or
β0[1 0]C ′

0 = 0 (6.74)

in vector form (multiplying by β0 for convenience). At the risk of repetition
but in order to make the next step clear, this equation is now paired with
(6.71):

98 6 Boundary Conditions

β0[1 0]C ′
0 = 0

β0[dO dR]C ′
0 +β1[dO dR]C ′

1 + . . . +βn−1[dO dR]C ′
n−1 = 0

and these can be combined in one vector-matrix equation,

β0

[
1 0

dO dR

]
C ′

0 + β1

[
0 0

dO dR

]
C ′

1 + · · · + βn−1

[
0 0

dO dR

]
C ′

n−1 = 0 . (6.75)

This is now written in the more general form,

β0M0C
′
0 + β1M1C

′
1 + · · · + βn−1Mn−1C

′
n−1 = 0 (6.76)

with

M0 = β0

[
1 0

dO dR

]
(6.77)

and

M i = βi

[
0 0

dO dR

]
(6.78)

for all 0 < i < n. This equation contains the vectors C′
i, and we can now

apply the U-V relations (6.69) to put it all in terms of the one unknown
vector C′

0,

β0M0 (U0 + V 0C
′
0) + · · · + βn−1Mn−1 (Un−1 + V n−1C

′
0) = 0 (6.79)

and, defining the matrices

P ≡
n−1∑
i=0

βiM iV i , (6.80)

Q ≡ −
n−1∑
i=0

βiM iU i , (6.81)

(6.79) then becomes
PC ′

0 = Q (6.82)

which can readily be solved for the boundary values.
It will be seen that the equation always takes this form except for constant

current and in that case, only a slightly different one. The differences lie in
the definitions of the M matrices.

For the reversible case, apart from the flux condition, there is the Nernst
equation, previously shown to be

C ′
O,0 − exp(p′)C ′

R,0 = 0 (6.83)

now written as
[1 − exp(p′)] C ′

0 = 0 (6.84)

6.4 Two Species with Coupled Reactions. U-V 99

which is combined with the flux (6.71). This time the two equations are not
presented, because they follow the above pattern for the Cottrell case, ending
with the same (6.82), with P and Q generated as sums as in (6.80) and (6.81),
the difference being in the first M , here given by

M0 = β0

[
1 exp(p′)

dO dR

]
(6.85)

and the other M i exactly as in (6.78).
For the quasireversible case, the flux condition is combined with the

Butler-Volmer equation, as given above in (6.39), (6.40) and (6.41), the latter
now to be written in long-hand as

β0C
′
O,0 + β1C

′
O,1 + · · · + βn−1C

′
O,n−1 =

KfH

d0
C ′

O,0 −
KbH

dR
C ′

R,0 (6.86)

and collecting terms, again pairing the two boundary values,

β0

[(
1 − KfH

dOβ0

)
C ′

O,0 +
KbH

d0β0
C ′

R,0

]
+β1C

′
O,1+· · ·+βn−1C

′
O,n−1 = 0 (6.87)

which leads again to the same equations, with the only difference here lying
in M0, now given by

M0 =

[(
1 − Kf H

dOβ0

)
KbH
dOβ0

dO dR

]
(6.88)

and again, the other M i as in (6.78).
The totally irreversible case is again obtained by setting Kb to zero in the

above equations.
This leaves the controlled current case. As noted above (Sect. 6.3), it is

the current, not the gradient, that is controlled, so the equation is

G =
d0

H

n−1∑
i=0

βiC
′
O,i (6.89)

where G is the dimensionless current imposed. So, expanding the sum, work-
ing in the (zero-weighted) terms in C ′

R,i and going straight into the vector
notation, this becomes

β0 [1 0]C ′
0 + β1 [1 0]C ′

1 · · · + βn−1 [1 0] C ′
n−1 = GH/d0 (6.90)

and we note that this differs from all the equations up til now in this section,
in that the right-hand side is not zero. Combined with the inevitable flux
condition (6.71), this yields the slightly different matrix/vector equation

PC ′
0 =

[
GH
d0

0

]
+ Q (6.91)

again readily solved.

100 6 Boundary Conditions

6.5 Brute Force

In the last two sections, we have applied increasingly tricky devices to solve
what amounts to systems of equations, in order to make their solution effi-
cient. Even the two-species uncoupled case involved the generation of the u
and v vectors and the solution of small (2×2) systems to obtain the boundary
values. In the case of coupled systems, the problems mount and matrix-vector
equations had to be used.

One might ask, is all this necessary? It is not. In the next chapter, unequal
intervals are described, and these make it possible to reduce the number of
points N in space to quite reasonably small values. Whereas with equal in-
tervals we might need some hundreds of sample points along X, with unequal
intervals we can make do with as few as 15 or so. This means that systems
such as (6.2) have only as few equations as that or, with two species involved,
twice that many (not counting the boundary equations for the moment). The
full systems are strongly banded if the equations are ordered suitably, and
this banding invites the use of more efficient methods of solution, but if com-
puters can do it fast enough by simply solving the whole system without
regard to the bandedness, tricks might not be needed. All we then need to
do is to add the equations for the boundary conditions (that is, include the
C ′

0 variables in the system) and call a matrix solver for the solution. This
was mentioned by Rudolph [477] but at the time considered “prohibitively
expensive” in computer time. Meanwhile, however, computers have become
much faster and the idea has been investigated [138] and found, in some cases,
to be about as good as the tricky methods and in some cases even better.
As well, there are some reasonably simple methods of varying complexity to
make such whole-system solutions more efficient. These will be mentioned
below. First, a more concrete description of what is meant is presented here.

A simple example would be the single-species case and Cottrell. Then,
the system (6.2) would be augmented by adding, at the top, the Cottrell
condition C ′

0 = 0 and the matrix equation is

1 0 . . .
1 a1(1) a2(1) 0 . . .
0 1 a1(2) a2(2) 0 . . .

. . .
. . .

1 a1(N−1) a2(N−1)

1 a1(N)

C′
0

C′
1

C′
2

...
C′

N−1

C′
N

=

0
b1

b2

...
bN−1

bN − a2(N)C′
N+1

(6.92)

where the known outer boundary term, C ′
N+1 has been carried over to the

vector of knowns. This is a trivial example but serves to explain the idea.
It is in fact a tridiagonal system, amenable to the Thomas algorithm to
be described in Chap. 8. Extension to the other more complicated cases is
obvious, except where there are two species, when the optimal order of the
unknowns vector C′ is to pair the terms for the two species, that is,

6.6 A General Formalism 101

C ′ ≡
[
C ′

O,0 C ′
R,0 C ′

O,1 C ′
R,1 . . . C ′

O,N C ′
R,N

]T (6.93)

which ensures tight banding.
Extension to the other less trivial cases appears straightforward. Most

boundary conditions will put up to 2n elements into the first and second
rows. For those cases involving coupled equations, the rows after the second
will contain five elements. It can be seen from the first row of (6.55), that
there needs to be a zero inserted after the C ′

O,i−1, for the nonexistent C ′
R,i−1,

but not a similar insertion after the last element, or a total of five. Thus, if
one eliminates the excess elements in the first two rows, one can then use a
solver for pentadiagonal systems, which is also quite feasible.

6.6 A General Formalism

Sometimes, when trying out a new method when efficiency is not (initially)
of highest priority, or when doing a stability study, it can be of advantage to
have a general formula for all possible boundary conditions. An early use of
such a formula is seen in [472], and the formula is also seen in some texts such
as [528]. In the electrochemical context, it has been presented a few times in
recent years [116,152,529]. The formula is given in the form of [116]

g + rc0 − d

(
∂c(0, t)
∂x

)
= 0 . (6.94)

The constants g, r and d can take on various values to express any given
boundary condition. Thus, if we set g = d = 0, we are left with c0 = 0,
the Dirichlet (Cottrell) condition; if we set r = 0 and d = 1, we have the
Neumann or controlled current condition; and setting g = 0 gives us Robin
conditions. The constant r expresses the heterogeneous rate constant (this
formula only considers a single species, so an irreversible reaction is implied).

The Cottrell case is simple, and needs no further comment. The other
two cases can be usefully expressed in a different manner. The derivative is
expressed as the n-point approximation, giving

g + rc0 − d

n−1∑
i=0

βici = 0 (6.95)

or, removing the c0 element from the sum,

g + (r − dβ0) c0 − d

n−1∑
i=1

βici = 0 (6.96)

giving

102 6 Boundary Conditions

c0 =

d

n−1∑
i=1

βici − g

r − dβ0
(6.97)

and dividing by −β0 and setting d = 1,

c0 =
−b

β0

{
n−1∑
i=1

βici − g

}
(6.98)

with

b =
(

1 − r

β0

)−1

. (6.99)

The convenient thing here is that we now have the whole spectrum of con-
ditions from a very fast reaction (b = 0, implying r → ∞), through medium
fast reactions (medium values of b and thus r) to the controlled current case
(b = 1). The first case also encompasses the Cottrell case.

7 Unequal Intervals

In the preceding chapters, a grid with equal intervals in both time and space
was assumed (Fig. 1.1, page 3). There are several reasons for deviating from
equal space intervals. Firstly, one wants both to minimise the number of
points over the concentration profile and, at the same time, to have close
spacing near the electrode. Secondly, in some simulations – but not always –
there arise sharp concentration changes somewhere in the diffusion space,
usually adjacent to the electrode. One then wants to have close spacing in
such regions in order to be able to simulate concentration changes at all.
This points to adaptive techniques; but first the simpler fixed unequal grid
techniques will be dealt with.

In this chapter, only one-dimensional unequal intervals will be described.
Mapping techniques for two-dimensional simulations are left to Chap. 12.

Consider Fig. 2.4 on p.16, showing the concentration profile for a Cottrell
simulation at different times. It is clear that especially the profiles at small T
values are strongly compressed near the electrode, and that equal intervals in
X would be wasteful at larger X. An unequal spacing of the intervals could
not only provide more detail near the electrode where it is needed, but also
make do with fewer points by wide spacing far away from the electrode. So
some kind of grid stretching is indicated on this account.

If there are homogeneous chemical reactions, they may give rise to reac-
tion layers that can, for high reaction rates, be very thin. In order to get
reasonable simulation results, at least a few points are needed within that
layer. If equal intervals in X are used, this means using a very large value
of N and correspondingly long computation times. With unequal intervals,
fewer points will do. One needs to have an idea of the thickness, µ∗, defined
on page 24 (2.80), and set the position of the points accordingly, as described
in the following sections.

There are several approaches to implementing grid stretching. The two
competing approaches are (1) the direct application of a stretched grid, dis-
cretising directly on that unequal grid, and (2) the transformation of the
equation to new coordinates and using equal intervals there. There is a
wealth of literature on this subject. Noye [422], and Hunter and Jones [312]
recommend transformation, as does an early study by Crowder and Dalton
[186]. The much cited comparison by Kalnay de Rivas [328] reached the same

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 103–117 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

104 7 Unequal Intervals

conclusion. However, Rudolph [478] showed conclusively that, under the con-
ditions of electrochemical simulations at least, the situation is the reverse. He
showed that both the current approximation as well as the second, spatial,
derivative as computed directly from an unequally spaced grid, are more ac-
curate than those computed from a transformed grid with equal intervals. The
reason for the better performance of direct discretisation appears to be that
concentration profiles tend to be close to linear near the electrode, so that
the current approximation can be calculated quite well with only a few points
(Rudolph always uses just two), whereas in the transformed space (see below,
Sect. 7.1), the profile becomes curved near the electrode and more points are
needed for a good approximation. Exactly why the second, spatial, deriva-
tive is also more accurate when calculated directly, is not clear. Numerical
experiments performed by the present author show that, for several different
(artificial) profile functions, including the realistic one of erf(x), which often
resembles real concentration profiles, the second derivative calculated on the
transformed grid is poor, especially near the electrode, where accurate values
are most needed. Direct calculation on the unequal grid yields roughly the
same accuracy right across the profile.

As well, it will be seen that the formulation of the second spatial derivative
on a general grid, spaced in some unspecified way, is rather flexible and
permits easy replacement, in a given program, of the stretching function
used including, if one desires, equal spacing, or even arbitrary placement of
each point.

7.1 Transformation

Transformation for electrochemical work was proposed in the now classic
paper by Joslin and Pletcher [321]. They described a transformation, say
from X to Y , such that equal intervals in Y are a mapping of (correspond
to) unequal intervals in X. The aim is to find a transformation function which
produces in Y -space a concentration profile that resembles a straight line as
much as possible.

The general treatment is as described by Joslin and Pletcher [321]. As-
sume an arbitrary transformation function, f(X) mapping points in X onto
the new axis Y and its inverse, g(Y). Then the right-hand diffusion term in
the diffusion equation, ∂2C

∂X2 becomes, by the rules of elementary calculus,

∂

∂X

(
∂C

∂X

)
=

1
g′(Y)

∂

∂Y

(
1

g′(Y)
∂C

∂Y

)
. (7.1)

This can be expanded further to

∂

∂X

(
∂C

∂X

)
=

1
g′(Y)

(
1

g′(Y)
∂2C

∂Y 2 +
(

∂

∂Y

(
1

g′(Y)

))
∂C

∂Y

)
. (7.2)

7.1 Transformation 105

The work of Feldberg [231] indirectly provides a useful transformation
function, that has some convenient properties. The function is

f(X) = Y = ln(1 + aX) (7.3)

where a is an adjustable parameter. Inserting this into (7.2), recognising that

g(Y) = (eY − 1)/a and thus g′(Y) = eY /a , (7.4)

the new dimensionless diffusion equation in Y -space is then

∂C

∂T
= a2e−2Y

(
∂2C

∂Y 2 − ∂C

∂Y

)
. (7.5)

Note that if the original equation to be solved contains homogeneous chemical
terms, these do not change upon transforming the equation, since they give
rise to additional terms not involving X or Y .

The transformation function (7.3) is mathematically (approximately)
equivalent to the Feldberg stretching function (7.16), as is shown in
Appendix B, where the relation between the respective adjustable parameters
is given.

The gradient G is conveniently calculated on the grid in Y , and it is easy
to show that this is simply

G =
∂C

∂X

∣∣∣∣
X=0

= a
∂C

∂Y

∣∣∣∣
Y =0

(7.6)

which seems very convenient, requiring only a call to the routine that evalu-
ates the G function in Y -space and a multiplication by the parameter a. The
problem, as Rudolph showed [478], is that this yields a poor G-value, unless
a large n is used (6 or even 7). This is not a bad thing in itself, as we have
functions for G that we can simply call. However, derivative boundary con-
ditions involving many points become messy. Rudolph uses just two points,
arguing that if the first point is sufficiently close to the electrode, as it is
with severe stretching, two points are good enough, and this simplifies the
discretisation of the boundary conditions a lot. There are some arguments for
using n = 3; Bieniasz [95,100] points out that if a second-order second spatial
derivative is used for the simulation, then a matching second-order (3-point)
G-approximation is best. On the other hand, the second spatial derivative
directly discretised on an unequal grid is in fact a first-order approximation,
arguing for Rudolph’s two-point G. This will be a matter of individual choice.

7.1.1 Discretising the Transformed Equation

Transformation (7.3) leads to the new diffusion (7.5) in Y -space. Although it
is fairly obvious how the new right-hand side is discretised, for completeness,
this will be described here.

106 7 Unequal Intervals

Instead of a number of sample points in X, we now have a number of
equally spaced points along the new coordinate Y with a spacing of δY .
Without considering which simulation algorithm is to be used, we discretise
the new (7.5) at the point Yi as follows:

δCi ≈ δTa2 exp(−2Yi)
(

Ci−1 − 2Ci + Ci+1

δY 2 − Ci+1 − Ci−1

2δY

)
(7.7)

and given that Yi = i δY , this rearranges to

δCi ≈ λi

((
1 + 1

2δY
)
Ci−1 − 2Ci +

(
1 − 1

2δY
)
Ci+1

)
(7.8)

with λi defined as

λi = a2 exp(−2iδY)
δT

δY 2 . (7.9)

The coefficients in the right-hand term in brackets in (7.8) can be precom-
puted, as can the row of λi values. Further details of how all this is imple-
mented are given in Chap. 8 for the respective simulation algorithms.

As mentioned above, Rudolph [478] pointed out that this discretisation
yields very poor values and ultimately to poor simulation performance, com-
pared to direct discretisation on an uneven grid, see below. Tests show that
particularly at small X values, near the electrode where the greatest changes
occur, the second spatial derivatives as seen in (7.7) are approximated very
poorly. Rudolph [479,480] and Bieniasz [107] showed that if what we might
call the semi-transformed (7.1) is used, rather than the fully transformed
equation, this problem is eliminated. Doing this in a consistent manner, and
assuming general transformation functions f(X) and g(Y), we can write for
the ith point the approximation

1
g′(Y)

∂

∂Y

(
1

g′(Y)
∂C

∂Y

)
≈ 1

g′(Y)
1

δY

 Ci+1 − Ci

g′
(

Y
i+1

2

)
δY

− Ci − Ci−1

g′
(

Y
i−1

2

)
δY

 .

(7.10)
Using the transformation (7.3) and thus substituting for g′(Y) as given in
(7.4) at the indices given and rearranging a little, this becomes

δCi ≈ λi

(
exp
(
− 1

2δY
)
(Ci+1 − Ci) − exp

(1
2δY

)
(Ci − Ci−1)

)
(7.11)

with λi as defined above (7.9). Some tests indicate that this is a much bet-
ter approximation, giving derivatives of roughly the same accuracy over the
whole X-range. The accuracy is comparable to that of direct discretisation
on the uneven grid, described below. Incorporation into the whole diffusion
equation, as was done for the completely transformed diffusion equation in
(7.8), is obvious from here on.

7.2 Direct Application of an Arbitrary Grid 107

7.1.2 The Choice of Parameters

We have seen from the above that, in some way or other, we choose the value
of H1 = X1. We also have a maximum value XL along X, which depends
on the experiment. Using (7.3), these two values provide the two equivalent
values in Y -space. The Y -value corresponding to X1 is also the interval in Y ,
as these are all equal. The equations are

δY = ln(1 + aX1) (7.12)

and
YN = ln(1 + aXL) (7.13)

which set the number of intervals in Y ,

N = YN/δY (7.14)

(rounded up, thus correcting YN slightly). Knowing X1, there are then two
parameters to be determined, a and N . These are dependent on each other,
so the choice of one sets the other.

The easy alternative is to set a. One develops a feeling for what value
might be a good one. Having set this value and knowing that of XL, the
above (7.12) . . . (7.14) yield N .

Alternatively, one might want to set X1 and N and find an a value that
provides these. This is a little harder. Substituting for YN from (7.14) in
(7.12) and combining (7.13) with the result, we obtain the function

f(a) = N ln(1 + aX1) − ln(1 + aXL) (7.15)

which can be solved for that a which gives f(a) = 0. This needs to be done
numerically. There are two solutions. The trivial (and unwanted) solution is
a = 0. What makes the calculation rather easy is the fact that we do not
need a very accurate value for the a parameter. So a rough binary search will
very quickly find a suitable value (see such elementary texts on numerical
computing as [163,266,452]). A binary search will be found better here than
the generally more efficient Newton method, which can point in the wrong
direction and converge on the trivial solution, or lead to numerical problems
(negative arguments to the log function).

Lastly, it is possible also to set a, XL and N , and to use them to find δY
and thereby X1. If it is done on a calculator beforehand, one sees what value
results, before committing the chosen parameters to a simulation run.

7.2 Direct Application of an Arbitrary Grid

A stretched stack of boxes was used by Feldberg [231] for the box-method, to
be described in Chap. 9. Pao and Dougherty [433] developed the same idea

108 7 Unequal Intervals

(and stretching function) in 1969, in the context of fluid dynamic simulations.
This is the simple placement of points at increasing intervals, in some suitable
point distribution or stretching function, and discretisation of the second
derivative of concentration along X on that unequal grid.

There are various ways of specifying the stretched point placement. The
current favourite appears to be the exponentially expanding sequence of
Feldberg [232], in which there essentially is a sequence of intervals H along
X,

Hi = Hi−1 γ (7.16)

or
Hi = H1γ

i−1 (7.17)

starting at some chosen H1 and choosing the stretching parameter γ suitably.
In Feldberg’s case, the points thus generated are in fact box walls, but one
could equally well use them with the point method as concentration nodes.
Also, Feldberg uses a slightly different notation, setting not the γ used here,
but the related parameter β = ln(γ). The value of γ is chosen such that H1
is rather small, but the number of points in the diffusion region is also rather
small. While with equal intervals, some hundreds of points might be needed,
a suitable choice of γ (for example, 1.2–1.5) can reduce their number to 10–20
(Feldberg suggests a β range 0 . . . 0.5).

As will be seen below, the way stretched intervals are used here is that a
set of positions in X are specified. We must therefore convert the intervals
formula above (7.17) to one in terms of X. For any N > 0,

XN = H1

N∑
k=1

γk−1 = H1

N−1∑
k=0

γk (7.18)

and this is readily summed to give the expression

XN = H1
γN − 1
γ − 1

(7.19)

which is also the expression seen in Feldberg [231], albeit in terms of β.
The drawback of this point sequence (and most others except a sequence

of equal intervals) is that the approximation to the second derivative with
respect to X is then a first-order approximation, as was mentioned in Chap. 3,
Sect. 3.8. The use of more than three points is thus indicated, and such
approximations are described in Chaps. 3 and 9, and some formulas are given
in Appendix A.

There is one unequal sequence of points for which the second derivative,
when applied directly to the points, retains the second-order nature of an
even point spacing. This was found by Sundqvist and Veronis [537] in 1970.
Their stretching function was

Hi = Hi−1(1 + αHi−1) . (7.20)

7.2 Direct Application of an Arbitrary Grid 109

In the original form, the α factor was effectively normalised by dividing by the
total extension XL of the diffusion space. In the present context, a suitable
normalisation might be division by H1, giving

Hi = Hi−1(1 + αHi−1/H1) . (7.21)

Then, this function will yield sequences somewhat similar to exponentially
expanding sequences, by taking α equal to something like 1

2 (γ − 1). This
sequence has not become popular (perhaps because it has escaped notice). It
might, however, be a useful alternative.

Interestingly, Saul’yev mentions [496, p. 149] a private communication
from A. A. Samarskii, who found precisely the same relation (7.20) and that
it permits second-order approximations to the three-point second derivative.

A comparison of the two functions discussed here is shown in Fig. 7.1,
presenting the distribution out to about X = 6 for the exponential sequence
(7.16) for γ = 1.5, and the S&V sequence (7.21) for α = 0.2. Both were
started with a first interval H1 of 0.05. The exponential sequence gives 10
points, ending at X = 5.67 and the other sequence gives 9 points ending at
X = 6.36. It is seen that the S&V sequence gives a more drastic unevenness
in the spacing. Preliminary numerical experiments by the present author
indicate that the second spatial derivatives on the S&V sequence are indeed
mostly very accurate, but decline in accuracy at large X. In two comparison
programs, one using the exponentially expanding and the other the S&V
sequence, both starting with a base interval of 0.01 and using 50 points in
the X range 0-6 and discretising directly, a Cottrell simulation using 100 steps
in time each of length 0.01, the exponentially expanding sequence showed an
error in the final current at T = 1 of about 10−3 (relative), whereas the S&V
sequence’s error was 10−2. So, it appears that this points sequence might not
be so good.

Fig. 7.1. Points spaced unequally with the two functions

There is an inherently stretched grid implementation in the simulation
technique called orthogonal collocation, to be discussed in Chap. 9. It will be
seen that this can be extremely efficient but it suffers, as all fixed stretched
grids do, from inflexibility, as is noted in general in Sect. 7.3.

An interesting special case, mentioned in Chap. 3, is that of the second
derivative on four points, u′′

2(4). For arbitrarily (unequally) spaced points,
this is a second-order accurate approximation and, as described in Chap. 9,
it has some advantages. It allows the use of an efficient extended Thomas
algorithm, rather than a pentadiagonal solver or a sparse solver required if

110 7 Unequal Intervals

more than four points are used for the approximation. There is one special
case of this approximation, γ =

√
2, that is interesting in that it yields a

third-order approximation, as found by Mart́ınez-Ortiz [385]. That author
also derived some conveniently compact specific approximation formulae for
the exponentially expanding grid, for most cases of interest, obviating the
need for a numerical computation of the approximation coefficients. The value√

2 may appear a little large but if only a few points and a very small first
interval are wanted, it might be useful. One would then have to find the first
interval that satisfies the γ value and the desired number of points in the
space region, and this can be done by simple application of (7.19). As an
example, if we want N = 14 and Xlim = 6, this makes H1 = 0.0032615.

7.2.1 Choice of Parameters

For any point sequence and a given stretching function, there are several pa-
rameters to choose. One is always N , the number of points along the profile.
The others are the length of the first interval H1 or (the same thing) the po-
sition of the first point next to the electrode X1. This might then determine
the function parameter. There are situations where setting X1 is desirable;
for example, in order to achieve a certain desired accuracy in the gradient G.
If this is so, in both cases of the exponentially increasing intervals function
(7.17) and (7.21), the stretching parameter then needs to be searched for by
numerical means. Let the largest X-value be XL, and the number of internal
points be N . We have set the wanted X1. For exponentially expanding inter-
vals (7.17) we then apply (7.19) and seek a γ value that satisfies it. A simple
numerical (for example, binary) search finds γ. An example of such a search
is shown in the function EE_FAC described in Appendix C. Less conveniently,
one might choose X1 and γ, and find out what N then becomes, by a simple
calculation. This is deemed less likely because one would usually want to have
control over the N value.

7.3 Concluding Remarks on Unequal Spatial Intervals

The question arises of how low an N value it is possible to work with and
still get good results. The simulation package DigiSim due to Rudolph and
Feldberg [482] routinely uses as few as 14 and is able to achieve sufficient
accuracy in the current. This depends on one’s definition of “sufficient”. If
0.1% accuracy is wanted, about 40 points in space might be optimal.

Clearly also, in order to choose a suitable set of parameters, one must
know the requirements before the simulation. If some homogeneous rate con-
stant changes during a series of program runs (for example one in which such
a rate constant is searched for), then the grid parameters should change. This
makes adaptive grids more useful. These are described below.

7.4 Unequal Time Intervals 111

As for the choice between direct discretisation on an arbitrarily spaced
grid or the formulae for the semi-transformed or the transformed diffusion
equation, the present author now inclines towards the first of these. Formulae
for the derivatives on arbitrarily spaced points are given in Chap. 3 and Ap-
pendix A, and the general subroutine U_DERIV is referred to in Appendix C.

7.4 Unequal Time Intervals

Just as space can be divided into unequally spaced intervals, so might time
also be unevenly divided. As with spatial intervals, there is the choice between
discretising on an uneven time grid or using a transformation to a new time
scale. Since, except for BDF methods, one usually differentiates with respect
to time using only two time points (levels), transformation does not make
sense here.

Unequal time intervals are especially appropriate in the simulation of
pulse experiments or, in fact, any experiments in which there are potential or
current jumps away from T = 0. Initial steps in this direction were taken by
Flanagan et al. [248], Dillard et al. [212] and Nikolić [419], who used two
different time intervals: largish intervals when the current does not change
much, and finer intervals (1/100 to 1/9 as large) just after a pulse. Seeber
and Stefani [501] used a rather complicated scheme, in which they used
expanding intervals in space and direct discretisation on that grid; and in
recognition of the fact that, far away from the electrode, the larger space
intervals also made larger time intervals possible there, used that as well.
This seems rather awkward to keep track of. Klymenko et al. [340] combined
equally divided Pearson steps with exponentially expanding time steps in a
simulation of double potential step chronoamperometry.

The following is often used. We choose exponentially increasing time in-
tervals over some period τ , which may be the total simulation period, a pulse
duration or (see below) a single whole time interval to be subdivided. The
period is divided into M intervals of length δtk, k = 1, . . . ,M . Assume the
recursive relation

δtk = γ δtk−1 (7.22)

and
M∑

k=1

δtk = τ (7.23)

(note that these equations are of the same form as (7.16) and (7.17)). Peace-
man and Rachford [436] used the technique for the first time in 1955, in
their classical paper describing the method of alternating directions implicit
method (ADI, Chap. 12). Lavaghini et al. [355], and later Feldberg and
Goldstein [236] as well as Svir and coworkers [340,538,540,542], used expo-
nentially expanding time intervals in electrochemistry.

112 7 Unequal Intervals

There is no problem with varying time intervals with two-level simulation
methods, but with a method like BDF, there is the problem that one needs
multipoint time derivatives calculated from unequally spaced points in time.
Feldberg and Goldstein [236] show how to do this and even show how to apply
the Feldbergian correction of half a time interval in this case, that becomes
necessary when using the simple start for BDF, described in Chap. 4 (see
also the consistency proof for this procedure in Appendix B).

7.4.1 Implementation of Exponentially Increasing Time Intervals

A special case of exponentially increasing intervals, applied only to the sub-
division of the first time interval, was suggested by Mocak et al. [402]
and used by Britz and Østerby [148]. It is interval doubling, or the case
γ = 2. In [148], the sequence for M such steps was the sequence of fractions
2−M+1, 2−M+1, 2−M+2, 2−M+3, . . . , 1

2 . In other words, the smallest fraction
was applied twice. The general formula using (7.22) and (7.23) is implemented
in a different way. This was done in a recent paper [149], using subdivision
of the first time interval, in order to damp the oscillations often produced
by the Crank-Nicolson method (Chap. 8). The form of the equations for the
required parameters (M , γ, size of the first subinterval) is exactly like that
for exponentially increasing spatial intervals, (7.16)–(7.19).

7.5 Adaptive Interval Changes

The most flexible strategy is to adapt intervals, in space or in time, accord-
ing to the need at any particular time during the simulation. Ablow and
Schechter refer to campylotropic or curvature-seeking coordinates [27]. It was
noted above that fixed unequal spatial intervals might not be suitable if, for
example, a reaction layer becomes too thin even for the first few intervals to
lie within it. Worse still, the method described above, in which points are
most closely spaced near the electrode, cannot accommodate sharp changes
in concentration changes that occur away from the electrode, as can indeed
happen. Bieniasz [97] has described a system involving a second-order homo-
geneous chemical reaction, in which a sharp concentration peak appears in
the solution for one of the species. Only adaptive techniques can handle this
situation. We distinguish between adaptation of spatial and temporal inter-
vals. There is a vast numerical literature on this topic, and just some selected
citations are given here. Bieniasz wrote a series of articles in which he intro-
duced the idea to electrochemical simulations. In [93, 95], he described the
use of a fixed number of grid points, moved about as required. He then [97]
applied this to a concentration hump as mentioned above. Bieniasz later
turned to a different technique [101] which starts with a coarse but evenly
spaced grid, to which new points are added (and perhaps removed again later)

7.5 Adaptive Interval Changes 113

midway between existing points, as required. He also applied time-step adap-
tation [96]. Nann and Heinze [407,408] meanwhile developed a finite element
method in which points (nodes) are added where needed, an idea carried
forward, refined and applied to two-dimensional systems by Harriman et
al. [287, 288, 289, 290, 291]. Time step adaptation, a standard in the litera-
ture on odes (see such texts as [130, 284]), was first applied by Bieniasz [96]
to electrochemical simulation (see below). All the references cited here include
citations of the important works within the larger numerical literature.

7.5.1 Spatial Interval Adaptation

The single reference to Thompson’s survey [547] must suffice to represent the
numerical literature, and the references in the papers of Bieniasz [93, 95, 97,
101] provide further background.

Bieniasz began his series with an exploration of moving grids [93,95], us-
ing a fixed number of points. As a given simulation develops, the program
determines whether the spacing needs to be closer or wider across the con-
centration profile, in a preliminary forward step, and then adjusts the point
positions. This is called regridding. The criterion for moving the points is a
sensitive issue, on which there is some disagreement in the literature. The
essence of all schemes is to produce a so-called monitor function [122] or a
function based on it, that in some way resembles the simulated variable’s pro-
file, and then to slice this into equal vertical intervals, producing new points
along X which then, hopefully, place points where they are most needed.
Dorfi et al. [213] suggest using a monitor function such as

M(i) =
√

α + (du/dx)2 (7.24)

at every point i, where u is the variable to be computed. The value of α is
given as unity in older papers such as that of Blom et al. [122], but Bieniasz
found [93,95] that a smaller value like 0.0005 is better in the present context.
This monitor function is now integrated with respect to x to produce the
monitor profile, generally given the symbol ξ:

ξ(x) =

∫ x

0 M(x) dx∫ xL

0 M(x) dx
(7.25)

(note that it is normalised by its value at the outer limit for x, xL, so that it
rises to unity). An algorithm is then applied to it to slice it into equal vertical
intervals and to find the x-positions that correspond to them. The function
(7.24) is also referred to elsewhere [495, 547], to name just a few references.
Blom [122], on the other hand, recommends the use of the second derivative,

M(i) =
√

α + |d2u/dx2|) (7.26)

114 7 Unequal Intervals

and Bieniasz follows this suggestion [93, 95]. The reason is (private commu-
nication, Bieniasz 2001) that the first derivative is not itself of great signifi-
cance, if the second derivative is small in the diffusion equation, so the second
derivative indicates places in the profile where things are changing.

The procedure is then as follows. At a given time, a trial step is taken to
the next time level. This produces a provisional new concentration profile.
From this, the ξ-function (7.25) is generated and from it, a new set of posi-
tions for the points. Now the concentrations are interpolated at these points,
between the present concentration points, and the step to the next time level
repeated on the new set of points.

Let us provide an example. We take a uniform grid of just 20 points in the
range 0 ≤ X ≤ 6 and assume a Cottrell concentration profile at time T = 0.5
shown in Fig. 7.2. This is a little artificial, as one would never carry out such a
drastic regridding, but it will illustrate the method better than what usually
happens (small changes over a given time interval). It amounts to taking a
huge step of 0.5 in T and somehow having obtained a rather accurate new
concentration profile. Against the advice of Blom [122] and Bieniasz [93, 95]
(see below), we compute second derivatives of the profile at all the node
points, using the usual central three-point formula, except at the electrode,
where an asymmetric three-point formula is used (see Sect. 3.8, page 44 and
Appendix A). These are all first-order accurate if the intervals along X are
not equal and we obtain the function M(X) in Fig. 7.2, plotted point to
point. It is integrated to ξ(X) using the trapezium method. Normalisation
is to its final value, at XL = 6. ξ(X), ranging from zero to unity, is now
inverted to X(ξ) and 20 X-values found for it at equal intervals in ξ of
0.05 by interpolation. Blom et al. [122] and Bieniasz [93, 95] cite a paper
by de Boor [195] for this process, but it is in fact not very complicated to
implement using a standard interpolation routine. Now, if one were to go on,
as one normally would, a new concentration profile at the new set of positions

Fig. 7.2. Some profiles derived from a Cottrell profile at T = 0.5

7.5 Adaptive Interval Changes 115

along X at T is computed, again by interpolation. The shift in positions is
indicated in Fig. 7.3 and it is seen that there is now a wide spacing at the
far end, and a crowding of points, not near the electrode but some distance
away from it, where the monitor function is maximum. That is also roughly
where the greatest changes in concentration occur during the next time step;
this supports the argument in favour of the second derivative in the monitor
function. Note that the 20 points here are a rather small number, chosen to
make the figure clearer. Bieniasz normally uses about 50, so that the possibly
excessive spacing at the far end would not be so wide. Also, to some extent
the wide spacing is a result of the large step in time taken in the example.
A second regridding on the new grid shown in these figures does in fact lead
to a smaller gap at large X and this is what one would obtain if a number
of smaller steps had been taken.

Fig. 7.3. Regridding for the Cottrell profile in Fig. 7.2

Some remarks are in order, starting with the purpose of the α term in
(7.26). As mentioned, the numerical literature appears to prefer it to be close
to unity. If one were to set it to zero, one would obtain an unacceptably wide
spacing at parts of the profile where the second derivative is close to zero.
In effect, a finite α value ensures a finite positive gradient of ξ(X) at large
X. If this is not done, the plateau obtained means excessively large intervals
in this region upon regridding. As mentioned, in the work of Bieniasz, a
value of 0.0005 was found optimal. Secondly, there is the question of how to
compute the second derivatives over unevenly spaced points. Blom et al. [122],
followed by Bieniasz [93], used a somewhat awkward method. The first point
monitored (using their method) lies at the middle of the first interval, and the
formula given by Blom et al. [122] is in fact incorrect. Presumably, the second
derivative at X = 0 is assumed zero, which it need not be. In our example, it
was computed as the one-sided three-point approximation at X = 0, which
seems to make more sense. From there on to the far edge, Blom et al. use
four-point expressions, centred on the middle of the mid-interval; however,
their expression again is incorrect, rendering the use of four points useless.
The object was to achieve a better approximation to the derivative, that
might be second-order in the interval lengths in some sense. The expression
was later corrected by Bieniasz [95]. Both teams then use the simple three-
point approximations for the final calculation, presumably in order to avoid
yet further interpolations. It appears that one might as well use three-point
formulas in both phases, as was done in the example above. Alternatively,

116 7 Unequal Intervals

one might use higher-order formulas, especially for the diffusion step, on the
unequal grid, using more than three points, for example five, centered on
existing points. This has not been attempted to date. Such formulae are
provided in Chap. 3; a few cases are also given in Appendix A, and a general
procedure for them is described in Appendix C.

Despite the fact that adaptive gridding seems to work very well (with
some refinements described in [95]), being for example, until recently, the
only method capable of adapting to a narrow concentration hump away from
the electrode [97], Bieniasz has recently concluded [101, 102, 103, 115] that
another method is better. The problems he noted are, among others, the need
to set α to some value, and the problems arising from the approximation to
the second derivative on an unequally spaced grid. The new method is called
patch-adaptive, and works with a continually varying number of points. It is
based on older work in the numerical literature (see [101] for a large number
of citations). One begins with a coarse grid, and does a calculation to the next
time level. This is then repeated on a grid of twice as many points, the new
points placed exactly midway between the first set. This ensures a locally
equal spacing and thus second-order second derivatives. The two solutions
are then used to provide an error estimate. The way this is done depends on
the simulation algorithm. One way might be to use extrapolation, described
in Chap. 9, which can provide an error estimate. At those places along X
where this error exceeds some set value in magnitude, new points are then
placed midway between the existing points, and the calculation repeated. If
there appear sharp gradients in the profile, more and more points will thus be
inserted. All the time, however, one is working (locally) with equally spaced
points and thus second-order second derivatives. The disadvantage is that
one must keep track of a changing number of points along X, as points are
added and perhaps removed later. This requires data structures that are not
trivial to program. It seems to this author, that this renders the method less
interesting to the programming electrochemist. It might be of more interest
to programmers of general simulation packages.

7.5.2 Time Interval Adaptation

Just as sharp changes in the space direction point to changes in spatial in-
tervals, so sharp changes in time demand time interval adaptation. This is in
fact standard procedure in the ode world since the paper by Douglas [214], see
such standard works as [130,284] for example. In electrochemical simulations,
there have been relatively few attempts to do this. The impetus for varying
time intervals comes from two problems. One problem is that of pulse tech-
niques, especially current reversal or potential double pulses. Clearly, there
are sharp changes in concentration profiles at the onset of each pulse. Crude
beginnings of this [212, 248, 419], using alternately larger and smaller time
intervals before and after a pulse, have been mentioned above.

7.5 Adaptive Interval Changes 117

Once again, an adaptive technique might be the universal answer to these
problems, especially since there might be unforeseen changes at various stages
during a simulation, as can happen in linear sweep voltammetry. Such a
scheme has been devised by Bieniasz [96]. Upon first considering this, one
might assume, say, that current changes themselves could be the factor that
decides the length of the next time interval to be used. However, as with
adaptive spatial intervals, this is not as good as using a kind of second deriv-
ative, for similar reasons. If there were changes in concentrations linear in
time, then no matter how large these changes are, large time intervals can be
used; but if the changes are themselves changing (that is, there are significant
second derivatives with time), the intervals must be reduced. The picture is
complicated by the fact that this will mostly be used in conjunction with
adaptive spatial grids, making the second derivatives less straightforward to
express. Bieniasz suggests the use of the following quantity as a kind of mon-
itor function. Assume that a tentative step of δT has been taken on the
present grid, and that a given point indexed i along X has just been moved
by an amount δH; the estimate function EST is then

EST =
δT 2

2
∂2C

∂T 2 + δTδH
∂2C

∂X∂T
+

δH2

2
∂2C

∂X2 (7.27)

where the second derivatives must be discretised by some suitable expression.
The present author regards this as more complicated than the average elec-
trochemist is willing to program, and the method will not be detailed any
further. It did produce impressive results [96] with square wave simulations.

There are some simpler strategies that might do, and are easier to pro-
gram. If an experiment such as double pulse or square wave voltammetry
is simulated, the sharp changes occur at predictable times, and simple se-
quences of time intervals, such as exponentially expanding intervals, can be
satisfactory, repeating the sequence at the onset of each pulse.

If there are unpredictable changes, the answer might be to use a profes-
sionial package; that is, either a simulation package (see Chap. 16), or the
method of lines (Chap. 9) and a professional routine for solving the resulting
set of odes, making use of the adaptive time intervals feature, which these
routines normally offer.

8 The Commonly Used Implicit Methods

Essentially, only two implicit methods will be described here, but with ex-
tensions that make them more useful. They are derived from the implicit
methods described for odes in Chap. 4, BI and the trapezium method. These
have different names in the pde context, as will be seen.

Implicit methods have the great advantage of being stable, in contrast
with the explicit method. It will be seen (and analysed in detail in Chap. 14)
that the Laasonen method, a kind of BI, is very stable and responds to
sharp transients with smoothly declining (but relatively large) errors, whereas
Crank-Nicolson, also nominally stable, responds with error oscillations of
declining amplitude, but is highly accurate. The drawbacks of both methods
can be overcome, as will be described below.

First, the discretisation of the second, spatial derivative of concentration
will be reiterated in a general form that can then be built into the methods
to follow. For the three concentrations grouped around the one at the point
Xi, we can write the general linear expression,

∂2Ci

∂X2 ≈ α1Ci−1 + α2Ci + α3Ci+1 (8.1)

in which the α coefficients are defined according to whether equal or unequal
intervals are used. The three concentrations are situated at the three cor-
responding positions Xi−1, Xi and Xi+1. For equal intervals H in X, the
coefficients are

α1 = 1/H2

α2 = −2/H2 (8.2)
α3 = 1/H2

as already given in Chap. 3 (3.41) and independent of the index i. If unequal
intervals are used, the coefficients are

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 119–143 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

120 8 The Commonly Used Implicit Methods

α1 =
2

(Xi − Xi−1)(Xi+1 − Xi−1)

α2 = − 2
(Xi − Xi−1)(Xi+1 − Xi)

. (8.3)

α3 =
2

(Xi+1 − Xi)(Xi+1 − Xi−1)

These α’s are dependent on the index i but for brevity, this will not be
indicated in what follows below.

If transformation is to be used, by the function (7.3) on page 105, then
the resulting right-hand-side of the diffusion (7.5) can be written as a trans-
formation of the second spatial derivative,

∂2C

∂X2 = a2e−2Y

(
∂2C

∂Y 2 − ∂C

∂Y

)
(8.4)

and the (obvious) discretisation in terms of equal intervals δY then results
again in a linear expression like (8.1), with the coefficients at the point Yi

given by

α1 =
(

1 +
δY

2

)
wi

α2 = −2 wi (8.5)

α3 =
(

1 − δY

2

)
wi

the common wi being

wi =
a2 exp(−2iδY)

δY 2 . (8.6)

We thus have, for the diffusion equation

∂C

∂T
=

∂2C

∂X2 , (8.7)

a suitable discretisation for all three cases with their respective definitions of
the α coefficients, in the form

∂C

∂T
= α1Ci−1 + α2Ci + α3Ci+1 . (8.8)

This will be the basis for what follows. The diffusion equation, discretised on
the right-hand side as in (8.8), is now a system of odes in the concentration
vector C, of the form

∂C

∂T
= f(C) (8.9)

and the two main implicit methods will be seen to be analogous to those used
for odes.

8.2 The Crank-Nicolson Method, CN 121

8.1 The Laasonen Method or BI

When applied to the solution of odes, the BI method (Chap. 4) uses a back-
ward difference for the derivative on the left-hand side of (8.9) and the argu-
ment of the function on the right-hand side is the future, unknown, concen-
tration vector. In our notation, at the point i along the row of concentrations,
this is

C ′
i − Ci

δT
= α1C

′
i−1 + α2C

′
i + α3C

′
i+1 . (8.10)

This was formulated by Laasonen [343] in 1949. Rewriting this, the equation
set becomes

C ′
0 + a1,1C

′
1 + a2C

′
2 = b1

C ′
1 + a1,2C

′
2 + a2C

′
3 = b2

. . .

C ′
i−1 + a1,iC

′
i + a2C

′
i+1 = bi

. . .

C ′
N−1 + a1,NC ′

N + a2C
′
N+1 = bN

(8.11)

with the coefficients given by

a1,i =
α2 − 1/δT

α1

a2 =
α3

α1
(8.12)

bi =
−1

δTα1
Ci

in which the coefficient a2 has been written as independent of i. In most cases,
it will in fact be constant, and equal to unity for equal intervals in X. For
exponentially expanding intervals as in (7.19), α3/α2 is equal to 1/γ, that is,
the inverse of the interval expansion factor. Also, the α coefficients, as given
above for the various cases of equal, unequal or transformed intervals, are all
i-dependent except in the case of equal intervals, which is the reason that a1
and the factor in bi are so, as well.

The solution of the above system of (8.11) will be described below, to-
gether with that for the CN method.

8.2 The Crank-Nicolson Method, CN

This method derives from the trapezium method in the ode field in which
the time derivative in (8.9), expressed exactly as in (8.10), becomes a second-
order central difference by virtue of the fact that the right-hand side now

122 8 The Commonly Used Implicit Methods

refers to a point in time midway in the time interval. This is achieved by
taking the average of the second spatial derivative at the present time T and
that at T + δT :

C ′
i − Ci

δT
=

1
2
(
α1C

′
i−1 + α2C

′
i + α3C

′
i+1 + α1Ci−1 + α2Ci + α3Ci+1

)
.

(8.13)
The result is a system exactly as (8.11) but with different definitions of the
coefficients:

a1,i =
α2 − 2/δT

α1

a2 =
α3

α1
(8.14)

bi = −Ci−1 − a3,iCi − a2Ci+1

and the new coefficient

a3,i =
α2 + 2/δT

α1
. (8.15)

Again, a1 and a3 are dependent on the index i, by virtue of the fact that the
α’s are i-dependent.

Crank-Nicolson bears the name of its inventors [185]. It is interesting to
note that in their paper, they cite Hartree and Womersley [296], who describe
what amounts to its precursor.

8.3 Solving the Implicit System

The system (8.11) shown above, that is the result of discretising either ac-
cording to the Laasonen or CN method, can be solved efficiently by the
Thomas algorithm [546]. This recognises that the system is tridiagonal. It
can be reduced to a didiagonal system by working from either end, that is,
from C ′

0 or C ′
N+1. The latter approach is better here. The last equation in

(8.11) has a term in C ′
N+1, which is the bulk value, not subject to diffusional

changes, being a boundary value. Normally, it is constant, equal to the ini-
tial bulk value. In some cases, it can change with time, for example in the
Reinert-Berg [464] or the Birk and Perone [121] systems, in which the react-
ing substance itself undergoes a homogeneous decay reaction. In such cases,
the value of C ′

N+1, while not constant, is still accurately predictable and thus
known at any time. Thus, this known term can be moved to the right-hand
side of the last equation of the system, thus giving the new last equation

C ′
N−1 + a1,NC ′

N = bN − a2C
′
N+1 (8.16)

with only two unknowns. This is rewritten in the form

8.3 Solving the Implicit System 123

C ′
N−1 + a′

NC ′
N = b′N (8.17)

with, clearly,
a′

N = a1,N (8.18)

and
b′N = bN − a2C

′
N+1 . (8.19)

Equation (8.17) is now used to express C ′
N in terms of C ′

N−1:

C ′
N =

b′N − C ′
N−1

a′
N

(8.20)

and this is substituted into the second-last equation of the system (8.11),

C ′
N−2 + a1,N−1C

′
N−1 + a2C

′
N = bN−1 (8.21)

giving, after some tidying up, the next new equation

C ′
N−2 + a′

N−1C
′
N−1 = b′N−1 (8.22)

with
a′

N−1 = a1,N−1 −
a2

a′
N

(8.23)

and

b′N−1 = bN−1 − a2
b′N
a′

N

. (8.24)

This process continues in the backward direction and the recursive expres-
sions for the coefficients in the ith equation generated,

C ′
i−1 + a′

iC
′
i = b′i (8.25)

are
a′

i = a1,i −
a2

a′
i+1

(8.26)

and

b′i = bi − a2
b′i+1

a′
i+1

(8.27)

(starting with (8.18) and (8.19)) until the first equation is reached,

C ′
0 + a′

1C
′
1 = b′1 . (8.28)

At this point, we have a new system of equations, each with two unknowns.
The point of attack now is C ′

0, the boundary value. How this is calculated,
has been described in Chap. 6. When this is done, the process goes forward
again, solving explicitly for all unknowns, starting with

124 8 The Commonly Used Implicit Methods

C ′
1 =

b′1 − C ′
0

a′
1

(8.29)

or, for a general C ′
i,

C ′
i =

b′i − C ′
i−1

a′
i

. (8.30)

In Appendix C, a few examples of the use of CN are described: for a
Cottrell simulation (COTT_CN), chronopotentiometry (CHRONO_CN) and LSV
(LSV_CN).

8.4 Using Four-Point Spatial Second Derivatives

It was shown in Chap. 7 that the three-point second spatial derivative on an
unequally spaced grid, leading to (8.1) with the coefficients defined in (8.3),
can be improved with relatively small effort to an asymmetric four-point
formula, spanning the indices i − 1, i, i + 1, i + 2, with the second derivative
referred to the point at index i. The diffusion equation is then semi-discretised
to

dC

dT
= α1Ci−1 + α2Ci + α3Ci+1 + α4Ci+2 (8.31)

analogous to the three-point form (8.8). The derivation of the coefficients
are described in Chap. 3, and some formulae given in Appendix A, and a
procedure (U_DERIV) described in Appendix C. The above α values are of
course i-dependent. Here, we describe only the implementation of the scheme
to the Laasonen method, leaving out CN. The reason is that the Laasonen
method best enables the use of extrapolation, of which the simple second-
order variant nicely couples with the second-order four-point approximation.
Thus, using Laasonen, (8.31) becomes

C ′
i − Ci

δT
= α1C

′
i−1 + α2C

′
i + α3C

′
i+1 + α4C

′
i+2 (8.32)

which leads to the new system of equations

C ′
0 + a1,1C

′
1 + a2,1C

′
2 + a3,1C

′
3 = b1

C ′
1 + a1,2C

′
2 + a2,2C

′
3 + a3,2C

′
4 = b2

. . .

C ′
i−1 + a1,iC

′
i + a2,iC

′
i+1 + a3,iCi+2 = bi

. . .

C ′
N−2 + a1,N−1C

′
N−1 + a2,N−1C

′
N + a3,N−1C

′
N+1 = bN−1

C ′
N−1 + a1,NC ′

N + a2,NC ′
N+1 + a3,NC ′

N+2 = bN

(8.33)

with the coefficients given by

8.4 Using Four-Point Spatial Second Derivatives 125

a1,i =
α2 − 1/δT

α1

a2,i =
α3

α1
(8.34)

a3,i =
α4

α1

bi =
−1

δTα1
Ci .

Note that this differs from the three-point system (8.11) in that every line now
has four coefficients, and their definitions have been written as i-dependent,
which is the case for exponentially expanding X positions. Note also that
an extra point, index N + 2, has been added to the row of X values. Point
N is still the last one to undergo diffusional changes, so the fact that the
point N +2 lies rather far past Xlim (which is at index N), does not matter,
both these extra points being either constant or set values, not subject to
diffusional changes.

The above system, although leading to a quadradiagonal system of equa-
tions, can still be solved by a smallish extension of the Thomas algorithm
[153]. Consider the last two equations of (8.33) and rewrite them, putting
the bulk concentration terms on the right-hand side:

C ′
N−2 + a1,N−1C

′
N−1 + a2,N−1C

′
N = bN−1 − a3,N−1C

′
N+1

C ′
N−1 + a1,NC ′

N = bN − a2,NC ′
N+1 − a3,NC ′

N+2 .
(8.35)

We rewrite the last equation, which is already down to two unknowns, in the
form

C ′
N−1 + a′

NC ′
N = b′N (8.36)

(a′
N and b′N being obvious, and defined below in (8.38)) which, as before,

allows the substitution for C ′
N in the next-last equation, which then also

reduces to two unknowns,

C ′
N−2 + a′

N−1C
′
N−1 = b′N−1 . (8.37)

Thus far, this looks just like the Thomas algorithm for the tridiagonal sys-
tem, as described above in Sect. 8.3. From here on, however, the processes
diverge. We need to keep both substitutions for C ′

N and C ′
N−1 and use them

in the third-last equation, which contains both. This process is continued
backwards, reducing all equations with four unknowns to new ones with just
two unknowns. The expressions resulting from this are the following:

a′
N = a1,N ; b′N = bN − (a2,N + a3,N)Cb , (8.38)

Cb being the bulk concentration, equal to C ′
N+1 and C ′

N+2 in system (8.33).
Then,

126 8 The Commonly Used Implicit Methods

a′
N−1 = a1,N−1 −

a2,N−1

a′
N

; b′N−1 = bN−1 − a2,N
b′N
a′

N

− a3,N−1Cb . (8.39)

These now serve as starting values for the recursive process; the ith equation
of system (8.33) becomes

C ′
i−1 + a′

iC
′
i = b′i (8.40)

with the two new coefficients recursively given by

a′
i = a1,i −

1
a′

i+1

(
a2,i −

a3,i

a′
i+2

)
(8.41)

b′i = bi − a2,i

b′i+1

a′
i+1

− a3,i

(
b′i+2

a′
i+2

−
b′i+1

a′
i+1a

′
i+2

)
. (8.42)

This is not so difficult to program and leads to a new system just like that
in Sect. 8.3, right down to (8.28). Boundary condition handling is the same,
as is the forward scan that yields all the new unknowns, (8.30).

This has been programmed into example program COTT_EXTRAP4 de-
scribed in Appendix C. Compared with the three-point program, COTT_
EXTRAP, it yields results, using the same parameters, with an accuracy
about an order of magnitude better. Once programmed and debugged, the
code can be easily transplanted into other programs and seems worthwhile
implementing.

Finally, as mentioned earlier (Chap. 7, Sect. 7.2), Mart́ınez-Ortiz [385]
developed some rather simple formulae for derivative approximations for
the special case of exponentially expanding grid spacings, and in the course
of this work discovered that the four-point second-order derivative approx-
imation u′′

2(4), for the expansion factor γ =
√

2 is third-order in accuracy,
rather than second, as it is for other γ values. This could be an easy and
useful way to increase the accuracy, using the four-point formula.

8.5 Improvements on CN and Laasonen

The Laasonen method, because of the forward difference in T , has errors of
O(δT,H2), and the first-order behaviour with respect to δT limits its accu-
racy to about the same as the explicit method described in Chap. 5. However,
it has a smooth error response to disturbances such as an initial transient
(Cottrell), and is stable for any value of δT/H2, where H is either the same
as all intervals if equal intervals are used in X, or is the smallest (usually
the first) interval if unequal intervals are used. This makes the method inter-
esting, and it will be seen below that it can be improved. For simplicity, the
symbol λ will be used below, and denotes the largest value of that parameter,
that is, the value from the smallest interval in space in a given system.

8.5 Improvements on CN and Laasonen 127

CN is formally as stable as Laasonen, and more accurate, with errors of
O(δT 2,H2). However, it has one serious drawback. If the initial conditions
are a sharp change in concentration (as in potential jump experiments), CN
responds with errors oscillating about zero and for large λ values these oscil-
lations can persist over much of the simulation period. This has meant that
simulators have tended to use other methods instead. The stability, and the
reason for the oscillatory response, of CN are explained in Chap. 14, but here,
a method of damping the oscillations will be described.

To appreciate the problems with both CN and Laasonen, consider Fig. 8.1.
This shows three curves, and we ignore the stippled one for the moment. The
plot shows simulations of the Cottrell system, using only 20 steps in the range
0 < T ≤ 1 and a λ value of 3 (equal spatial intervals). The vertical axis is
the relative error in the computed current. The smoothly falling solid line
is that for the Laasonen method, while the oscillating solid line is from CN.
The plot does not make clear that the error at T = 1 is in fact greater for
Laasonen than for CN, but it does illustrate the problem of oscillation with
CN. To show the difference in final errors, Fig. 8.2 shows the same results
but with the vertical scale now narrowed down. At smaller times, the plot
lies outside the range, but now it is clearly seen that although the CN curve
is still oscillating, the Laasonen response has the greater error at T = 1.

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1.0
T

e

Fig. 8.1. Relative error in computed current vs time

8.5.1 Damping the CN Oscillations

Crank and Nicolson, in their original paper [185], recognised the oscillation
problem with their method, writing “If γ [which is their δt/δx2] is very large
an oscillatory error which only disappears very slowly may arise”. The prob-
lem is referred to in most texts describing the method. More detail is given in
Chap. 14, but the essence of the problem is that CN will oscillate if λ > 0.5;

128 8 The Commonly Used Implicit Methods

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1.0
T

e

Fig. 8.2. Relative error in computed current vs time, narrow scale

in practice, a value of unity or even 2 will not cause serious oscillations. So
one way to reduce oscillations is to lower λ, usually by reducing δT . This
might cause unduly long execution times, but fortunately, once oscillations
have been damped, they normally do not reappear, so if they can be damped
within the first interval, the problem is solved. This leads to the most effective
method, subdivision of the first time interval.

First-Interval Subdivision

There are a few ways of subdividing the first time step: using a number M of
equal intervals, or a number of intervals expanding with time, usually expo-
nentially. The two methods can be formally combined into one description.
Let the full interval to be subdivided be of length δT , and let it be subdivided
into M smaller intervals τi, i = 1 . . . M , such that

M∑
i=1

τi = δT (8.43)

and
τi = τi−1γ = τ1γ

i−1 . (8.44)

Exponentially expanding subintervals are obtained if γ > 1 and equal in-
tervals for γ = 1. The latter method is (here) called Pearson, after the
author who first suggested it [437], in 1965. It has been studied more re-
cently [149,228,431]. Exponentially expanding subintervals will be called ees
here. They were suggested [148] and later used [138, 265, 340], and studied
in some detail recently [149,431].

Whether Pearson (in the one form or the other) or ees is to be used, is a
matter of taste. Pearson is the simpler method, and it is simpler to determine
the only parameter involved, M . Numerical experiments [149] show that a

8.5 Improvements on CN and Laasonen 129

(sub)λ value of about unity is sufficient to damp oscillations during the first
M substeps, so this sets M simply to

M = λ−1 (8.45)

rounded to the nearest integer (and the sub-λ then recalculated - it might
not be exactly unity!). Besides simplicity, this has the additional advantage of
equal time intervals: in many simulations, the coefficients as in (8.14) depend
on the time interval, and must be recalculated if that interval varies. They
must thus be calculated once, prior to the M sub-steps, and again once upon
resumption of the full δT . With unequal intervals, however, they must be
recalculated before each substep. In some cases, this can have serious effects
on computing time, even though in principle, fewer substeps can be used
if they are expanding. The simple Pearson start is automatically used in
the example program COTT_CN (Appendix C), and also, although as it turns
out, not really necessary, in CHRONO_CN (chronopotentiometry does not cause
oscillation problems with CN). If a large λ value is used, Pearson can result
in an excessive number of substeps, and ees will then be better.

For ees, there is no simple recipe for the choice of M and γ. The reader
is referred to the study [149], where several contour plots are provided that
can help. A rough guide is that γ = 1.5 is a fairly universally useful value. It
is the opinion of the present author that Pearson is the best choice here.

If ees is considered desirable, there is the small matter of the determina-
tion of the parameters. Normally, one would choose M first, and then either
the size of the first interval τ1 (which sets the expansion parameter γ), or γ,
which sets the first interval. In the former case, having chosen M and τ1, the
function EE_FAC (see Appendix C) can then be used to find the appropriate
γ. In the latter case, (7.19) on page 108 can be inverted to give explicitly

τ1 = δT
γ − 1

γM − 1
. (8.46)

Finally, there is another mode of operation for ees. If one considers the
total simulation time as a single step, this can be subdivided into a number
of exponentially expanding “subintervals” in the same manner as the above
description of subdivision of the first interval. This was first suggested by
Peaceman and Rachford in 1955 [436], in their famous paper describing the
ADI method (see Chap. 12), and was used later [236, 355]. It is routinely
used by Svir and coworkers [538, 540]. These workers tend to use strong
expansion with γ = 2, which has been found not to be optimal [149]. The
method requires a large number of recalculations of the coefficients and thus
uses more computer time than equal intervals with a damping device applied
to the first interval.

130 8 The Commonly Used Implicit Methods

Initial BI Step(s)

Rannacher and coworker [374, 461, 462] have experimented with the idea of
starting a CN simulation with one or more BI steps. The rationale is that BI
damps errors in a non-oscillatory manner, unlike CN, and in fact the larger
λ is, the more strongly an error is damped. This also applies to an initial
transient or singularity, as encountered in a potential jump, for example.
The disadvantage of BI, used for a whole simulation, is that it has a global
first-order error with respect to the time interval. However, the local error for
each individual step is second-order and it turns out that if one uses a fixed
number of BI steps to start with and then continues with CN, the global
error is still second-order. Rannacher and his coworker seem to prefer taking
two or even four initial BI steps. In their second 1982 paper [374], they hint
at a problem with the larger number of steps and that two might after all be
preferable. However, by 1984, Rannacher again preferred four. The problem is
that although the global error order does indeed remain O(δt2) for any fixed
number M of BI steps, the error itself increases with M . If the method is used
to damp oscillations with CN, then there must be a compromise between the
degree of damping and the acceptable error. The method has been studied
again recently by Khaliq and Wade [337], who also advocate taking four BI
steps, and more recently by others [149,431,432], in which a single BI step was
investigated, among other methods. Some tests convince the present author,
that a single step is probably the best or at most two, and if that does not
remove the oscillations sufficiently, another method should be used, such as
Pearson.

The method works well if λ � 1 or, in the case of unequal intervals
or two-dimensional geometries, where there is some critical, largest effective
λ greatly exceeding unity. It was found [149] that the method works very
well with a single BI step in the case of (2-D) microdisk simulations, where
indeed large effective λ values result at the disk edge and it is these that are
responsible for the oscillations if CN is used.

The dotted line in Figs. 8.1 and 8.2 is the response for a single Laasonen
step followed by CN from then on. For this simulation, λ was set at 3, not a
very large value. Nevertheless, the single Laasonen step has clearly reduced
the oscillation amplitudes.

As a final note on this method, it is worth noting that Wood and Lewis
[575] essentially used this method, possibly not realising it. In an investigation
of how to damp CN’s oscillations, one of the methods they tried was to
average the initial values of the simulated quantities with the result of the
first CN step. It can readily be shown that this is equivalent to taking a single
BI step of half a time interval. They found some damping, but they must also
have introduced an error in the time by half an interval, which would persist
thereafter and degrade the accuracy, probably to first-order.

8.5 Improvements on CN and Laasonen 131

Averaging and Extrapolation

Lindberg [364] investigated smoothing of the trapezoidal response in the
solution of systems of odes, and this is of course a related problem. The idea
of averaging is that if a sequence of errors show alternate signs (which is
what we mean by oscillation), then combining several in a sequence might
eliminate or reduce the error. Lindberg used a three-point averaging formula,
and combined it with extrapolation (see below, and Sect. 4.9). Extrapolation
alone, used with CN, does not damp oscillations but does help, marginally,
in conjunction with averaging. It seems, however, that Lindberg’s results do
not justify these techniques.

Recommendations

A choice needs to be made. The reader may or may not want to experiment
with the various possibilities. It is possible to provide some guidance here.
Clearly, if λ is very large, then M can become ridiculously large if program
COTT_CN is used – M will be equal to λ. It is in such cases, however, that
the BI method works best. So a rough guide might be the following. For
3 ≤ λ ≤ 100, use Pearson; for larger λ, the BI method might be favourable,
perhaps taking 2–4 initial BI steps despite the slight loss in accuracy.

8.5.2 Making Laasonen More Accurate

In contrast to CN, Laasonen has a very acceptable error response, damping
the error (and initial concentration transients) smoothly, especially at high λ;
but it has the disadvantage of poor accuracy, being globally first-order with
respect to δT . There are two popular ways of increasing the accuracy (raising
the order) of the method, while preserving the smooth error response.

The two methods are BDF and extrapolation. Both methods are used for
the numerical solution of odes and are described in Chap. 4. The extension
to the solution of pdes is most easily understood if the pde is semidiscretised;
that is, if we only discretise the right-hand side of the diffusion equation, thus
producing a set of odes. This is the Method of Lines or MOL. Once we have
such a set, as seen in (8.9), the methods for systems of odes can be applied,
after adding boundary conditions.

BDF

The BDF method has been described. One starts with the system such as
(8.9), and goes on from there as described. This was first suggested by Richt-
myer in 1957 [470], who suggested the three-point variant, and was first used
in electrochemistry by Mocak and Feldberg [402] and later refined to variable
time intervals by Feldberg and Goldstein [236]. These workers call it FIRM,

132 8 The Commonly Used Implicit Methods

an abbreviation of “Finite Implicit Richtmyer Modification”. The modifi-
cation referred to is that of the BI (or Laasonen) method to a multi-level
backward differentiation method. These authors also use a very simple start-
up strategy, described as the simple start with correction in Sect. 4.8.1
on page 58. As is shown in Appendix B, this method, by good luck, provides
second-order accuracy at the corrected times. The second-order nature of it
also implies, however, that there is little sense in going to more than 3-point
BDF. With 3 points in time, the global error is of O(δT 2), and although an
increase in the number of points included in the BDF algorithm raises that
order (up to 7-point can be used, and Feldberg and coworkers now routinely
use 5-point or fourth-order), this is held down to second-order by the start-up
method. However, a second-order method is very useful, being of the same
order as CN, and 3-point BDF has the smooth error response of Laasonen.
One small drawback of the method is that additional concentration vectors
must be kept in memory; in the case of three-point, one extra array is needed.
This is not so bad, and the results might be considered worthwhile.

There have been attempts to improve the performance of BDF, which is
normally limited by the second-order (in the spatial interval H) discretisation
of the spatial derivative. Higher-order spatial second derivatives have been
tried out in connection with BDF [152,154]. They can only work as intended
if a high-order start is used, such as the KW start as described in Sect. 4.8.1.
This start was not found to be efficient in [154], but it may be that a tech-
nique other than the one used there, such as Numerov (see Chap. 9), which
does not produce banded matrices, will make the use of KW efficient and
thus interesting. For this reason, the KW start is described below.

First, it is worthwhile detailing the implementation of BDF itself, ignoring
startup for the moment. We choose 3-point BDF. Based on (4.28) given on
page 57 for odes, the diffusion (8.8) is discretised at index i as

1
2
′Ci − 2Ci + 3

2C ′
i

δT
= α1C

′
i−1 + α2C

′
i + α3C

′
i+1 (8.47)

where now ′Ci indicates the concentration at point i and T − δT , that is,
the past concentration point. When this system of discrete equations is re-
arranged, it is of the same form as (8.11), with the new coefficients

a1,i =
α2 − 3

2/δT

α1

a2 =
α3

α1
(8.48)

bi =
′Ci

2δTα1
− 2Ci

δTα1

which is seen to be hardly more complicated than those for Laasonen. There
is the added step at every iteration of moving the concentration rows down

8.5 Improvements on CN and Laasonen 133

one level, that is, the rows for the present level T and T +δT (now computed)
down to, respectively, T − δT and T .

Now for the KW start for BDF. The description in [154] will be followed
here. First of all, (8.47) is rewritten in ode form for the whole system, replac-
ing the left-hand side by the time derivative and the right-hand side by the
general matrix form

dcj

dt
=

λ

δt
(Acj + s) (8.49)

where cj refers to the whole c vector across the spatial dimension at time
index j, matrix A arises from the coefficients such as those on the right-hand
side of (8.47) (but may be those from any other discretisation, including
multi-point or Numerov, see the next chapter), and s is the vector arising
from boundary conditions. The left-hand side of this equation now leaves us
free to choose the particular BDF form. As mentioned, the problem to solve
here is providing the first few concentration rows. It might be thought that
for k-point BDF, k−2 new cj are needed, those for j = 1 . . . k−2 (we already
have the initial row for j = 0). Indeed this is true, but it turns out that the
row k − 1 is best included in the calculation, as this produces values of the
same accuracy order with respect to t as the subsequent BDF steps. This was
mentioned in the chapter on odes, Sect. 4.10. There is then always one more
equation to choose from than needed, and a choice has to be made of which
ones to use. This is more or less arbitrary. For example, for 3-point BDF, we
calculate rows for j = 1 and 2. For these, we can refer the time derivative
to two out of levels 0, 1 and 2. If we choose levels 1 and 2, we have the two
matrix equations

c2 − c0

2δt
=

λ

δt
(Ac1 + s) (8.50)

referring to j = 1 (thus a central difference), and

c0 − 4c1 + 3c2

2δt
=

λ

δt
(Ac2 + s) (8.51)

employing a BDF form referring to j = 2. These two equations combine into
the single matrix equation[

2λA −I
4I (2λA − 3I)

] [
c1
c2

]
=
[
−c0 − 2λs

c0 − 2λs

]
. (8.52)

Corresponding higher-order forms can now be constructed using the examples
in Chap. 4, Sect. 4.10. In the present context, the matrix equations get rather
large for larger k. If there are N unknowns across the spatial dimension, then
the matrix equation will be (k − 1)N × (k − 1)N . So the method might be
suitable only for smallish N .

Extrapolation

Extrapolation is described in Chap. 4, Sect. 4.9. It can easily be adapted to
pdes, as suggested by Lawson and Morris in 1978 [356], followed by Gourlay

134 8 The Commonly Used Implicit Methods

and Morris [278]. Strutwolf et al. [534,535] first described its use in electro-
chemistry, and a higher-order variant was described later [531], in an attempt
to take advantage of the higher-order extrapolation schemes. Bieniasz [100]
now gives extrapolation based on BI the name LMGE-x (with x the order,
for example LMGE-2), meaning Lawson-Morris-Gourlay extrapolation. Here
it will be simply called extrapolation. The “BI” might be redundant, as it
is always BI that forms the basis for extrapolation, although other methods
can in principle be enhanced by extrapolation. Thus, Hartree and Wom-
ersley [296] used it in connection of their method, which has the essential
elements of CN.

As with BDF, the simpler second-order scheme appears about optimal.
This method also shows the same smooth and damped error response of Laa-
sonen, with the accuracy of CN. The drawback is that for every step, several
calculations must be performed – in the case of second-order extrapolation,
three in all (see Sect. 4.9). This also implies an extra concentration array,
for the final application of the formula, for example the vector equivalent of
(4.31), requiring the result of the first, whole step, and then the result of
the two half-steps. Discretisation for extrapolation is the same as for Laa-
sonen (coefficients as in (8.12)), but using two different values of δT . There
are example programs using extrapolation (COTT_EXTRAP and COTT_EXTRAP4)
referred to in Appendix C.

8.6 Homogeneous Chemical Reactions

Homogeneous chemical reactions (hcrs) have already been mentioned in
Chap. 5, where a simple explicit treatment is given. Some of the problems are
also mentioned there. For the explicit method, the main one is that if a term
like KδT in the discrete equation exceeds a few percent, the simulation is
inaccurate [418]. For large rate constants, this means unacceptably small δT
values leading to very long computation times. Improvements were sought at
the time, such as the use of Runge-Kutta integration either for just the hcr
part [418] or for the whole simulation [135], and tricks such as the “sequential
method” (described in Chap. 5). These did not work very well. In a previous
work [134], the present author classified hcrs into the three categories slow,
medium and fast, and for each of them a different method was suggested.
Slow hcrs could be handled by the explicit method, medium-rate ones by
implicit methods or Runge-Kutta, and fast reactions could only be handled
by mathematical tricks such as that of Ruzić [483,486], the socalled hetero-
geneous equivalent, in which the hcrs was combined with the heterogeneous
electron transfer reaction into a single new one with a different (equivalent)
heterogeneous rate constant.

Such tricks are no longer needed. Since the early 1990’s, several advances
were made in simulation that have solved all the problems, and we can now

8.6 Homogeneous Chemical Reactions 135

handle all hcrs with efficient implicit methods in a straightforward manner.
These solutions are described in what follows.

The main problems that have been solved are these:

– thin reaction layers
– nonlinear equations (and negative concentrations)
– coupled systems.

The problem of thin reaction layers are described sufficiently in Chap. 5.
The solution is to use unequal intervals, that is, a few very small intervals near
the electrode, so that there are sample points within the thin profile. This
can be done up to a point by a fixed unequal grid such as the exponentially
expanding grid described in Chap. 7. A more flexible approach is the moving
adaptive grid also described in that chapter. This problem is thus solved and
needs no further attention here.

In Appendix C, the program CV_EC is described, which simulates a CV
for a simple EC reaction.

8.6.1 Nonlinear Equations

If a given hcr is of higher than first order, nonlinear terms arise in the dy-
namic equation(s). With terms, for example, in squared concentrations (see
below), there is the danger, due to computational errors, that a concentration
becomes negative, after which it can never be corrected. The technique CN is
especially prone to this, because of the oscillations it engenders as a response
to sharp transients such as a potential jump. This is one reason some workers
prefer the Laasonen method or its improved offshoots, which have a smooth
error response without any oscillations. With a Pearson start, however, CN
can be used safely, without the appearance of negative concentrations.

Until fairly recently, the problem was regarded as too hard. For exam-
ple, Fisher and Compton [245], in a study involving coupled equations with
second-order terms, used explicit discretisation for the second-order terms.
This degrades the accuracy of the simulation and forces very small time in-
tervals.

With the usual nonlinear terms, which are either of the form of a squared
term or the product of two species’ concentrations, there are two approaches.
One of them is to approximate the nonlinear terms by linearised terms. The
approximations are different for CN and Laasonen.

Linearising Squared Concentration Terms

This has been mentioned in several papers, but the first to describe such
approximations were Mastragostino et al. in 1968 [386]. Let the squared
term be C2; for example, a term in −KC2 in the dynamic equation. The
change δC is equal to C ′ − C.

136 8 The Commonly Used Implicit Methods

For the Laasonen method, C2 is expressed as the square of the next,
unknown concentration, C ′2. We have

C ′2 = (C + δC)2

= C2 + 2CδC + δC2

≈ C2 + 2C(C ′ − C)

= 2CC ′ − C2 .

(8.53)

This is now a linear expression in the unknown, C ′, since C is known. The
approximation is O(δC2), since a term of that order was dropped.

For CN, discretisation makes the squared term the mean of the old and
new terms, so

1
2 (C2 + C ′2) = 1

2 (C2 + (C + δC)2)

≈ 1
2 (2C2 + 2CδC)

= C2 + C(C ′ − C)
= CC ′ .

(8.54)

Again, this is O(δC2).

Linearising the Product of Two Species’ Concentrations

For convenience, the two species’ concentrations are given the symbols A and
B here, with A′ and B′ the unknowns. Lerke et al. mention this briefly [361],
for the DuFort-Frankel method [216], for some time a method suggested by
Feldberg [233].

For Laasonen, we then have

A′B′ = (A + δA)(B + δB)
= AB + BδA + AδB + δA δB

≈ AB + B(A′ − A) + A(B′ − B)
= A′B + AB′ − AB .

(8.55)

For CN,

1
2 (AB + A′B′) = 1

2 (AB + (A + δA)(B + δB))

≈ 1
2 (2AB + BδA + AδB)

= 1
2 (2AB + B(A′ − A) + A(B′ − B))

= 1
2 (A′B + AB′) .

(8.56)

This covers all the cases now.

8.6 Homogeneous Chemical Reactions 137

An Example Case; Linearising

To show how this is done both in the linearised and the nonlinear form,
a simple example is chosen, having the advantage of being a single-species
mechanism. It is that described by Birk and Perone [121]. The electroactive
substance A is formed at a uniform (bulk) concentration in a cell by a flash
of light. It begins immediately to decay in a second-order hcr, while being
electrolysed in a Cottrell-like experiment. This system will be called BP here.
The equations are

A + e− → B

2A → prod
(8.57)

with the chemical step irreversible and with (dimensionless) rate constant K.
The normalised dynamic equation is then

∂C

∂T
=

∂2C

∂X2 − 2KC2 . (8.58)

The number 2 seems to be controversial but seems logical because every time
two molecules of A react, both are removed from solution. Birk and Perone
presented a solution for the current, but this was incorrect and was later
corrected and augmented by solutions for various electrode geometries [146].
So a solution exists that can be used to test a simulation.

The linearised version is discretised for CN, using (8.54),

C ′
i − Ci

δT
=

1
2
(
α1C

′
i−1 + α2C

′
i + α3C

′
i+1 + α1Ci−1 + α2Ci + α3Ci+1

)
−2KCiC

′
i . (8.59)

Equation (8.59) then becomes a system like (8.11), except that the middle
term on the left-hand side is different:

C ′
i−1 + (a1,i + ak,iCi)C ′

i + a2C
′
i+1 = bi (8.60)

where the new coefficient is given by

ak,i = −4K/α1 (8.61)

and bi is exactly as already defined in (8.14); it does not contain a term arising
from the hcr. The system now contains, besides the constant coefficients,
concentration terms that vary from step to step. In a given program, the
a-coefficients can be precomputed but the multiplication with the (known)
concentrations must be performed at every step. Reduction to the didiagonal
form (the first step of the Thomas algorithm), described by (8.16)–(8.28) will
be modified in that (8.18) becomes

138 8 The Commonly Used Implicit Methods

a′
N = a1,N + ak,NCN (8.62)

and the ith equation becomes

a′
i = a1,i + ak,iCi −

a2

a′
i+1

. (8.63)

The expressions for the b′ are unchanged, except for the outer value, where
attention must be given to the fact that the bulk concentration itself changes
(decreases) with time. Since a solution is available here (see any text on
physical chemistry, for example [66]), it may as well be used. In dimensionless
terms and taking the factor 2 into account, it is

CN+1(T) = (1 + 2KT)−1
. (8.64)

Consistent with CN custom, then, the last equation in the system is

C ′
N−1 + (a1,N + ak,NCN) C ′

N = bN − a2C
′
N+1 (8.65)

in which the term bN (from (8.13)) contains the bulk value at time T (the
old value), but the last term on the right-hand side contains the new value
for T + δT . It is important to do this correctly, for accuracy.

The above is incorporated into the example program BP_LIN described in
Appendix C.

An Example Case; Nonlinear

We can also choose not to linearise the nonlinear term by an approximation, in
which case we do not run the (minimal) risk of adding errors to the simulation
by the linearising approximation. The same example as used above (8.57) and
again choosing CN as the method, the dynamic (8.58) is discretised as

C ′
i − Ci

δT
=

1
2
(
α1C

′
i−1 + α2C

′
i + α3C

′
i+1 + α1Ci−1 + α2Ci + α3Ci+1

− 2KC2
i − 2KC ′2

i

) (8.66)

in which the term in 2KC ′2
i is left in its nonlinear form (along with the

other nonlinear form 2KC2
i , but this one is a known quantity and causes no

trouble). This engenders a new nonlinear system of equations

C ′
i−1 + a1,iC

′
i + ak,iC

′2
i + a2C

′
i+1 = bi (8.67)

where ak,i is defined differently:

ak,i = −2K/α1 (8.68)

and also the right-hand side, bi, is different, now containing a chemical term
involving ak,i :

8.6 Homogeneous Chemical Reactions 139

bi = −Ci−1 − a3,iCi − ak,iC
2
i − a2Ci+1 . (8.69)

The above (8.67), of which there are N for i = 1 . . . N , form a new system,
which we now rewrite in a new form. The equations are the system, for
i = 1 . . . N ,

fi(D) = Di−1 + a1,iDi + ak,iD
2
i + a2Di+1 − bi (8.70)

where the symbol D has replaced C ′, but bi still is in terms of the known
present-time C row. The new D values are the approximations to C ′, and
at the start of an iteration, are equal to the known C. We seek a solution
such that all the D values are equal to the C ′ values, at which point all fi

are equal to zero, which they are not at the start of the step. The Newton
method, which will be used, takes a number of steps, correcting the D values
at each step. Before we can do this, we must pay attention to the first and
last equations of the set. The first one (i = 1) contains the boundary value
D0. If the system is that for a Cottrell experiment, then that value is zero,
so that the equation is

f1(D) = a1,1D1 + ak,1D
2
1 + a2D2 − b1 (8.71)

which is very simple. If we have derivative boundary conditions and (sensibly,
with unequal intervals) use a two-point approximation for G, then D0 can
be replaced by a linear form in D1 according to the procedures described in
Chap. 6. If a multi-point derivative approximation is desired, that expression
will be a linear combination of several Di, i = 1 . . . n − 1, which is more
complicated and is not recommended. For this example, we stay with Cottrell.

The other equation needing attention is that for i = N , being

fN (D) = DN−1 + a1,NDN + ak,ND2
N + a2DN+1 − bN (8.72)

which contains the bulk value DN+1. This is already known, being in this case
given by (8.64) for the time T + δT . It is not part of the unknown set. Note
that the last term bN , is the expression for (8.69) for i = N and contains an
old bulk value. It is important in the program to distinguish between these
two different bulk values.

We are now ready to implement the Newton method. The D row is an
approximation to C ′ and we wish to correct D. For details of the Newton
method used on a set of nonlinear equations, see a text like Press et al. [452].
More briefly here, Taylor expansion of the system (8.66) around the current
D to the corrected D + d where d is the correction term row, produces the
set of equations linear in d,

140 8 The Commonly Used Implicit Methods

f(D1 + d1) = f(D1) + (a1,1 + 2ak,1D1)d1 + a2d2

f(D2 + d2) = f(D2) + d1 + (a1,2 + 2ak,2D2)d2 + a2d3

. . . (8.73)
f(Di + di) = f(Di) + di−1 + (a1,i + 2ak,iDi)di + a2di+1 (8.74)

. . .

f(DN + dN) = f(DN) + dN−1 + (a1,N + 2ak,NDN)dN

where now the di are the unknowns, the correction terms. In vector/matrix
notation, defining D ≡ [D1D2 . . . DN]T , d ≡ [d1d2 . . . dN]T and the Jacobian

J ≡

(a1,1 + 2ak,1D1) a2

1 (a1,2 + 2ak,2D2) a2

1 (a1,3 + 2ak,3D3) a2

. . .
. . .

1 (a1,N + 2ak,NDN)

(8.75)

(only nonzero elements are given), this becomes

F (D + d) = F (D) + J · d (8.76)

and expecting convergence and thus setting setting F (D +d) to zero, we get
the new, now linear system,

J · d = −F (D) (8.77)

which is a tridiagonal system that can be solved by the Thomas algorithm
as usual, for d. One must then either check the residual (8.76); its norm
should be below some value one sets, such as 10−6. Alternatively, one can
check the correction vector d. If its norm is below that small value, then no
further iterations need be carried out. The first method requires an extra
calculation, while the second always requires a last extra iteration because
even if the very first iteration yields the correct set of d values, that set itself
will not be zero, but the second set will be.

The above is implemented in the program BP_NONLIN (Appendix C). One
finds that 2–3 iterations tend to be enough, and the results are very slightly
better, for a given set of simulation parameters, than those from the linearised
version, BP_LIN.

8.6.2 Coupled Equations

Coupled equations are those in which some or all of the dynamic equations
have terms in more than one of the variables (concentrations). This leads,
upon discretisation, to systems of discrete equations that cannot usually be
solved using the Thomas algorithm because, no matter how one orders the
concentration vectors, the systems correspond to matrix equations that are

8.6 Homogeneous Chemical Reactions 141

more than tridiagonal or banded. It is not very long ago that this too was
regarded as too hard, and the explicit method was used, as this presents no
special problems – except for accuracy and computer time. Two techniques
solved the problem: what will be called the Rudolph method, and direct
matrix equation solving. The Rudolph method, as will be seen below, is it-
self a method of solving the matrix equations but, by proper vector ordering
and blocking, makes the matrix into a block-tridiagonal system, which can
be solved by a kind of block-Thomas algorithm. The technique was in fact
known outside electrochemistry [280], and within, Newman having devised
this for a set of coupled second-order odes in 1968 [412]; this was remarked
upon by White in 1978 [570] and apparently forgotten again, until rein-
vented by Rudolph in 1991 [476]. From then on, the method has been in use
by electrochemists. Other methods exist to deal with the problem of banded
matrices. The most notable of these are the “strongly implicit procedure”
(SIP) of Stone [527], used recently by Alden et al. [38, 39, 42], the Krylov
method, used by the same team [41, 42, 43] and by Bard et al. [72] and
Welford et al. [568]; and the multigrid method [569], also used by Alden
et al. [42]. The Alden et al. team made use of ready-made commercial sub-
routines. These techniques are not trivial to apply, and only the Rudolph
method will be described here.

To illustrate the Rudolph method, we take the relatively simple two-
species catalytic or EC′ mechanism

O + e− ⇔ R

R → O
(8.78)

as already mentioned in Chap. 6, page 95. As mentioned there, this leads,
through the obvious dynamic equations, to the discretised pair of equations
for a given point along X with index i,

C ′
O,i−1 +a1,iC

′
O,i +ak,iC

′
R,i +a2C

′
O,i+1 = bO,i

C ′
R,i−1 +(a1,i − ak,i)C ′

R,i +a2C
′
R,i+1 = bR,i

(8.79)

(we now assume that the coefficients are the same for both species and,
again, that a2 is constant). The coefficients depend on the simulation method
used (CN, Laasonen or its variants) and on the sample point distribution, as
already described.

This pair of equations produces, when written for all i, a system of 2N
equations. It is convenient to order the unknown concentrations in the se-
quence CO,0, CR,0, CO,1, CR,1, . . . , CO,N , CR,N – that is, with CO and CR al-
ternating. The system then becomes a pentadiagonal matrix equation, with
perhaps some elements off the five diagonals, depending upon the way deriv-
ative boundary conditions are discretised. It is true that there are pentadiag-
onal solvers similar to the Thomas algorithm, but we stay with the Rudolph
method [476] here because the example is a simple one, and the method can

142 8 The Commonly Used Implicit Methods

be extended to more than two species, which widen the band in the ma-
trix to more than pentadiagonal. Incidentally, in this specific case, there is a
method of using something like the Thomas algorithm, using a double recur-
sive method, but it is specific to this example, has no general utility and will
not be gone into here (unpublished work by the present author).

The concentration vector is now lumped into pairs, making it into a vector
of two-element vectors; let

Ci ≡
[

CO,i

CR,i

]
(8.80)

and this allows us to write (8.79) in the more compact form, already seen in
Chap. 6, (6.57),

C ′
i−1 + AiC

′
i + a2C

′
i+1 = Bi (8.81)

with the definitions

Ai ≡
[

a1,i ak,i

0 (a1,i − ak,i)

]
, (8.82)

Bi ≡
[

bO,i

bR,i

]
. (8.83)

The last equation of this new system, for i = N , can now be used in the same
manner as the last equation in the scalar system (8.11), as the last term on
the left-hand side is known, C ′

i+1 being the bulk values. In the scalar system,
the equations, each with three unknowns, were reduced to a new set, each
with two unknowns, generating a new set of scalar coefficients a′

i and b′i.
The same process can be used here, but working with vectors and matrices.
Applying the same approach as the above, (and therefore not needing a lot
of explanation), we write, analogous to (8.18),

A′
N = AN (8.84)

and as in (8.19)
B′

N = BN − a2C
′
N+1 . (8.85)

Then, analogous to the scalar process above, (8.26) and (8.27), we have the
recursive relations, going backwards from N ,

A′
i = Ai − a2(A′

i+1)
−1 (8.86)

and
B′

i = Bi − a2(A′
i+1)

−1B′
i+1 . (8.87)

This is continued down to i = 1, giving the system (6.62), described on
page 96.

It turns out in practice that only the inverses of the new coefficient A′-
matrices are needed for the last step, so only these inverses need be stored.
Since the matrices are small, the inversions can be efficiently computed.

8.6 Homogeneous Chemical Reactions 143

Before the last sweep can be carried out, the boundary concentration vec-
tor C ′

0 is needed, and how this is calculated, is fully described in Chap. 6,
Sect. 6.4, starting on page 96. When this has been done, all the new con-
centrations can at last be computed, from the forward-sweeping recursive
expressions

C ′
i = (A′

i)
−1 (B′

i − C ′
i−1
)

, (8.88)

seen to be analogous with (8.30). If the concentrations are stored separately
for each species, then it might be most convenient to put each Ci vector away
into its place in those arrays as soon as they are computed; it is matter of
personal strategy, how to store the values.

The program CVRUCAT (see Appendix C) is an example of a simulation of
this system, for cyclic voltammetry.

9 Other Methods

In previous chapters, those methods that are regarded as most advisable in
some sense, are presented in some detail. The explicit method cannot really be
said to be advisable, but it does serve as an introduction to simulation, from
which one can advance to the slightly harder implicit methods mentioned in
Chap. 8. In the present chapter, a large number of alternative schemes that
have been advocated in the last several decades, are at least mentioned, some
in more detail than others, according to the present author’s estimation of
the feasibility of the methods’ use, or the ability of the average electrochemist
to program them. This is inevitably a subjective judgement and there will
be some disagreement. References are provided for the reader who wants to
delve more deeply.

9.1 The Box Method

The Feldberg approach to digital simulation [229] uses a somewhat different
method of discretisation, and the method is alive and well; it is, for example,
the basis for the commercial program DigiSim [482]. It begins with Fick’s
first diffusion equation, using fluxes between boxes or finite volumes, rather
than concentrations at points in the discretisation process (see below).

Rather than, as is done in this book, sampling concentration along the x-
axis at a number of points, Feldberg thought in terms of boxes along the axis.
Initially, the boxes were of equal length but Feldberg proposed in 1981 that
boxes of unequal length were better, and suggested exponentially expanding
box-lengths [231]. A few such boxes are shown in Fig. 9.1. We have selected
three boxes, consecutively numbered, as shown. The middle box is indexed
with i, and is bounded by the positions xi−1 and xi. Its length is hi. The
formula for the expansion can be expressed as follows. We start with a first
box of length h1, chosen suitably (with perhaps a homogeneous chemical
reaction in mind, so that h1 lies well within the reaction layer). Then, each
successive box has a length a fixed multiple > 1 of the length of the one
before it. This is in fact precisely the same as is done in the exponentially
spaced point positions, described in Chap. 7. There, the symbol γ is given to
the expansion factor. Tradition has it, in the box method approach, to use a
different symbol and definition for the expansion factor; our γ is equivalent to

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 145–187 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

146 9 Other Methods

Fig. 9.1. Discrete boxes along x

exp(β) in the box terminology. We can thus directly describe the outer box
boundaries in the same terms as in (7.19), and arrive at Feldberg’s equation,

xi = h1
exp(iβ) − 1
exp(β) − 1

. (9.1)

This is the formula in [231], seen again in Rudolph’s chapter in [477]. Also,
the box lengths themselves are given by

hi = h1 exp((i − 1)β) . (9.2)

This expanding box strategy is mathematically equivalent to the transfor-
mation from X into Y as described for point positions in Chap. 7, (7.3), as
is shown in Appendix B. Its implementation in the discretisation process is
however different.

The way this is used is as follows. Fick’s first law is used, and fluxes into
and out of box i are considered. For this, we need to assign distances between
successive boxes, and here a small difficulty arises. For boxes of equal length,
the distance is simply that length, stretching from box midpoint to the next
box midpoint. With boxes of unequal lengths, this leads to inaccuracies. What
is done instead is to (mentally) map the position x onto an index space, the
i’s in Fig. 9.1. These have equal intervals of size unity. The assigned midpoint
of a given box indexed with i is then at i − 1

2 , and this transforms to the
midpoint positions marked in Fig. 9.1 as xi−1 . . . xi+1, at the dashed lines.
Distances between boxes are then the distances between these points. The
points are given by

xi = h1
exp((i − 1

2)β) − 1
exp(β) − 1

. (9.3)

Now, the flux f1 going into box i is

f1 = −AD
ci − ci−1

xi − xi−1
(9.4)

where A is the cross-sectional area of the box and D is the diffusion coefficient.
The flux f2 going out of the ith box is

f2 = −AD
ci+1 − ci

xi+1 − xi
. (9.5)

9.1 The Box Method 147

The resultant flux into box i is the difference between the two,

f = f1 − f2 (9.6)

which has units of moles per second. We want concentration changes, so we
must multiply by the time interval to get moles, and by the box volume to
get δci. The time interval is δt and the box volume Vi is

Vi = Ahi . (9.7)

All this leads to the equation for the change in ci,

δci =
Dδt

hi

(
ci+1 − ci

xi+1 − xi
− ci − ci−1

xi − xi−1

)
(9.8)

which, using Feldberg’s [231] and Rudolph’s [477] notation, is now expressed
in the form

δci = D∗
2i(ci+1 − ci) − D∗

1i(ci − ci−1) . (9.9)

The D∗ coefficients can be worked out from (9.8), substituting for the x
terms using (9.3). A minor problem may be encountered in simplifying the
denominators in the two terms in brackets on the right-hand side of (9.8).
As an example, consider the first of these. It is simplified in the following
manner. From (9.3),

xi+1 − xi = h1
exp((i + 1

2)β) − exp((i − 1
2)β)

exp(β) − 1
(9.10)

and dividing top and bottom of this fraction by exp((i − 1
2)β), we are left

with
xi+1 − xi = h1 exp((i − 1

2)β) . (9.11)

The second denominator term can be simplified in an analogous manner,
dividing by exp((i − 3

2)β). This leads to the expressions, for i > 1,

D∗
2i = D∗ exp(2β(3

4 − i)
D∗

1i = D∗ exp(2β(5
4 − i) (9.12)

with
D∗ =

Dδt

h2
1

. (9.13)

For the very first box (i = 1) there is another small problem. There is no box
at i = 0, where

x1 = h1 (9.14)

and from (9.3) (i = 1),

x1 = h1
exp(1

2β) − 1
exp(β) − 1

. (9.15)

148 9 Other Methods

Inserting this appropriately into (9.8) results in the two coefficients

D∗
21 = D∗ exp(− 1

2β)

D∗
11 = D∗ exp(β) − 1

exp(1
2β) − 1

. (9.16)

The above equations are all given in [231] and [477].
Consideration of (9.9) reveals that it is of the same form as that shown for

the point method using arbitrarily spaced points, (8.8) in Chap. 8. We can
proceed from here in the same way as in that chapter. That is, all methods
described there (or even the explicit method) can be applied. By dividing
(9.9) by δt, we can even go into a MOL-type method (see below). There is
thus no need to describe the procedure further from here.

As a final word on the box method, it should be mentioned that in his
recent publications on unequal intervals, Rudolph [478, 479, 481] makes a
strong case for the box method. His initial aim in these papers was to show
that discretisation in the point method, on equal intervals in the transformed
space (as described in Chap. 7) is not as accurate as had been supposed.
Rudolph devised an improved way of discretising the transformed diffusion
equation [479, 480] (the same as the present (7.11) in Chap. 7, derived by
Bieniasz [108]), and states that the box method with exponentially expand-
ing intervals, as described above, is as accurate as when using this improved
formula. It seems that the use of fluxes is the cause of the accuracy of the
box method, even though computed concentration values might be less ac-
curate. Rudolph refers [481] to exponential convergence of calculated flux
values, using this method. This is supported by the literature on the control
volume method [435]. Patankar [435] writes that “even coarse-grid solution
exhibits exact integral balances”. The technique has been used in two other
electrochemical works [67, 323]. There is as yet no agreement on this, and
further study is needed. Certainly Rudolph’s 2004 paper [481], showing very
rapid exponential convergence of the computed flux, makes a strong case for
this method.

9.2 Improvements on Standard Methods

Both the explicit and implicit methods already described have been improved
to greater accuracy and, hopefully, greater efficiency.

9.2.1 The Kimble and White Method

Kimble and White [338] developed a scheme which, as described and in-
tended, was somewhat awkward to use and limited the possible number of
points in time and space. The method is mentioned in other chapters for its

9.2 Improvements on Standard Methods 149

use as a high-order start for BDF (for which it did indeed work, but not
with great efficiency). It is perhaps best described in two stages. Consider
Fig. 9.2, a modest-sized grid on which the KW method is to be used, repre-
senting positions in time (indices j) and space (indices i). The thick bottom
line represents initial conditions; the dotted line at the left is that for the
boundary C0 values, that at the right the bulk values. The vertical line at
i = 8 lies at Xlim. In general, let there be N +2 mesh points in the horizontal,
X-direction and M + 1 in the vertical, T -direction, that is, N ×M points to
be calculated aside from boundary points.

Fig. 9.2. An example grid for the KW method

Nguygen and White [414] used such a grid, albeit for the purpose of
solving an elliptic problem, not involving time, so that the vertical axis was
along y, the other spatial dimension. The method therefore involved second
spatial differences in both directions, and they used three-point discretisa-
tions. What made their approach special is that, rather than writing one
large system of equations for all N × M unknowns, which leads to a banded
system, they wrote a system of matrix equations, each unknown being the
whole horizontal vector. This gave them a block tridiagonal system, solvable
by the available routine BANDJ by Newman [413], which is a precursor to the
Rudolph method.

This early paper was followed by another one in 1990 by Kimble and
White [338], now applying the method to a diffusion problem, and using
5-point approximations in both directions. As before, the problem was cast
into a block-matrix, but because of the 5 points used for the discretisations,
this was block-pentadiagonal. For most node points in the figure, the 5-point
approximations yield the following computational molecule or stencil.

150 9 Other Methods

All points have been drawn empty, indicating what is special about the
KW method. If the stencil had been drawn, as one might expect, with all
points filled (known) except the top one, this would indicate that the method
marches forward in time, using an explicit central differences form. Such cen-
tral difference forms are all known to be unstable. The classic one is the
3-point leap-frog scheme of Richardson [468], which appears attractive intu-
itively, being second-order in time, but was proved unconditionally unstable
in 1950 [424]. The same holds for central difference schemes using a larger
number of points, as here [302]. Neither does it make a difference simply
to put all the equations into one large system; the instability still appears.
What made the difference here, as shown in [141], is the device the authors
employed at the top of the grid. The 5-point temporal discretisation can only
be used up to line M − 2 (the top one being at index M). For index M − 1,
an asymmetric backward form is needed, using points at indices M − 4 . . . M
(form y′

4(5) in Table A.1, Appendix A):

and for the top line at index M , a BDF form, y′
5(5) in the table, was used.

It is this “cap” on the whole system that stabilises it [141].

Similarly, asymmetric forward forms are used at the bottom end.
Kimble and White were aware that leapfrog methods are unstable and

simply remark that this did not seem to apply to their method. Also, they
mention the use of 5 points for all approximations but their table of discreti-
sations shows that they used 6 points at the edges for the spatial second deriv-
ative. This is no doubt because, as Collatz already mentions in 1960 [170],
the asymmetric 5-point second derivative is only third-order, while a 6-point
formula is fourth-order, like the symmetrical 5-point ones used in the bulk of
the grid. So, for the second spatial derivative at index i = 1, the form y′′

2 (6)
was used, and the reverse, form y′′

5 (6) at i = N .

9.2 Improvements on Standard Methods 151

All this leads to a block-pentadiagonal system of equations in the unknown
vectors representing the horizontal lines in the figure. Results appeared to be
good [338] but clearly, the drawback of the method is that, for any reason-
ably sized grid, the system becomes large and programming is not trivial.
Probably for this reason, the method has not taken on. It might, however,
have application in the ode field, where the computational molecule reduces,
as it were, to a single vertical column.

Another potential use for the KW method is as a high-order start for
the BDF method, as indeed suggested by Feldberg and Goldstein [236], who
dubbed this the “hyperimplicit” approach. As described in previous chapters
4 and 8, BDF has the problem of requiring starting values, if the higher-order
BDF variants are to be used. If the grid in Fig. 9.2 is reduced to k time levels
for a k-point BDF variant, and solved for the k−1 unknown levels, high-order
starting values result. This process is described in Chap. 8, Sect. 8.5.2.

9.2.2 Multi-Point Second Spatial Derivatives

When using methods such as extrapolation or BDF, which are capable of high
order results with respect to the time intervals, one finds that, going to orders
higher than O(δT 2) does not lead to improvements, certainly not to greater
efficiency – rather the reverse, because more computing is done to achieve
similar accuracies. The reason is that the error is a sum of terms involving
δT p (p being the particular method’s order with respect to δT) and H2 (for
equal intervals), H being the spatial interval. This comes from the three-
point spatial second derivative usually used. This term soon dominates and
renders high-order time schemes useless. Thus, higher-order second spatial
derivatives might help and have been studied for equal intervals [150, 152,
154,531] as well as for unequal intervals [153]. Inspiration for this came from
the KW method, described above. As with that work, 6-point asymmetric
discretisation becomes desirable at points next to the boundaries, in order
for all discretisations to be fourth-order with respect to the spatial interval H.
The equations then are, in semidiscretised form (that is, leaving the left-hand
side of the diffusion equation untouched for the moment)

dC1

dT
=

1
12H2 (10C0 − 15C1 − 4C2 + 14C3 − 6C4 + C5)

dC2

dT
=

1
12H2 (−C0 + 16C1 − 30C2 + 16C3 − C4)

. . . (9.17)
dCi

dT
=

1
12H2 (−Ci−2 + 16Ci−1 − 30Ci + 16Ci+1 − Ci+2)

. . .
dCN−1

dT
=

1
12H2 (−CN−3 + 16CN−2 − 30CN−1 + 16CN − CN+1)

dCN

dT
=

1
12H2 (CN−4 − 6CN−3 + 14CN−2 − 4CN−1 − 15CN + 10CN+1)

152 9 Other Methods

where the first line (index 1) uses the y′′
2 (6) form in Table A.2, and that at

index N the symmetrically opposite form y′′
5 (6). All other equations, indices

2 . . . N −1, use the symmetrical 5-point form y′′
3 (5). There is, however, some-

thing special about lines 2 and N − 1, in that, like the first and last lines,
they include terms in boundary values. In practice, the C0 values would be
substituted by suitable expressions involving unknown concentration terms
C1, . . . , according to what the boundary conditions are (Chap. 6). Also, the
system 9.17, being pentadiagonal, requires something more complicated than
the Thomas algorithm, and one has been described [152], based on such texts
as that of Engeln-Müllges and Uhlig [220] and Fletcher [250]. It involves sev-
eral sweeps and, depending on the boundary condition expressions, possibly
some preliminary eliminations to reduce the matrix to pentadiagonal form, if
these expressions produce some extra-long equations (typically, the first and
second).

This was examined in a series of works, using BDF [152], extrapola-
tion [531], RK (see below) [150] and BDF with the KW start [154]. The
latter did produce highly accurate starting vectors but due to the high compu-
tational overhead, was found less efficient than some less accurate BDF starts.
Overall, the most efficient methods were those employing fourth-order extrap-
olation, followed closely (and surprisingly) by the simple BDF start with the
time correction [154], mentioned in Sect. 4.8.1 on page 58, and Sect. 8.5.2,
page 131.

In practice, the (6,5) approach is, at present, limited by the fact that, in
the form presented here, it applies to equal intervals. A slight improvement
with unequal intervals, using a 4-point spatial second derivative, is described
in Chap. 8, and this might be sufficient improvement, at little cost in terms
of desk work [143]. It has been applied to the ultramicroelectrode [532], see
Chap. 12.

9.2.3 DuFort-Frankel

The (ode-) method called leapfrog has been mentioned in Chap. 4, where
(4.38) describes it. This was used by Richardson [468] to solve a parabolic
pde, apparently with success. The computational molecule corresponding to
this method is

In this scheme, the temporal derivative is formed by the central (second-
order!) difference between the upper and lower points, the second spatial
derivative being approximated as usual. This makes the discretisation at the
index i in space,

C ′
i − ′Ci

2δT
=

1
H2 (Ci−1 − 2Ci + Ci+1) (9.18)

9.2 Improvements on Standard Methods 153

(adhering to the notation used for BDF as in Chap. 8, page 132, where ′Ci

denotes Ci at time T − δT). The scheme is clearly explicit.
Leapfrog is used with apparent success to solve hyperbolic pdes [528],

but was proved unconditionally unstable for parabolic pdes in 1950 [424].
Richardson had been lucky, in that the instabilities had not made themselves
felt in his (pencil and paper) calculations, in the course of the few iterations
he worked.

DuFort and Frankel [216] devised a modification to this scheme in 1953
that stabilises it:

The time derivative is still a central difference but the spatial second
derivative now leaves out the central point, substituting for it the mean of
the past and future points. Thus, the discretisation is

C ′
i − ′Ci

2δT
=

1
H2 (Ci−1 − ′Ci − C ′

i + Ci+1) (9.19)

which is still explicit for C ′
i when rearranged but known to be stable for all

δT/H2 [350]. This formula received some attention among electrochemists
for some time [124, 233, 361], some [233] calling it “FQEFD” (fast quasi-
explicit finite difference). It shares with BDF (or FIRM) the problem of
start-up, since at the first step, a row of values at T = −δT are needed. This
was mentioned by Marques da Silva et al. [382], who studied this scheme,
along with that of Saul’yev (see below) and its offshoots, and hopscotch (see
also below). They also mention another problem with DuFort-Frankel, shared
with hopscotch, as pointed out by Feldberg [232]. Both DuFort-Frankel and
hopscotch, being stable for any λ, invite the use of large λ or δT values. This
should result in a fast propagation of changes in the concentration profile
from what is happening at the electrode. However, because these schemes
are explicit, generating one new value at a time only from old values, such
changes can only advance into the cell’s interior space one interval at a time.
This compares with implicit methods for which the whole profile is always
calculated together at each step. For this reason, Feldberg [232] writes of the
“propagational inadequacy” of hopscotch, and, in a private communication
with Marques da Silva et al., also of the DuFort-Frankel scheme [382]. Both
schemes thus perform less and less well at large δT , nullifying the advantages
that might have come from the unconditional stability. This problem had been
pointed out in the numerical text of Carnahan et al. [161, p. 440, Fig. 7.5]
for the explicit method itself. Also, most textbooks mention the inconsistency
problem of DuFort-Frankel in the case when δT/H � 0; in fact, the authors
themselves mention this in their 1953 paper [216]. More about this can be
read in Chap. 14.

154 9 Other Methods

The DuFort-Frankel scheme has apparently been dropped in favour of
more interesting schemes such as BDF, which can be driven to higher orders,
and for which the start-up problem has been overcome (Chap. 4).

9.2.4 Saul’yev

A perhaps more interesting method is that of Saul’yev [496] (and apparently
independently, the same idea, of Barakat [70] a short time later). The method
is explicit, which makes programming easier than implicit methods, and is
capable of improvements over the original idea. There are two basic variants
that make up the building blocks for improvements. The LR variant, as the
name implies moves from left (that is, from X = 0) to right (higher X),
generating new values at the next time level. The computational molecule
for this is

and the diffusion equation is discretised from the four points in the form

C ′
i − Ci

δT
=

1
H2

(
C ′

i−1 − C ′
i − Ci + Ci+1

)
(9.20)

which is seen to be a sort of tilted second derivative on the right-hand side.
The left-right progression is explicitly possible because the left-most element
has already been computed in the previous step. The equation is rearranged
into a form explicit for C ′

i. Obviously, this leaves the problem of how to start,
for which the boundary value C ′

0 is needed. This will be described below. The
above equation can be expressed in the form, explicit for C ′

i,

C ′
i = a1(C ′

i−1 + Ci+1) + a2Ci (9.21)

with the constants defined as

a1 =
λ

1 + λ
(9.22)

and
a2 =

1 − λ

1 + λ
. (9.23)

The other variant is RL, moving from right to left:

and the discretisation is

C ′
i − Ci

δT
=

1
H2

(
Ci−1 − Ci − C ′

i + C ′
i+1
)

. (9.24)

9.2 Improvements on Standard Methods 155

When rearranged so as to be explicit for C ′
i, it becomes

C ′
i = a1(Ci−1 + C ′

i+1) + a2Ci (9.25)

with the same definitions of the constants. The only difference is in the super-
scripts of the first term on the right hand side, and in the order of evaluation,
here from right to left.

It remains to describe how to handle the boundary value C ′
0. Clearly,

for the RL variant, there is no problem because the last concentration value
calculated is C ′

1, and C ′
0 can then be computed from all the other C ′ val-

ues, now known, according to the boundary condition. This leaves the LR
problem. If the boundary concentration is determined as such (the Dirichlet
condition, for example the Cottrell experiment), then this is simply applied.
It is with derivative (Neumann) boundary conditions that there is a (small)
problem. Here, we know an expression for the gradient G at the electrode.
For simplicity, assume a two-point gradient approximation at time t + δT
(G′),

G′ =
C ′

1 − C ′
0

H
(9.26)

and this can be coupled with the first LR expression for C ′
1 from (9.21),

setting i = 1, and the two equations solved for C ′
0 (and C ′

1). The LR process
can then begin. If more points are to be used for the gradient approximation,
then more LR expressions must also be added, and a correspondingly larger
system of equations needs to be solved. This has been described [144] in
some detail.

This is as much as will be said here about the mechanics of the Saul’yev
method; the reader can take it from here, as it is quite simple. Some further
remarks are however in order.

Both the LR and RL variants, despite being explicit, are said to be stable
for all λ values, which is a great advantage. Also, the method does not share
with DuFort-Frankel and hopscotch the propagational inadequacy problem
[232] mentioned above because both variants amount to a recursive algorithm,
each newly calculated element carrying with it some component from all
previously calculated elements.

There are drawbacks, however. It is clear from the above computational
molecules, that the second, spatial derivative is approximated in an asym-
metric manner, and although these approximations are in fact second-order
with respect to the interval H, they are not as good as, say, the Crank-
Nicolson ones. Both LR and RL, taken by themselves, do not produce very
good results. It was not long after Saul’yev’s book in 1964, that Larkin (in the
same year) published some extensions, as did other workers [223, 367, 368].
The asymmetry of each of the two variants suggests combining them in some
manner. Larkin [352] listed four strategies:

1. use the LR variant only;
2. use the RL variant only;

156 9 Other Methods

3. use the LR and RL variants alternately at each iteration;
4. use the LR and RL variants independently at each iteration and average

the result.

Liu [367, 368] later added a modification, using one extra point at the bot-
tom advancing end of the molecules shown above, and showed that this made
the schemes more accurate and that they were still stable. Evans and Abdul-
lah [223] developed what they called group explicit methods (GEM) based
on Saul’yev, in which the LR and RL schemes were combined in larger com-
putational molecules.

Electrochemists first investigated the Saul’yev method in 1988 and 1989
[381,382], including GEM, and the incorporation of implicit boundary values
was added later [144]. The result of these studies is broadly that the last of
Larkin’s options above, averaging LR and RL, is the best. This has about
the same accuracy as Crank-Nicolson, and could be considered to be easier
to program. The third option, alternating LR with RL, produces oscillations.

The stability of the Saul’yev schemes in the electrochemical context with
mixed boundary conditions, was examined [112, 118]. Surprisingly, it was
found that the LR variant can be unstable with mixed boundary conditions.
There exists, for any number N of intervals in space, a maximum λ value in
the discrete equation, above which the LR scheme becomes unstable. Fortu-
nately, it is rather difficult to attain this condition in practice. Since these
studies, Deng [207] has used the various Saul’yev schemes and offshoots, and
cites several Chinese studies also using Saul’yev variants, but they have found
little application elsewhere.

9.2.5 Hopscotch

In 1965, Gordon [272] reported some studies of what he called nonsym-
metric difference equations, meaning schemes like that of Saul’yev and the
Peaceman-Rachford ADI scheme (see Chap. 12), in which not all points are
treated alike. One of his new ideas was what he called the “explicit-implicit”
scheme. It is as follows (using the simple example of a 1-D simulation). As
usual, we move along time with index j and along space (X) with index i,
starting with j = 1, having set the initial values for j = 0. The X points are
indexed from zero to N +1, with X0 = 0 and XN+1 lying in the bulk, outside
the diffusion space.

If j is even, then we first explicitly compute new points for all odd i, that
is,

C ′
i = Ci + λ(Ci−1 − 2Ci + Ci+1) , (9.27)

and then using the implicit formula (the same as backward implicit BI) on
all points with even i,

C ′
i = Ci + λ(C ′

i−1 − 2C ′
i + C ′

i+1) . (9.28)

9.2 Improvements on Standard Methods 157

The interesting thing here is that in contrast with BI, the values for C ′
i−1

and C ′
i+1 are already known from the run of (9.27), lying at odd values of

i, so that (9.28) can be rearranged explicitly for C ′
i. At the next iteration, j

will be odd, and the explicit calculation is done on all even i, followed by the
implicit calculation on all points with odd i. In this way, alternating the sets
being computed explicitly and implicitly, a certain symmetry is produced.

Gordon also showed that the scheme is convergent and stable for all λ.
The scheme was taken up by Gourlay in 1970 [275], who tightened up the
mathematical notation, and applied the scheme to 2-D numeric problems,
as well as introducing the trick of overwriting values in the first (explicit)
step, so that only one array of values is needed. Gourlay coined the name
“hopscotch” for this method, by which it has been known since then, and
usually only Gourlay is cited. There were follow-up papers [224,276]. It also
became clear that the method was closely related to others like ADI [275]
(to be mentioned for 2-D).

The enthusiasm for hopscotch arose from the fact that here was a method
with an accuracy thought to be almost comparable with that of Crank-
Nicolson, but which was an explicit computation at every step, not requiring
the solution of linear systems of equations, as other implicit methods do. It
was also stable for all λ, thus making it possible to use larger time steps, for
example. The convenience of the point-by-point calculation has occasionally
led workers to call the method “fast” [235].

Shoup and Szabo [507,508,509,510] brought the method to electrochem-
istry, using it to simulate diffusion at a microdisk electrode. This was a prob-
lem at the time. A proper implicit scheme leads to rather large banded sys-
tems of equations (see Chap. 12), and workers tended to use ADI, which leads
to (much smaller) systems of equations. Hopscotch seemed to be the answer,
as one could recalculate all points explicitly, and use large λ values (in both
directions). Feldberg [235] used the method to simulate processes at a rotat-
ing ring-disk electrode, citing stability and ease of use. Other electrochemists
followed [52,251,252,354,355,394,434,489]. There soon appeared criticisms,
however. Ruzić [484] commented that Shoup and Szabo had misrepresented
the normal explicit method by stating that it required two concentration
arrays, and showed how this could easily be avoided by using two scalar
concentration values trailing behind the values treated, while overwriting all
values as they are calculated (this is the trio of variables, C1, C2, C3, used
in the example program COTT_EX, see Appendix C). Also, Ruzić showed that
some simple known improvements [494] to Feldberg’s explicit method im-
proved its accuracy to something close to that of the hopscotch method,
so that the latter was not needed. Shoup and Szabo had indeed shown in
their 1984 paper [509], that hopscotch’s accuracy declines badly at λ values
exceeding unity, so the ability to use large λ cannot be cited as an advan-
tage of the method. Ruzić’s polemic was rebutted by Shoup and Szabo [511],
who admitted some of the points made but then launched a discussion on the

158 9 Other Methods

precise implementation of the Feldberg (box-) method which, unlike the point
method, allows a number of interpretations and tricks to improve the results.
The improvement described by Ruzić, shown in his example program and
based on Sandifer and Buck [494], amounts to the use of the point method.

In 1987, Feldberg [232] pointed out the most serious drawback of hop-
scotch. The problem is that, at each step forward in time, application of the
two (9.27) and (9.28) can propagate a perturbation at a given point in the
profile (for example, at the electrode) only by a single interval in space. If
large time intervals are used, then one would expect such changes to make
themselves felt over a number of neighbouring points, but hopscotch cannot
do this. Feldberg writes of the “propagational inadequacy” of the hopscotch
method. As mentioned above, it shares this with the DuFort-Frankel method
and also with the explicit method. With the latter, however, the stability
limit on λ prevents the use of time intervals large enough for this inadequacy
to matter, while for hopscotch (and DuFort-Frankel) there is the possibility
and temptation to use larger time intervals. At values that can be used in the
explicit method, hopscotch is only marginally better than explicit and this,
together with the propagational inadequacy feature, suggests that hopscotch
is not a method of choice, despite the ease of programming, both for one-
and two-dimensional simulations.

9.2.6 Runge-Kutta

The RK variants are described for odes in Chap. 4, from page 54 and, for a
system of odes, from page 66. There, only the Euler method is detailed, but in
terms of RK terminology, from which the higher-order variants follow easily.
The description there will not be expanded here, for reasons given below.
When solving a pde or a system of such, one way is to “semidiscretise” the
equation(s), meaning that only the right-hand side is discretised, leaving the
time derivative as it is. This yields a system of odes, such as (4.49), and
one can then proceed with that. This is called the Method of Lines (MOL).
One can either treat the boundary conditions separately, or add them to the
system, in which case the system becomes a DAE system, and requires other
methods to solve for it, as briefly mentioned in Chap. 4.

RK initially attracted attention in electrochemical digital simulation be-
cause of homogeneous chemical reactions. With explicit simulations, it was
realised that there was a problem if the term KδT was of appreciable
magnitude [234, 246]. Nielsen et al. [418] point out that, if this term causes
more than a few percent change in a concentration, the simulation will be
inaccurate. Early on it was suggested to treat the chemical term more ac-
curately. Feldberg and Auberbach [234] used the known analytical solutions
for a first- and second-order chemical reaction for the chemical term, and
Flanagan and Marcoux [246] followed, suggesting RK integration for those
cases in which analytical solutions are not known. The RK method was then
used by Nielsen et al. [418].

9.2 Improvements on Standard Methods 159

It was realised then that the method of Nielsen et al. [418] had a defect,
limiting its accuracy. The diffusional and chemical terms were calculated
separately, in sequence. That is, first diffusional changes are applied to the
concentrations, and then the chemical reaction is allowed to run, on the
changed concentrations. This is the “sequential method” also used for the
plain explicit (Euler) method for both terms, where it has been shown to
be consistent mathematically [485]; see also Appendix B. No proof of the
consistency of the method, when RK is applied to the chemical terms, is
known, however. Clearly, this technique uncouples the two processes taking
place, diffusion and chemical reaction. This was remedied [135] in a work
where RK was applied to the whole system of equations, thus taking care of
the coupled nature of the two processes. It was found [135] that using RK2,
a modest efficiency gain of about a factor 3, in terms of computer time used,
was achieved, compared with the plain explicit method, in order to reach a
given target accuracy in model simulations. This is not very much and the
method has the additional drawback of a limit on the size of λ, the same as the
explicit method, 0.5. Nevertheless, this whole-system RK method has seen
some use since then, notably by the Lemos school [357,358,359,360,466], who
emphasise the MOL nature of their approach, Gosser [273], and Barker [79].
Accuracy contours were computed for the method, among others [147] and a
stability analysis was published [94], as affected by the chemical reaction (the
reaction lowers the limit on λ). In the course of an investigation of higher-
order discretisations of the spatial second derivative, RK was once again
tested [150] and once again found not especially promising; using 5-point
discretisation, the limit on λ decreases to 0.375.

It is therefore concluded that this method, using explicit RK as described
in Chap. 4, is not worthwhile mainly because of the λ limitation.

There are, however, implicit variants of RK, and these may have promise.
There are several classes of these, see a thorough text on the subject
[284, 286]. One of these classes, the Rosenbrock method, has been recently
examined [100,113, and see references therein] and found very efficient. This
is described in its own Sect. 9.4, below.

9.2.7 Hermitian Methods

Kopal [341] describes Hermitian interpolation, as used by Hermite. The
essence of this is that not only function values at grid points are used, but
also derivative values. For a given number of grid points used in a particular
approximation formula, this results in a higher order accuracy with respect to
the grid intervals. Although Hermite used this only for interpolation, the term
is now used more generally, referring to the characteristics mentioned above.
Three Hermitian methods have been used in electrochemical simulations, up
to the time of writing, and two of them are due to Bieniasz.

160 9 Other Methods

Numerov/Douglas

In 1924, the Russian astronomer Numerov (transliterating his own name as
Noumerov), published a paper [421] in which he described some improve-
ments in approximations to derivatives, to help with numerical simulations
of the movement of bodies in the solar system. His device has been adapted
to the solution of pdes, and was introduced to electrochemistry by Bieniasz
in 2003 [108]. The method described by Bieniasz is also called the Douglas
equation in some texts such as that of Smith [514], where a rather clear
description of the method is found. With the help of the Numerov method,
it is possible to attain fourth order accuracy in the spatial second deriva-
tive, while using only the usual three points. The first paper by Bieniasz on
this method treated equally spaced grids, and was followed by another on
unequally spaced grids [107]. The method makes it practical to use higher-
order time derivative approximations without the complications of, say, the
(6,5)-point scheme described above, which makes the solution of the system
of equations a little complicated (and computer time consuming).

The description in Smith [514, pp. 137-] is followed here. It starts with a
statement that a second derivative can be approximated by

∂2u

∂x2 ≈
(
δ2
xu − 1

12δ4
xu + 1

90δ6
xu − . . .

)
, (9.29)

where the symbol δn
xu denotes the operation δn

x on u corresponding to an
approximation to the nth derivative. In particular, we have

δ2
xu = ui−1 − 2ui + ui+1 , (9.30)

the familiar three-point form, second order in the interval h between the
(equally spaced) points at indices i−1, i, i+1. It does not contain the interval
h. Also, if δ2 operates on itself, it becomes δ4, etc. It is an operator, but can
in this sense be treated as a multiplier. It will be seen that we do not need
to define higher derivatives than the second, operator δ2.

Smith does not explain the origin of (9.29), but a derivation can be found
in Lapidus and Pinder [350, pp. 19-], to which the reader is referred. The
form seen in (9.29) is one of several equally valid forms, but is the one chosen
in this context, as it allows the Numerov device.

The method will be described as applied to BI, which is the basis for both
extrapolation and BDF, both of which can be driven to fourth order accuracy,
which is also achieved by the Numerov device applied to the right-hand side
of the diffusion equation,

∂C

∂t
=

∂2C

∂X2 . (9.31)

Using the usual notation, C ′
i denoting the next point in time after the present

value Ci, i being the index along the X axis, we now discretise the left-hand

9.2 Improvements on Standard Methods 161

side only, according to BI (see Chap. 8, but now assuming equal intervals),
and use (9.29) for the right-hand side:

C ′
i − Ci = λ

(
δ2
XC ′

i − 1
12δ4

XC ′
i + 1

90δ6
XC ′

i − . . .
)

. (9.32)

We need not concern us with the implementation of the higher-order deriva-
tives, as will shortly be clear. Now both sides are operated on by (1 + 1

12δ2),
which is the same as adding to each side the operation 1

12δ2
X on that side.

This gives

C ′
i − Ci + 1

12δ2
X(C ′

i − Ci)

= λ
(
δ2
XC ′

i − 1
12δ4

XC ′
i + 1

90δ6
XC ′

i − · · · + 1
12δ4

XC ′
i − 1

144δ6
XC ′

i + . . .
)
(9.33)

and it is seen that on the right-hand side, there are now only terms in δ2
X

and δ6
X , the δ4

X having cancelled out. We can safely ignore the δ6
X and higher

terms, and now we have only δ2
X terms on both sides of the equation. Now

expanding according to the definition of the operation δ2
x (9.30), we get

C ′
i −Ci + 1

12 (C ′
i−1 −2C ′

i +C ′
i+1 −Ci−1 +2Ci −Ci+1) = λ(C ′

i−1 −2C ′
i +C ′

i+1)
(9.34)

which, multiplying by 12 and gathering terms, becomes the familiar form seen
in Chap. 8, the ith equation of system (8.11) for a general implicit method,

C ′
i−1 + aC ′

i + C ′
i+1 = bi , (9.35)

where now

a =
10 + 24λ

1 − 12λ

bi =
Ci−1 + 10Ci + Ci+1

1 − 12λ
. (9.36)

The difference is that this discretisation is O(H4). The system can be solved
as easily by the Thomas algorithm as, say, the usual Laasonen or CN system,
but now it will be worthwhile applying a high-order process in the time
direction. The easiest one is extrapolation, described above, and it ought to
be fourth order, so as to match that of the spatial second derivative. Bieniasz
tested the method with three simulation algorithms, comparing with the
normal, second-order discretisation: BI (no difference, because of the first-
order time derivative), second-order extrapolation (not much difference, the
second-order not providing a match for the fourth order) and the Rosenbrock
scheme using ROWDA3, which showed a marked improvement in efficiency.
Unfortunately, he did not attempt fourth-order extrapolation, which might
be expected to perform about as well as Rosenbrock, and would be easier to
implement, being simply a series of BI steps.

162 9 Other Methods

This method is worth investigating further. An analysis of the stability
of the formulae resulting from the method is yet to be done. There are some
features to note. Considering the constants definitions above (9.36), there is
an apparent problem if λ = 1/12. In fact, if the whole (9.35) is multiplied by
1 − 12λ, then this problem becomes a possible advantage, as that equation
then simplifies, for λ = 1/12, to

12C ′
i = Ci−1 + 10Ci + Ci+1 . (9.37)

It is not clear whether this is a good formula in practice, and in any case, the
λ value is inconveniently small.

Note also that, if there are homogeneous chemical reaction terms on the
right-hand side of (9.31), they can be accommodated without problems; they
will lead to some additional terms operated on by δ2

X . What must not be
present are convection terms, since these are spatial first derivatives, making
the Numerov method, in this form, impossible to use. However, Bieniasz has
devised an improved version, called the “extended Numerov method” [110],
which indeed can handle first spatial derivatives and thus convective systems.

Hermitian Current Approximation

As already described in some detail in Chap. 3, a one-sided first derivative
such as the current approximation G can be raised to higher-order by a Her-
mitian scheme, as introduced by Bieniasz [108]. This can then be used both
to obtain better current approximations, and also in those cases where G
enters a boundary condition. For the simpler case of the current approxima-
tion on a concentration grid already calculated, see the relevant Sect. 3.6 in
Chap. 3. Here we need to go into some detail on the boundary conditions
application.

There are simulation cases (for example using unequal intervals) where
it is desirable to use a two-point approximation for G, both for the evalua-
tion of a current, and as part of the boundary conditions. In that case, an
improvement over the normally first-order two-point approximation is wel-
comed, and Hermitian formulae can achieve this. Two cases of such schemes
are now described: that of controlled current and that of an irreversible reac-
tion, as described in Chap. 6, Sect. 6.2.2, using the single-species case treated
in that section, for simplicity. The reader will be able to extend the treatment
to more species and other cases, perhaps with the help of Bieniasz’ seminal
work on this subject [108]. Both the 2(2) and 2(3) forms are given. It is as-
sumed that we have arrived at the reduced didiagonal system (6.3) and have
done the u-v calculation (here, only u1 and v1 are needed).

We must also specify the time integration method used, because the Her-
mitian scheme makes use of terms in dC/dT , which must be consistent with
the time integration. We assume the three-point BDF method, second-order
in time, so that an improvement in the usual two-point G-approximation to
second or perhaps third-order (in space) will be appropriate.

9.2 Improvements on Standard Methods 163

In the cases to be described below, we have a simple F -function, con-
taining only a term in dC/dT (see the outline in Chap. 3), which needs
approximating. With BDF, this is consistently represented as

dCi

dT
=

′Ci − 4Ci + 3C ′
i

2δT
(9.38)

with ′Ci the concentration at T − δT . If the rational BDF start is used
(Sect. 4.8.1), then the simulation will start with a single BI step, for which
we have

dCi

dT
=

C ′
i − Ci

δT
. (9.39)

For controlled current G and the 2(2) form, the boundary condition
becomes the corrected form (note that φ0 = −1/2 and φ0 = 0),

G =
C ′

1 − C ′
0

H
− H

2
F0 (9.40)

and multiplying both sides by H and expanding F0 for the BI step, results
in

GH = C ′
1 − C ′

0 −
H2

2

(
C ′

0 − C0

δt

)
. (9.41)

Substituting C ′
1 = u1 + v1C

′
0 and rearranging, we obtain the solution

C ′
0 =

2δT (GH − u1) − H2C0

2δT (v1 − 1) − H2 . (9.42)

For the subsequent BDF steps, this is

GH = C ′
1 − C ′

0 −
H2

2

(′C0 − 4C0 + 3C ′
0

2δt

)
, (9.43)

leading finally to

C ′
0 =

4δT (GH − u1) + H2(′C0 − 4C0)
4δT (v1 − 1) − 3H2 . (9.44)

The 2(3) form (φ0 = −1/3, φ1 = −1/6) starts with

G =
C ′

1 − C ′
0

H
− H

3
F0 −

H

6
F1 . (9.45)

Expanding and substituting for both C ′
0 and C ′

1 (the latter arising in F1),
the final result for the BI step is

C ′
0 =

6δT (GH − u1) + H2(u1 − 2C0 − C1)
6δT (v1 − 1) − H2(v1 + 2)

, (9.46)

while for the BDF steps it becomes

164 9 Other Methods

C ′
0 =

12δT (GH − u1) + H2(3u1 + 2′C0 − 8C0 +′C1 − 4C1)
12δT (v1 − 1) − 3H2(v1 + 2)

. (9.47)

For the irreversible case with dimensionless heterogeneous rate constant
K, G is given as

G = KC ′
0 (9.48)

and using this instead of G as above, we have for the 2(2) scheme and BI,

KHC ′
0 = C ′

1 − C ′
0 −

H2

2

(
C ′

0 − C0

δt

)
(9.49)

which rearranges to

C ′
0 =

2δTu1 + H2C0

2δT (KH − v1 + 1) + H2 (9.50)

or for the BDF steps

C ′
0 =

4δTu1 − H2(′C0 − 4C0)
4δT (KH − v1 + 1) + 3H2 . (9.51)

For the 2(3) scheme and BI,

C ′
0 =

6δTu1 − H2(u1 − 2C0 − C1)
6δT (KH − v1 + 1) − H2(v1 + 2)

(9.52)

and for the BDF steps,

C ′
0 =

12δTu1 − H2(3u1 + 2′C0 − 8C0 +′C1 − 4C1)
12δT (KH − v1 + 1) − 3H2(v1 + 2)

. (9.53)

Some experiments show that the 2(2) forms are sufficient here, the 2(3) forms
not leading to further improvement in accuracy. This is no doubt because
the three-point BDF algorithm used, started with a BI step, is second order
accurate in time, so a third-order form cannot improve the accuracy. A higher-
order algorithm, such as ROWDA3 as used by Bieniasz [108] would make
the higher 2(3) form more useful.

Time-integration schemes other than BDF require other expressions of
dC/dT to be consistent with the time integration scheme itself. For CN,
this cannot be done consistently very well. Bieniasz showed how to do it for
extrapolation and for the Rosenbrock ROWDA3 scheme [108]. The reader is
referred to that paper for details, where still higher-order forms are found.
The paper makes it clear that extremely small errors can be achieved by
using this method.

9.3 Method of Lines (MOL) and Differential Algebraic Equations (DAE) 165

Method of Wu and White

Wu and White [577] have described a new method that is reminiscent of
the earlier work of Kimble and White [338] but makes use of the Hermitian
method (that is, using derivatives) to achieve higher-order solutions for sev-
eral concentration rows at a time. They also suggest, but do not demonstrate,
the use of their new scheme as a possible start-up for BDF. The reader is
referred to their paper for details.

9.3 Method of Lines (MOL)
and Differential Algebraic Equations (DAE)

The Method of Lines or MOL is not so much a particular method as a way
of approaching numerical solutions of pdes. It is described well by Hartree
[295] as the “replacement of the second-order (space) derivative by a finite
difference”; that is, leaving the first (time) derivative as it is, thus forming
from, say, the diffusion equation a set of ordinary differential equations, to
be solved in an unspecified manner. Thus, a system such as (9.17) on page
151, can be written in the general vector-matrix form

dC

dT
= AC + s , (9.54)

where C is the concentration vector, A is the matrix of coefficients in the sys-
tem and s is a vector of known quantities arising from the particular bound-
ary conditions. From this point on, a large variety of methods for solving this
system can be used. This encompasses all the methods so far described, but
the term MOL nowadays implies a particular method. This consists of using
a variety of computer packages to solve the set of odes, usually with a high
degree of autonomy with respect to time intervals and if, for example, BDF
is used (as it often is with these packages), with respect to BDF order. The
word “lines” comes from the fact that the solution is advanced a “line” at
a time, the line stretching along the space dimension, and advancing up the
time axis.

The method has a long history. The name MOL seems to have become
established around 1960. Before this, various authors either used the word
“line” [254] or expressions like “on certain lines” [330] or a description of the
idea. In the book by Kantorovich and Krylov [330], there is a reference to a
1934 paper [329]. It is also cited by Liskovets [366] as a source paper, along
with Rothe (1930) [475], who might be the first. Hartree and Womersley [296]
use, in their summary, the words “approximating by use of finite intervals
in one variable, and integrating exactly in the other variable”. The book by
Schiesser [497] is the standard work now (he calls the method NUMOL, for
numerical method of lines). Electrochemical use of MOL has been sparse.
Lemos and coworkers [357, 359, 360] have investigated the method, using

166 9 Other Methods

various solution methods; Lasia and Grégoire [353] used it in conjunction
with a professional ode solver package, as did Zhang and Cheh [583].

MOL is intimately bound up with another method, that of using differ-
ential algebraic equation (DAE) sets. It can be thought of as an extension
of MOL. Therefore, MOL should be described here, and it is in fact simple.
In the most popular form of MOL, the diffusion equation is discretised on a
grid in the spatial dimension(s) only, leaving the time derivative as it is. This
results in a set of ordinary differential equations (9.54) as seen, for example,
in the system (9.17) in this chapter. There, (6,5)-point approximations are
used for the spatial derivative, but this is immaterial; three-point formulae
such as described in Chap. 8, (8.1) on page 119 are more commonly used. In
Chap. 6 the discretisation of boundary conditions is described. The idea there
is that a system like (9.17) is solved in two steps by, for example, the Thomas
algorithm. At the end of the first stage, boundary conditions are expressed
discretely and used in the second stage. However, another approach is to add
the discrete expressions for boundary conditions to the ode system. These
expressions are algebraic equations. For example, for the Cottrell system, the
expression

C0 = 0 (9.55)

might be added to the system. Or, if the experiment is that of chronopoten-
tiometry, discretised derivative boundary conditions will be developed and
added to the system, such as (6.4) or more complex discretisations. The re-
sult is always a system of equations, some of which are differential and some
algebraic. This is a DAE system, and there are professional packages for
their numerical solution. The standard text is that of Brenan et al. [130], in
which references are to be found to existing packages such as LSODE and
DASSL [441]. These can mostly be found at the netlib@ornl.gov. More on
these packages can be found in Chap. 16.

A little detail is appropriate here, especially as this is needed for the next
Section. Consider a set of odes using three-point approximation in space, such
as (8.1) on page 119, for simplicity. For N internal points, there will then
normally be N such equations in the set. Up to this point, the method has
been either to substitute for the boundary values according to the equations
describing them (the boundary conditions) or, as in the case of the implicit
methods described above, to perform a Thomas process going backward from
the external boundary, and then to solve for the value of C0, for example us-
ing the u, v process as described above. If Runge-Kutta is used, one begins
by generating a particular ki vector, then uses this to calculate the ki be-
longing to C0 (and possibly to CN+1, if that also changes with time), going
on from there. These methods in one way or another separate the treatment
of boundary values from that of the internal points. However, as mentioned
above, the equations describing boundary values can also be added to the
equation set. They are always algebraic equations, so that the whole set is
then a DAE set. As a simple example, if we simulate chronopotentiometry

9.4 The Rosenbrock Method 167

using a two-point approximation for the current, and equal spatial intervals
H, the DAE set corresponding to (8.1) becomes

0 = C1 − C0 − HG

dC1

dT
=

1
H2 (C0 − 2C1 + C2)

...

dCi

dT
=

1
H2 (Ci−1 − 2Ci + Ci+1) (9.56)

...

dCN

dT
=

1
H2 (CN−1 − 2CN + CN+1)

0 = CN+1 − 1 .

The first equation is a description of the (controlled) current approximation,
and the last equation expresses the unity value of the outer boundary value.

There are now two principal ways of handling this set. One is to decide on
some discretisation of the time derivatives, rendering the odes into algebraic
equations, and solving the lot, for the next time step. The method chosen
might be BDF, for example, which is indeed used in the DAE solver package
DASSL [441]. Seen in this light, DAE sets might be considered always to be
involved; when we use the u, v mechanism along with the Thomas algorithm,
we are essentially solving the DAE set in an efficient manner. The other
approach goes in the opposite direction, as it were. All the odes in the set are
left as such, and the algebraic equations are solved along with them, using
an ode solver. One of these is Runge-Kutta but, as was mentioned above,
explicit RK is not very efficient, so an implicit method suggests itself, such
as Rosenbrock, described for sets of odes in Chap. 4. This is dealt with in the
next section.

9.4 The Rosenbrock Method

For the basics of this method, see Chap. 4. There it was mentioned that
Bieniasz introduced this method to electrochemical simulation [100], pre-
ferring ROWDA3, a third-order variant that also has a smooth response.
There exists a second-order variant with a smooth response, ROS2, due to
Lang [347], which might be more appropriate if second-order spatial deriva-
tive approximations are to be used. Coefficients for some variants are given
in Appendix A. The object here is to describe the way Rosenbrock methods
are used in the present context. The Bieniasz paper [100] shows the way (but
the standard symbols, as used in Chap. 4, are used here, rather than those
used by Bieniasz).

168 9 Other Methods

The set (9.56) (or one like it, with whatever boundary conditions we might
have) is written in the compact form

S
dC

dT
= F (T,C) (9.57)

where S is the selection matrix. It is diagonal, and contains zeroes in those
positions where the DAE set has an algebraic equation (that is, zero on
the left-hand side of, say, (9.56)) and unity in those positions corresponding
to the odes. In a sense, the zeroes say “zero dC/dT”. On the right-hand
side, the function F (T,C) is a matrix-vector function expressing the whole
collection of the right-hand sides of, say, the set (9.56). The variable T is
included for the important generality for those cases where some variables
are time-dependent. This is the case, for example, in LSV simulations, where
the potential is a function of time, or cases where the electroactive substance
itself undergoes a homogeneous reaction, as in the Reinert-Berg system or,
of more interest in this context, the second-order Birk-Perone system, which
gives rise to nonlinear equations, both described in the subsection beginning
on page 20. As was seen in Chap. 4, one of the strengths of Rosenbrock is
indeed its easy handling of nonlinear sets.

Applying (9.57) to the specific set 9.56 for illustration, we have

S =

0
1

1
. . .

1
0

, (9.58)

that is, S is almost an identity matrix except that the first and last diagonal
elements are zero, indicating algebraic equations. The function F (T,C) can
be broken up into

F (T,C) = JC + s , (9.59)

in which the matrix J multiplies the concentration vector; it is written as J
here because it is the Jacobian, and will later figure as such. Vector s arises
from the constant terms of the DAE set. The example set (9.56) resolves into

J =
1

H2

−H2 H2

1 −2 1
. . .

1 −2 1
H2

, (9.60)

9.4 The Rosenbrock Method 169

s =
1

H2

−H3G
0
...
0

−H2

(9.61)

and the C vector indexed from 0 to N + 1.
We are now ready to invoke the Rosenbrock method. A number s of ki

vectors must be computed, s being the order chosen. The general equation
for each one is an extension of that given for a pure ode set on page 70, (4.70),
to the present DAE case, introducing the selection matrix S and following
Bieniasz [100] (though with the more common notation):

[S − γδTF C(T,C)] ki =γ

(
δTF

(
T + αiδT, C +

i−1∑
j=1

aijkj

)

+ S

i−1∑
j=1

cijkj + γiδT
2F T

)
.

(9.62)

Here, there appear the Jacobian F C , which is in fact J as defined above in
(9.60), the function F itself, applying at partly augmented T and C values,
and, in case of time-dependent systems, the time derivative F T , written in
short form, as it is applied to the present T and C. This last term is often
zero, if the system does not include functions of time.

Although (9.62) may look formidable, there are some conveniences. First
of all, for linear systems, the first matrix term on the left-hand side is a
constant and can be evaluated once and for all. We write

M = S − γδTF C . (9.63)

In fact, in practice, some further tidying up is possible, by combining the

quantities δT and
1

H2 into the familiar λ and dividing throughout by some
factors, but this is a practical detail of no importance here. The right-hand
side of (9.62) will need to be evaluated at every step, s times. At each stage
i, the equation can be written as

Mki = Bi (9.64)

where Bi is the evaluated right-hand side of (9.62). Thus, a linear system
must be solved to obtain each ki. The matrix M will normally be either
tri- or pentadiagonal or, in cases of simulations in more dimensions, will be
rather sparse, so that either the Thomas algorithm or an offshoot of it, or
a sparse solver, can be used, for efficiency. Also, the favoured Rosenbrock
variants such as ROS2 or ROWDA3 have some zero coefficients, resulting
in calculations that need not be repeated after the first stage, thus further
increasing efficiency.

170 9 Other Methods

Having calculated all s ki vectors, the RK formula is then used, here

Cn+1 = Cn +
s∑

i=1

miki (9.65)

to compute the next concentration vector.
There are advantages, and also drawbacks, of this method. The advan-

tages are great efficiency, stability and a smooth error response if ROS2
or ROWDA3 are used (see a study by Bieniasz [100], albeit not including
ROS2), and the easy handling of time-dependent and/or nonlinear systems.
No Newton iterations are required for nonlinear systems (but see below). The
most serious drawback is that the method does not lend itself to problems
with sharp initial transients, such as a potential step method; at least, not
for the very first step, as pointed out by Bieniasz [100]. The reason is in-
consistency. For example, in the Cottrell experiment, it is not possible to
calculate a derivative J at the starting point, T = 0. One way to overcome
this, taken by Bieniasz [100], is to start by invoking the boundary condition
for T > 0 even initially. This can work, but can also lead to a persistent
degradation of the results. In practical terms, for the Cottrell system, where
all Ci, including C0 should be unity at T = 0, we set C0 = 0 at that time,
and proceed. Note that this is exactly what is done in the explicit method. In
order to avoid the degradation in accuracy (which is desirable for efficiency),
the proper way is to use a different algorithm for the very first step, choosing
one that expresses derivatives at T = δT , that is, an implicit method such as
BI (Laasonen), perhaps coupled with extrapolation for improved accuracy.
This might be considered defeating the Rosenbrock advantages, because if the
system is nonlinear, one now needs some Newton iterations after all, and it
could be argued that since one has programmed BI/extrapolation, one may as
well proceed with it over the whole simulation. But Rosenbrock may be more
efficient, so this is a compromise between programming effort and efficiency
of computation.

Finally, it is to be noted that, when using Rosenbrock for an LSV simula-
tion, one must be aware that the potential p at time T , at a given step goes
to p + δp at T + δT . It is the old value p that must be used in the boundary
expressions, augmented by the α coefficients in higher stages. It is incorrect,
in other words, to add δp to p at the beginning of the iteration loop.

9.4.1 An Example, the Birk-Perone System

There is an example program described in Appendix C, BPROS, applying
Rosenbrock to the Birk-Perone system, in which we have both time-depend-
ence and nonlinear equations. It is described in Chap. 2, pages 22–22.
Equation (2.73), with boundary conditions, when semidiscretised using equal
intervals in space, leads to the DAE system

9.4 The Rosenbrock Method 171

0 = C0

dC1

dT
=

1
H2 (C0 − 2C1 + C2) − KC2

1

...

dCi

dT
=

1
H2 (Ci−1 − 2Ci + Ci+1) − KC2

i (9.66)

...

dCN

dT
=

1
H2 (CN−1 − 2CN + CN+1) − KC2

N

0 = CN+1 −
1

1 + KT
.

The last equation expresses the analytical solution for the time decay of the
substrate. Here, then, we have selection matrix S as above (9.58), and the
function F (T,C) is

F (T,C) =

C0
1

H2 (C0 − 2C1 + C2) − KC2
1

...
1

H2 (CN−1 − 2CN + CN+1) − KC2
N

CN+1

+

0
0
...
0

− 1
1+KT

, (9.67)

or regarding (9.59), F C , the derivative of F (T,C) with respect to C,

F C =
1

H2

H2

1 −2(1 + H2KC1) 1
. . .
1 −2(1 + H2KCN) 1

H2

(9.68)

which contains concentration terms on the diagonal. For this reason, with
this problem it is necessary to evaluate F C at every step. Now noting the
form of (9.62) and (9.63), and recalling λ = δT/H2, it is convenient here to
redefine M as

M =
S

γ
− δTF C (9.69)

and after division by −λ, resulting in

− M

λ
=

H2

1
(
− 1

γλ − 2(1 + H2KC1)
)

1
. . .

1
(
− 1

γλ − 2(1 + H2KCN)
)

1
H2

(9.70)

172 9 Other Methods

(9.62) becomes

−M

λ
ki = −δT

λ
F

(
T +αiδT,C+

i−1∑
j=1

aijkj

)
−S

λ

i−1∑
j=1

cijkj−
γiδT

2

λ
FT (T,C) ,

(9.71)
where F T remains to be defined. It is the time-derivative of F (T,C) and
only contains one non-zero element:

F T =

0
...
0

− K
(1+KT)2

 . (9.72)

The above equation evaluates to a tridiagonal linear equation system, after
some arrangement,

H2k0 = b0

k0 + a1k1 + k2 = b1

. . .

kl−1 + alkl + kl+1 = bl (9.73)
. . .

kN−1 + aNkN + kN+1 = bN

H2kN+1 = bN+1

with
al = − 1

γλ
− 2(1 + H2KCl) (9.74)

with the vector b arising in an obvious manner from the evaluation of the
right-hand side of (9.71). This is the usual form for implicit systems, as seen
in Chap. 8, page 121, albeit for unknown concentrations, here for unknown
k. Index l is used, i being reserved for the stage number here. The system is
solved by the Thomas algorithm.

Execution of the program BPROS shows that it works well, attaining a
relative accuracy of about 10−4 in about 100 steps of δT = 0.01, both with
ROS2 and ROWDA3, the latter being slightly better (but using about 50%
more CPU time).

9.5 FEM, BEM and FAM (briefly)

There is a class of methods called finite element method (FEM) and the
related boundary element method (BEM), also called boundary integral ele-
ment method (BIEM), and the finite analytical method (FAM). These will be

9.6 Orthogonal Collocation, OC 173

given very short shrift, in part because they constitute a large subject, many
textbooks being devoted to FEM and BEM alone. The approach is usually to
use ready program packages. The only member of the FEM group that will
be described here is orthogonal collocation, which has its own section (see
below).

Roughly, FEM consists of choosing regions in the simulation space,
marked by node points, and fitting “trial” functions to the regions, in some
optimal manner. What is considered optimal is defined in several different
ways. With BEM, only points on the boundary are chosen and a function
fitted to the space delimited by these points is optimised. Thus, BEM uses
fewer points than FEM. Both methods appear to be highly efficient. FAM is
similar to FEM, but instead of fitting an arbitrary function to the elements
(in FEM, usually polynomials), local analytical solutions are sought for each
of the elements.

Here are a few brief references to recent or key works in which these
methods have been described as used in electrochemical simulations. The
interested reader is urged to look these up and follow the references contained
in them to the seminal works and text books. Of necessity, much work is left
uncited here.

Ferrigno et al. [239] describe the use of FEM for steady state simulations
of recessed, flush and protruding ultramicrodisk electrodes, giving a good
description of FEM. The method was made adaptive by Nann (and Heinze)
[407, 408], and Harriman et al. later published an extensive series of papers
on adaptive FEM [287,288,289,290,291].

BEM might be thought of as best suited to steady state problems, and
has been used for this, for example in corrosion simulations [64] and current
distributions [198], but recently also for time-marching problems [457].

FAM has been investigated by Jin and Qian et al. [316,317,318,454,455,
456].

The newer method of Bortels et al., called multidimensional upwinding
method (MDUM) should also be mentioned [127]. It was applied to a problem
involving diffusion, convection and migration, both steady state and time-
marching.

9.6 Orthogonal Collocation, OC

This is one of the variants of the finite element methods. The essence of
orthogonal collocation (OC) is that a set of orthogonal polynomials is fitted
to the unknown function, such that at every node point, there is an exact fit.
The points are called collocation points, and the set of polynomials is chosen
suitably, usually as Jacobi polynomials. The optimal choice of collocation
points is to make them the roots of the polynomials. There are tables of such
roots, and thus point placements, in Appendix A. The notable things here
are the small number of points used (normally, about 10 or so will do), their

174 9 Other Methods

uneven spacing, crowding closer both at the electrode and (perhaps strangely)
at the outer limit, and the fact that the outer limit is always unity. This is
discussed below.

The method’s historical origins are complex but electrochemists used OC
first in 1970 [279], referring to an earlier work [576], for certain odes. Caban
and Chapman [159] then used OC to compute (steady state) current distribu-
tions, but the work most cited by later users of OC in electrochemistry is that
of Whiting and Carr [571], who described its use in time-marching problems.
They refer to the work of chemical engineers Villadsen and Stewart [563].
A later book [562] is a good source also, as is the chapter by Pons [446],
drawing heavily on [562]. A number of electrochemists have published in the
area, notably Pons and Speiser [444, 445], and later Speiser and coauthors;
see the review by Speiser [523], for a complete list of references and a good
description of OC, among other topics.

The possibly peculiar spacing of the collocation points, crowding close
both at the electrode and at the outer diffusion limit, does not matter too
much, and seems unnecessary. For example, using only five internal points
(that is, five apart from zero and unity), they are placed at the values 0.047,
0.231, 0.5, 0.769, 0.953, a series that is symmetrical about the midway point
at 0.500. This spacing has been circumvented by Yen and Chapman [580],
using Chebyshev polynomials that open out towards the outer limit. Their
work has apparently not been followed up.

OC is capable of high accuracy and efficiency. Some comparisons have
been made with normal finite difference methods. Eddowes [217] found OC
superior, while Magno et al. [376] found it inferior to plain EX with ex-
panding intervals (this appears doubtful to the present author). Bieniasz and
Britz [111] cast some doubt on OC, pointing out possible problems with the
fit in between the collocation points, possibly leading to negative concen-
trations or (see below) errors in the current values computed from it. This
was rebutted by Speiser [521], rather convincingly. The essence is that, if
the concentration profile simulated is smooth (which it normally is), then
the polynomials will be well behaved in between points and no such prob-
lems will be encountered. As is seen below, implicit boundary values can
easily be accommodated, and by the use of spline collocation [303, 443, 453],
homogeneous chemical reactions of very high rates can be simulated. This
refers to the static placement of the points. Having, for example, the above
sequence of points for five internal points, the point closest to the electrode
is at 0.047. This will be seen, below, to be in fact further from the electrode
than it seems, because of the way that distance X is normalised so that, for
very fast reactions that lead to a thin reaction layer, there might not be any
points within that layer. Spline collocation thus takes the reaction layer and
places another polynomial within it, while the region further out has its own
polynomial. The two polynomials are designed such that they join smoothly,

9.6 Orthogonal Collocation, OC 175

both with the same gradient at the join. This will not be described further
here.

For the description of how OC works, assume for simplicity a single sub-
stance. The diffusion equation, including a homogeneous reaction, is

∂c

∂t
= D

∂2c

∂x2 + f(c) (9.75)

with f(c) being the homogeneous reaction term, left unspecified. The equa-
tion is written in dimensioned form for a reason. In OC, the space axis is
normalised in a manner different from the usual. Instead of normalising by
the diffusion layer thickness δ, as outlined in Chap. 2, Sect. 2.3, it is here nor-
malised by the total diffusion space width L, so that the range is 0 ≤ X ≤ 1,
in order to fit in with the range of the polynomial. The value of L depends
on the experiment being simulated, and will be a multiple of

√
Dτ , τ being

some characteristic time. As explained in previous chapters, τ might be the
duration of the experiment for pulse experiments or the length of time taken
by the potential, for a linear sweep, to change by one dimensionless potential
unit. In general, it is given by

L = f
√

Dτ (9.76)

and thus,
X = x/(f

√
Dτ) . (9.77)

Time and concentration are normalised as usual (Sect. 2.3), and this leads to

∂C

∂T
=

1
f2

∂2C

∂X2 + F (C) , (9.78)

where we now have the factor 1/f2, (and F (C) is the dimensionless form
of the rate equation for the homogeneous reaction term). The new factor
is usually written as β, and is often discussed as an arbitrarily adjustable
parameter. But it is not; it must be determined by L, which is known for
a given experiment. For, say, the Cottrell experiment, f = 6, while for a
linear or cyclic sweep, it is 6

√
T , with T being the total number of potential

(or time) units swept during the experiment. If one takes β to be arbitrary,
one might either, by making it too small (i.e. L too large), simulate a far
too wide diffusion space and thus degrade the resolution near the electrode
or, by making it too large, simulate in a confined space, so that the outer
boundary concentration cannot be taken as constant throughout. The choice
of β is always rational.

As an aside, there have been some interesting attempts to make the dif-
fusion space variable with time and to normalise by that variable. Yen and
Chapman [580] used this, and Urban and Speiser [550]. The diffusion equation
then normalises to a rather more complicated form, sometimes into a plain
second-order ode, or in other cases, into a form including time-dependent

176 9 Other Methods

terms in ∂C/∂X. Results [550] appeared to be very good. This has appar-
ently not been followed up, but perhaps it should be.

Now for the description of how OC works. Assume a number N +2 points
situated at X0,X1, . . . , XN ,XN+1, and X lying in the interval [0, 1] by the
normalisation described above. The points are chosen, following the work of
Whiting and Carr [571], as the roots of shifted Jacobian polynomials with
parameters as given in the Tables A.3–A.5 in Appendix A. The tabled values
were computed using the subroutine JCOBI mentioned in Appendix C. The
concentration profile is approximated by the polynomial P (X),

C(X) ≈ P (X) =
N+1∑
j=0

bjX
j (9.79)

where bj are coefficients which, as it happens, we never need to find. The
OC method assumes that P (X) exactly fits C(X) at each of the collocation
points. We have some derivatives,

dC

dX
=

d

dX
P (X) =

N+1∑
j=0

jbjX
j−1 (9.80)

and
d2C

dX2 =
d2

dX2 P (X) =
N+1∑
j=0

j(j − 1)bjX
j−2 . (9.81)

Equations (9.79), (9.80) and (9.81) can be written out for every value of Xj ,
leading to the systems of equations

C0 =
N+1∑
j=0

bj Xj
0

C1 =
N+1∑
j=0

bj Xj
1

. . . (9.82)

CN+1 =
N+1∑
j=0

bj Xj
N+1

for the concentrations themselves,

9.6 Orthogonal Collocation, OC 177

dC0

dX
=

N+1∑
j=0

j bj Xj−1
0

dC1

dX
=

N+1∑
j=0

j bj Xj−1
1

. . . (9.83)

dCN+1

dX
=

N+1∑
j=0

j bj Xj−1
N+1

for the first derivatives with respect to X, and

d2C0

dX2 =
N+1∑
j=0

j(j − 1) bj Xj−2
0

d2C1

dX2 =
N+1∑
j=0

j(j − 1) bj Xj−2
1

. . . (9.84)

d2CN+1

dX
=

N+1∑
j=0

j(j − 1) bj Xj−2
N+1

for the second derivative. These equations are now written in matrix form:

C = Qb

dC

dX
= Rb (9.85)

d2C

dX2 = Sb ,

with Q, R and S obvious from the systems above.
So far, we have the set of coefficients, vector b, which we do not know.

These are now eliminated by expressing the first equation of the set (9.85)
explicitly for b:

b = Q−1C (9.86)

and substituting for it in the other two, giving

dC

dX
= RQ−1C = V C (9.87)

and
d2C

dX2 = SQ−1C = WC (9.88)

with

178 9 Other Methods

V = RQ−1 (9.89)

and
W = SQ−1 . (9.90)

The above presupposes that Q is invertible, and this is the case, as the system
(9.82) has no linearly dependent pairs of lines. The interesting thing is that
V and W can be precomputed, for a given N , once and for all, simply from
the Jacobi roots. Equation (9.88) can now be inserted in (9.78), to produce

∂C

∂T
=

1
f2 WC + F (C) (9.91)

or, the set of N + 2 equations

∂C0

∂T
=

1
f2 (W0,0C0 + W0,1C1 + · · · + W0,NCN + W0,N+1CN+1) + F (C0)

∂C1

∂T
=

1
f2 (W1,0C0 + W1,1C1 + · · · + W1,NCN + W1,N+1CN+1) + F (C1)

∂C2

∂T
=

1
f2 (W2,0C0 + W2,1C1 + · · · + W2,NCN + W2,N+1CN+1) + F (C2)

. . . (9.92)

∂CN

∂T
=

1
f2 (WN,0C0 + WN,1C1 + · · · + WN,NCN + WN,N+1CN+1)

+F (CN)

∂CN+1

∂T
=

1
f2 (WN+1,0C0 + WN+1,1C1 + · · · + WN+1,NCN

+WN+1,N+1CN+1) + F (CN+1) .

This is written out in order to make the next point. The first and last equa-
tion in the set are superfluous, because the boundary concentrations C0 and
CN+1 are not subject to diffusion changes, but to other conditions. Also,
where the boundary values appear in the other equations, they must be re-
placed with what we can substitute for them. The outer boundary value,
CN+1, is (almost always) equal to the initial bulk concentration C∗, usually
equal to unity in its dimensionless form. This means that the last term in each
equation separates out as a constant term and makes for a constant vector[
W1,N+1C

∗ W2,N+1C
∗ . . . WN,N+1C

∗]T , which will be called Z here. The
concentration at the electrode C0 is handled according to the boundary con-
dition. For Cottrell, for example, it is set to zero throughout and thus simply
drops out of the set. For other conditions, for example constant current or an
irreversible reaction, a gradient G is involved, as described in Chap. 6. In that
chapter, the gradient was expressed as a possibly multipoint approximation,

9.6 Orthogonal Collocation, OC 179

but here we have a better device: the use of matrix V , applying it to obtain
G = dC/dX(X = 0):

G =
N+1∑
j=0

V0,jCj . (9.93)

This is written explicitly for C0,

C0 = β1C1 + β2C2 + · · · + βNCN + (βN+1C
∗ − G/V0,0) (9.94)

where βj = −V0,j/V0,0. This can be substituted into the N equations of the
set, which adds terms to the W -coefficients and the constant term (the one
in brackets on the right-hand side of (9.94)) to the constant vector Z. We
thus obtain a smaller N × N equation set,

∂C

∂T
=

1
f2 W ′C + Z + F (C) . (9.95)

For more than one species, the development is clear, based on Chap. 6, leading
to larger systems of equations.

The big advantage here is that the matrix W is always the same for a
given N . If one works always with some favourite value, such as 10 (a good
value), then one needs to compute W , and indeed V , only once, and use it
as input data thereafter.

We have now arrived at the point where a choice needs to be made of
how to proceed with the simulation. Note that (9.95) is in fact of the same
form as that obtained when using MOL, being of the same form as the set
(9.17), but with more coefficients on every line. From here on, one can use
a variety of methods to do the time-march. All of the methods considered
in earlier chapters, and this chapter, can be used. As with FEM, however,
there is a certain tradition here, for using ready-made ode solvers. Villad-
sen and Michelsen [562] use an implicit Runge-Kutta algorithm devised by
Caillaud and Padmanabhan [160], implementing it in their routine STIFF3.
The routine was reproduced by Pons [446] in his chapter, mentioning that
he too finds the method of Caillaud and Padmanabhan best. Whiting and
Carr [571] wrote their own solver, based on a predictor-corrector algorithm.
Speiser [523] describes several other subroutine packages, such as DDEBDF
arising from the work of Gear [263] or LSODE of Hindmarsh [304]. Bieniasz
and Britz [111] found the routine STINT [467] more efficient than STIFF3.

Another possible approach, apparently not taken by any electrochemical
simulator, is to render the equation set into a DAE set. Instead of substituting
for C0 as described above, one replaces the first equation of (9.92) by the
algebraic equation for the boundary condition, and uses one of the available
DAE packages to solve the system.

Both the approaches described above, that is, substituting for boundary
concentrations, or adding algebraic equations to express boundary conditions,
can be applied to more complex mechanisms involving more than one species,

180 9 Other Methods

including coupled systems. With the latter, there is probably not much to
be gained by the Rudolph method, because of the number of coefficients on
each line.

The present author has used the simple second-order extrapolation tech-
nique to proceed from (9.95), and this simple approach led to highly accurate
results. Using just 10 points (8 internal points) and 100 steps in time for a
Cottrell simulation, the current was in error by only 0.01%. Using only 3
internal points, there was a 10% error in the current. These are remarkable
results. For this, second-order extrapolation was used in combination with
BI.

9.6.1 Current Calculation with OC

The normalised current, that is the gradient G, is given by using matrix V
and (9.87). The operation returns gradients at all collocation points, and one
just takes the first of these, which refers to X = 0. Alternatively, one can
multiply just the top row of V with the concentration vector C, which gives
dC/dX(X = 0) directly. Note that this is not our usual G yet, because of the
way X is normalised here. Regarding (9.77), clearly,

G =
1
f

dC

dX
(X = 0) . (9.96)

Alternatively, one can simply work with the X-scaling as it is, and change the
analytical solution correspondingly. For example, for the Cottrell experiment,
with the usual normalisation, the gradient G at time T has the analytical
solution 1/

√
πT (see (2.44) on page 18) while, with the normalisation as

used in OC (9.77), the analytical solution for the gradient at the electrode
((2.36, page 16) becomes

G =
∂C

∂X

∣∣∣∣
X=0

= f
1√
πT

. (9.97)

In the case of LSV, however, not dividing by the factor f would lead to
currents that are hard to compare with tabled values or values one expects.

9.6.2 A Numerical Example

For those wanting to try OC, here is a guide for checking the work. This
follows the example given by Whiting and Carr [571].

Assume a Cottrell simulation and the use of only five points, giving just
three internal points. From Table A.3, this places the internal points at the
positions (0.1127, 0.5000, 0.8873), here presenting fewer digits than in the
table. Using equation sets (9.82)–(9.84) and the definitions (9.85), we then
have

9.6 Orthogonal Collocation, OC 181

Q =

1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 0.1127 0.0127 0.0014 0.0002
1.0000 0.5000 0.2500 0.1250 0.0625
1.0000 0.8873 0.7873 0.6986 0.6198
1.0000 1.0000 1.0000 1.0000 1.0000

 (9.98)

R =

0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 1.0000 0.2254 0.0381 0.0057
0.0000 1.0000 1.0000 0.7500 0.5000
0.0000 1.0000 1.7746 2.3619 2.7943
0.0000 1.0000 2.0000 3.0000 4.0000

 (9.99)

and

S =

0.0000 0.0000 2.0000 0.0000 0.0000
0.0000 0.0000 2.0000 0.6762 0.1524
0.0000 0.0000 2.0000 3.0000 3.0000
0.0000 0.0000 2.0000 5.3238 9.4476
0.0000 0.0000 2.0000 6.0000 12.0000

 . (9.100)

From these, using (9.89) and (9.90), we obtain

V =

−13.0000 14.7883 −2.6667 1.8784 −1.0000
−5.3238 3.8730 2.0656 −1.2910 0.6762

1.5000 −3.2275 0.0000 3.2275 −1.5000
−0.6762 1.2910 −2.0656 −3.8730 5.3238

1.0000 −1.8784 2.6667 −14.7883 13.0000

 (9.101)

and

W =

84.0000 −122.0632 58.6667 −44.6035 24.0000
53.2379 −73.3333 26.6667 −13.3333 6.7621
−6.0000 16.6667 −21.3333 16.6667 −6.0000

6.7621 −13.3333 26.6667 −73.3333 53.2379
24.0000 −44.6035 58.6667 −122.0632 84.0000

 . (9.102)

Matrix V is needed to generate G, and W is now stripped of its outer frame
to produce (9.95),

∂C

∂T
=

1
f2

−73.3333 26.6667 −13.3333

16.6667 −21.3333 16.6667
−13.3333 26.6667 −73.3333

C1

C2
C3

+

 6.7621
−6.0000
53.2379

+F (C) .

(9.103)
The above set of odes is now solved, choosing some algorithm. Nothing has
been specified about the homogeneous chemical reaction function F (C), but
it will add terms to the matrix W ′ when specified. After the time derivative
is discretised in some way, the equation can be rearranged into the same form
as described in Chap. 8 and solved using the same methods or, as mentioned
above, solved using a professional ode or DAE solver.

182 9 Other Methods

9.7 Eigenvalue-Eigenvector Method

Yet another, quite different, approach to solving a system of odes, such as one
obtains as an intermediate step when using, for example, MOL or OC, is the
eigenvalue-eigenvector method. Its use for electrochemical simulations was
described in two papers in 1989 and 1990 [255, 332]. The method has some
drawbacks, and does not appear to have seen much use since these two papers.
It does have one unique feature: there is no discretisation of time. A solution
is generated by the algorithm, at any chosen time. So, although the method
may at times be fairly inefficient, if one wants a current or concentrations at
only one or a few time points, this could be faster than a time march with
the usually small time intervals.

The method is also described rather clearly by Smith [514], whose de-
scription will be followed here.

The method starts with a system of odes, represented as in (9.54),

dC

dT
= AC , (9.104)

simplified here so that the vector coming from boundary conditions is not
included. It can be included but then the argument is less focussed. There is
only one boundary condition,

C(T = 0) = C(0) . (9.105)

Instead of now discretising the left-hand side of the equation in some way
(explicit BI, CN, etc) and stepping forward in time by small time intervals,
the equation is solved analytically; the solution is

C(T) = exp(TA)C(0) . (9.106)

This has an exponential of a matrix. It is defined in terms of the expansion
of the exponential function, see for example Smith [514, p. 134–5]. Now, the
usual eigenvalue-eigenvector equation can be written in compact form,

AX = XD , (9.107)

where D is the diagonal matrix containing all the eigenvalues and X is the
matrix containing the eigenvectors corresponding to the eigenvalues. X is
also called the modal matrix of A. X and D can be computed by available
subroutines, and Friedrichs et al. describe very efficient ways of calculating
them. The method rests crucially on these values.

Equation (9.107) can be written explicitly for D:

X−1AX = D . (9.108)

Smith also shows that it follows from this that

9.7 Eigenvalue-Eigenvector Method 183

X−1 exp(A)X = exp(D) (9.109)

which will be useful below.
Let a new matrix Y (T) be defined as

C(T) = XY (T) (9.110)

with the time-dependent vector Y as yet unknown. We can however solve for
Y (0) by setting T = 0 in (9.110), since we know X and the initial condition
C(0). Once we have, for any other T , the vector Y (T), it can be used, via
(9.110), to compute the desired vector C, by multiplication with X.

Combining (9.106) with (9.110), we can write

XY (T) = exp(TA)XY (0) (9.111)

and, multiplying by X−1,

Y (T) = X−1 exp(TA)XY (0) . (9.112)

Equation (9.109) allows us to write this as

Y (T) = exp(TD)Y (0) . (9.113)

Here we have an exponential of the matrix D. The matrix is zero except
on the diagonal (containing the eigenvalues λ1, λ2, . . . , λN), and, as Smith
proves, this and the definition of a matrix exponential lead to the simple
result that

exp(TD) =

exp(Tλ1)
exp(Tλ2)

exp(Tλ3)
. . .

exp(TλN)

, (9.114)

so that finally the solution is

C1(T)
C2(T)

...
CN (T)

 = X

Y1(0) exp(Tλ1)
Y2(0) exp(Tλ2)

...
YN (0) exp(TλN)

 . (9.115)

This entails matrix multiplication, and Smith suggests an approximation. The
eigenvalues λj are negative and of increasing magnitude as j increases, so if
T is not too small, the very first term of the right-hand vector is dominating,
and can in itself produce a good approximation to the solution. This has the
drawback that no reliable solution can be found for small T , and Friedrichs

184 9 Other Methods

et al. [255] do not suggest this approximation but rather, a more efficient way
to calculate the eigenvalues and -vectors. Their solutions are fairly accurate.

As mentioned, the procedure has the advantage that the time variable T is
part of the solution expression, so that if solutions at only a few time values,
or even just one such T , are sought, the method might be competitive with
the more usual time-marching schemes. Also, although the above description
has been simplified by leaving out the boundary condition vector in (9.104),
its addition still leaves the method intact. As shown in the second paper
[332], LSV simulations and quasireversible systems can be handled. For some
reason, however, the method has not seen any use in electrochemistry since
these two seminal papers.

9.8 Integral Equation Method

In the specific case of LSV or CV (which however these days comprises a
large proportion of electrochemistry experiments carried out), there is an
alternative method for computing the current, and surface concentrations.
Often, this is all one needs. Instead of starting with the diffusion equation(s),
one begins with an attempt at an analytical solution, by means of the Laplace
transformation. See the standard texts such as Bard and Faulkner [74] or
Galus [257] for a description of the procedure. With LSV/CV, one then seems
to arrive at a dead end, in the form of an integral equation. Regarding the
description of the mathematics of LSV in Chap. 2, from page 25, and taking
the example of a simple reversible system, the result is the equation, for the
normalised current (Randles-Ševč́ık function χ(z)),

∫ at

0

χ(z)√
at − z

dz =
1

1 + ξΘS(at)
, (9.116)

where ξ = (DO/DR)
1
2 , Θ = exp

{
nF
RT (Ei − E0)

}
and S(at) = exp(−at), at

being the normalised time variable and Ei the initial potential at the start
of the sweep. The equation is that arising from the simple reversible system,
but other systems lead to equations of similar form, all Volterra equations.

In descriptions of this problem, the names of Randles [460] and Ševč́ık
[505] are prominent. They both worked on the problem and reported their
work in 1948. Randles was in fact the first to do electrochemical simulation,
as he solved this system by explicit finite differences (and using a three-point
current approximation), referring to Emmons [218]. Ševč́ık attempted to
solve the system analytically, using two different methods. The second of these
was by Laplace transformation, which today is the standard method. He ar-
rived at (9.116) and then applied a series approximation for the current. Galus
writes [257] that there was an error in a constant. Other analytical solutions
were described (see Galus and Bard and Faulkner for references), all in the
form of series, which themselves require quite some computation to evaluate.

9.9 The Network Method 185

So the direct approximation of equations like (9.116) was an obvious step.
This was taken in the classic paper of Nicholson and Shain [417], and contin-
ued, by Nicholson [415] and Nicholson and Olmstead [416] for systems other
than the simple reversible. These used what is called the Huber method [311],
integrating by summing a number of intervals into which the limit at is di-
vided. If there are N intervals, the Huber method gives rise to a triangular
system of N simultaneous equations, which requires of the order N2 opera-
tions for the solution. Bieniasz devised a better method [89,91] that requires
only of the order of N operations. In an example using both the Huber and
his new method, the Huber method required 39 min for a computation, while
the improved method did the same in 0.13 min. This method is built into
Bieniasz’ simulation package ELSIM [92], among others. In his 1992 paper,
he also points out the mathematical relation between the integral equation
above, and the process of semi-integration, described by Oldham [425], for
which there are also more and less efficient algorithms. Bieniasz lists [91] a
table of the forms of the integral equation for a number of systems. More
recently, Mirčeski has published an approximation to the integral, separating
the current function out as a sum, which he claims is an efficient method of
solving these equations.

We do not go into any detail of the integration methods here, as it seems
that direct finite difference methods are preferable.

9.9 The Network Method

Since about 1989, Horno and coworkers have published a series of papers on
their “network thermodynamic method” of simulation. Only a few of these
will be cited here. In the first, the 1989 work, the method is described [309],
and again in 1992–4 [271, 305, 306], adding cyclic voltammetry. In the 1994
paper [305], there is a good description of the method, and an indication
how it can be adapted to a multitude of different electrochemical systems. A
Chinese group has also used this method [205,208,209,210].

It is all done by modelling derivatives, fluxes and homogeneous chemical
reactions as electrical elements and current sources, and applying Kirchhoff’s
Law to them. After conversion to an analogue of an electric circuit, the stan-
dard package SPICE or PSPICE then does the rest [406, 549], using Gear’s
package for solving odes [263]. The main work for the simulator is thus the
translation of the governing electrochemical equations into an electrical net-
work and specifying it to the packages.

Very briefly, basing the description on [305], the diffusion-reaction equa-
tion, of the form of (9.75) is semidiscretised as in MOL, to

dC

dt
=

D

h2 (Ci−1 − Ci) +
D

h2 (Ci − Ci+1) + f(C) . (9.117)

186 9 Other Methods

Then both sides are multiplied by the spatial interval h, and the result ex-
pressed, term by term, as

Jγi = Ji−1 − Ji + JGi (9.118)

with
Jγi = h

dCi

dt
, (9.119)

regarded as a capactive flux due to “capacity” h and “voltage” Ci. The two
terms Ji and Ji−1 are regarded as resistive fluxes due to “resistance” h/D and
again “voltage” C, and finally JGi corresponds to the homogeneous reaction
term, seen as a current source, which might depend on one or more “voltages”
(concentrations), depending on the reaction. These elements are then arrayed
in a suitable manner in a ladder network, and the input to SPICE or PSPICE
is designed for that. It seems that this process of translation into a sequence
of specifications to SPICE (which Horno indeed calls a program) is the main
work, and appears to the present author to be rather indirect and cumber-
some. Probably workers familiar with the method, as the Horno school is, have
a different view. The method has been successfully applied to such difficult
systems as catalytic second-order reactions [307], migration [405], oscillating
reaction-diffusion systems [308], the square scheme [258] and lately, steady
state colloidal systems, solving for potential fields [369]. The list of papers
is only partial.

The method has not taken on. One paper [168] reports the use of PSPICE,
but for simulating actual resistance in an electrolyte, modelled as a resistance
network. This is quite a different application, and much more directly rele-
vant.

9.10 Treanor Method

In a paper reporting the results of some simulations of diffusion of hydrogen
into palladium [582], the authors describe their method of solution as the
Treanor method. This is described in a few texts [314,351] and goes back to
a paper by Treanor in 1966 [548].

The method is one way to handle a stiff set of odes, and is an extension of
fourth-order explicit Runge-Kutta. The function to be solved is approximated
over the next time interval by a combination of a linear function of the
dependent variable and a quadratic function of time (assuming that it is
strongly time-dependent) and this increases the accuracy and stability of
the fourth-order Runge-Kutta method considerably. Today, however, we have
other methods of dealing with stiff sets of odes, so this method might be said
to have outlived its usefulness.

9.11 Monte Carlo Method 187

9.11 Monte Carlo Method

Diffusion is at base a process due to randomly moving particles, so it might
be logical to model or simulate it as such. This has been done in a few works.
Fanelli et al. [226, 227] thus simulated adsorption processes, using a method
described earlier by Voss and Tomkiewicz [566]. Licht et al. [363] simu-
lated concentration profiles around arrays of generator-collector microbands.
Borkowski and Stojek simulated a CV at a microelectrode [126]. Up to 35000
particles were let loose to do a random walk. The result was a very rough but
recognisable CV. Baur and Motsegood simulated a pair of coplanar disks [84].
This is interesting but hardly recommended, having no obvious advantages
over other methods and being presumably somewhat time-consuming, al-
though Baur and Motsegood argue for its use.

10 Adsorption

In this chapter, it is shown how to simulate the adsorption of a substance,
not taking into account any electrochemical reactions the substance may
undergo. That is, only the adsorption itself is dealt with here. In Chap. 2,
Sect. 2.5, some theory is presented, laying the groundwork for the simulation.
It is noted there that adsorption may be controlled by transport and the
adsorption isotherm, in which case there is equilibrium at all times between
the solution and surface phases; or that the adsorption step itself may limit
the rate of adsorption. In this latter case, there are rate constants whose
values must be known. In both cases, for isotherms more complicated than
the Henry isotherm (2.104), nonlinear terms will enter the equations to be
solved in a simulation.

Simulation of adsorption kinetics is not given as much attention as elec-
tron transfer, but some work has been done over the years. Analytical so-
lutions are few and far between, as mentioned in Chap. 2, practically ex-
isting only for the Henry isotherm. So, as for electron transfer, simulation
is needed. Rampazzo [459] was one of the first, using a numerical solution
of the Volterra integral equation describing the adsorption kinetics. Flana-
gan et al. [248] mention nonlinear terms in a simulation, as do Miller and
coworkers [395,396,397,398], Lovrić et al. [371]. Britz et al. [145] considered
nonlinear isotherms as part of the boundary conditions in an implicit simula-
tion and, more recently, Hsu et al. [310] modelled adsorption at an air-water
interface. Bieniasz introduced the concept of an “interfacial species” in his
work [98], and has incorporated adsorption kinetics in his program package
ELSIM [92]. These are just a few examples taken out of a wider literature.

Rather than the integral equation approach of Rampazzo [459], the direct
simulation from the transport equations is used here. In order to obtain a
certain surface concentration Γ or fractional coverage θ, the substance in
question must first arrive at the electrode, by some transport process. As
was shown in Chap. 2, the normalised equation describing the accumulation
of substance at the electrode is

dθ

dT
= KG (10.1)

with K being the normalising collection c∗
√

Dτ/Γm. This equation must be
supplemented by another, describing the relation between the coverage θ

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 189–192 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

190 10 Adsorption

and the concentration C0 in solution at X = 0. This is either an equation
involving an adsorption isotherm or one involving adsorption rates. For both
these cases, explicit or implicit methods can be used.

There is an extreme case – that of very strong adsorption (b is large),
leading to the approximate condition c0 ≈ 0 (all t). This is just like the
electrochemical purely diffusion limited potential step case, for which we have
the solution G(T), (2.44) and (2.26). G can now be inserted into (10.1), and
simple integration then gives:

θ(T) =
2cb

√
Dτ

Γmax
√

π

√
T . (10.2)

This was also solved for the dropping mercury electrode by Koryta in 1953
[342]. Other cases, either fast adsorption with consideration of isotherms, or
rate-limiting adsorption, will now be described. In all cases below, a new
variable θ must be added to the unknowns, vector C. Conveniently, we make
it the first element of all the unknowns.

10.1 Transport and Isotherm Limited Adsorption

For this case, we have, apart from the usual diffusion equations, two boundary
condition equations relating C0 and θ. They are

BC0 = I(θ)
dθ

dT
= KG (10.3)

where, as mentioned above, K comes from the collection of parameters that
go into the normalisation, and G, as usual, is the concentration gradient at
X = 0. To this small set must now be added the N discretised equations
describing the diffusion of the substance in solution.

There are now several choices of method. The simplest may be the explicit
method. Using this, one starts at time T , where we know all values, and
use them to proceed to the new time T + δT . First, one recalculates all
Ci, i = 1 . . . N . Parallel with this, from the value of G, one calculates a new
θ. Discretising the second equation of the set (10.3) and expanding G as usual
as an n-point approximation leads to

θ′ = θ + δTK

n−1∑
i=0

βiCi . (10.4)

Then, the new value of θ is used in the isotherm equation to recalculate
C0. This is simple, but has the drawback of poor accuracy and the limit
on the λ factor. Clearly, an implicit method is preferable, such as BI with
extrapolation, for example. The diffusion part of the whole set of equations

10.2 Adsorption Rate Limited Adsorption 191

will depend on the placing of the points in space, as described in Chap. 8,
for example using the general three-point (8.8) on page 120, or a multi-point
form such as (8.31), page 124. These lead to the usual system as (8.11) or
its multipoint relative (8.33) on pages 121 and 124. The first step is to do
the backward Thomas scan as described in that chapter, and to apply the
u-v procedure, resulting in a set of linear expressions for the first n (as yet
unknown) concentration values, in terms of C ′

0,

C ′
i = ui + viC

′
0 . (10.5)

This can now be substituted into the G approximation above (10.4) and now
discretising the whole (10.4) according to the BI method (only new values
used), we have

θ′ = θ + KδT

(
n−1∑
i=0

βi(ui + viC
′
0)

)
(10.6)

which can be rearranged in terms of the two remaining unknowns θ′ and C ′
0,

into
θ′ = P + QC ′

0 (10.7)

with P and Q obvious from (10.6). This must now be combined with the first
boundary condition of (10.3). If the Henry isotherm holds, this is simply

BC ′
0 = θ′ (10.8)

and the solution follows easily. If, on the other hand, a nonlinear isotherm
such as Langmuir or Frumkin isotherm holds, we have a nonlinear pair of
equations. This can be solved using the Newton method. It will normally be
aided by the fact that at a given step, both θ and C0 change only a little,
so the Newton process will probably converge rapidly. Details are left to the
reader.

An obvious alternative choice of method, given the probably nonlinear
form of the isotherm boundary condition is to use a Rosenbrock method.
Then, the two boundary conditions are simply the first two equations in a
whole DAE set, the first of the pair (10.3) being an algebraic equation, the
second an ode. The Rosenbrock method is described in Chap. 9, Sect. 9.4
starting on page 167.

10.2 Adsorption Rate Limited Adsorption

If adsorption itself is a slow process, then rate equations for that process
apply, as outlined in Chap. 2, from page 31. As with the isotherm-dependent
boundary conditions, we may have nonlinear equations, such as (2.121). The
boundary conditions, inserting (2.121) into (2.117), are

192 10 Adsorption

dθ

dT
= Vf − Vb

dθ

dT
= KG . (10.9)

These can be made into a two-equation DAE set, by equating the two right-
hand sides and using one of the equations, conveniently the simpler, second
one. This yields the DAE system

0 = Vf − Vb − K

n−1∑
i=0

βiC
′
i

dθ

dT
= K

n−1∑
i=0

βiC
′
i . (10.10)

or, for the Langmuir isotherm, the nonlinear set

0 = KfC0(1 − θ) − Kbθ − K

n−1∑
i=0

βiC
′
i

dθ

dT
= K

n−1∑
i=0

βiC
′
i . (10.11)

As for the transport- and isotherm-controlled case above, these equation sets
can now be handled either using a standard implicit method or, perhaps
logically in the case of a nonlinear isotherm, a Rosenbrock method.

11 Effects Due to Uncompensated Resistance
and Capacitance

Electrochemists are aware of the annoying residual uncompensated solution
resistance Ru between the Luggin probe and the working electrode, see for
example [74]. Although it is possible in principle to compensate fully for
the iR error thus introduced [131, 132], this is rarely done, as it introduces,
in practice, undesirable instrumental oscillations or, in the case of damped
feedback [132], sluggish potentiostat response.

The other often annoying fact electrochemists must live with is the double
layer capacitance Cdl. This produces capacitive currents whenever the applied
potential changes (see again [74]). The two effects work together, as capacitive
currents also give rise to further iR errors.

With potential step methods, the capacitive current is a transient, de-
caying with a time constant equal to RuCdl. The usual procedure is to wait
several of these time constants before making the current measurement, by
which time the capacitive current has declined to a negligible value. It is
therefore not a serious problem with potential step experiments.

Where both capacitive current and iR do interfere is with a.c. voltam-
metry (not gone into here) and LSV experiments. An early classic study is
that of Nicholson [415], who investigated the effects of iR alone, pointing
out that a simple correction, from measured currents and known Ru, for
the potentials, does not work. The LSV curve becomes distorted and such a
correction does not retrieve the shape of the curve as it would otherwise be
in the absence of an iR effect. The reason is that the varying current during
the sweep changes the electrode potential by a varying amount iRu, and thus
the potential program, that was intended to be linear with time, is no longer
so. Bowyer et al. [128] and Strutwolf [529] show examples of such distorted
potential-time relations and also distorted LSV curves, see also below.

The simulation literature deals with this problem sporadically, although
it is often simply ignored. The iR effect introduces nonlinear boundary con-
ditions (see below), and these have been dealt with in various ways. Gosser
[274] advocates simple subtraction, using known measured currents of the ex-
periment one is simulating in order to fit some parameter. Deng et al. [206]
use a stepwise procedure that successively solves for each of the several un-
knowns without iteration. Iteration using binary searches have been used
[162, 270, 529], as well as a Gauss-Seidel method [574]. Safford et al. [489]

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 193–199 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

194 11 Effects Due to Uncompensated Resistance and Capacitance

rejected binary searching as too slow and Newton-Raphson iteration as unre-
liable, and used the van Wijngaarden-Dekker-Brent root-finding method, as
described in Press et al. [452]. This is as reliable as a binary search (bisec-
tion) but faster, using a parabolic fit at each step. Despite the misgivings of
some investigators, the best method is probably Newton-Raphson iteration,
as used by Rudolph [477].

Simulations must thus handle the nonlinear boundary conditions. Some
have taken the easy way out and used explicit methods [123, 429]. Bieniasz
[105] used the Rosenbrock method (see Chap. 9), which makes sense because
it effectively deals with nonlinearities without iterations at a given time step.

The classic work in this connection is that by Imbeaux and Savéant [313],
who took the integral equation approach (see Chap. 9), incorporating the
iR effects. They also established the formulation of the problem and the
way to normalise both the uncompensated resistance Ru and double layer
capacitance Cdl, adopted by most workers since then. Their normalisation of
Ru followed that of Nicholson [415].

In the next discussion, only the LSV problem will be considered, since it
is here that the major problems lie. The capacitive current component is, at
any given time, given by

ic = −Cdl
dE

dt
(11.1)

where the negative sign is intended to produce a (positive) cathodic current
from a cathodic-going sweep. This current will give rise to an iR error in
the applied potential, equal to +icRu (that is, the applied potential will be
a little more positive than intended). The Faradaic current will contribute a
similar iR error.

First we must normalise some quantities, to make them compatible with
the other dimensionless parameters already used. We refer to the normalisa-
tion formulae on p.26. Recall that we have normalised voltage by the factor
nF
RT and that the time unit τ for LSV is equal to RT

nFv (v being the sweep
rate), or the time the sweep takes to traverse one normalised potential unit
p.

Resistance has units of volts per amperes, and thus must be converted to
p units per G units. Using the normalisations in Chap. 2, this comes to

ρ = Ru
nF
RT nFD

1
2 c∗
√

nFv

RT . (11.2)

This is as presented in [313], and is not normally simplified further. For
capacity, which has units of current × time per volts, these become GT units
per p units here and conversion leads to

γc = Cdl
1

nFD
1
2 c∗

√
RT v

nF , (11.3)

also normally written in this unsimplified form.

11.1 Boundary Conditions 195

11.1 Boundary Conditions

It is solely in the boundary conditions that simulations differ from those with-
out iR effects. We find that for a general electrochemical reaction (ignoring
homogeneous reactions in this context), involving the two species A and B,
and a set nominal potential pnom, we have six boundary quantities and thus
six equations for them. In fact, it is quite easy to reduce them to a set of four
by elimination of two of the currents, but for the sake of clarity, they are left
as formulated.

We have the following unknown boundary values: the two species’ near-
surface concentrations CA,0 and CB,0, the two species’ fluxes, respectively GA

and GB , the additional capacitive flux Gc, and the potential p, differing (for
ρ > 0) from the nominal, desired potential pnom that was set, for example,
in an LSV sweep or a potential step experiment. Five of the six required
equations are common to all types of experiments, but the sixth (here, the
first one given below) depends on the reaction. That might be a reversible
reaction, in which case a form of the Nernst equation must be invoked, or a
quasi-reversible reaction, in which case the Butler-Volmer equation is used
(see Chap. 6 for these). Let us now assume an LSV sweep, the case of most
interest in this context. The unknowns are all written as future values with
apostrophes, because they must, in what follows below, be distinguished from
their present counterparts, all known.

The unknown capacitive flux G′
c is derived as follows. Equation (11.1)

becomes, in dimensionless terms,

G′
c = −γc

dp

dT
. (11.4)

Imbeaux and Savéant [313] provide the equation for the changed potential,
which translates in present terms into the equation

p = p1 − T + ρ(Gc + GA) (11.5)

(sweeping in the negative direction) and this gives, after differentiation,

dp

dT
= −1 + ρ

(
dGA

dT
+

dGc

dT

)
, (11.6)

that is, both the Faradaic and capacitive currents affect the potential if there
is an iR drop. We can now construct all the needed boundary equations.

In the reversible case we have

C ′
A,0 − exp(p′)C ′

B,0 = 0 (11.7)

as the first equation, with three unknowns (including p′). For a quasireversible
system, the Butler-Volmer equation applies, instead,

196 11 Effects Due to Uncompensated Resistance and Capacitance

G′
A = Kf C ′

A,0 − Kb C ′
B,0 (11.8)

as described on page 92. We then have the flux equality equation

G′
A + G′

B = 0 , (11.9)

and the numerical approximation to the two fluxes

G′
A −

n−1∑
i=0

βiC
′
A,i = 0

G′
B −

n−1∑
i=0

βiC
′
B,i = 0 . (11.10)

The capacitive flux (11.4) is combined with (11.6) and the time derivatives
are approximated by the two-point formula

dG

dT
≈ G′ − G

δT
. (11.11)

From the vantage point of time T + δt, these are backward differences. This
gives

G′
c +

ρ

δT
(G′

c + G′
A) = γc +

ρ

δT
(Gc + GA) . (11.12)

Lastly, (11.5) is put into the form

p′ − ρ(G′
c + G′

A) = p1 − T ′ = p′nom . (11.13)

It will be noted that the equation pair (11.10) contains further unknowns
C ′

A,i and C ′
B,i, for i > 0. These can however be eliminated as described in

Chap. 6, using the u-v mechanism. We assume that some implicit method
is used here and that the first, backward, Thomas scan has been performed.
Then, as described in that chapter, Sect. 6.2 or, for coupled systems, Sect. 6.4,
concentrations can be expressed in the form

C ′
i = ui + vi C ′

0 (11.14)

for both species. Equations (11.10) then become

G′
A − C ′

A,0

n−1∑
i=0

βivA,i =
n−1∑
i=0

βiuA,i

G′
B − C ′

B,0

n−1∑
i=0

βivB,i =
n−1∑
i=0

βiuB,i , (11.15)

now only containing concentrations at X = 0 or i = 0 as unknowns. For
convenience, we rewrite these as

11.1 Boundary Conditions 197

G′
A − VA C ′

A,0 = UA

G′
B − VB C ′

B,0 = UB (11.16)

with the four constants obvious from (11.15).
As mentioned above, the two unknown fluxes G′

A and G′
B appearing in the

set can be eliminated by the application of the approximation pair (11.16),
but it might be clearer not to do this and leave the full set of six unknowns
as they are.

Essentially everything has now been given. The six-equation set must
be solved numerically, and the Newton method works very well, requiring
normally only 2–3 iterations at most, since the changes over a given time
interval are relatively small. For this purpose the unknowns are gathered into
the unknowns vector X ≡ [C ′

A,0 C ′
B,0 G′

A G′
B G′

c p′]T . Further treatment is
now confined to a concrete example.

11.1.1 An Example

The case of a reversible reaction is assumed, requiring (11.7). The set of six
equations given above are written as the system

F (X) = 0 (11.17)

or, detailed,

C ′
A,0 − exp(p′)C ′

B,0 = 0
VAC ′

A,0 + G′
A − UA = 0

VBC ′
B,0 + G′

B − UB = 0
G′

A + G′
B = 0 (11.18)

ρ
G′

A

δT
+
(
1 +

ρ

δT

)
G′

c − γc − ρ
(GA + Gc)

δT
= 0

−ρG′
A − ρG′

c + p′ − p′nom = 0 .

The Newton-Raphson method will now be described very briefly. For a more
detailed description, see, for example, Press et al. [452]. We assume that
the present vector X is in error by a small amount δX, and a short Taylor
expansion leads to

F (X + δX) = F (X) + J(δX) . (11.19)

J is the Jacobian of the system (11.18), that is, the derivative matrix, with
respect to all the variables, of the system. It is

J ≡

1 − exp(p) 0 0 0 − exp(p)CB,0
VA 0 1 0 0 0
0 VB 0 1 0 0
0 0 1 1 0 0
0 0 ρ

δT 0 1 + ρ
δT 0

0 0 −ρ 0 −ρ 1

. (11.20)

198 11 Effects Due to Uncompensated Resistance and Capacitance

The variables have been written without apostrophes. At the beginning of the
Newton process, they have the old values, while the function F (X) supplies
new constant values, driving the calculation. We demand that the corrected
vector X + δX satisfies (11.17), that is, that the left-hand side of (11.19) is
zero. This leaves

J δX = −F (X) , (11.21)

a linear system that can be solved easily, for example using LUD decompo-
sition.

Example program LSV4IRC (Appendix C) does this calculation. It is of
interest to look at some results. The program was run with values ρ = 1 and
γc = 0.1. Figure 11.1 shows all three fluxes. The dot-dashed (top) line is the
total flux. Note that the LSV sweep goes from right to left. Note also the
initial rise of the total current to the capacitive value, delayed by the time
constant ργc. The solid line represents GA alone, while the dashed (lowest
at the left) line represents the capacitive current alone. In the absence of
uncompensated resistance, this would rise to the constant value of 0.1 as
soon as the sweep starts, because of the constant change in potential, and
remain at that value. However, because of the iR effect, its rise is delayed, and
its value does not remain constant as the faradaic current begins to rise, since
then there are changes in potential beyond those due to the sweep, because of
contributions by ρGA to the potential. It is also of interest to see how much
the faradaic current itself differs from that in the absence of iR effects. This is
shown in Fig. 11.2. If one were to simulate only for GA, one might conclude
from that figure that the effect of iR is slight, but clearly, considering the
total current shown in Fig. 11.1, it is not. It is this kind of curve one would

0

0.2

0.4

-12 -8 -4 0 4 8 12
pnom

G

Fig. 11.1. LSV currents with uncompensated resistance and capacity

11.1 Boundary Conditions 199

0

0.2

0.4

-12 -8 -4 0 4 8 12
pnom

G

Fig. 11.2. LSV faradaic currents with and without uncompensated resistance

-12

-6

0

6

12

-12 -8 -4 0 4 8 12
pnom

p

Fig. 11.3. LSV sweep potential with and without uncompensated resistance

obtain from an experiment, and would compare with a simulation. These
marked changes arise from quite (visually) small deviations of the potential
from the linear sweep, as seen in Fig. 11.3. Thus we can conclude that iR
effects ought to be included in LSV simulations.

12 Two-Dimensional Systems

Electrochemical cells are of course three-dimensional. In preceding chapters,
symmetry or a lack of concentration gradients in two of these dimensions has
been assumed, thus conveniently reducing the system to one dimension. This
is not always possible, and in fact in recent decades, some of the most popular
electrodes require at least two dimensions for reasonable simulations. These
are first and foremost the ultramicro electrodes (UMEs), in the various forms
of a disk, band electrodes, and more recently the scanning electrochemical
microelectrodes, as well as others. UMEs have also been assembled into arrays
of such, increasing the difficulties. All of these fortunately have zero gradients
in one of the three directions and thus require “only” two dimensions for their
representation. Going from one to two dimensions, however, is a major step,
requiring programming sophistication in order to avoid using too much com-
puting time for a given simulation. In what follows here, the ultramicrodisk
electrode (UMDE) will serve as the model for how to proceed, although the
others are mentioned, and references and some theory are provided.

Until the 1960’s, the dropping mercury electrode (DME) dominated elec-
troanalytical chemistry (see such standard texts as [74, 257, 559] for details,
and complications). It could be idealised as a sphere (disregarding the shield-
ing due to the capillary) and had the advantages of a clean and smooth
electrode surface, and a very wide potential working range, due to the high
hydrogen overvoltage for water reduction at mercury. However, it necessi-
tated the handling of liquid mercury, and it has mostly been replaced by the
very small solid electrodes used today. One of the first to appear was the
rotating disk electrode [362] which however is mentioned later in Chap. 13,
as it involves convection. It then led to stationary disk electrodes, and the
other stationary ones listed above.

Today, a number of ultramicroelectrodes are in use. They include the disk
electrode, flat or hemispherical, the flat types being either inlaid – that is,
flush with and embedded in an insulating plane – or recessed or protruding;
band electrodes, either flat or hemicylindrical; and arrays of all these. They
generally measure <10 µ in one of their dimensions (diameter, width); hence
the attribute “ultramicro-”. The flat electrodes, flush with the insulating
plane, have a problem of very large local current densities at the electrode
edges. Bond et al. [125] mention this problem and cite Engstrom et al. [221]

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 201–233 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

202 12 Two-Dimensional Systems

for what they call an illuminating demonstration of the effect by experiment.
The interesting paper by Zeiri et al. [581] also gives evidence for high edge
current densities. The edge effect is responsible for the problems in simulating
these electrodes. No matter how closely one packs grid lines near the edges,
results are disappointing, and conformal mapping techniques are indicated.

The book by Fleischmann et al. [249] is a useful source of information
on all the used UMEs, both for experimental and theoretical work. Recent
reviews are useful, such as that of Aoki [57], Amatore [46] and Speiser
[523], as well as the rather thorough section on microelectrodes in Bard and
Faulkner [74] and the detailed review by Heinze [299] and [114], covering the
period of 1996 to early 2004.

In this chapter, although the various microelectrode geometries are de-
scribed and literature is provided both to theory and simulation work, the
emphasis is laid on the UMDE. The principles of simulation at this electrode
are then applicable to the others.

12.1 Theories

12.1.1 The Ultramicrodisk Electrode, UMDE

Initially, efforts were made to find expressions for the deviation of currents at
the UMDE from that at a so-called planar electrode, which is the unidimen-
sional case (called a “shrouded plane” by Oldham [425]). One can regard this
as a disk (or any shape) at the bottom of a deep well, so that the system can
be reduced to one dimension. Here the Cottrell equation defines the current
for a potential step, as in Chap. 2 (2.37) and (2.44). At a flush UMDE, the
current deviates from the Cottrell value very soon after the potential jump.
Lingane [365] suggested that to a good approximation and for a range of
small values of time t, the current iUMDE at a UMDE could be expressed as

iUMDE

iCott
= 1 + A

(
Dt

a2

) 1
2

(12.1)

where a is the radius of the UMDE. He measured this experimentally, and
found little deviation from the straight line for a range of t, and determined
the slope A to be 2.12. In the same year, Soos and Lingane studied the prob-
lem mathematically [515] and found that the slope was 2.26 or 4/

√
π; they

considered this value a slight overestimate but in good agreement with exper-
iment. This factor was then the subject of further study following these two
papers. It was measured again and found to be 1.79 [326], then determined by
simulation by the same team [327], again 1.79. Heinze [297] measured it also
in his classic simulation study of the UMDE, and found it to lie in the range
1.77 . . . 2.26. Flanagan and Marcoux [246] found, by simulation, a value of
1.92. Shoup and Szabo [507] corrected the value of Kakihana et al. [327],

12.1 Theories 203

arriving at the correct one,
√

π or 1.77. This is given again indirectly in
the summary paper by Aoki [57], where other electrode geometries are also
considered.

These attempts to express deviations of the current at a UMDE from the
Cottrell current are somewhat fruitless because the expressions do not hold
for other than rather small t values or rather, dimensionless values of the
normalised time, Dt/a2. General solutions were – and are – needed. There
have been no analytical solutions holding for all times, but some limiting
expressions, and an approximate one, have been derived.

Consider Fig. 12.1, depicting the UMDE in a cylindrical coordinate sys-
tem. The electrode of radius a is flush with an infinite insulating plane. The
pde that governs diffusion around the UMDE is then

∂c

∂t
= D

(
∂2c

∂r2 +
1
r

∂c

∂r
+

∂2c

∂z2

)
(12.2)

with boundary conditions, for the “Cottrell” case (potential jump to a very
negative potential), as follows:

t ≤ 0, all r, z : c = c∗

t > 0, r ≤ a, z = 0 : c = 0

r = 0 :
∂c

∂r
= 0

r > a, z = 0 :
∂c

∂z
= 0 (12.3)

r → ∞, z → ∞ : c = c∗ .

For other kinds of experiments, the second, Cottrell condition, would be
replaced with another.

For any given system, the current i(t) at any one time is given by

i(t) =
∫ a

r=0
2π

∂c

∂z

∣∣∣∣
z=0

dr . (12.4)

Fig. 12.1. Ultramicrodisk electrode coordinate system

204 12 Two-Dimensional Systems

The classic study of Saito (1968) [490] is often cited. Saito derived the
steady state current iss at a UMDE, setting the left-hand side of (12.2) to
zero, and arrived at

iss = 4nFc∗Da . (12.5)

The steady-state value is the normalising quantity for the current as a func-
tion of time in most studies except those where the Cottrell current is
used as the reference value. Saito also derived the concentration profile at
steady state. It was printed incorrectly in the paper [490], but Crank and
Furzeland [184] present the correct equation:

c = c∗

(
1 − 2

π
sin−1

{
2a√

z2 + (a + r)2 +
√

z2 + (a − r)2

})
(12.6)

for z > 0 and

c = c∗
(

1 − 2
π

sin−1
{a

r

})
(12.7)

for z = 0, r > a.
We want the current i(t), a function of time. Aoki and Osteryoung [61]

presented short- and long-time analytical expressions, the short-time one be-
ing the above (12.1), with A =

√
π = 1.77, that is

iUMDE

iCott
= 1 + π

1
2

(
Dt

a2

) 1
2

. (12.8)

This is better expressed directly without reference to the Cottrell current,
and Aoki and Osteryoung [62] provide the short-time solution

i = iss

(√
π

2
√

τ
+

π

4
+ 0.094

√
τ

)
(12.9)

where iss is the steady-state current as given in (12.5) and τ is the normalised
time (more on that below). However, this approximation is not quite correct.
Aoki and Osteryoung state [62] that they have adjusted the third coefficient
(0.094) so that the approximation meshes better with their long-time approx-
imation (see below). This was pointed out by Phillips and Jansons [442], who
then presented the correct series:

i = iss

√
π

4

(
2τ− 1

2 + π
1
2 + 1

4τ
1
2

)
(12.10)

which makes the last coefficient in (12.9) 0.111 rather than 0.094. This slightly
extends the range of applicability of the approximation.

For longer times, a complicated expression was derived by Aoki and Os-
teryoung [61], but it was incorrect, as pointed out by Shoup and Szabo [507],

12.1 Theories 205

who gave the correct expression, also given by Aoki in 1993 [57], with one
more term. The first few terms of the long-time solution [57] are

I = iss

(
1 + 0.71835τ− 1

2 + 0.05626τ− 3
2 + 0.00646τ− 5

2 . . .

)
. (12.11)

For very large τ , this becomes the steady state value of Saito (12.5). The
steady state value might be considered the only exactly known expression,
all others being approximations.

Shoup and Szabo also provide a general approximation that they state is
accurate to 0.6% at all values of τ :

I = iss

[
0.7854 + 0.8862τ− 1

2 + 0.2146 exp(−0.7823τ− 1
2)
]

. (12.12)

A word is needed here about the definition of normalised time, in this con-
text usually given the symbol τ . Most workers, including Shoup and Szabo,
use the definition

τ =
4Dt

a2 . (12.13)

This is the definition assumed in the work of Shoup and Szabo [507] and
Aoki and coworkers [57,61,62] and also by Gavaghan in some recent works
[260,261]. The above three formulae (12.9, 12.11 and 12.12), are those for this
definition of normalised time. One inconvenient side-effect of the definition is
that, when one normalises the diffusion (12.2), using the new dimensionless
variables’ definitions

C = c/c∗

R = r/a

Z = z/a (12.14)
τ = 4Dt/a2 ,

the diffusion equation becomes

∂C

∂τ
=

1
4

(
∂2C

∂R2 +
1
R

∂C

∂R
+

∂2C

∂Z2

)
(12.15)

in which there is the factor 1/4. This is avoided by a different normalisation
of time. Reverting now to the present context and using the symbol T (τ
being here reserved for an observation time), we have the normalisation

T =
Dt

a2 (12.16)

which eliminates the leading fraction. Using this definition, which the present
author prefers (and which was also used by Flanagan and Marcoux [246]),
the dimensionless diffusion equation is now as one expects,

206 12 Two-Dimensional Systems

∂C

∂T
=

∂2C

∂R2 +
1
R

∂C

∂R
+

∂2C

∂Z2 . (12.17)

The normalised set of boundary conditions is then

T ≤ 0, all R,Z : C = 1
T > 0, R ≤ 1, Z = 0 : C = 0

R = 0 :
∂C

∂R
= 0

R > 1, Z = 0 :
∂C

∂Z
= 0 (12.18)

R → ∞, Z → ∞ : C = 1

and the current integration formula (12.4) becomes

I(T) =
∫ 1

R=0
2π

∂C

∂Z

∣∣∣∣
Z=0

dR . (12.19)

Also, the constants in the above three solution approximations change. They
become the following new formulae: The short-time solution of Aoki and
Osteryoung (12.9) is then

I =

(
1
4

(π

T

) 1
2 +

π

4
+ 0.188T

1
2

)
(12.20)

(iss does not of course change); whereas the more correct formula as presented
by Phillips and Jansons [442] is

I =
π

1
2

4

(
T−1

2 + π
1
2 + 1

2 T
1
2

)
. (12.21)

The long-time solution (12.11) becomes

I =
(

1 + 0.35918T− 1
2 + 0.007033T− 3

2 + 0.000202T− 5
2 . . .

)
(12.22)

and the general approximation (12.12) becomes

I =
(

0.7854 + 0.4431T− 1
2 + 0.2146 exp(−0.3912T− 1

2)
)

. (12.23)

There is, however, a much better pair of solutions, recently obtained by
Mahon and Oldham [377]. They used what they call the “Cope-Tallman”
method, involving the Green function, to find a much improved short-time
and long-time solutions for the current at a disk electrode. Their formulae
express currents at T values as defined above (12.13) (previously designated
by τ), and normalised by πnFDac∗, rather than the steady-state value. Here

12.1 Theories 207

they are converted to the present scale by the simple expedient of a mul-
tiplication factor, and time is normalised to T by (12.16). The short-time
approximation is then

I =
π

4

(πT)−

1
2 + 1 +

1
2

(
T

π

) 1
2
− 0.12003T + 0.013273T

3
2

 (12.24)

and their long-time approximation is

I = 1 +
π

4
(
8π− 5

2 T−1
2 + 8.9542 × 10−3 T−3

2 − 2.5664 × 10−4 T−5
2

− 2.2312 × 10−4 T−7
2 + 2.7628 × 10−5 T−9

2
)

.

(12.25)

Unlike the approximations of Aoki and Osteryoung, these two actually over-
lap in their regions of applicability, as is seen in the next section.

Ranges of Applicability

From some simulations, in which reference current values were computed over
a large range of times [151], it was possible to assess the range of applicability
of the approximations. If we require that currents be accurate within 0.1%,
then the short-time approximation of Aoki and Osteryoung, in its corrected
form (12.21), is accurate in the range 0 ≤ T ≤ 0.03, while their long-time
expression (12.22) is applicable for T > 0.5. There is thus a gap in the range
0.03 < T < 0.5, in which neither approximation yields good values. In the
gap range, it was found that errors due to the approximations peaked at
about 0.8%.

The universal approximation of Shoup and Szabo (12.23) has a similar,
but wider gap range 0.002 ≤ T ≤ 10, within which it has two excursions as
high as 0.6% in amplitude. This is in accord with the original statement in
the work [507], guaranteeing a maximum error of 0.6%.

Finally, the same study showed that the short-time solution of Mahon and
Oldham (12.24) is 0.1% accurate in the range 0 ≤ T ≤ 1, and the long-time
approximation in the range T ≥ 0.4. Thus, the two formulae yield accurate
current values over the whole time scale without a gap.

LSV

For LSV, the diffusion equation for a UMDE is a little different from that
for a potential jump. The LSV case can be considered as one of a group of
possible cases, in which the characteristic time is defined independently of
the disk radius. In general, let that characteristic time be τ . For LSV, as
described on page 26, it is the time taken by the potential to sweep over one

208 12 Two-Dimensional Systems

dimensionless potential unit. There may be other definitions of τ . Then, time
t is normalised by this τ , while distances (r, z) are normalised, as above,
by the disk radius a. The time interval τ also leads to a Nernst diffusion
layer thickness of

√
Dτ (again, quite independent of disk radius a). From this

follows an extra parameter in the diffusion equation, following the ideas of
Heinze [298] and Aoki et al. [58] (both for LSV, but here more generally):

∂C

∂τ
=

1
P 2

(
∂2C

∂R2 +
1
R

∂C

∂R
+

∂2C

∂Z2

)
(12.26)

with
P =

a√
Dτ

(12.27)

that is, the ratio of disk radius to the Nernst diffusion layer thickness or,
for LSV, where there is a relation between τ and the scan rate v, that is,
τ = nFv/RT ,

P = (nFa2v/RT D)
1
2 . (12.28)

The symbol P is normally rendered as p, but this collides with our p for the
dimensionless potential. For LSV, a small P value means a slow LSV sweep
rate and a sigmoidal steady-state response, while a large value means a fast
sweep rate, with the UMDE behaving more like a planar (shrouded) electrode.
It will be seen later that the above impinges on the choice of a maximum Z
and R value, which must be set such that they contain a sufficient number
of

√
Dτ units, according to the experiment. This will be discussed in some

detail in the simulation section, below.

12.1.2 Other Microelectrodes

Theories for other microelectrodes are not as well developed as those for
the UMDE but some approximations do exist. There are some reasonable
approximations for the ultramicroband electrode. This is a relatively long
strip, most often flush with the insulating plane it is embedded in. Since
it is relatively long, that dimension can be ignored in the pdes describing
transport at the electrode. The diffusion equation is very similar to that for
the UMDE (12.2), removing the term in r−1∂c/∂r, and if we call the half-
width of the strip a, the normalisation is also very similar. There has been a
series of theory papers on this electrode, a good example being that of Szabo
et al. [543]. Their paper is interesting for another reason, the relationship
between the flat band and hemicyclindrical electrodes, see below. For the
microband electrode of half-width w and length l, Szabo et al. provide a
short-time equation,

i(T)
nFDc∗l

=
1

πT
+ 1 , (12.29)

12.1 Theories 209

with now T = Dt/w2. This equation is said to hold to within 1.3% up to
T < 2

5 . A longer-time solution, for higher values of T , also accurate to 1.3%
is then

i(T)
nFDc∗l

=
π exp(−2

√
πT/5)

4
√

πT
+

π

ln
[
(64 exp(−γ)T)

1
2 + exp(5

3)
] . (12.30)

They do present a long-time better approximation, but it is in Laplace-
transformed form.

Coen and coworkers [167, 177, 180] have presented solutions to the
diffusion-limited current at a band electrode in the form of integral equa-
tions; these must then be evaluated numerically, so this might be regarded
as simulation.

Other microelectrodes are the hemispherical and hemicyclindrical geome-
tries, long since understood (see Bard and Faulkner [74]), ultramicroring
electrodes, which can be regarded as infinite bands [177], a conical micro-
electrode [585], a sphere-cap microelectrode [502], and arrays of all types
of microelectrodes. A range of microring electrode thicknesses was consid-
ered by Amatore et al. [48], who found that a thick ring (that is, the ring
width is comparable with the diameter) behaves more like a disk, while a thin
ring approaches a band, as observed previously [177]. The Compton group
has investigated what they call the shrouded ring system [156, 193, 194], as
a model for a partially blocked electrode. Some theory has been attempted
on arrays, especially band arrays, in the form of interdigitated electrodes,
where anode and cathode bands alternate [56,59,63,500], but results always
need backing up with numerical calculations. There is much recent interest in
the scanning electrochemical microscope (SECM), where no theory has been
developed to date, and simulation is the rule here. The method was invented
by Engstrom et al. [222], and one of the most recent papers on the subject is
that of Mauzeroll et al. [390], where many good references can be found. A
section on UMEs and their simulation in recent years (1996–2004) is found
in the review of Bieniasz and Britz [114].

12.1.3 Some Relations

It is intuitively obvious that at longer times, when the diffusion layer thick-
ness far exceeds the radius of a disk or hemisphere (for small P), or of the
width of a band or the hemicylinder, currents at flat electrodes (disk, band)
must resemble those at round electrodes (hemisphere, hemicylinder). Some
relations between these have been established. Oldham found [427] that the
steady-state currents at a microdisk and microhemisphere are the same if
their diameters along the surfaces are the same. This means that for a mi-
crodisk of radius a, the steady-state current is the same as that at a micro-
hemisphere of radius 2a/π. At band or hemicyclindrical electrodes, there is

210 12 Two-Dimensional Systems

no steady state, but there still exists a relationship between them at long
times. Szabo et al. [543], using the Laplace transform analytical solution for
the current at a microband, and comparing it with that at a hemicyclinder,
conjectured that the current at a band of width w has the same long-time cur-
rent as at a hemicyclinder with radius w/4. This was borne out by simulated
values.

12.2 Simulations

In the present context, we are interested in how best to simulate electrochem-
ical processes at a two-dimensional electrode. The flat disk, the UMDE, is
taken as the only example, as the techniques that have been developed for it
are the same as those for the other geometries.

All the microelectrodes already mentioned have been simulated.
The UMDE evinces strong edge effects or very uneven current densities

along the radius of the disk. It shares this problem with all the other flat
microelectrodes such as microbands or rings. The exception of course are
the hemispherical or hemicylindrical microelectrodes, which have no effective
edges and behave as half of a sphere or cylinder, and also deeply recessed
disks or bands, which approach the shrouded types.

It was early realised (for example by Crank and Furzeland in 1977 [184])
that the singularity at such edges will degrade overall accuracy in a simu-
lation. In fact, Gavaghan points out [259, 260] that because of this effect,
the simulation error in calculated concentrations is of O(h1/2), h being the
interval size in space, near the edge. This is rather poor, so that unless special
techniques (see below) are used, these simulations can be very cpu-intensive.
The worst methods for simulating such systems are the explicit method and
equal intervals in (r, z) space (for the UMDE); nevertheless, both have been
used. Motivation for using simple explicit or splitting methods is that the
more efficient implicit methods are not easy to implement in two dimen-
sions. For this reason, hopscotch [275] and ADI [436] (see below) have been
favourites in this area, as they obviate the need for solving largish banded
systems of equations, as one has with the true implicit methods. However,
more recent work has indeed made use of implicit methods, combined with
sparse matrix techniques, as described below.

Flanagan and Marcoux [246] were the first to attempt a UMDE time-
marching simulation, in order to find the constant in the approximation of
Lingane’s (12.1); they used the explicit method. Crank and Furzeland [184]
addressed the steady state for the UMDE and described some of the problems;
they also briefly mention time-marching simulations. Their work appears to
have come just after that of Evans and Gourlay [224], who used hopscotch.
They also found some oscillatory behaviour of the solution, which is not
always mentioned. As Gourlay realised [275], hopscotch is mathematically

12.2 Simulations 211

related to ADI, which in turn approximates Crank-Nicolson, known to be
oscillatory in response to initial discontinuities such as a potential jump (more
on this problem below).

Heinze is usually cited as the first to do a thorough study of the UMDE
simulation [297], using ADI for the potential step problem. He followed this
with an LSV study [298], and used unequal intervals in the next study [300],
to come to grips with the edge effect. Meanwhile, Shoup and Szabo [507] ap-
plied hopscotch to the problem, and this method has continued to be used
up to the present [52,394,488,489], also with other microelectrodes. As men-
tioned in Chap. 9, hopscotch has a problem, called “propagational inade-
quacy” by Feldberg [232]. Hopscotch becomes inaccurate for large time inter-
vals, which are one reason for using stable algorithms. As well, as mentioned
above, hopscotch does give rise to some initial oscillations for potential step
simulations. These are less severe for small time intervals, however, and per-
haps for that reason are not always mentioned or considered serious. Safford
and Weaver [488] addressed the nontrivial problem of uncompensated resis-
tance and double layer capacity in these simulations. Some continued to use
the plain explicit method, despite the advantages of implicit or semi-implicit
methods [557]. ADI, as mentioned, was used on some occasions [297,545]. Fi-
nally, Crank-Nicolson remains an attractive method, if sparse matrix solvers
are used, especially if its oscillatory response can be damped. This can be
done by some rather simple expedients, as described [149,432], such as either
starting a potential jump simulation by subdividing the first step in time into
sub-intervals, or – even simpler – to make the very first 1–4 steps BI steps. BI
is known to have a very steady response to initial transients, and it turns out
that after 1–4 steps, when CN is resumed, no more oscillations are seen. What
is more, this was especially effective with UMDE simulations in conformal
space.

It was soon realised that at least unequal intervals, crowded closely around
the UMDE edge, might help with accuracy, and Heinze was the first to use these
in 1986 [300], as well as Bard and coworkers [71] in the same year. Taylor
followed in 1990 [545]. Real Crank-Nicolson was used in 1996 [138], in a “brute
force” manner, meaning that the linear system was simply solved by LU
decomposition, ignoring the sparse nature of the system. More on this below.
The ultimate unequal intervals technique is adaptive FEM, and this too has
been tried, beginning with Nann [407] and Nann and Heinze [408, 409], and
followed more recently by a series of papers by Harriman et al. [287,288,289,
290, 291, 292, 293], some of which studies concern microband electrodes and
recessed UMDEs. One might think that FEM would make possible the use
of very few sample points in the simulation space; however, as an example,
Harriman et al. [292] used up to about 2000 nodes in their work. This is
similar to the number of points one needs to use with conformal mapping and
multi-point approximations in finite difference methods, for similar accuracy.

212 12 Two-Dimensional Systems

In general, the finding of Rudolph [478], that in one-dimensional simu-
lations, direct discretisation on an unequally spaced grid, rather than equal
spacing on a transformed grid, is best, does not appear to apply to UME
simulations. Gavaghan made a very thorough study of UMDE simulations

[259,260,261,262] and concluded that the above-mentioned O(h
1
2) behaviour

limits the convergence obtained. Much better are transformations by confor-
mal mapping, to eliminate the edge singularity. Such conformal maps were
used as early as 1966 (Newman, in a mathematical study of the rotating
disk [411]) and Saito [490], who worked out the steady-state current at a
UMDE, used conformal mapping; in fact he used the same formula as later
applied by Michael et al. [394]. Safford et al. [489] used the same formula,
and more is said about this technique below.

Other UMEs have been simulated, and are briefly mentioned here. Mi-
croband or microhemicyclinders were simulated starting in 1986 (Deakin
et al. [197], Amatore et al. [51]), mostly using hopscotch. Coen et al.
[167], followed by Cope et al. [177, 180] used the integral equation method
(see Chap. 9) to simulate microband or microrings. Jin and coworkers
used their FAM method on microbands and -rings, as well as on a micro-
oblate spheroidal electrode [316, 317, 319, 454, 455, 456]. Varco Shea and
Bard [556] used the explicit method on microband arrays, Bieniasz and
Britz [113] simulated chronopotentiometry at a microband using a Rosen-
brock method; interdigitated microband electrodes (IDAs) were simulated
[60, 316, 536]. There is recent interest in double microband or -hemicylinder
pairs, in generator-collector mode, and some simulations have been de-
scribed [47, 49, 65, 541], using explicit [65] and ADI [47, 49, 541] methods.
Also, the scanning electrochemical microscope (SECM) with its similarity
to a UMDE with a close TLC-like opposite wall and its various boundary
conditions there, demands simulation, and some work along these lines has
been done [53,75,76,77,78,204,237,375,383,384,390,503,512,530]. This list
is probably not exhaustive.

12.3 Simulating the UMDE

The ways to simulate our chosen example, the UMDE, are described here.
The integral equation approach, taken by Coen and coworkers over a number
of years [167, 176, 177, 178, 179, 180, 219] for microband electrodes, can be
used on the UMDE as well [179]. The reader is referred to these papers for
the method. Also, although the adaptive FEM approach might be thought
to be about the most efficient, and has been developed by a few workers (see
above, references to Nann and Heinze, and Harriman et al), it does not seem
the most popular; it is not trivial to program, and as Harriman et al. found,
it appears that a rather large number of nodes were required. The reason is
probably that this is a kind of discretisation in the original cylindrical (R,Z)

12.3 Simulating the UMDE 213

space, where convergence, as mentioned above, is of O(h
1
2) [259], and many

nodes are needed to get reasonable results. This is of course also the case
with finite differences, as described below. Discussion here is confined to the
use of finite difference methods for UMDE simulation, since these serve as
guides for the simulation of the other 2D electrodes.

One has the choice between applying finite difference discretisation either
directly to a grid of points in the cylindrical (R,Z) space, or to a trans-
formed space. In one dimension, it has been found [478] that direct discreti-
sation without transformation is better. In the case of 2D simulations where
edge effects are seen, this is not the case, and transformation is better. Both
approaches are described here.

12.3.1 Direct Discretisation

The discussion to follow refers to the example program UMDE_DIRECT (Appen-
dix C). Consider Fig. 12.2, which is the normalised version of Fig. 12.1, the
disk edge now lying at R = 1. When discretising directly here, we must de-
cide on maximum values for R and Z, as indicated, see below. Clearly, given
the poor convergence, many grid points are needed, which in turn points to
the use of unequal point spacing in both axes. This was done by Gavaghan
in his three-part study [260,261,262], in which he employed a scheme similar
to that pictured in Fig. 12.3.

Fig. 12.2. Coordinate system for the UMDE

There is a slight complication in the setting of the maximum R and Z
values. The procedure depends on whether (12.17) or (12.26) is simulated. In
the former case, we have

Zmax = 6
√

Tmax (12.31)

where Tmax is the number of time units over which the experiment runs.
These units are defined by (12.16) for this case, making the Nernst diffusion
layer thickness equal to the UMDE radius for one time unit. For Rmax, one
should probably use the formula

214 12 Two-Dimensional Systems

Fig. 12.3. UMDE unequally spaced grid in [R, Z) coordinates

Rmax = 1 + 6
√

Tmax , (12.32)

taking into account that the extent is measured from the disk edge, one disk
radius from the origin.

If the characteristic time is defined independently of the disk radius, and
diffusion (12.26) results, the Nernst diffusion layer thickness is dependent only
on the number of these time units. So if the characteristic time is τ and the
maximum duration of the experiment is τmax (giving Tmax = τmax/τ), then
the final diffusion layer thickness is

√
Dτmax. Then, in dimensionless distance

units (normalisation being division by the disk radius a), this becomes, after
multiplying by 6 and noting (12.27),

Zmax =
6
P

√
Tmax (12.33)

and for R,

Rmax = 1 +
6
P

√
Tmax . (12.34)

12.3 Simulating the UMDE 215

This will become a little more complicated later, when the space is mapped
into new coordinates, and limits in terms of these must be set. In Fig. 12.3,
the number of nodes (lines) is held small, in order not to confuse the picture.
The grid is chosen such that there are expanding intervals in both the Z
direction and in the two R directions away from and on either side of the
line R = 1. For reasons which will become clear below, the index j for the R
positions starts at −1. There are nA intervals between R = 0 and the disk
edge, and a total of nR between the origin and the point at which R = Rmax;
there are two further points beyond this, which also will be explained. The
positions for Z, indexed with i, begin at zero and nZ is the point at which
Z = Zmax. Again there are two further points beyond this value.

The unequal grid was generated using the Fortran function EE_FAC (Ap-
pendix C and described in Sect. 7.2). One needs to decide the numbers of
points in the three ranges, and the minimum intervals, whereupon EE_FAC
produces the required γ values for the expansion. One range goes from R = 1
backwards to R = 0, and we have a further point indexed j = −1, as seen in
Fig. 12.3; this point is chosen such that its distance from R = 0 is the same
as that of the first point to the right of R = 0. In the other direction, the
expansion finds the final variable point at Rmax, and there are two further
points beyond it. These do not need further expansion, and the two intervals
are made the same as the final one reaching out to Rmax; similarly for the Z
axis. Thus the last four outermost points in both the R and the Z directions
are equally spaced. This is somewhat arbitrary, and the outermost points
could be placed even closer to the last variable points (possibly) to improve
the discretisation accuracy.

The reason for there being two extra points at the outer boundaries is
the fact that the second derivative approximation on an unequal grid is only
first-order with respect to the intervals (see Chap. 3, Sect. 3.8 on page 44),
if three-point approximations are used. Gavaghan [260] and Verbrugge and
Baker [557] write incorrectly that these approximations are second-order. In
a private communication (2003), Gavaghan explained to the present author
that while this is strictly not true, the nature of the exponentially expanding
grid makes the multiplication constants rather small, so that second-order-
like accuracy is achieved. Nevertheless, when one measures the order, it is
clearly first order. For this reason, it was decided in a study [532] using direct
discretisation to use asymmetric four-point formulae, which are second-order
for the second derivative on an unequal grid. This is the reason why two extra
points beyond the limit points were set in the grid, as the approximations
were of the form u′′

2(4) in the terminology used in Appendix A.
We are now ready to apply the discretisations, but must decide on the

vector of unknown concentrations at all the grid points in Fig. 12.3. It is
convenient to include even the boundary points (but not those at j = −1,
which serve only as fictitious points), setting these to known values in the
large linear system to be generated. Thus we note that the total number N
of unknowns is given by

216 12 Two-Dimensional Systems

N = (nR + 3) (nZ + 3) . (12.35)

A convenient ordering of the grid points is achieved by arranging the con-
centration grid one row after the previous. The numbering of the elements in
the vector is then the following. Index k of the vector element corresponding
to the grid value Cij , (i = 0 . . . nZ + 2, j = 0 . . . nR + 2) is

k = i (nR + 3) + j + 1 , (12.36)

so that the whole grid is now mapped into N elements. The map is con-
veniently generated in the example program UMDE_DIRECT by the function
KMAP. There is a corresponding function UNMAP which calculates i and j from
a given k, needed in order to fold newly calculated concentration values back
into the grid.

With N elements as the unknown vector, an N × N matrix is clearly
required for the solution of the linear system of discrete equations. This can
be rather large. One approach, that has been tried [138], is to ignore this
problem and to actually generate a huge matrix and let the system be solved
by a suitable solver. This limits the size of N , however, leading to somewhat
inaccurate simulations, unless rather high-order approximations are used.
However, when discretising, one notes a large number of zero elements in the
matrix, which is banded, and this suggests a sparse matrix technique.

The program package MA28 [215] was found to be useful. The package
can be downloaded from the Harwell site [1]. It is written in Fortran IV,
but there is no problem in adapting it to Fortran 90, thanks to the (so
far) downward compatibility of the latest language definition. MA28 does an
LU-decomposition of a sparse matrix, allowing efficient solution by back-
substitution after the initial LU-decomposition. What is more, for those cases
where the matrix varies with time – as is the case in, for example, second-order
homogeneous chemical reactions and in time-varying boundary conditions –
MA28 has the very convenient feature that it preserves some information from
the first LU-decomposition and, as long as the sparsity pattern of the matrix
does not change, subsequent LU-decompositions can be done much faster
than the first. This package, then, was used in the program UMDE_DIRECT.
Another package sometimes used is Y12M, available from netlib [2], and
described in [584]. It offers the same features as MA28.

Firstly, the discretisation itself is described. We restrict the discussion
to the BI time integration, in order to focus on the spatial discretisations.
The program UMDE_DIRECT in fact uses BI as the first step, then three-point
BDF, which produces second-order accuracy with respect to δT , this being
the rational BDF startup described in Chap. 4, page 59. Take a point away
from the boundaries, indices i (for Z) and j (for R). The discretisation at
concentration Ci,j of the pde (12.17) has three derivative terms, all to be
discretised using four-point formulas. The coefficients can be precalculated.
For the row along Z, there are, for each 0 < Z ≤ Zmax, that is, 0 < i ≤ nZ ,
four coefficients for the approximations

12.3 Simulating the UMDE 217

∂2C

∂Z2 ≈ αZ1Ci−1,j + αZ2Ci,j + αZ3Ci+1,j + αZ4Ci+2,j (12.37)

(the coefficients can be fetched from the routine U_DERIV). These coefficients
are independent of R (or j), so there are only 4nZ of these. Similarly, there
are 4nR coefficients αRk, k = 1 . . . 4, for the approximations

∂2C

∂R2 ≈ αR1Ci,j−1 + αR2Ci,j + αR3Ci,j+1 + αR4Ci,j+2 . (12.38)

This leaves the last term. For the moment, assume that we are away from
the problem area R = 0, and we thus have the simple approximation with
the last set of coefficients for the first derivative,

1
R

∂C

∂R
≈ 1

Rj
(βR1Ci,j−1 + βR2Ci,j + βR3Ci,j+1 + βR4Ci,j+2) . (12.39)

These three formulae work for (almost) the whole field of values that undergo
diffusional changes, up to the boundary lines, because we have made sure that
there are enough points in the grid beyond these lines for the discretisation
formulae to refer to. There is a problem area, as mentioned above, at R = 0,
where the above approximation cannot be used, due to the singularity. This
has been addressed by Crank and Furzeland [184] and again by Gavaghan
[260]. The method they used is also described in detail by Smith [514]. It is
the following. Expand (∂C/∂R) at some small R, using Maclaurin’s expansion
(a special case of Taylor’s expansion):

∂C

∂R
(R) =

∂C

∂R
(0) + R

∂2C

∂R2 (0) + . . . (12.40)

and, from boundary conditions (12.18), ∂C
∂R (0) = 0, and letting R → 0, we

obtain
1
R

∂C

∂R
(0) ≈ ∂2C

∂R2 (0) . (12.41)

Thus, we can simply add this term to the existing one, and the pde on the
axis becomes

∂C

∂T
=
(

2
∂2C

∂R2 +
∂2C

∂Z2

)
(12.42)

for which discretisations already exist (12.37) and (12.38). The only (small)
problem is that in this case, j = 0, and the discretisation thus refers to points
with index –1. This is easily overcome, again using the boundary condition
∂C
∂R (0) = 0, which means that Ci,−1 = Ci,1 and thus

∂2C

∂R2 (R = 0) ≈ αR2Ci,0 + (αR1 + αR3)Ci,1 + αR4Ci,j+2 . (12.43)

It is now seen why the grid diagram contains the column at j = −1; that
value of R is needed in order to get the four coefficients from U_DERIV at
R = 0. A concentration value on this column need never be referred to.

218 12 Two-Dimensional Systems

Another special area is the insulating plane outside the disk, defined by
Z = 0, R > 1. Here, the boundary condition is usually given as in the set
(12.18), zero gradient with respect to Z. This is expressed as a four-point
first derivative, as

β1C0,j + β2C1,j + β3C2,j + β4C3,j = 0 . (12.44)

To make the discretisation process more visual, consider any position (i, j)
in the grid. There are a total of 7 points around and including this central
point, and each of them has its own k-value, mapped from its indices. It looks
like this:

Each of the positions maps into a k value, the index of the element in the
unknowns vector to be solved for. These are denoted, corresponding to the
above scheme, by

12.3 Simulating the UMDE 219

Thus, the central point at (i, j) has map-index k22. For its discretisation,
there will be entries in row k22, at column positions at all seven k values. The
horizontal row (referring to the mapping formula (12.36)) are all contiguous k
values, while the vertical row maps into column values that are nR + 3 apart
from each other. So only k22 need be computed by the mapping function
KMAP, the others can then be simply set: for example,

k21 = k22 − 1
k23 = k22 + 1 (12.45)
k12 = k22 − nR − 3

etc.
We can now put the discretisations together, still focussing only on the

right-hand side of (12.17). Adding up the individual discretisations (12.37),
(12.38) and (12.39), we can express the total (semi) discretisation as

dC

dT
= a21Ci,j−1 + a22Ci,j + a23Ci,j+1 + a24Ci,j+2

+ a12Ci−1,j + a32Ci+1,j + a42Ci+2,j ,
(12.46)

where the a-coefficients are put together as follows:

a21 = αR1

a22 = αR2 + αZ2

a23 = αR3

a24 = αR4 (12.47)

a12 = αZ1

a32 = αZ3

a42 = αZ4 (12.48)

with the α coefficients already defined above. For the axis where R = j = 0,
the term in Ci,j−1 drops out.

This leaves the boundary conditions. The equation for the insulating plane
is given in (12.44), producing four matrix entries. The remaining points are
now those on the disk surface itself, and the points outside the diffusion
space. On the disk surface, for the Cottrell-like simulation, we have zero
concentrations, and at the outer points all concentrations are unity. These
produce single entries in the matrix.

We must now attend to the time integration, that is, the choice of discreti-
sation of the left-hand side of (12.17). In the example program UMDE_DIRECT
it was decided to use a second-order time integration, and not CN. This sug-
gested either extrapolation or BDF, both described in Chap. 8, Sect. 8.5.2.
Second-order extrapolation has the disadvantage of requiring two half-sized
steps in time as well as one whole step, which means two different coefficient

220 12 Two-Dimensional Systems

matrices and thus two LU-decompositions. This takes up more computer
memory and cpu time. BDF, on the other hand, is done in a single step
and requires, for its second-order variant, only a second concentration ar-
ray, which is much smaller than the coefficient matrix. This matrix (in both
cases) is smaller than it might be if we did not specify it as a sparse matrix
for the routines in the MA28 package, but is still rather large, compared to the
concentration grid. BDF does have the start-up problem, and it was decided
to use the rational start by taking a single BI step, followed by second-order
BDF. This produces second order accuracy with respect to δT , and is quite
stable.

For the BI step, the left-hand side of (12.46) is

dC ′

dT
≈

C ′
i,j − Ci,j

δT
(12.49)

which, when putting unknowns and knowns on opposite sides, makes (12.46)

a21C
′
i,j−1 + (a22 −

1
δT

)C ′
i,j + a23C

′
i,j+1 + a24C

′
i,j+2

+ a12C
′
i−1,j + a32C

′
i+1,j + a42C

′
i+2,j = −Ci,j

δT
. (12.50)

For second-order BDF,

dC

dT
≈

′Ci,j − 4Ci,j + 3C ′
i,j

2δT
(12.51)

and the final lumped equation is

a21C
′
i,j−1 + (a22 −

3
2δT

)C ′
i,j + a23C

′
i,j+1 + a24C

′
i,j+2

+ a12C
′
i−1,j + a32C

′
i+1,j + a42C

′
i+2,j =

′Ci,j

2δT
− 2Ci,j

δT
. (12.52)

There is only a small difference between the two forms and in the program,
there is need for only a small IF-statement split, to handle both in the same
code stretch. In fact, in UMDE_DIRECT the BI form is first assumed, and then,
if BDF is found to hold, the change is made from one to the other.

A small problem is the current integration. This is defined, in dimension-
less terms, in (12.19). The integration must be performed on an unevenly
spaced set of R values. Gavaghan has examined current integration. From
some numerical experiments on an evenly spaced grid [259] he concluded
that the trapezium method is the most suitable. Simpson integration does not
produce better results, because the edge anomaly produces large errors that
dominate the current integration process. In his 1998 paper [260], describing
a UMDE simulation on an unevenly spaced grid, Gavaghan then again opted
for the trapezium method, and the three-point formula for evaluating the

12.3 Simulating the UMDE 221

flux densities ∂C/∂Z at each R and Z = 0. In our own numerical exper-
iments, a Simpson-like algorithm was designed for unevenly spaced points,
but while this worked fairly well for exact concentrations (those at the steady
state), the trapezium method was just as good for simulated concentrations,
agreeing with Gavaghan. However, four-point current approximations were
used.

The resulting code can be seen in the example program UMDE_DIRECT
which the interested reader might study. It turns out that a rather large num-
ber of points is required, and very small intervals near the disk and around
the disk edge. To get good accuracy from this program, for example, it was
necessary to use the maximum possible number of points on our computer,
nA = nZ = 180, nR = 240, and set the smallest δZ = 10−6 and equally,
the smallest δR = 10−6, similar to the values chosen by Gavaghan [261].
The expansion parameters γ are then computed automatically to fit these
numbers. With these parameters, the program produces currents with better
than 0.1% accuracy for T < 5.

12.3.2 Discretisation in the Mapped Space

The other major approach to simulating an UME is to map the 2D-space into
another space using conformal mapping. Consider Fig. 12.4, showing two sets
of equiconcentration lines for a potential jump at a UMDE at T = 1. The
lines range from zero (along the electrode in A, or along Γ = 0 for B) in steps
of 0.1 up to 0.9. Note the crowding of the lines in A around the electrode edge,
but the rather even spread of the lines in B, and the fact that they are almost
parallel with the base line. The mapping function used in this case is that of
Amatore and Fosset [52], about which more will be said below. The figure
indicates that simulation in the transformed space should be better than in
the original (R,Z) space, and this is indeed true, especially for larger values
of T . However, consider now Fig. 12.5, the same situation but at T = 0.01.
Here, the lines in normal space are, over most of the R-range, almost parallel
with the base line except for a small area around the disk edge, while in
transformed space, they are no longer parallel and somewhat crowded at the

0

1

2

0 1 2
R

Z

A

0

0.2

0.4

0.6

0 1
θ

Γ
B

Fig. 12.4. Equiconcentration lines at T = 1 at a UMDE in normal and AF-
transformed space

222 12 Two-Dimensional Systems

0

0.1

0.2

0 1
R

Z

A

0

0.1

0.2

0.3

0 1θ

Γ

B

Fig. 12.5. Equiconcentration lines at T = 0.01 at a UMDE in normal and AF-
transformed space

right-hand end (which corresponds to the the region near the central axis,
R = 0). This suggests that direct discretisation in (R,Z) space might be
favourable. In practice, however [532], conformal mapping is superior over
the whole time range.

There is thus good argument for using transformation for 2D simulations.
Several transformation formulas have been suggested and used. The first to
do this was Newman in 1966 [411], for his study of the resistance to a flat
disk; he was followed by Saito [490], in his derivation of the steady-state
currents at a microdisk and microband electrode. Saito used a conformal
mapping function for the band electrode, that was later used again by Michael
et al. [394], applying it to the UMDE (see below). Amatore describes several
conformal mappings in his review of UMEs [46]. The properties of conformal
maps can be found in such publications as [524], and Amatore has a good
discussion of the technique [46].

Some Transformations

Here, the four major mapping functions for the disk electrode are presented,
as well as the form that the diffusion equation for the disk electrode takes
in the mapped spaces. We assume that the cylindrical coordinates, time and
concentrations have all been normalised by the disk radius as in (12.14).

Michael et al. [394] used the mapping function used earlier by Saito [490],
transforming to elliptic coordinates [404],

R = cos θ cosh Γ

Z = sin θ sinh Γ . (12.53)

This will be called MWA here. This transformation is also used for band
electrodes, with R replaced by X, measured as a distance from the centre of
the band, across the band [46]. It results, in the case of the disk electrode, in
a new diffusion equation, whose form is deferred to a later place, below.

We wish to simulate by discretising on an equally spaced grid in the
transformed space, and this grid should place points optimally in the origi-
nal (R,Z) space. That is, they should be closely spaced near the disk edge,

12.3 Simulating the UMDE 223

2

4

6

1 2 50
R

Z

0

1

2

0
θ

Γ

π/2

Fig. 12.6. A 10 × 10 grid in MWA (θ, Γ) space and its equivalent in (R, Z)

and more widely spaced, the further away from the edge point they are. For
illustration, note Fig. 12.6, where a coarse 10× 10 grid is shown in the trans-
formed (θ, Γ) space of the transformation (12.53). The Γ end is open. This
means that for a given simulation, one must decide on the maximum Γ value
(see page 229). This may or may not be regarded as a disadvantage. This grid
of points, retransformed by application of (12.53), produces the grid on the
left-hand side of the figure. We note that indeed, points are closely spaced
around the disk edge, and move apart away from that region. The outer,
nearly circular curve corresponds to the maximum Γ chosen in this example,
2.5. Γ is the parameter that sets distance from the origin, in a slightly com-
plicated way. We note that the regular grid of Fig. 12.6 is reflected in a rather
regular spacing of the “radial” lines (angles) and an expanding spacing in the
distance of the circle-like lines. All this is favourable, as it will tend to space
isoconcentration lines at roughly equal intervals.

The MWA map has what might be regarded as a drawback. We wish
to contain the concentration field that varies during the time Tmax of the
simulation, that is, to have distances of about 6 ×

√
Tmax from all points in

the system. This translates, upon conformal mapping, to a certain maximum
Γ value. How this is calculated is described below on page 229. The point is
that such a calculation must be made. However, this also applies to the other
two transformations, as will be seen below.

The next conformal map to be developed was that of Amatore and Fosset
[52], here to be called AF:

R = (1 − θ2)
1
2 / cos

(
π
2 Γ
)

Z = θ tan
(

π
2 Γ
)

. (12.54)

The symbols are (here) the same as for MWA, except that the range
of θ is from zero to unity, rather than to π/2. A convenient result of this
transformation is that the concentration profile is very simple at steady state
for the potential jump system:

224 12 Two-Dimensional Systems

C(θ, Γ) = Γ . (12.55)

In other words, the profile has contour lines parallel with the base line
(Γ = 0). This should make simulations using this transformation very ef-
ficient. However, the above profile holds at steady state only, and when one
compares the efficiency of the four transformations at shorter times, they are
all about equally efficient, in the sense that they all take about the same
amount of computer time to reach a given target accuracy in the calculated
current.

Figure 12.7 shows the equivalences for the AF map. This transformation,
in the ranges for θ and Γ shown on the right-hand figure, contains the whole
semi-infinite space in (R,Z), so no calculation of a maximum Γ is supposedly
needed. As explained below on page 229, however, there can be efficiency
reasons for calculating a maximum Γ even here. Also note that, contrary
to the MWA map, equal intervals in the conformal space produce θ lines
with varying (angular) spacing in (R,Z), being more widely spaced near the
disk axis. This is undesirable and might reduce accuracy in the discretisations
around that axis. A positive point is that the even spacings in the Γ direction
produces expanding distances from the electrode as we move further out. This
is desirable, and better than MWA, where the distances expand to a lesser
degree. The problem with the angular spacing was overcome by the fourth
transformation, to be mentioned below.

2

4

6

1 2 50
R

Z

1

10
θ

Γ

Fig. 12.7. A 10 × 10 grid in AF (θ, Γ) space and its equivalent in (R, Z)

Next, Verbrugge and Baker [557] changed the definition of Γ in MWA
and arrived at the new equation pair, here referred to as VB:

R = cos θ cosh
(

Γ

1 − Γ

)

Z = sin θ sinh
(

Γ

1 − Γ

)
. (12.56)

12.3 Simulating the UMDE 225

2

4

6

1 2 50
R

Z

0

1

0 θ

Γ

π/2

Fig. 12.8. A 10 × 10 grid in VB (θ, Γ) space and its equivalent in (R, Z)

This transformation produces the equivalence pair in Fig. 12.8. As with AF,
the maximum Γ = 1 completely encloses the semi-infinite diffusion space.
The parameter θ has the same limits as with MWA. We note an even spacing
of the angles with changing θ and an outwardly expanding spacing for a
regular increase in Γ . So this transformation has both positive features.

Recently, a fourth transformation has appeared, that of Oleinick et al.
[428], here to be called OAS. It is a variant of AF, and is defined as follows:

R = sin
(

π
2 θ
)
/ cos

(
π
2 Γ
)

Z = cos
(

π
2 θ
)
tan
(

π
2 Γ
)

. (12.57)

This is the AF map (now only “quasiconformal”, as the authors note), with θ
replaced by cos(θ). Figure 12.9 shows the result. The change from θ to cos(θ)
eliminates the rather uneven spread of angles seen in Fig. 12.7; the angles
are now spread more like those for VB, Fig. 12.8. One difference here is that
the angle θ is now zero on the axis, and unity on the insulating plane, the
reverse of all three earlier transformations. This transformation appeared to
give rather good results, although one expects it to perform somewhat like
VB.

2

4

6

1 2 50
R

Z

1

10
θ

Γ

Fig. 12.9. A 10 × 10 grid in OAS (θ, Γ) space and its equivalent in (R, Z)

226 12 Two-Dimensional Systems

Inversion of the Transformations

It is sometimes of interest to invert the transformations, computing the pair
of (θ, Γ) coordinates from a given pair (R,Z). All four transformations can be
inverted trigonometrically. The inversion for AF has been presented by Svir
and Oleinick [540] (with a small typographical problem), and that for OAS
by those authors themselves [428]. For some inversions, there are alternative
expressions, and there are cases where special formulae must be applied, as
is described below.

The inversion equations for the MWA transformation (12.53) are given
by

Γ = arcsinh

√
1
2

(
R2 + Z2 − 1 +

√
(R2 + Z2 − 1)2 + 4Z2

)

θ = arccos
(

R

cosh Γ

)
(12.58)

for both R > 0 and Z > 0. There is an expression for θ independent of that
for Γ , but the one given here is preferable, because the other has two possible
solutions, and it is not immediately obvious which one is correct. The one
given here comes directly from the first of the transformation pair (12.53).
Special cases are

R > 0, Z = 0 : θ = 0; Γ = arccosh R

R = 0, Z > 0 : θ = π/2; Γ = arcsinh Z (12.59)
R = 0, Z = 0 : θ = π/2; Γ = 0 .

Inversion of VB (12.56) is almost the same as that for MWA, except that
the expression for Γ in (12.58) is now an expression for Γ ′, to be converted
to the present Γ by

Γ = Γ ′/(1 + Γ ′) . (12.60)

The AF (12.54) general inversion is [540]

θ =

√
1
2

(
1 − R2 − Z2 +

√
(R2 + Z2 − 1)2 + 4Z2

)

Γ =
2
π

arctan
(

Z

θ

)
(12.61)

with the special cases

R > 1, Z = 0 : θ = 0; Γ =
2
π

arccos
(

1
R

)

R = 0, Z > 0 : θ = 1; Γ =
2
π

arctan Z (12.62)

R = 0, Z = 0 : θ = 1; Γ = 0 .

12.3 Simulating the UMDE 227

For OAS (12.57) we have

θ =
2
π

arccos

(√
1
2

(
1 − R2 − Z2 +

√
(R2 + Z2 − 1)2 + 4Z2

))

Γ =
2
π

arctan
(

Z

cos(π
2 θ)

)
. (12.63)

Alternative inversion expressions are given by Oleinick et al. [428], equivalent
to those above.

The special cases for the OAS inversion are

R > 1, Z = 0 : θ = 1; Γ =
2
π

arccos
(

1
R

)

R = 0, Z > 0 : θ = 0; Γ =
2
π

arctan Z (12.64)

R = 0, Z = 0 : θ = 0; Γ = 0 .

The Diffusion Equation in the Mapped Spaces

The transformations lead to a change in the diffusion equation and boundary
conditions, in terms of the new variables. The general form of the diffusion
equation, for all cases, is

∂C

∂T
=

1
F

(
aθ

∂2C

∂θ2 + bθ
∂C

∂θ
+ aΓ

∂2C

∂Γ 2 + bΓ
∂C

∂Γ

)
(12.65)

with Tables 12.1 and 12.2 showing the parameters (they are not all constants).
MWA and VB (Table 12.1), and AF and OAS (Table 12.2). Note the two
terms in the OAS column, that have (2Γ ′) as argument, rather than the
usual Γ ′.

Consider again Fig. 12.8. It shares with the other two mappings the fol-
lowing simple equivalences in (R,Z) space. The base line of the mapped
(right-hand) grid corresponds to the electrode itself, going inward from the
edge (θ = 0) to the disk centre (maximum θ). The left-hand edge (θ = 0)

Table 12.1. Parameter values for the diffusion equations in the MWA and VB
spaces

Parameter MWA VB

F sin2 θ + sinh2 Γ sin2 θ + sinh2(Γ
1−Γ

)

aθ 1 1
bθ − tan θ − tan θ
aΓ 1 (1 − Γ)4

bΓ tanh Γ (1 − Γ)2 tanh(Γ
1−Γ

) − 2(1 − Γ)3

228 12 Two-Dimensional Systems

Table 12.2. Parameter values for the diffusion equations in the AF and OAS
spaces. For better readability, the symbols θ′ ≡ π

2
θ and Γ ′ ≡ π

2
Γ are used

Parameter AF OAS

F θ2 + tan2 Γ ′ π2[1−sin2 θ′ cos2 Γ ′]
2

4 cos2 θ′ cos2 Γ ′+sin2 θ′ sin2(2Γ ′)

aθ 1 − θ2 1

bθ −2θ
2π[1−sin2 θ′ cos2 Γ ′] cos2 Γ ′ cot θ′

4 cos2 θ′ cos2 Γ ′+sin2 θ′ sin2(2Γ ′)

aΓ
4

π2 cos2 Γ ′ cos2 Γ ′

bΓ 0 0

traces the insulating plane away from the disk edge; while the right-hand edge
traces the axis itself. The top line is at maximum distance from the electrode.
In the case of AF, VB and OAS, if it lies at Γ = 1, it corresponds to infinity.
In the case of MWA, if suitably chosen, it lies at a distance sufficient for
significant diffusional changes to be confined within that limit. More will be
said about the limit below.

Equation (12.65) must be accompanied by boundary conditions. These
are, generally, now again for the potential jump experiment:

t ≤ 0, all θ, Γ : C = 1
t > 0, Γ = 0 : C = 0 (12.66)

Γ = Γmax : C = 1

θ = 0, θmax :
∂c

∂θ
= 0 .

The second boundary condition will change appropriately if another experi-
ment than the potential jump is simulated. Here, Γmax and θmax depend on
the conformal map used, and on how Γmax is chosen (see below). For MWA
and VB, θmax = π/2, while for AF, it is unity.

Current Integration in Conformal Coordinates

The current integration (12.19) depends on the transformation. For the three
conformal mappings described above, the new expressions are as follows. For
MWA [394] and VB [557],

I =
π

2

∫ π/2

0

∂C

∂Γ

∣∣∣∣
Γ=0

cos θ dθ . (12.67)

For AF it is [46]

I =
∫ 1

0

∂C

∂Γ

∣∣∣∣
Γ=0

dθ (12.68)

12.3 Simulating the UMDE 229

and for OAS [428],

I =
π

2

∫ 1

0

∂C

∂Γ

∣∣∣∣
Γ=0

sin
(π

2
θ
)

dθ . (12.69)

Choice of Γmax

When simulating the UMDE using one of the transformations, it is often of
advantage to know a maximum Γ value, Γm. In the case of MWA, this is
indeed necessary, as for that transformation, Γ increases indefinitely with
increasing distance from the electrode. All the other transformations have a
limiting Γ value of unity, corresponding to points at infinity. However, even
in these cases, computing time can be saved by restricting the range of Γ
or, conversely, if using a fixed number of intervals in the Γ direction, better
resolution can be achieved by the restriction. It is thus of interest to find
these maximum Γ values.

We proceed from (R,Z) space, where it is easy to define an envelope that
encloses the diffusion field to a good approximation. This is the length L,
defined, for times T other than very large (see below), by

L = 6
√

T . (12.70)

For the Cottrell system, this is the distance, beyond which changes greater
than 10−4 relative to the bulk concentration, are no longer observed.
Figure 12.10 shows this line. In the range 0 ≤ R ≤ 1, it is simply the line

Z = L , (12.71)

and for 1 < R ≤ 1 + L, it is a quarter-circle defined by

Z2 + (R − 1)2 = L2 . (12.72)

Fig. 12.10. Diffusion limit line

230 12 Two-Dimensional Systems

As will be seen, the line generates a corresponding line of Γ values by inversion
of a given transformation; and one chooses the maximum value to be on the
safe side. That value, for all four transformations, lies at the point (R,Z) =
(1 + L, 0), as will now be shown.

To find the maximum Γ value, we first find the maximum value along
the straight line segment, defined by (12.71). This equation is substituted in
the equation for Z in the given transformation. For example, for the MWA
transformation, this leads to

sinh(Γ) =
L

sin(θ)
. (12.73)

This is maximum for a minimum θ, meaning the point (1,L), at which the
line joins the quarter-circle. It remains to search that arc for Γ values.
Equation (12.72) is substituted by the transformed expressions; for MWA,
this produces

sin2(θ) sinh2(Γ) + (cos(θ) cosh(Γ) − 1)2 = L2 . (12.74)

Some trigonometric substitutions lead to the result

cosh(Γ) = L + cos(θ) (12.75)

and clearly this is maximum for θ = 0, that is at the point (1+L, 0). Finally,
this yields the maximum value

Γm = arccosh(1 + L)

= ln
(
1 + L +

√
(1 + L)2 − 1

)
. (12.76)

A similar treatment for the other transformations leads, in every case,
to quadratic equations in a Γ term, and one of the roots is obviously to be
discarded. For both the AF and the OAS transformations, the solution is
then

Γm =
2
π

arccos
(

1
1 + L

)
(12.77)

(note that for OAS, θ runs clockwise from the axis, so that at the point
(R,Z) = (1 + L, 0), it is equal to π/2, rather than zero as for the other
transformations).

The VB case is obtained from that of the MWA solution, by the substi-
tution

Γm(VB) =
Γm(MWA)

1 + Γm(MWA)
. (12.78)

The above implies that Γm increases indefinitely with T . However, this
ignores the fact of a steady state at the UMDE at long times, so for long
times, Γm might be an overestimate. The choice of L in (12.70) is made
on the basis of the Cottrell experiment at a planar shrouded electrode, and

12.3 Simulating the UMDE 231

defines the point where the concentration deviates from that in the bulk by
no more than 10−4. At the steady state for the UMDE, we have the analytical
solution for the concentration profile [184,490]:

C = 1 − 2
π

arcsin

(
2√

Z2 + (1 + R)2 +
√

Z2 + (1 − R)2

)
(12.79)

and if we substitute C = 0.9999 in this equation, we obtain a curve very
close to to a quarter-circle, with a maximum Γ value of 2×104

π . For all but the
open-ended MWA transformations, this means that for roughly T > 1000,
little is to be gained by not including the whole Γ range. For the MWA
transformation, the steady-state Γm comes to about 10, so here the rule
might be that if a given inversion results in a Γm value greater than this, it
can safely be reduced to it.

As an aside, in the light of the above, it might be considered that the
transformations which enclose an infinite diffusion space are not as advan-
tageous as one might have thought. They appear to solve the problem of
needing to estimate Γm, but now we see that it is still a good idea to do this.
This aspect is however not the most important one. The four transformations
perform about equally well when compared for efficiency.

Discretisation

Taking one of the conformally mapped grids, such as the VB grid in Fig. 12.8,
it now remains to develop the discretisations of the corresponding pde (12.65),
with the coefficients as in Tables 12.1 and 12.2, and boundary conditions,
as in the set (12.66). One needs to choose the number of points for the
derivative approximations. This has been experimented with [532] and
the conclusion was that three-point formulae (that is, three-point in each
of the two dimensions) gave slightly better results than using a higher num-
ber of points at short times, while four or more points were slightly better
at longer times. The differences were not great and in that case it might be
preferable to use three-point formulae, as they are simpler.

The bottom edge of the right-hand grid in Fig. 12.8 corresponds to the
electrode, where values either are simply set (the Cottrellian case) or are
computed in some other way (for example, for a reversible reaction). The top
edge is defined as points with constant, bulk, concentration. Thus, the points
to be treated by discretisation are those in between these two lines. As with
direct discretisation on the grid in (R,Z), all points are taken as unknowns
and mapped into one long array. Let there be Nθ intervals of length δθ in
the θ direction, so that the points are indexed 0 ≤ j ≤ Nθ, and similarly a
number NΓ intervals of length δΓ , 0 ≤ i ≤ NΓ along Γ . The total number
of points is then

N = (Nθ + 1)(NΓ + 1) . (12.80)

232 12 Two-Dimensional Systems

Then the concentration point at (i, j) maps into a k given by

k = i (Nθ + 1) + j + 1 . (12.81)

A stencil of five points is involved in the interior of the grid, conveniently
numbered as follows

Each of the positions maps into a k value, the index of the element in
the unknowns vector to be solved for. It seems unnecessary to depict these.
At the left- and right-hand edges, the zero-gradient in the θ direction is
applied, simply as a three-point one-sided approximation, so the edge point
expressions result in only three entries in the matrix.

For an internal point at indices (i, j), (12.65), upon discretisation of the
right-hand side, becomes

∂C

∂T
=

1
F

(
aθ

Ci,j−1 − 2Ci,j + Ci,j+1

δθ2 + bθ
−Ci,j−1 + Ci,j+1

2δθ

+ aΓ
Ci−1,j − 2Ci,j + Ci+1,j

δΓ 2 + bΓ
−Ci,j−1 + Ci,j+1

2δΓ

) (12.82)

from which we can proceed, having decided on a time-integration method.
The program UMDE_VB (Appendix C) is an example of using the Verbrugge-
Baker transformed grid to simulate the potential jump experiment at a disk
electrode. BI was used as the first step, followed by 3-point BDF.

12.3.3 A Remark on the Boundary Conditions

In the set of boundary conditions above, (12.3) and (12.66), there are zero-
gradient conditions. In the case of the grid in (R,Z), there are two of them,
at R = 0 and at (Z = 0, R > 1). Although both are given by Crank and
Furzeland [184], these authors do not in fact use them both as boundary
conditions; the one at R = 0 is used as a symmetry argument, in order

12.3 Simulating the UMDE 233

to develop the form of the term that might become singular, arriving at
(12.42). Thus, they allow diffusion along and away from the axis. Similarly,
one might allow diffusion in the radial direction along the insulating plane,
as well as normal to it, leaving out the (zero) normal ∂C/∂Z term, and
using symmetry to construct the special form of ∂2C/∂Z2 there. This latter
discretisation seems not to be used by anyone. What is used is simply the
no-flux condition, discretised suitably. One might suspect that this makes
use of less information than is available, and thus renders the solution less
accurate. However, see below.

In the case of the mapped grid, we also have two zero gradients ∂C/∂θ,
at both the left- and right-hand edges of, for example, Fig. 12.8. This is the
way it is usually done [52,532,557]. At both edges, however, it is also possible
– and might make more sense – to invoke the diffusion equation, taking sym-
metry into account, and leaving out the first derivative terms ∂C/∂θ there.
The program UMDE_VB was modified with this in mind, allowing diffusion in
both directions. Some numerical experiments showed that the results were
almost the same as for using the boundary condition, and convergence to
an accurate value with increasing grid intervals was no faster. Therefore the
choice remains a personal one.

13 Convection

Convection has long been coupled with electrochemistry, and the name hydro-
dynamic voltammetry has become standard. In electroanalytical chemistry
we mainly seek reproducible conditions. These are almost always attained
by systems in which a steady convective state is achieved, although not al-
ways. Thus, the once popular dropping mercury electrode (see texts such
as [74, 257]) has convection around it, but is never in steady state; it might
be called a reproducible periodic dynamic state.

The focus in this chapter is on channel electrodes, which are popular at
this time, and the way to simulate them illustrates the method generally.

13.1 Some Fluid Dynamics

Fluid flow, since it transports material, is enmeshed with diffusion in electro-
chemical cells. Some basics are therefore in order here.

Useful fluid dynamic systems are partially enclosed systems. Consider the
open system consisting of an infinite solid plate at the bottom of a semi-
infinite fluid, all at rest. Now, at t = 0, let the plate start moving with a
certain velocity, in the direction of its plane. If one follows the fluid velocity
this generates as a function of time and distance from the moving plate,
it is seen that the equation governing this process is of the same form as
the diffusion equation, and the solution is mathematically the same as for
the Cottrell system, as is shown in the first few pages of standard texts
dealing with fluid flow [120, 498]. This, then, is not a system of great use
to electrochemists, since it does not lead to a steady state flow distribution.
Consider now Fig. 13.1. It shows a sideways view of a channel or slit, of
height 2h, and a depth (into the paper) so great that there are assumed to
be no gradients in that direction. The y-axis has its origin in the central
plane, indicated by the dashed line. If we ignore entry effects at the inlet
end of this channel (but see below) and if the flow is laminar (that is, not
turbulent), then there is a steady state flow, with no velocity components in
the y-direction. The component vx in the x-direction will then be a known
function of y. At the walls (y = ±h), the fluid clings to the solid surface,
that is vx(±h) = 0. As can be shown [120,498], the velocity profile is of the
parabolic form

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 235–246 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

236 13 Convection

Fig. 13.1. Flow through a channel

vx(y) = v0

(
1 −
(y

h

)2
)

(13.1)

where v0 is the velocity along the central plane at y = 0. It is the maximum
velocity in the channel, and is given by

v0 =
h2

2µ

dp

dx
, (13.2)

in which µ is the fluid’s viscosity and dp/dx is the pressure gradient driving
the flow. Another quantity of interest is the mean flow velocity vm through
the slit,

vm = 2
3 v0 . (13.3)

The above holds only for laminar flows, which means that the Reynolds
number is sufficiently small. It is defined as

Re =
vmL

ν
(13.4)

where ν is the kinematic viscosity, equal to µ/ρ, ρ being the fluid density.
L is a characteristic length pertaining to the flow, here equal to 2h, the
channel height. For the flow to be laminar, the Reynolds number should be
smaller than a few 1000. This is to some extent uncertain, depending on the
smoothness of the walls and the way in which the fluid enters the slit.

For electrochemical purposes, where electrodes are (usually) embedded in
the channel bottom, it is convenient to shift the y coordinate so that y is zero
at the channel bottom. The equation for the velocity profile then changes to

vx(y) = v0

(
1 −
(

y − h

h

)2
)

(13.5)

(v0 of course remaining the same, as in (13.2)).
Since the velocity of flow has a parabolic function, the velocity profile near

the walls is nonlinear. However, in many works, this is approximated by a
linearised form, as the gradient right at the walls. This makes the mathemat-
ical analysis of diffusion near one of the walls easier. Differentiating (13.1)
and setting y = −h (that is, considering the bottom surface), we obtain

13.1 Some Fluid Dynamics 237

dvx

dy

∣∣∣∣
y=−h

=
2v0

h
=

h

µ

dp

dx
(13.6)

so that near the channel bottom (y = 0, having now moved the y-axis) the
velocity profile is

vx(y) ≈ 2v0

h
y . (13.7)

This system is currently one of the most used hydrodynamic cell types,
with electrodes embedded in the surfaces.

Another geometry, not quite as popular for practical reasons but perhaps
equally useful, is a tube, shown in Fig. 13.2. Now the centre is the axial line
r = 0 and the walls are at r = R. The laminar flow for this is given by

vx(r) = v0

(
1 −
(r

R

)2
)

(13.8)

where v0 is the velocity along the axis, r = 0. It is

v0 =
R2

4µ

dp

dx
(13.9)

and the average flow velocity through the tube is

vm = 1
2 v0 . (13.10)

The Reynolds number Re is here defined by setting L in (13.4) equal to the
tube diameter, 2R. As for the channel, Re must not exceed a magnitude of
1000 for the flow to be laminar. The velocity gradient at the wall is very
similar to that for the slit (13.6), with y replaced by r and h by R.

Fig. 13.2. Flow through a cylindrical tube

When using a tube or channel to establish a laminar flow, one must be
aware of entry effects. At the entry point of the tube or channel, the flow
velocity profile will be even across the cross section of the tube. As the flow
moves into the tube, the profile gradually becomes parabolic. So, if we rely on
its being parabolic, the electrodes must be placed sufficiently far downstream

238 13 Convection

for that to be true. Kay and Nedderman [333] and Schlichting [498] both
provide (almost) the same formula for the tube, expressed here as

L = 0.06R Re , (13.11)

so that electrodes must be at least a distance L into the tube. The situation
in a channel is similar, with h replacing R, as has been shown [499]. The
value of the constant depends on the extent to which the profile is to be
established. At 0.06, this is about 95% in terms of the flow velocity at the
centre of the tube or channel. Prandtl and Tietjens [448] state a much larger
constant, 0.6, based on a 99% convergence to fully parabolic flow.

Another flow system that has had some use in the past is a jet imping-
ing on a flat wall, shown in Fig. 13.3. There is a narrow jet of fluid flowing
downwards out of an orifice in the top wall, hitting the bottom plate. The
figure shows some flow lines, which go both in the vertical and horizontal
directions. At the point P there is no flow; this is the stagnant point. Elec-
trodes can be placed on or around this point. The flow distribution has been
mathematically solved by Glauert [269], whose solutions were extended by
Albery and Brett [30], with an empirical constant being provided by Yamada
and Matsuda [579]. The profiles are quite complex and will not be gone into
here.

Fig. 13.3. Flow in the wall jet system

Other convective systems have been used in electroanalytical chemistry.
The oldest one is the dropping mercury electrode [74, 257]. Convection here
arises by virtue of the expansion of the growing mercury drop, and the trans-
port equation is pleasantly simple and unidimensional for the simplified case,

13.2 Electrodes in Flow Systems 239

assuming a spherical drop that is not falling downwards, and assuming that
the sphere is large compared with the diffusion later thickness. This electrode
is no longer in wide use and will not be further pursued here.

Another system is the family of rotating electrodes. These are disks and/or
rings mounted concentrically with the axis at the end of a cylindrical rod, ro-
tating in an electrolyte. Making some reasonable simplifications, this system
also gives rise to a unidimensional transport ([362]), and the velocity distri-
butions around the end of the rod were first derived by von Kármán [564]
and Cochran [166], later to be improved by Sparrow and Gregg [516]. Levich
solved the case of steady state limiting current (see [362]), using some ap-
proximations, later corrected by Gregory and Riddiford [281]. Details can be
seen in Bard and Faulkner [74].

13.1.1 Layer Relations

In Chap. 2, the concept of the diffusion layer was established. It is a thick-
ness, within which a large fraction of diffusional changes take place, and
at a distance of several times this thickness, practically no more diffusional
changes are observed. This layer will here be given the symbol δD (D for
diffusion). In fluid dynamics, there is a similar layer, within which most of
the velocity changes occur. This is the hydrodynamic layer δh. It turns out
that for diffusive mass transfer, δD is usually much smaller than δh. This is
fortunate, because it justifies to some extent the linearised velocity profiles
often assumed near walls, making analysis easier. These relations are very
lucidly discussed in a classic paper by Vielstich [560].

13.2 Electrodes in Flow Systems

Electrodes have been placed in many flow system geometries. The rotating
disk or ring-disk electrodes are well known. Narrow rings have been mounted
flush inside tubes [86,247,325,578], on rotating electrodes such as the classical
rotating disk electrode (RDE) mentioned above, treated by Levich [362] and
the rotating ring-disk electrode (RRDE) extensively described by the Albery
group [29, 31, 32, 33, 34] and other variants and applications, too numerous
to mention here. Reviews such as that of Albery et al. [37], Penar [439]
and Williams and MacPherson [573] (on modulated flows) discuss these,
providing many references. Electrodes, both singly [30, 55, 579], as ring-disk
[256] or (for the wall jet case) even groups of separate electrodes [555] have
been mounted as targets of the flow.

Single electrodes in a flow where a steady state is attained act much
like the DME or RDE, in that a sigmoid current/voltage curve is measured,
from which information about the electrochemical reaction can possibly be
gleaned. Heterogeneous rate constants can for example be measured if the
flow is sufficiently fast. This was the aim of Bernstein et al. [86] and their

240 13 Convection

turbulent flow in a tube with a ring electrode, and equally intense turbulence
is generated at an electrode positioned close to an ultrasonic horn [69]. There
are too many references of this kind to mention here. Another objective can
also be a reverse of the usual electrochemical aim: so-called electrochemical
probes have been used to measure flow rates [80,399].

Double electrodes were suggested, as an added ring outside the central
disk on an RDE, by Frumkin et al. [256] and as a second embedded strip
downstream of the first in a channel, suggested first by Gerischer et al. [267].
Here, the idea is to produce a substance by electrolysis at the upstream elec-
trode, and to detect it at the other electrode downstream. One speaks of the
collection factor N , the ratio of the detector current to the generator current.
The symbol was first used by Frumkin et al. Much theory has been presented
for the many possible geometries. A very general theory was worked out by
Matsuda [388], and also, for what they called the “dimicroelectrode”, by
Kermiche et al. [335]. Gerischer et al. also attempted a rough first treat-
ment [267], using (as did Kermiche et al.) a linearised velocity profile near
the electrode for simplicity. Solutions are not easy to obtain in this area, so
this is an intense application of digital simulation.

Another application of double, generator/collector, electrodes is what is
called diffusion layer titration. This can be used for a quantitative analysis of
some species in solution. The technique was first suggested by Bruckenstein
and Johnson [157], and has been followed up since then, with theory [33,458]
and simulations [81,458,541,554] (naming just a selection of works).

It may be added that generator/collector cells can be implemented with-
out convection. Double microbands [65] and interdigitated bands [294, 447,
500] have been considered for this purpose, for titrations [458, 541] and for
studies in electrochemically generated chemiluminescence (ECL) [539]. See
also the review by Amatore [46] with more references therein.

13.3 Simulations

The earliest simulations of convective systems were those of the DME [146,
229,230,487] and the RDE and RRDE. Prater and Bard performed the first
simulations of the RRDE [449,450,451], using the explicit box method. Maloy
et al. simulated ECL at an RRDE. Margarit et al. simulated a ring-ring
electrode [380,379] and studied collection factors by simulation; Clarenbach et
al. [164,165] simulated their own modification of the RRDE, also simulating
fluid flow around it, as did Mandin et al. [378], using a program package.
Feldberg [235] used hopscotch on a RRDE, Nolan [420] used OC. Balslev and
Britz [68] used a brute force method to compute the steady state at an RDE
with a complex reduction mechanism. Dan et al. [192] applied CN and what
they called MDUM, a multigrid method, simulating transients at an RDE,
which had been done earlier by Strutwolf [529, 533, 534]. This list is by no
means exhaustive; only some representative examples have been cited here.

13.4 A Simple Example: The Band Electrode in a Channel Flow 241

In flow systems that necessitate consideration of two-dimensional geom-
etry, Flanagan and Marcoux did some early work [247]. They examined a
variety of conditions, among them the importance of axial diffusion in a tube.
They found that neglecting axial diffusion is justified for most flows except
the slowest. This is because transport due to the flow dominates in the axial
direction, and this holds for electrode lengths that are small compared with
the tube radius. This is often called the Levich approximation. Levich [362]
related the diffusion layer thickness to the tube radius. It is a function of
distance x along the electrode and flow velocity,. The condition can then be
reduced to the condition

xD

v0R2 � 1 (13.12)

which limits the length of the electrode along the length coordinate x. This
is referred to in Wu [578] and the same condition was given by the early
simulation papers of Albery and coworkers [35,36], who however do not cite
Levich. Albery et al. [35] are interesting in that they present an early finite
difference simulation in this context, and use some coordinate stretching by
transformation as well.

Among the many papers written on the simulation of band electrodes
embedded in a channel flow system, the one by Anderson and Marcoux [54]
was the first. They simulated a single band in a channel, and experimented
with the explicit, trapezoidal (CN) and BI techniques. They concluded that
BI is probably the best. This has since been the most used technique in
the papers to follow. There are good reasons for this, as outlined clearly by
Fletcher [250] and Strikwerda [528]. Fletcher shows that discretisation of
convective transport yields stable forms only if what fluid dynamicists call
upwinding is used. This amounts to backwards implicit, in the x direction
(along the flow), rather than, as in previous chapters, in the time direction.
Other algorithms may however be better, as shown by Alhunaizi [44], who
considers a certain high-order explicit method the best.

Most of the flow systems used in these channel experiments attain steady
state, and, as will be seen below, the x direction can take the place of time.
There is a multitude of works on the simulation of the channel electrode
system, dominated to a large extent by the Compton school [171, 172, 174],
using BI. Many other references can be found by a library search on the name
of Compton, up to the present.

13.4 A Simple Example: The Band Electrode
in a Channel Flow

There is clearly a multitude of hydrodynamic systems of interest, and the
focus here is on the channel flow system with a single narrow band embedded
in the channel floor. The methods of discretising this system point the way

242 13 Convection

Fig. 13.4. Band electrode in a rectangular channel

to other systems. Consider Fig. 13.4. We want the current over a short band
in a low wide channel, as shown in the figure. The channel is of height 2h
and the band has width l in the x-direction, the direction of flow. The band’s
length (into the paper) is a, and it is assumed that a � l. The flow is laminar
with velocity vx(y), a function of y and is given by (13.5). The mean flow
velocity is given by (13.3). If the flow is sufficiently fast (as is assumed), then
we can ignore diffusion in the direction of the flow, as the flow will dominate
transport. The transport equation is then

∂c

∂t
= D

∂2c

∂y2 − vx
∂c

∂x
. (13.13)

13.5 Normalisations

The following normalisations are used. The characteristic time τ is chosen as
the time it takes the mean flow vm to traverse the length of the electrode, l.
Thus,

τ =
l

vm
(13.14)

and so time becomes the normalised T ,

T = t/τ =
vm

l
t . (13.15)

Distances are normalised by l, so

X = x/l , (13.16)

Y = y/l , (13.17)

H = h/l . (13.18)

13.5 Normalisations 243

Concentrations are referred to the initial bulk value cb,

C = c/cb . (13.19)

This leads to the new transport equation,

∂C

∂T
=

1
Pe

∂2C

∂Y 2 − VX
∂C

∂X
(13.20)

with

VX =
3
2

{
1 −
(

Y − H

H

)2
}

(13.21)

and
Pe =

vm l

D
. (13.22)

Pe is a Péclet number, analogous to the Reynolds number, which is defined
for this flow as

Re =
2vmh

ν
. (13.23)

While Re is the measure of the relative magnitudes of the inertial forces to
the viscous forces in the flow, the Péclet number is the measure of the relative
magnitudes of transport by convection and diffusion [333]. The length scales
used for the two numbers are different (the band height 2h for Re, l for Pe).

We need to know how far away, normal to the electrode, we need to
compute concentration changes, that is, what value of Y = Ym is sufficient.
This can be estimated in the following manner. The mean flow goes past the
electrode in time τ , and in that time, a diffusion layer of height about equal
to

√
Dτ can be attained at the downstream end of the electrode. Taking, as

usual, six times this length, we get a maximum ym of 6
√

Dτ . Normalising
this by l so that we make YM = ym/l and substituting for τ from (13.14), we
have

Ym = 6
√

D

lvm
= 6/

√
Pe . (13.24)

We now have two situations, with two different boundary conditions. If 2H <
6/
√

Pe, then Ym must be set equal to 2H, and we apply a no-flux condition
to the channel roof. If however H > 6/

√
Pe, then we can apply the constant

concentration (bulk value) to the level Ym.
Figure 13.5 shows a rather coarse grid drawn on the system, for the case

2H > 6/
√

Pe. If one wishes only to compute the current, then points down-
stream from the electrode need not be computed. If concentrations down-
stream are of interest, the grid must be extended in that direction. The range
in direction X is divided into NX intervals spaced apart by δX, starting
from the left-hand boundary one interval upstream of the leading electrode
edge. The vertical direction is divided into NY +1 horizontal lines spaced δY
apart. Giving indices j and i, respectively, to the X and Y direction, we have

244 13 Convection

Fig. 13.5. Band electrode system with grid superimposed

Fig. 13.6. Band electrode system with indexed grid

a working grid as shown in Fig. 13.6. Note that there are two independent
dimensionless variables that must be stated for a given simulation. They are
the Péclet number Pe, which expresses the magnitude of the flow velocity
with respect to diffusion, and H, expressing the half-height of the channel in
electrode length units l.

We have two situations. The simpler one is that we only want the steady
state current, in which case the time derivative drops out of (13.20), leaving
only

VX
∂C

∂X
=

1
Pe

∂2C

∂Y 2 . (13.25)

Boundary conditions are then

X < 0 : C = 1
0 ≤ X ≤ 1, Y = 0 : C = 0 (13.26)

Y = Ym :
{

C = 1 (2H ≥ 6/
√

Pe)
∂C
∂Y = 0 (2H < 6/

√
Pe)

. (13.27)

13.5 Normalisations 245

Note that (13.25) is parabolic, there being a term on the left-hand side in
∂C/∂X. This suggests a solution analogous to a time march, that is, an X-
march, starting from “initial conditions” at the grid line just upstream of
the electrode, at j = 0 in Fig. 13.6, and moving to the right from there,
successively computing each vertical row of points. This was done by Ander-
son and Moldoveanu [54]. As mentioned earlier, it can be shown that the
left-hand term in (13.25) is best discretised as a backward difference (up-
winding). It is tempting to apply a central difference form here but this can
cause oscillations [250,528].

Equation (13.25) is now discretised in the following manner,

VX
Ci,j − Ci,j−1

δX
=

1
Pe

Ci−1,j − 2Ci,j + Ci+1,j

δY 2 . (13.28)

Writing

λi =
δX

VXδY 2Pe
(13.29)

(recall that VX is a function of Y and thus varies with index i), we have the
discrete form

Ci,j − Ci,j−1 = λi (Ci−1,j − 2Ci,j + Ci+1,j) (13.30)

which is of the form seen in the time-march procedure in Chap. 8 (albeit
simpler because here, equal intervals in Y were used), and the solution, by
the Thomas algorithm, described in Sect. 8.3, can be used.

The dimensionless current is then given by the integral over the length of
the electrode,

I =
∫ 1

0

∂C

∂Y

∣∣∣∣
Y =0

(13.31)

which can be implemented as a trapezium or Simpson’s rule.
The example program CHANNEL_BAND (Appendix C) is a simple imple-

mentation of the above, using two-point upwinding and equal intervals. The
system has a known solution, given by Levich [173, 267, 362, 387] which im-

plies that the current should be proportional to Pe
1
3 . This is tested in the

program, and found, for a number of runs, to be true for some ranges of
parameters.

If time dependence is desired, then the full transport (13.20) must be
discretised, and a time-march performed. The problem is then a 2D one. As
in the previous chapter on 2D systems, one would spread the grid points
into one long vector of unknowns, either by stacking the horizontal grid lines
end on end, starting (as for the UMDE system in the previous chapter) with
the bottom row, or perhaps the verticals. Given the above description and
those in Chap. 12, the development of this is straight-forward and will not
be further pursued here.

246 13 Convection

A remark on the linearisation of the velocity profile VX is now in or-
der. It clearly applies only for YM � H. Given that one would in any case
pre-compute the Ny VX values, there seems little point in linearisation as
in (13.7). This is of greater interest in mathematical analyses but not for
simulations.

Fig. 13.7. Channel flow with two bands

The same procedure, both for the steady state and the time dependent
system, can be extended to the channel with two bands, in generator-collector
mode, as shown in Fig. 13.7. There are more boundary conditions, but they
are straight-forward to apply. For details, the reader is referred to a series
of articles by the Compton group [40, 171, 174, 175, 244, 463] (citing just a
selection of a large opus).

14 Performance

In this chapter, the performance of the various methods described is exam-
ined. This involves convergence and economy of computer time. Some of the
more sensible simulation methods are compared.

14.1 Convergence

The aim of a simulation is to approximate the underlying exact solution as
accurately as possible, in a minimum of computer time. Solution is achieved
by some discrete formula, which has truncation errors, due to neglect of
some (higher) Taylor terms in the discretisation formulae. These errors must
become smaller as we make the intervals both in time and space smaller
and the errors must, at least, not grow in the course of a number of steps.
This property is called convergence. In the limit, as δT and δX (that is, H)
approach zero, the errors must also do so. In order for this to happen, two
conditions must hold. The first is that the discretisation expression used must
be consistent with the differential equation it approximates. The second is
that the expression must be stable. This means that an error in the solution
at a given step is not amplified by subsequent steps. These two issues will be
examined separately.

Generally, it can be said that consistency is not as great a problem as
stability, as pointed out by Lapidus and Pinder [350]. Inconsistent discreti-
sations have been devised, but they are rather rare.

Another way of viewing convergence is not whether a given solution con-
verges towards the exact solution, but how it does so. Does it approach
smoothly, the errors keeping on one side of the zero line, or does it approach
with oscillations? Some (but not all [282]) regard oscillations as a bad thing.
This is not necessarily so, as is known from electrical engineering. An optimal
control circuit is often the one that responds to a step change in an input
with a strongly damped oscillation. A smooth response is slower. However,
if the oscillations persist for a long time, they are again not optimal. This
is mirrored in simulation in the ways some stable methods behave. BI has
what some regard as a pleasant, smooth, approach to the solution, while CN,
when using large λ values, oscillates. CN is however the method with higher
order of accuracy, and if the oscillations are damped quickly, it is the better

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 247–272 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

248 14 Performance

-0.1

0

0.1

0 20 40 60 80 100
nT

error

BI

BDF,CN

EX

Fig. 14.1. Errors in the simulated Cottrell current, using the indicated methods,
with λ = 0.5

method. It is possible to prevent the CN oscillations by damping them in the
first few steps [149,432], see Chap. 8.

To illustrate the above, consider Fig. 14.1. Four methods were used to
compute currents for the Cottrell experiment, all using 100 steps in time up
to T = 1 and a λ value of 0.5. We note that the explicit method shows some
error oscillations (it is at the edge of stability at this λ value). BI approaches
a zero error similarly slowly to EX but in a smooth manner. CN and BDF
(3-point, using the simple start and the δT/2 correction) approach zero error
about equally fast, and more rapidly than the other two methods. Figure 14.2
shows the same results for λ = 3. Method EX is now left out, as it is unstable
for λ > 0.5. BI and BDF still show a smooth approach to a zero error (for
BDF, after a very few initial oscillations), and CN now starts with some
oscillations. These are however quickly damped, and after about 20 steps,
CN shows about the same error as 3-point BDF. A further increase in λ, to
10, is shown in Fig. 14.3. The scale needed to be increased for that figure and
even so, the initial CN oscillations are so large that they could not be plotted
on this scale. It looks as if CN does converge eventually, but a close look at
the final results after 100 steps shows that it is now slightly less accurate than
BDF, implying that the oscillations even then have not quite been damped
out.

This behaviour is typical of CN and known since its inception [185] and
is due to the so-called A-stability of the method (see below). As mentioned
above, however, there are various means of damping out the oscillations,
discussed in Sect. 8.5.1, Chap. 8. The attraction of CN is, of course, that it
presents no difficulties with start-up, as does BDF.

14.1 Convergence 249

-0.1

0

0.1

0 20 40 60 80 100
nT

error

BI

BDF

CN

Fig. 14.2. Errors in the simulated Cottrell current, using the indicated methods,
with λ = 3

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80 100
nT

error

BI

BDF

CN

Fig. 14.3. Errors in the simulated Cottrell current, using the indicated methods,
with λ = 10

250 14 Performance

In what follows, the issues of consistency, stability and efficiency are ad-
dressed.

14.2 Consistency

In the present context we have two intervals: δT in time, and H in space. A
given discretisation is said to be consistent if, as both of these intervals ap-
proach zero, the discretisation approaches the pde it is meant to approximate.
Take the simple explicit discretisation on equal intervals, in (5.2), which we
rearrange into the form

C ′
i = λCi−1 + (1 − 2λ)Ci + λCi+1 . (14.1)

The three terms at a small interval away from Ci can be Taylor-expanded
around the value Ci. We have (dropping the index i for the derivatives)

C ′
i = Ci + δT

∂C

∂T
+

δT 2

2
∂C2

∂T 2 + O(δT 3)

Ci−1 = Ci − H
∂C

∂X
+

H2

2
∂C2

∂X2 − H3

6
∂C3

∂X3 +
H4

24
∂C4

∂X4 − O(H5) (14.2)

Ci+1 = Ci + H
∂C

∂X
+

H2

2
∂C2

∂X2 +
H3

6
∂C3

∂X3 +
H4

24
∂C4

∂X4 + O(H5)

where the O(..) terms indicate where the Taylor series were cut off. Inserting
these in (14.1) and tidying up, this becomes

∂C

∂T
+

δT

2
∂2C

∂T 2 + O(δT 2) =
∂2C

∂X2 +
H2

12
∂4C

∂X4 + O(H4) (14.3)

and it clear that as both δT and H approach zero, the equation approaches
the pde we are in fact trying to approximate.

Most discrete approximations that have been mentioned in this book are
consistent, with the exception of one. This is the DuFort-Frankel method
[216], described on page 153 in Chap. 9. It is stable for all λ, yet it has a
consistency problem. Giving (9.19) the same treatment as above, one ends
with

∂C

∂T
+

δT 2

6
∂3C

∂T 3 + O(δT 3) =
∂2C

∂X2 +
H2

12
∂4C

∂X4 − δT 2

H2

∂2C

∂C2 + O(H4) . (14.4)

It is seen that again, two of the three remaining Taylor terms vanish as the
intervals approach zero, but the one containing δT 2

H2 does not. As pointed out
by Shih [506] and Strutwolf [529], what is happening here is that the approx-
imation is consistent not with the parabolic pde, but with a hyperbolic one
instead. For large λ (leading also to large δT 2

H2), the DuFort-Frankel method is
not suitable for the simulation of parabolic problems. The method has been
suggested [233] for use in electrochemical simulations but since Rudolph [476]
pointed out its problems, it has not been used again in electrochemistry.

14.3 Stability 251

14.3 Stability

The stability of a given simulation method can be defined mathematically
rigorously, or more loosely. A loose description might be that given in Smith
[514, p. 47], namely that the amplification of initial conditions be limited.
This means that if, due to truncation or roundoff, there be errors in, say, the
concentration values at a given step, these errors are not amplified without
bound in subsequent steps. There are various categories of stability, to be
seen in the relevant texts [286, 350, 514] (to cite only three of a multitude of
such texts). Below, a rather brief and less technical treatment will be given
than is provided in these texts. Several methods for determining stability are
described, and some special conditions that can affect stability.

From the range of methods for determining stability of a given algorithm
such as EX, CN, BI or BDF, etc., this chapter restricts itself to the heuristic,
the Neumann and the matrix methods, as well as a fourth that makes use of
the stability function.

Stability can be classified into a number classes. We refer to conditional
and unconditional stability. EX is a conditionally stable method, because
there is a restriction on the value of λ, whereas CN and Laasonen are un-
conditionally stable. There is, however, a difference between their stabilities.
Dahlquist [189, 190] and Henrici [302] refer to weak or strong stability of
some methods. This has since been tightened to a large number of sub-
cases of stability, with a rough division between those methods that show
A-stability and those that show L-stability. For more details, see such
texts as Smith [514] and Hairer & Wanner [285]. Here it will suffice to de-
scribe them in less detail. Methods that are A-stable (such as CN) have
some error propagators close to unity in magnitude even for large λ (for er-
ror propagation, see the Neumann method, below). L-stable methods, on the
other hand, have error propagators that all approach zero as λ grows larger.
Laasonen is one such method. We thus prefer our methods to be L-stable.

14.3.1 Heuristic Method

Lapidus and Pinder [350] describe the simplest of all stability determinations
and call it the heuristic method. With this method, one tries to compute a
few steps in time from a perturbation in initial conditions, and sees how the
perturbation is propagated after a number of steps. In Fig 14.4, the explicit
method is used, (14.1), setting λ = 0.5. At some time level NδT , an error is
placed at a point along X in Fig. 14.4. Points marked in the figure without
numbers are assumed to have zero values. It is seen that in subsequent steps
after the Nth, the error is spread along X, but with decreasing magnitude. It
is known that for λ ≤ 0.5, this method is stable, as the figure also suggests.
Now consider Fig. 14.5, where the same calculation has been done using
λ = 1. Obviously, the error is quickly amplified, and the method is unstable.

252 14 Performance

Fig. 14.4. Propagation of a single error for EX with λ = 0.5

Fig. 14.5. Propagation of a single error for EX with λ = 1

Planting a perturbation in a simulation can be a useful way of testing for
stability, especially under special conditions.

14.3.2 Von Neumann Stability Analysis

A more analytical method of stability analysis is the method of von Neumann
[424, 565] (note that [424] is mostly incorrectly cited as being of the year
1951 [139]). The method focusses on an interior point along X in the grid and
looks at the propagation of an error at that point, making certain reasonable
assumptions, using Fourier series (which is why the method on occasion is
also called the Fourier series method).

We need first to develop an argument that allows us to separate concentra-
tions and errors. Let the vector C of concentrations along a space coordinate
X be the sum of a vector Ĉ of exact values, with an error vector ε added:

C = Ĉ + ε . (14.5)

We are interested in what happens to the errors, and the linear nature of
(14.5) allows us to subtract the concentrations out of the diffusion equations,

14.3 Stability 253

leaving only the errors. These have simpler boundary conditions; for example,
errors far away from the electrode are zero. This simplifies the form of the
equations describing the changes in errors. The diffusion equation for the
errors is then

∂ε

∂T
=

∂2ε

∂X2 (14.6)

with either a Dirichlet or derivative (Neumann) boundary condition at the
electrode, and ε(X → ∞) = 0. The equation is discretised, using equal inter-
vals, as usual, at the point with index i. For example, using method EX, we
have

ε′i = εi + λ (εi−1 − 2εi + εi+1) . (14.7)

Two substitutions are now made. Firstly, it is assumed that at a given point,
the value of ε there changes with time in a general exponential manner,

ε = ε0 eαT (14.8)

in which α is some complex constant and ε0 is an initial value. We then set,
for convenience exp(α) = ξ, so that we can substitute for ε′, as in

ε(T + δT) = ξ ε(T) . (14.9)

It is seen that ξ is an amplification or propagation factor, and the object of
the exercise is now to find out under what conditions its magnitude is less
than unity, which is the stability condition.

The other substitution is for the errors, which are expressed in terms of
a Fourier series along the space coordinate (N points along X):

εi =
N∑

n=0

anejβnXi , (14.10)

where Xi = iH, i = 1 . . . N and βn are “frequencies” as inverse distances
along X, j here being the imaginary number

√
−1. The coefficients an are

the spectral intensities and are not known. A given error is thus a sum of
a number of Fourier components, and we can limit our view to any one of
the components. Writing now simply β for any one of the range of frequency
values, and substituting both (14.9) and (14.10) in (14.7), we have for the
point at index i, going from time step k to k + 1,

ξk+1ejβiH = ξkejβiH + λξk
(
ejβ(i−1)H − 2ejβiH + ejβ(i+1)H

)
(14.11)

(taking the common ξk term on the right-hand side outside the bracket).
Division by ξk and ejβiH produces

ξ = 1 + λ
(
e−βH − 2 + eβH

)
(14.12)

leading to

254 14 Performance

ξ = 1 − 4λ sin2
(

iβ

2

)
. (14.13)

Since the maximum value for the sin2 term is unity, this equation leads to
the condition for |ξ| ≤ 1, that λ ≤ 1

2 . This is the well known λ limit for the
method EX. EX is conditionally stable.

Repeating this for the method BI, where the discrete equation at point i
is

ε′i = εi = λ
(
ε′i−1 − 2ε′i + ε′i+1

)
. (14.14)

leads to
ξ =

1
1 + 4λ sin2(iβ

2)
(14.15)

which satisfies the stability condition for all values of λ. What is more, the
greater λ is, the closer ξ approaches zero. So this method is unconditionally
stable, and L-stable.

A similar analysis for CN results in

ξ =
1 − 2λ sin2

(
iβ
2

)

1 + 2λ sin2
(

iβ
2

) (14.16)

which also sets no limits on λ, fulfilling the condition. In this case, however, as
λ increases, ξ → −1, which explains the oscillatory behaviour of the method
CN. It is unconditionally but A-stable.

This sort of analysis can be applied to other methods. Britz and Strutwolf
[152] applied it to the BDF method using 5-point discretisation along X,
and, also for 5-point approximations, Strutwolf and Britz [531] applied it
to extrapolation. For a multilevel method such as BDF, the analysis results
in a polynomial in ξ, and complex roots are possible. For example, Lapidus
and Pinder [350] treat the DuFort-Frankel method; it results in a quadratic
equation in ξ but it is clear that is is unconditionally stable (even though we
have seen that is not consistent).

14.3.3 Matrix Stability Analysis

The von Neumann method described above usually works well, and is rea-
sonably easy to apply. One reason it works well, despite the fact that it
totally ignores conditions at the boundaries, is that errors that often arise
at interior points away from the boundaries and spread from there [pri-
vate communication with O. Østerby 1996]. However, boundary conditions
can affect stability, especially if derivative (or mixed) boundary conditions
hold [116, 117, 118, 119, 334]. It might be safer to consider all points in space
in some way. The following somewhat brief treatment is described in greater
mathematical detail in such texts as Smith [514] or Lapidus and Pinder [350].

14.3 Stability 255

Eigenvalue Method

Equation (14.6), when discretised for, say, a potential jump experiment (Cot-
trell), gives rise to a system of odes, depending on the method of discretisation
used. For example, using the EX method, we have for the ith equation

ε′i = εi + λ
(
εi−1 − 2εi + εi+1

)
(14.17)

and recalling that at the electrode and the outer boundary in the bulk, ε is
zero, we can write the whole system (14.17) in the form

ε′ − ε = λAε (14.18)

with concentrations (or errors) now represented as vectors, and A being the
matrix of coefficients, in this case given by

A ≡

−2 1
1 −2 1

.
1 −2 1

1 −2

. (14.19)

The equation can be rearranged explicitly for ε′,

ε′ = Pε (14.20)

with
P = [I + λA] . (14.21)

We now see that one way of describing the simulation is as a series of mul-
tiplications of the error vector with the propagation matrix P . The matrix
method of stability analysis focusses on P and its effect on the whole error
vector. That vector must not grow without limit, and to ensure this, there
are some related conditions. One of them is that the magnitude of the largest
eigenvalue of P must not exceed unity. In fact, in this particular case (see
Smith [514] or any similar text), the eigenvalues are known, and this leads
again to the condition on λ, that is, λ ≤ 0.5. Not all cases of simulation meth-
ods lead to propagation matrices whose eigenvalues are known, and in these
cases, they must be found numerically. They can be complex, as is the case,
for example, for methods like BDF using 3 or more points. Some examples
are now given.

One convenient way to illustrate stability is to plot the eigenvalue of maxi-
mum magnitude in the complex plane for a number of λ values. This provides
the so-called spectral radius of the method. In the following examples, a value
of N = 20 was used throughout. The actual number of spatial points makes
little difference to the look of the diagrams to follow, and the chosen value
was small enough for short computation times. Generally, the range of λ was

256 14 Performance

-1

0

1

-1 0 1
real

imag

Fig. 14.6. Maximum absolute eigenvalues for EX for 0.49 ≤ λ ≤ 0.51 (N = 20)

chosen as 10−6 ≤ λ ≤ 106, in a geometric sequence, except for method EX,
where the range was narrowed to around the stability limit, 0.49 ≤ λ ≤ 0.51.
Consider Fig. 14.6. Maximum-magnitude eigenvalues were calculated for ma-
trix P as in (14.21). The points on the right of the figure are those for λ up to
(and including) 0.5. For greater values, the eigenvalues jump to the negative
real end and fall outside the unity circle. That is, in the parlance of numer-
ical analysis, the spectral radius exceeds unity. This means that errors will
increase in magnitude, and also oscillate as they in fact do. This is exactly
what one sees in practice, where increasing oscillations in concentrations are
observed.

A method known to be stable is BI. The discretisation for the errors is

ε′i − εi = λ
(
ε′i−1 − 2ε′i + ε′i+1

)
(14.22)

which forms the system
[I − λA]ε′ = Pε (14.23)

leading to the propagation matrix

P = [I − λA]−1 . (14.24)

Figure 14.7 shows the spectral radii for this, for the range 10−6 ≤ λ ≤ 106,
in a logarithmic sequence. For increasing λ the points move from right to
left in the figure. All eigenvalues are real, and all fall inside the unit circle,
confirming the stability of BI. One also finds that the eigenvalues approach
zero with increasing λ, so that for high λ values errors will be damped more
effectively.

Another method worth considering is CN, and Fig. 14.8 shows the result.
Here, discretisation is

ε′i − εi =
λ

2
(
ε′i−1 − 2ε′i + ε′i+1

)
+

λ

2
(
εi−1 − 2εi + εi+1

)
(14.25)

14.3 Stability 257

-1

0

1

-1 0 1
real

imag

Fig. 14.7. Maximum absolute eigenvalues for BI for 10−6 ≤ λ ≤ 106 (N = 20)

-1

0

1

-1 0 1
real

imag

Fig. 14.8. Maximum absolute eigenvalues for CN for 10−6 ≤ λ ≤ 106 (N = 20)

which forms the system[
I − λ

2
A

]
C ′ =

[
I +

λ

2
A

]
C (14.26)

leading to the propagation matrix

P =
[
I − λ

2
A

]−1 [
I +

λ

2
A

]
. (14.27)

The figure shows that again, for small λ values, the points move from the
right, being close to unity, towards the left. Unlike with BI, however, they do
not approach zero but at some λ value, depending on N , they cross to the
negative side and approach −1. This underlines the oscillatory behaviour of
CN, especially for large λ.

The methods considered above all show purely real eigenvalues. One
method for which they are complex is BDF. For 3-point BDF, the discreti-
sation is

258 14 Performance

′εi − 4εi + 3ε′i = 2λ
(
ε′i−1 − 2ε′i + ε′i+1

)
(14.28)

(recalling that ′ε stands for ε(T − δT)). This is a slightly more complex situ-
ation. The system can be written in vector-matrix form as

[3I − 2λA]ε′ = 4ε −′ε (14.29)

and clearly, propagation is now not simply a matter of multiplying a single
vector by a propagation matrix; we have two old vectors to deal with, ′ε and
ε. First we write (14.29) in the usual form,

C ′ = [3I − 2λA]−1(4C −′C) , (14.30)

which we write, letting B = [3I − 2λA]−1, as

C ′ = B(4C −′C) . (14.31)

This will be needed later. We now need another equation. First, consider that
when using BDF, we calculate the new vector from the two old ones, and the
previous present one becomes the previous older one. This can be expressed as
a vector of vectors operation. Let the new double-length vector e ≡ [ε ′ε]T ,
consisting of the two known vectors, and the new one, e′ ≡ [ε′ ε]T , the
present one and the new one, to be calculated. To express this mathematically
as a propagation from e to e′, we need one more equation, and augment
system (14.30) to the system of systems

e′ = B(4e −′e)
e = e . (14.32)

The seemingly redundant second equation now enables us to write this in
matrices-in-matrix form:

[
e′] =

[
4B −B
I 0

]
e (14.33)

where clearly now the propagation matrix P is the 2 × 2 matrix of matri-
ces. This can be expanded into a larger 2N × 2N matrix, and eigenvalues
computed. Figure 14.9 shows the result. As with BI, the eigenvalues for small
λ are at the right of the figure, close to unity and real. At some λ value,
depending on N , the eigenvalues become complex and pair up into complex
congugates, following, with increasing λ, a circular path towards the centre of
the circle. So, as for BI, high λ means effective error damping, but the damp-
ing factor is complex. Complex propagation factors imply the possibility of
oscillations with periods perhaps of several time intervals. For higher-point
BDF variants, the points do not follow a circular path, but pairs of arcs with
increasing magnitude, with some values in the left-hand plane; and even-
tually, for more than 7 points, reaching outside the unit circle, indicating
instability [320].

14.3 Stability 259

-1

0

1

-1 0 1
real

imag

Fig. 14.9. Maximum absolute eigenvalues for 3-point BDF for 10−6 ≤ λ ≤ 106

(N = 20)

This illustrates how diagrams of spectral radii can provide information on
the stability of a given method.

So far, the analysis has been for the Cottrell method. It is of interest to see
how it changes for derivative boundary conditions. This only changes a single
line in the discrete system of equations. For constant current, for example,
we might use a two-point expression

ε1 − ε0 = 0 (14.34)

(there is no current for errors at the electrode) or

ε0 = ε1 (14.35)

and this changes the first equation for EX to

ε′1 = ε1 + λ(ε1 − 2ε1 + ε2) (14.36)

which makes the coresponding coefficient matrix

A ≡

−1 1
1 −2 1

.
1 −2 1

1 −2

. (14.37)

The analysis is otherwise the same, but the effects are not, as will be discussed
below. Extension to a greater number of points to express the derivative is
obvious.

260 14 Performance

Matrix Norm Method

A different but mathematically equivalent way to perform the matrix analysis
is to use matrix norms rather than eigenvalues. Smith [514] states that the
condition for all eigenvalues not to exceed unity in magnitude is equivalent
to the demand that the infinity norm of the propagation matrix P does not
exceed unity. That norm can be more easily computed than eigenvalues. In
fact, all norm definitions can be used for this purpose. The infinity norm of a
matrix is defined as the largest of the sums of the moduli of the row values.
So this is another criterion for stability. For a method such as BI, we find
that for all λ values, the norms are a little less than unity. For CN and BDF3,
however, the norms can be greater than unity and this might cause concern.
However, a slightly more relaxed condition for stability is that the norms of
increasing multiples of the propagation matrix do not increase indefinitely.
The limit of this series of norms may be greater than unity, but it must exist.
If this condition holds, then errors will not build up indefinitely, and the
method is stable. Such norms exceeding unity have been found for certain
electrochemical simulations [119], for CN under mixed boundary conditions.
So, although norms are easier (and faster) to compute than eigenvalues, their
use is not as straight-forward as the use of eigenvalues.

14.3.4 Some Special Cases

There are some special conditions in electrochemical simulations that have
an effect on stability.

Bieniasz and Britz [94,112] investigated the effect of the presence and rate
of homogeneous chemical reaction (hcr) accompanying electron transfer and
found some effects. Writing ξ = KδT (K being the dimensionless first-order
hcr rate constant as in Chap. 5, (5.12)), Bieniasz found [94] that for method
EX, using the parallel discretisation as in (5.13), the upper permissible λ
value for stability decreases linearly with ξ, and reaches zero for ξ = 2.
For larger ξ values and this discretisation, EX is always unstable. For the
sequential discretisation (see Sect. 5.4, page 77 and Appendix B, page 289),
in which the chemical reaction is allowed to act on concentrations that have
undergone diffusional changes, the situation is more complex but the same
upper limit on ξ holds. A similar stability decrease and the same limit on
ξ were found for explicit RK. Stable methods such as CN or Saul’yev were
unaffected by an hcr in the sense that they remained stable for all ξ values.
These findings were then confirmed numerically [148].

Another factor affecting stability is a derivative boundary condition.
Keast and Mitchell pointed out potential problems with CN in this re-
gard [334], and investigations in the electrochemical context revealed some
problems with methods otherwise thought to be unconditionally stable, such
as CN and Saul’yev [116, 117, 118]. The CN method was found to become

14.4 The Stability Function 261

unstable for λ > 4 if a heterogeneous rate constant setting a derivative bound-
ary condition decreased with time [116], as happens, for example, in lin-
ear sweep experiments on a quasireversible system. Also, certain (unusual)
ways to discretise the derivative boundary conditions can render CN unsta-
ble [119]. Fortunately, these effects are seen under somewhat extreme condi-
tions; indeed they are difficult to demonstrate numerically, so they might be
considered of only academic interest.

14.4 The Stability Function

Another way of investigating stability, that at the same time provides infor-
mation on the behaviour of a given method, is what Gourlay and Morris [277]
call the symbol of the algorithm, also called the symbol of the method [514]
or, more logically perhaps, the stability function [286]. It is developed
from Padé approximations to the general solution of the diffusion equation.
Equation (14.6) can be semidiscretised to the system of odes as

dε

dT
=

1
H2 Aε (14.38)

with A defined in (14.19) for the Cottrell experiment. At this stage, a par-
ticular simulation method, that is, a time-integration algorithm, has not
been specified. The general solution of this, analogously with the plain ode
y′ = −ay is

ε(T) = exp
(1

H2 AT
)

(14.39)

where the exponential is understood as its series definition,

exp(A) = I + A +
A2

2!
+

A3

3!
+ (14.40)

This leads, for a given step of length δT , to the solution

ε′ = exp(λA)ε . (14.41)

It is at this point, that the various Padé approximations to the exponential
functions come in. One of them is simply the sequence on the right-hand
side of (14.40) cut off after the first two terms, producing the propagation
equation

ε′ = (I + λA)ε (14.42)

which is clearly the method EX, and the truncated series is the (0,1) Padé
approximation. Smith [514] tabulates a number of these approximations. For
example, the (1,0) variant generates

ε′ =
1

(I − λA)
ε (14.43)

262 14 Performance

which is seen to be the BI method. There is a number of approximants, the
(1,1) one leading to CN. The various algorithms have in this way been unified
under one system.

The next step is to consider the eigenvalues of A in the propagation
formulae such as (14.42) and (14.43). These are all negative, and we set
z = λω, where ω are the eigenvalues. Note that Hairer and Wanner use the
negative of z for their stability functions [286]. Since λ can have any value
greater than zero, we can dissect a particular propagation equation in terms
of z. Thus, for method EX, we have for the “stability function” R(z),

R(z) = 1 − z (14.44)

which decreases linearly with z and goes below −1 for z > 2. For the actual
maximum-magnitude eigenvalue equal to −4 (which is the case), this goes
back to the known stability criterion λ ≤ 0.5.

For BI, (14.43) becomes the stability function

R(z) =
1

1 + z
(14.45)

and for CN (using the (1,1) Padé form [514]), it is

R(z) =
1 − z

2

1 + z
2

. (14.46)

An interesting case is extrapolation, and we consider the simplest variant,
the second-order case. It is a number of steps using BI. First one takes two
successive steps with half step size, and subtracts from twice the result of
this the result of one whole step. Thus, we can directly write

R(z) = 2
(

1
1 + z

2

)2

− 1
1 + z

(14.47)

which expands to

R(z) =
1 + z + 1

4z2

1 + 2z + 5
4z2 + 1

4z3
. (14.48)

Figure 14.10 shows the result for the three methods BI, CN and second
order extrapolation. Note first the smooth but rather slow decline to zero
of BI. Note next that CN crosses zero at some z, and therefore, some λ,
and approaches −1 for large arguments. This illustrates what we know about
CN, that is it becomes more and more oscillatory for large λ. Finally, second-
order extrapolation also crosses zero, but then approaches zero again, and of
the three methods, it converges most rapidly to zero. This is an attractive
feature. It remains to be seen, however, how the method compares with others
in terms of efficiency.

14.5 Accuracy Order 263

-1

0

1

0 10 20 30 40 50
z

BI

extrap-2

CN

R(z)

Fig. 14.10. Stability function R(z) for the marked methods

14.5 Accuracy Order

In other chapters, the order of accuracy of various methods is referred to.
Here this concept is defined and two methods of calculating the order are
presented.

A simulation results in a number (or a vector of numbers) at some time.
Depending on the dimensionality of the problem, the simulation uses intervals
in time δT and one or more space intervals. Often there is only one space
interval, here given the symbol H. A result – a current, or a concentration,
for example – will, due to truncation errors, have an error associated with it,
that can be expressed in the following way. The discussion is, for the moment,
restricted to an ode with interval size h. Then the simulated result at time t
can be written as a polynomial

u = û + a h + b h2 + . . . (14.49)

where û is the underlying true solution (known or not, see below), and a, b, . . .
are constants. For a given method, the polynomial will be dominated by a
certain power term. Let this term be the power p, so that the above equation
can be written as

u = û + O(hp) . (14.50)

The number p is of great interest, more so than the constants, which are
generally unknown and are usually unimportant (except in rare cases) when
deciding on a given method. This is because a high order accuracy means
that if we decrease h, we dramatically improve the accuracy. Conversely,
this is not the case for a small p. So, first-order methods such as EX or BI
mean that we must decrease the intervals greatly in order to achieve some

264 14 Performance

target accuracy, implying perhaps unacceptable computing time. However,
as discussed in earlier chapters, this is not always the only criterion; a given
high-order method might require so much computing time, that a lower-order
method is preferable.

14.5.1 Order Determination

There are two ways of determining the order of a method, depending upon
whether we have an exact solution to compare with, or not.

If we know an exact solution, Method 1 is used. First a result u1 is cal-
culated, using interval size h. From (14.49), we have

u1 = û + a h + b h2 + . . . ; (14.51)

the simulation is then repeated at a new interval size, αh, so that the new
result is

u2 = û + aα h + bα2 h2 + (14.52)

Usually, α is chosen as 2. We can now calculate errors associated with the
approximate solutions,

e1 = u1 − û = a h + b h2 + . . . (14.53)

and similarly for e2. Dividing e2 by e1, we have

e2

e1
=

aα h + bα2 h2 + . . .

a h + b h2 + . . .
. (14.54)

If the dominant term is that with h, the ones in higher powers can be dropped
and we get

e2

e1
≈ α . (14.55)

If the dominant term is that in h2, all others are dropped and we get

e2

e1
≈ α2 . (14.56)

The order, expressed as the power in h, is then equal to logα(e2
e1

). As men-
tioned above, α = 2 is usually chosen for convenience.

If we do not know an exact solution, we can still estimate the error order
by Method 2, as described by Østerby [430]. We must use one more interval
size, α2h. We then have a third result:

u3 = û + a2α h + bα4 h2 + (14.57)

Instead of using errors (we do not know them), we use

u3 − u2

u2 − u1
=

α(α − 1) ah + α2(α2 − 1) bh2

(α − 1) ah + (α2 − 1) bh2 (14.58)

14.5 Accuracy Order 265

(which eliminates the errors) and again, we obtain the factor α for a first-
order result and α2 for a second-order result, etc. The unknown exact solution
is subtracted out in this process. Often, this method yields less clear results,
particularly if the actual errors are large, than the first method requiring only
two simulations.

In the preceding, only a single interval has been considered. In electro-
chemical simulations, there are at least two: in time and space; and there
may be more, if the simulation is in more than one dimension. In such cases,
the various intervals might affect the accuracy to different orders. Thus, both
methods EX and BI have concentration accuracies of order O(δT,H2), while
CN has O(δT 2,H2). It is clear now that EX and BI lack a high-order time
derivative. It is also clear that the order does not tell the whole story; we
know that CN has a higher accuracy order than both EX and BI, but we
also know that it is oscillatory for the first so many steps. The order tells
us nothing about this. When measuring the order of a method with sev-
eral different interval sizes, one must obviously not only vary the one being
measured, keeping the others constant; one must also ensure that the other
interval sizes are rather small, so that the accuracy of the result is not limited
by them. Otherwise, the order calculation will not be as clear.

One might also suspect that a higher-order method might still have large
errors compared with some lower-order method, because we ignore the poly-
nomial constants, and they are surely different for different methods. This
is so but in all practical cases, the constants do not affect the accuracy as
strongly as the order itself, so a higher-order method always leads to smaller
errors. It might, however, do so at the expense of more computing time, and
this is gone into next.

Another aspect is that of starting a given method with another. For ex-
ample, one way to start BDF is to use BI for the first step. A single BI step
(see Chap. 3) is second-order acccurate with respect to the time interval. The
next step is BDF3 (three-point BDF), and so on. One might expect that the
second-order error introduced by the first BI step can be “diluted” by the
subsequent high-order steps. However, this is not so. Normally, the largest er-
rors appear at the start of a simulation, and remain to contaminate the result.
So the described procedure, the rational start, yields second-order accuracy,
no matter what order BDF one uses. This is why, when using this start, one
might as well use three-point BDF. Higher-order BDF forms do not improve
the result, as is seen in Table 14.1. In that table, the simple ode, y′ = −y was
simulated, using 100 steps of interval size 0.01. Four ways of handling BDF
were used: the simple start without any time correction (“simp”); the simple
start with correction by half a time interval (“simp+”); the rational start,
working up from BI as described (“rat”), and lastly, adapting the Kimble and
White (KW) method to provide a high-order start, as described on page 64.
The orders were calculated using Method 1. Method 2 was also used and
gave the same results. The actual errors are also shown. The same problem

266 14 Performance

Table 14.1. Error orders (and errors at t = 1) for some BDF starts, for the ode
y′ = −y

Start k = 2 (BI) k = 3 k = 4 k = 5

simp 1.00 (1.8×10−3) 1.01 (1.9×10−3) 1.00 (1.8×10−3) 1.00 (1.8×10−3)
simp+ 1.99 (6.1×10−6) 2.01 (2.0×10−5) 1.98 (7.5×10−6) 2.00 (7.7×10−5)
rat 1.00 (1.8×10−3) 2.00 (1.5×10−5) 1.99 (2.3×10−5) 2.00 (2.5×10−5)
KW −(5.5×10−3) 1.98 (−1.2×10−5) 3.00 (9.1×10−8) 3.97 (−7.1×10−10)

Table 14.2. Calculated orders for the ode y′ = −y using extrapolation at various
orders

Extrapolation Order Accuracy Order (error)

2 1.99 (6.0 × 10−6)
3 2.99 (2.5 × 10−8)
4 3.97 (6.7 × 10−11)

was then simulated using extrapolation with orders 2 . . . 4, as described in
4.9, with the same interval size and number of steps. Table 14.2 shows the
results.

In Table 14.1, there is one anomaly, for BI (k = 2) with the time correc-
tion. This is not expected to be a good method but turned out second-order
accurate with a comparatively very small error. This must be regarded as
fortuitous, due to time-varying time shifts [140] and perhaps to the partic-
ular ode used as test case. The other results are as expected. Note the order
2 for all rational starts, and the impressive high orders for KW, and corre-
sponding increasingly smaller errors, for the KW start. Note also that the
calculated orders are not exact integers, which is due to some uncertainties,
or due to terms other than the dominant order terms playing a small part.
Table 14.2 also shows expected results, and shows that extrapolation at high
order results in conveniently small errors.

14.6 Accuracy, Efficiency and Choice

We come now to the choice of method. There are no hard and fast rules
here, the final choice depending to a large extent on personal preference
and the inclination towards programming. Computers are now so fast that
all but hard simulation problems such as CVs of, say, 2D problems or 3D
problems execute in a very short time – usually just a few seconds. Here, the
main bottleneck will be the programming itself, including finding the initial
programming errors. If a given method results in a savings of a second or so, it
might not be worth the extra effort in terms of paper work and programming.
Nevertheless, some rough guidelines will be provided here.

14.6 Accuracy, Efficiency and Choice 267

First of all, we must be clear about what we mean by accuracy, or what we
wish to be accurate. Usually, the result of a simulation is a current function
of time, so one argument might be, that we do not care about concentra-
tions, whereas the current must be accurate [481]. There is the possibility
of error cancelling, which can lead to small errors in a current, whereas the
concentration errors are larger (in a relative sense). This may not be reliable
for all parameter choices. Empirical adjustments have also been practiced.
Thus, Feldberg in his seminal chapter [229] introduced the doubtful device
of subtracting half a time interval from all t values in a simulation using the
box method (EX). Although there was – and is – no justification for this, it
seemed to give better results. The practice has been followed by others, for
example in the text of Bard and Faulkner [74], as if by tradition. If one uses
better methods than explicit, then it becomes clear that this device is not ap-
propriate – except in the case of BDF, using the simple start. In their original
work on the BDF method, Mocak and Feldberg advocated the subtraction of
half a time interval. This was examined in some detail [140,154], and it was
found that it indeed leads to a dramatic improvement in accuracy (see also
Table 14.1). A justification for the device was then shown [142, 155]. Since
this device is reasonable only for this particular case, this is a remarkable
coincidence, and the only case in which this device is in fact reasonable. For
other cases such as method EX the device must be regarded as an empirical
adjustment, and positive results resulting from it as fortuitous.

The numerical solution produces concentration values, and one must
therefore strive to obtain as accurate values for these as possible, so that
currents calculated from them might also be accurate. For this reason, Bieni-
asz now makes a practise of showing errors across the whole concentration
profile, when reporting a new simulation method [100, 106, 110], or at least
a few samples from the profile [109].

Accuracy alone is not a sufficient criterion for a good method, however.
One can, for example, usually drive method EX to any target accuracy, by
simply refining the time and spatial intervals sufficiently. The result may then
require excessive computer time, although not always. The target accuracy
itself is subject to discussion. It must be kept in mind that the computed cur-
rents are normally compared with experimentally measured values, in order
to obtain some experimental parameters. The measurements can rarely be
carried out with better than 1% accuracy, because they rely on components
such as resistors etc. which have, at best, that level of accuracy. So one might
set a target accuracy at a relative 10−3. Then, one measures the comput-
ing time needed to achieve that target accuracy. The most efficient method
is then the one using the least computing time. This will rarely be the method
that provides the best accuracy for a given space/time grid. For example,
the KW start for BDF (see Table 14.1 and Sect. 4.10.1) clearly provides a
high-order start and results in impressively small errors for the higher-order
BDF variants. However, applied to electrochemical digital simulation, it was

268 14 Performance

found to be inefficient [154], and it was found that for BDF, the most effi-
cient method is the simple start with subsequent subtraction of half a time
interval, as mentioned above. Thus, we seek efficient methods that minimise
computing time for a target accuracy.

Another factor is programming effort, including planning on paper. The
KW start mentioned above is a case in point. It is not trivial to implement
for a pde in a computer program, and we might consider ourselves lucky that
it was shown to be inefficient. The same might be thought of the Rosenbrock
methods, which are less easy to program than, say, BDF or the extrapolation
variants, and also for OC. This is to a large extent subjective. Someone
who has worked with these harder methods such as Rosenbrock and OC,
might not believe that they are hard to program, and will then achieve good
execution efficiency from them, whereas others will prefer easier methods.
Here, the discussion will be restricted to a chosen few methods, regarded, by
the present author, as good compromises between programming effort and
efficiency.

CN is not among this group. As described earlier in Chap. 8, CN leads to
initial oscillations. These can be damped by several devices [149, 432], but
these are either not very effective, or demand increased programming effort.
Thus, the Pearson method [437], in which the first step is simply subdivided
into a number of equal substeps such that each one corresponds to a λ value
of around unity, will obviously mean very many substeps for large λ, although
it is easy to implement from a programming point of view. Less easy is the
use of unequal substeps, but here some experience is necessary in order to
choose the most suitable expansion factor [149] (and may necessitate an LU
decomposition at every substep). Lastly, the effective device of taking one or
more steps using BI, then following with CN as suggested [149, 461], neces-
sitates the addition of the BI method to a given CN program. Some might
consider this too much effort. Given that there are other implicit methods,
as easy to program as CN, that are also as efficient, we can exclude CN from
our menu of choices.

The two methods that stand out in terms of efficiency and convenience are
BDF and extrapolation. Both require minimal programming effort, and can
be extended to higher-order spatial derivatives. However, in the case of BDF,
a limit is encountered. For the most convenient start-up methods such as the
simple or the rational start, the accuracy from BDF is limited to O(δT 2).
This means for one thing that one need not go beyond 3-point BDF (which
is O(δT 2) in itself), but that no marked improvement can be gained from
higher-order spatial derivative approximations, because there will then be a
mismatch between the accuracy orders with respect to the time and spatial
intervals.

14.6 Accuracy, Efficiency and Choice 269

Extrapolation does require extra concentration arrays (as does BDF)
leading to less convenient programming, but higher-order extrapolation can
rather easily be achieved, and thus the use of higher-order spatial derivative
approximations can be used to advantage.

It has been found by numerical experiment [154] that these two methods
are about the most efficient, when combined (especially in the case of extrap-
olation) with higher-order spatial derivative approximations. The variants
found to be best are 3-point BDF using the simple start and with subtrac-
tion of half a time interval, and extrapolation, possibly with the higher spatial
derivative orders. A single example of a comparison is now presented. The
Cottrell system was simulated, using unequal intervals with 40 points and
a smallest spatial interval equal to 0.01. This gives an expansion factor γ
of 1.11, quite moderate. Two simulation methods were chosen. Second-order
extrapolation was chosen, being quite simple to program, as well as second-
order BDF, using the simple start with half time-interval correction. The
simulation was run with various time intervals (expressed as NT , the number
of steps to T = 1), and the error in the current at that time measured, as a
three-point approximation on the nonuniform grid. The second spatial deriv-
ative was approximated by a four-point formula, which allows the use of a
modified Thomas algorithm, see Sect. 8.4 on page 124. In the figures, this is
given as the logarithm of the relative absolute error. That is, if the simulated
current be isim and the analytically known value be ianal, then what is plot-
ted (marked in the figures as "log|err|") is the quantity log10 | isim−ianal

ianal
|.

Note that (Fig. 14.11) both curves show similar accuracy at small NT . If one
measures the gradient there, it verifies the expectation of an accuracy order
of O(δT 2). However, extrapolation then shows a sharp dip, followed by an
approach to a constant error. The dip is due to the actual error crossing the
zero line. BDF simply flattens out and approaches the same constant error.

-5

-4

-3

10 100 1000

lo
g|

er
r| BDF

extrap

NT

Fig. 14.11. log10 | isim−ianal
ianal

| vs NT for extrapolation and BDF (both 2nd-order)

270 14 Performance

This arises because with decreasing time intervals per step, the error from the
second spatial derivative approximation makes itself felt more and more. The
curve for BDF does not show the dip. Looking at the two curves, one might
consider both methods as roughly equal, which in fact they are in terms of
accuracy. However, what interests us is the computing time (cpu) used. This
was also measured. Figure 14.12 shows that the times are very short, mea-
sured in milliseconds, so they were measured by letting the working parts of
the programs execute a sufficient number of times, so that an accurate time
could be measured. Now a difference is noted: BDF uses about half as much
cpu time for a given step size. If we choose some target accuracy, for example
10−3 or −3 on the log-scale, then BDF reaches this target at about half the
cpu time of that for extrapolation. Therefore, BDF would here be chosen.

-5

-4

-3

0.1 1 10 100

lo
g|

er
r|

cpu/ms

BDF

extrap

Fig. 14.12. log10

(
| isim−ianal

ianal
|
)

vs cpu time for extrapolation and BDF (both 2nd-

order)

14.7 Summary of Methods

Here, a brief summary is given of all those methods that might be of inter-
est, with their advantages and disadvantages, as seen by the present author.
References are not given, as they are provided in the sections of the book
referred to.

– EX Chap. 5. Limited stability but accurate only to O(δT). Easy to pro-
gram, but inefficient.

– Explicit RK: Chap. 4, Sect. 4.5. Limited stability, marginally more effi-
cient than EX. Easy to program.

– BI: Chap. 4, Sect. 4.6 and Chap. 8, Sect. 8.1. Unconditionally and L-
stable but has, like EX, an accuracy of only O(δT). Has a smooth re-
sponse to initial transients. Can be valuable as a first step before 3-point

14.7 Summary of Methods 271

BDF (p. 58) or as one or more first steps before CN to damp oscillations
(p. 121), and is the basis for higher-order methods such as extrapolation
and BDF.

– CN: Chap. 8, Sect. 8.2. Has an accuracy of O(δT 2,H2), and is uncon-
ditionally but A-stable. Oscillates, however, with initial transients. With
large λ, these oscillations persist over many steps, rendering CN useless.
The oscillations can be damped (Sect. 8.5.1) but this defeats to some
extent the simplicity of the method. For LSV or chronopotentiometry
simulations, however, where no sharp initial transients occur, this might
be a good method.

– BDF: Chaps. 4 and 8. L-stable and (for small number of levels) non-
oscillatory method that can be driven to higher orders with respect to
the time interval. Realistic starting strategies reduce the order to O(δT 2),
so the three-point variant is recommended, using the “simple” start with
subsequent subtraction of half a time interval (Sect. 4.8.1), which in this
case is justified. Reasonably easy to program.

– Extrapolation Chap. 4, Sect. 4.9 and Chap. 8, Sect. 8.5.2. Like BDF, is
based on BI driven to a higher order. Up to O(δT 4) is feasible to program,
and there are no starting problems. Extra steps are however required, and
the preferred second-order method is not as efficient as second-order BDF.

– Unequal intervals Chap. 7. Essential for most programs. The second
spatial derivative requires four points if second order is wanted (and is rec-
ommended). With four-point discretisation, an efficient extended Thomas
algorithm can be used, obviating the need for a sparse solver. Very few
points can then be used across the concentration profile. Direct discreti-
sation on the unequally spaced grid was shown to be better than using
transformation and discretisation in transformed space.

– Hopscotch Chap. 9, Sect. 9.2.5. Stable and explicit but has the problem
of “propagational inadequacy”, so the ability to use large λ values is lost.
Nevertheless, hopscotch continues to be used.

– Rosenbrock Chap. 4, Sect. 4.12 and Chap. 9, Sect. 9.4. Stable implicit
RK method, and using ROS2 or ROWDA3, it can be computed explicitly.
ROWDA3 is exceptionally accurate at O(δT 3) and is especially useful for
nonlinear boundary conditions (e.g. page 170), where it obviates the need
for Newton iterations. However, requires programming skill and might be
suitable for more professional simulation packages.

– Higher-order methods Chap. 9, Sect. 9.2.2 for multipoint discretisa-
tions. The four-point variant with unequal intervals is probably optimal;
the system can be solved using an extended Thomas algorithm without
difficulty. Numerov methods (Sect. 9.2.7) can achieve higher orders with
only three-point approximations to the spatial second derivative. They
are not trivial to program.

– DuFort-Frankel Chap. 9, Sect. 9.2.3. Stable and explicit but inconsis-
tent and shares the propagational inadequacy problem.

272 14 Performance

– Saul’yev Chap. 9, Sect. 9.2.4. Stable and is calculated explicitly. If the
RL and LR variants are combined, produces results equal in accuracy and
order to those from CN, including its propensity to oscillate in response
to an initial transient. So like CN, this might be a good method for LSV
simulations.

– OC Chap. 9, Sect. 9.6. Produces impressively accurate results with only
a few spatial points. It can be regarded as a kind of MOL, and although
practitioners tend to propose advanced techniques for solving the set of
odes, other methods can be used, such as a Rosenbrock method or BDF.
The method is not used as much as one might expect.

– MOL/DAE Chap. 9, Sect. 9.3. A set of pdes is only spatially discretised,
leaving a set of odes to solve. Adding the boundary conditions then pro-
duces a set of DAEs, usually solved using a professional package such as
DASSL. Seems to be more difficult to program than some other methods.
It will probably find its greatest use in general simulation packages.

– Box method Chap. 9, Sect. 9.1. The original electrochemical simulation
method. With boxes, most of the above techniques can be applied. There
is an unresolved issue of whether this method is inherently better than
the point method, or not.

– FEM and the like Chap. 9, Sect. 9.5. These are possibly the most effi-
cient methods, can be made adaptive to changing conditions, but are not
trivial to program. Usually packages are used.

15 Programming

In Appendix C selected downloadable example modules, functions, subrou-
tines and programs are discussed. All have been tested in the form in which
they appear. Nevertheless, this does not guarantee that all bugs have been
removed. The word “bug” encompasses the spectrum from “cosmetic, of little
consequence”, through “potentially serious under certain input conditions”
to “fatal”. The middle of the spectrum is, of course, the region causing the
programmer the greatest trouble.

15.1 Language and Style

There are, at the time of writing, two strong contenders for the choice of
language for digital simulation programs: Fortran 90/95 and C++. Despite
the unfavourable comments computer scientists reserve for Fortran, that lan-
guage – certainly in its most recent 90/95 version – is eminently suitable
for numerical analysis. This is partly because of the large volume of exist-
ing Fortran scientific subroutines (and intrinsic functions), although most of
these are now also available for C++. C++ appears to be more powerful
but also harder to learn, and the code is not as readily understandable as
that for Fortran 90/95. In fact most of the past criticism of Fortran is now
unfounded. Thus, one can have structures (collection of different data types
under one name), pointers (enabling linked lists, for example) and recur-
sion, a powerful tool for some applications. Another very useful feature of
Fortran 90/95 is whole-array operations and array sections, which make pro-
grams more compact (eliminating many loops) and thus more easily readable.
One might say that Fortran is more for the occasional programmer, while
C++ is more suitable for writing general programs such as packages to solve
a variety of simulation problems (see Chap. 16). Other languages can of course
be used, such as Pascal or even Java, but these are rarities in digital simula-
tion these days.

If Fortran is used, one strong recommendation is the use only of standard
Fortran as far as practicable. Then, programs will be transportable. The
example programs in the Appendices should all run on any computer with a
standard Fortran 90/95 compiler. There is always the temptation to use extra
features provided by one’s local compiler. This entails the need to change

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 273–275 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

274 15 Programming

a number of programs when moving to another installation (or changing
computers). Actually, even the example codes in the Appendices are not
strictly standard. Adhering to the letter of the standard is not easy, as one
finds when using the language F [392]. This is a standard-only compiler, and
it makes programming difficult, also because it is not downward compatible,
that is, it allows only the new features defined under Fortran 90/95. For
example, all subroutines used in a given programming unit must be described
in an interface. This is very tedious, and no other Fortran 90/95 compiler
known to the present writer demands this. A useful text, one of many on
Fortran 90/95, is that by Metcalf and Reid [393].

15.2 Debugging

It is well known that more time is spent correcting programs than actu-
ally planning or typing them in. With very large system programs, it is as-
sumed [268] that some errors remain, and this is probably true for large
simulation packages. However, the relatively short programs written for sin-
gle applications by an electrochemist should be free of errors, and they are
mostly rather easy to find.

Syntax errors are flagged by the compiler and are quickly eliminated.
When a program is syntactically correct and compiled (and linked) success-
fully, it may still contain errors and these are harder to find. The use of
implicit none is strongly recommended, as it allows the detection of typ-
ing errors in variable names. Clearly structured, modular programming also
helps avoid errors or helps to localise them when they occur.

All variables must be given a value before being used. Some implemen-
tations start a program with all variables set to zero. It is tempting but
dangerous to use this, as other installations leave previous values in all mem-
ory locations. Also it is good practice to set the compiler to checking array
bounds. Some compilers allow a program to go beyond array bounds, and
this can cause strange errors that are hard to trace. Checking slows down
the program execution, but the check can be switched off when the program
is finally considered correct. This can be called error prevention. Program-
ming style can also help. There should be just sufficient comments to explain
the less obvious lines, without causing distraction. The use of array sections,
whenever whole arrays are addressed, is strongly recommended. For example,
copying one array into another can be done simply by the statement

D = C

if they have the same declared dimensions, but it is better to explicitly indi-
cate the index ranges with

15.3 Libraries 275

D(1:N) = C(1:N)

This may be a little tedious but prevents some errors.
Finding program bugs is an art but certain techniques will help. The sim-

plest method, after unsuccessfully reading through the problem program, is
to explain the program to someone else. Often, one sees the error while doing
this. This is called “egoless programming” [567]. Then there are diagnostic
tools. Most Fortran implementations have a debugging facility which, when
enabled, allows running a program with stops at strategic places, at which
one can display some variable values. These tools can be a little unwieldy. A
simpler method is to insert print statements at suspect places, narrowing
them down until the error has been cornered. These days, extensive output is
no problem, since we work at screen terminals and thus do not have to handle
large volumes of paper. One very useful method is to display concentration
values. One need not print them all, a select number usually being enough.
For example, concentrations at all the edges of a domain are of interest. Of-
ten, one sees obviously incorrect values, which then point to the part of the
program containing the error.

A difficult situation is a new simulation, with unknown results. How can
we be sure that the results are correct? Often, the simulated system has
special cases with known results; these should of course be checked. If we are
developing a new simulation method, it can be checked against others known
to work. For critical work, it may be necessary to write several different
programs – perhaps written by different people – and to make sure that all
converge to the same results as simulation intervals approach zero. A new
program should be treated with suspicion, as if it were certain to contain
bugs, even (or especially) if the results look “good”. It is often possible to
reduce the input parameters such that the results are known.

15.3 Libraries

One finds that a number of subroutines are used repeatedly in different pro-
grams and these are best placed into a library, possibly already compiled
(object library), or in the form of a text library. There is a number of such
routines discussed in Appendix C. The code stuff.f90 is a module that the
present author uses with every program by naming it in the compilation.
As is seen, it defines some precision types, gives π to two different precision
levels, etc. This makes the types in all programs and subroutines compatible
with each other. The functions and subroutines are all in a large precompiled
object library. These routines are all thoroughly tested.

16 Simulation Packages

Not every electrochemist wishes to write his or her own simulation programs,
and there are a number of ready-made programs that can be obtained through
the Internet or otherwise, some commercial, some free, and some that are
online programs. These can be convenient but all have some limitations of
various kinds. There have been several reviews describing these packages
[104,114,523].

The following contains a number of Internet addresses. These are all active
at the time of writing (September 2004) but some of them may not remain
so indefinitely.

If using the MOL approach (Chap. 9), one needs to solve a set of odes, if
the boundary conditions can be incorporated into the differential equations.
This will be the case with some simple boundary conditions such as those
for the potential jump experiment. There are a number of freely available
ode solvers, among them VODE [3], LSODE [4] and PSODE [553]. Some of
these have been compared for efficiency [5,196], where also the sparse solvers
MA28 [1, 215] and Y12 [584] were compared. Many of these routines can be
downloaded from the netlib site [2]. If the boundary conditions (as is usual)
are discretised in the form of algebraic equations, then they form, together
with the system of odes, a system of DAEs, as also mentioned in Chap. 9. For
these, there is the program DASSL, described first by Petzold in 1983 [441],
and again in the text of Brenan et al. [130], and can be downloaded from [6].
It uses BDF to solve the system.

There are some non-electrochemical pde solvers that some find conve-
nient, such as PHREEQC [7] or the elliptic equation solver (useful for po-
tential field or steady state computations) PLTMG [8], using the multigrid
algorithm [40, 45, 391, 526] for increased speed. Some adherents of FEM use
FEMLAB [9], while some French workers [87,238,239,240,241,322,491] prefer
Flux expert [10]. The Spanish Horno group (see Chap. 9, Sect. 9.9 for many
references to this) casts the electrochemistry into an electrical model and uses
PSPICE [11] to solve the resulting network model. The same method is used
by a Chinese group [205, 208, 209, 210], who in fact have written a general
purpose electrochemical simulator around this technique (see below). Possibly
the earliest use of a general simulator was that by Klinger et al. [339], who
used the simulator S/360 CSMP of IBM, written for the IBM/360 machine.

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 277–279 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

278 16 Simulation Packages

CSMP was meant to simulate control processes. The authors used it to simulate
CV of an adsorbed species.

Of greatest interest here is the group of programs that to lesser or greater
degree solve a variety of electrochemical simulation problems. There are quite
a number of these, a few of them somewhat prominent and commercial, and
some more or less private but accessible to others.

ELSIM [90, 92, 99] is freely available from the author [12]. It has been
updated since its earliest version around 1992, but is still DOS-based, that
is, there is not a Windows version as yet. It accepts input in the form of
reaction equations, in which case the program itself generates the governing
equations; or the user can enter the governing equations directly. ELSIM is
not limited to a discrete number of mechanisms or experiments, these being
determined by what the user enters. Even the method used for simulation can
be chosen (within some limits, indicated by the program when necessary). It
is written in C++ and the source code is available and can be modified by
the user.

DigiSim [482], sold by Bioanalytical Systems, Inc. [13], is also a general
simulator, although it only offers CV simulations. It is general in the sense
that any mechanism can be entered by the user and the program does the
rest. It can be “tricked” into a few other simulation cases such as a potential
step (by making the sweep very fast and applying a long holding time after
the sweep) or even an electrochemical luminescence experiment by setting
a huge diffusion coefficient for a fictitious species that is actually the light
source [336]. However, CV is DigiSim’s forte. The program is Windows-based
and easy to use, but can be led into accepting nonsensical input, as reported
in a review [137]. This has possibly been rectified since then. The program
is written in C++.

One of the authors of DigiSim has now produced his own separate pro-
gram, DigiElch, available through a web site [14]. Presumably it functions
much like DigiSim.

Another well known simulator is attached to the text book by Gosser [274]
on a diskette. It has also been reviewed [136,522]. The program source code
is written in Pascal. The program is now also available from a web page [15],
where it is in its newer, patched, form. As the names of its two programs
(CVSIM and CVPLOT) imply, it simulates only CV experiments.

The program Polar, apparently now called Polarograph, has been vigor-
ously promoted by its author and can be downloaded as a free stripped-down
version (and ordered in the complete form) [16]. The program has been re-
viewed in [17].

Speiser et al. began in 1989 to write the general simulation code EASI
(for ElectroAnalytical SImulation), also extended to EASIEST, as parameter
estimation was added. These are described in a series of papers [517,518,519,
520], and the code, which was in C++ and meant to run under the Unix
operating system, was available from the author. The project has now been

16 Simulation Packages 279

terminated, in favour of a new, more general one, Echem++ [372,373], which
is still under development but promises to become a very general “problem
solving environment” for electrochemical simulation. It is also described at a
web site [18].

There are two online simulators to the author’s knowledge, that of Alden
et al. [19] and of Ohta [20], which can be used by anyone for a set of simu-
lation situations.

Apart from the above, there is a plethora of more or less publically ac-
cessible electrochemical simulators. Carlo Nervi continues with his ESP pack-
age [21]. Elsyca presents the program PIRODE for industrially oriented electro-
chemical simulations [22], also described in a series of articles [192,551,552].
The same team produces the package MIoTraS, referred to in [544]. Sheehan
et al. make a CV simulator tutorial available [23]. Simtel offers VirtualCV
[24], and EE&G Princeton Applied offers CONDESIM [25], simulating several
experiment types. Other packages are TRANSIENT [26], SIMULA, described
in [492] as part of the “Seraphim project” but without any details being
given. A Chinese group developed a package called EEGNA (exponentially ex-
panded grid network approach) [205, 208, 209, 210]. The local ECL-PACKAGE
(not accessible to others) is used by Svir and coworkers [542] for simulations
of electrochemical luminescence experiments. Similar local general programs
are presented by Penar et al. [440] for rotating electrode simulations and
finally, there is an OC package for LSV by Villa et al. [561]. Both the two
last programs are available from the authors of these articles.

A Tables and Formulae

A.1 First Derivative Approximations

In the Table A.1, the coefficients are multiplied by m (given in the first
coefficients column), so as to get whole numbers. Only those approximations
that are likely to be used are included.

Table A.1. mβ (3.14) for multi-point first derivatives. The notation y′
i(n) means

the approximation at point i using n points numbered 1 . . . n

m y1 y2 y3 y4 y5 y6 y7 Order

y′
1(2) 1 −1 1 h

y′
2(2) 1 −1 1 h

y′
1(3) 2 −3 4 −1 h2

y′
2(3) 2 −1 0 1 h2

y′
3(3) 2 1 −4 3 h2

y′
1(4) 6 −11 18 −9 2 h3

y′
2(4) 6 −2 −3 6 −1 h3

y′
3(4) 6 1 −6 3 2 h3

y′
4(4) 6 −2 9 −18 11 h3

y′
1(5) 12 −25 48 −36 16 −3 h4

y′
2(5) 12 −3 −10 18 −6 1 h4

y′
3(5) 12 1 −8 0 8 −1 h4

y′
4(5) 12 −1 6 −18 10 3 h4

y′
5(5) 12 3 −16 36 −48 25 h4

y′
1(6) 60 −137 300 −300 200 −75 12 h5

y′
2(6) 60 −12 −65 120 −60 20 −3 h5

y′
3(6) 60 3 −30 −20 60 −15 2 h5

y′
4(6) 60 −2 15 −60 20 30 −3 h5

y′
5(6) 60 3 −20 60 −120 65 12 h5

y′
6(6) 60 −12 75 −200 300 −300 137 h5

y′
1(7) 60 −147 360 −450 400 −225 72 −10 h6

y′
7(7) 60 10 −72 225 −400 450 −360 147 h6

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 281–287 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

282 A Tables and Formulae

A.2 Current Approximations

These are simply obtained by using the appropriate coefficients in the above
table, for the y′

1(n) form chosen. For example, the two-point form is (3.23)

G ≈ 1
H

(−C0 + C1) (A.1)

while the three-point formula is (3.24),

G ≈ 1
2H

(−3C0 + 4C1 − C2) . (A.2)

Note that all these have been cast as the function G(C, n,H), defined in
Chap. 3, page 39.

A.3 Second Derivative Approximations

These are shown In Table A.2. As in Table A.1, the coefficients are multiplied
by m (given in the first coefficients column), so as to get whole numbers.

Table A.2. Coefficients for some chosen multi-point second derivatives

m y1 y2 y3 y4 y5 y6 Order

y′′
2 (3) 1 1 −2 1 h2

y′′
3 (5) 12 −1 16 −30 16 −1 h4

y′′
2 (6) 12 10 −15 −4 14 −6 1 h4

y′′
5 (6) 12 1 −6 14 −4 −15 10 h4

A.4 Unequal Intervals

Here, the algorithm described in Chap. 3, Sect. 3.8, implemented in the very
general subroutine U_DERIV referred to in Appendix C can provide both the
derivatives on an arbitrarily spaced set of points (x, u). However, the reader
may wish to restrict the expressions to those involving only up to four points
(for which there are some good arguments, see Chap. 8, Sect. 8.4). This can be
coupled with current approximations using up to four points. For this number
of points, the expressions are not unreasonably long, and a few useful ones
are therefore presented here.

As in Chap. 3, the notation used is that of a number n of positions
x1 . . . xn, at which some function values, respectively u1 . . . un are defined,

A.4 Unequal Intervals 283

and the derivative refers to point i out of the n. We also have a set of dis-
placements hk = xk − xi. In each case the zero displacement hi is missing
from the set. The following formulae (or some of them) have been given pre-
viously by Gavaghan [260] and Rudolph [478] but with different notation
and different convention for the displacements.

A.4.1 First Derivatives

We have four current approximations u′
1(n). Each one is given as a linear

sum,

u′
1(n) ≈

n∑
k=1

βkuk (A.3)

– n = 2 (u′
1(2)) is the same as for equal intervals, first-order

β1 = −1/h2

β2 = 1/h2 (A.4)

– n = 3 (u′
1(3)), second-order

∆ = 1
2 (h2h3(h3 − h2)) (A.5)

and

β2 = h2
3/2∆

β3 = −h2
2/2∆ (A.6)

β1 = −(β2 + β3)

– n = 4 (u′
1(4)), third-order

∆ =
1
12

(
−h2h

2
3h

3
4+h2h

3
3h

2
4+h3h

2
2h

3
4−h3h

3
2h

2
4−h4h

2
2h

3
3+h4h

3
2h

2
3

)
(A.7)

and

β2 =
−h2

3h
3
4 + h3

3h
2
4

12∆

β3 =
h2

2h
3
4 − h3

2h
2
4

12∆

β4 =
−h2

2h
3
3 + h3

2h
2
3

12∆
(A.8)

β1 = −(β2 + β3 + β4) .

284 A Tables and Formulae

A.4.2 Second Derivatives

Second derivatives are represented in the linear form

u′′
i (n) ≈

n∑
k=1

αkuk (A.9)

– n = 3 (u′′
1(3)), first-order one-sided formula

∆ = 1
2 (h2h3(h3 − h2)) (A.10)

and

α2 = −h3/∆

α3 = h2/∆ (A.11)
α1 = −(α2 + α3)

– n = 3 (u′′
2(3)), first-order central formula

∆ = 1
2 (h1h3(h3 − h1)) (A.12)

and

α1 = −h3/∆

α3 = h1/∆ (A.13)
α2 = −(α1 + α3)

– n = 4 (u′′
2(4)), second-order

∆ =
1
12

(
−h1h

2
3h

3
4+h1h

3
3h

2
4+h3h

2
1h

3
4−h3h

3
1h

2
4−h4h

2
1h

3
3+h4h

3
1h

2
3

)
(A.14)

and

α1 =
h3h

3
4 − h3

3h4

6∆

α3 =
−h1h

3
4 + h3

1h4

6∆

α4 =
h1h

3
3 − h3

1h3

6∆
(A.15)

α2 = −(α1 + α3 + α4) .

A.6 Rosenbrock Constants 285

A.5 Jacobi Roots for Orthogonal Collocation

The table below provides the roots of the Jacobi polynomials used as node
points in orthogonal collocation, for some values of N . Values for X = 0
(i = 0) and X = 1 (i = N + 1) (the values are 0 and 1, resp.) are not
included. The roots were computed using the subroutine JCOBI, modified
from the original of Villadsen and Michelsen [562], discussed in Appendix C,
using for a given N the call
CALL JCOBI (N+1, N, 0, 0, 0.0_dbl, 0.0_dbl,...).
Roots for higher N , if required, can be computed using this subroutine.

Table A.3. Jacobi polynomial roots, N = 3 . . . 6

N = 3 N = 4 N = 5 N = 6

0.11270166537926 0.06943184420297 0.04691007703067 0.03376524289842
0.50000000000000 0.33000947820757 0.23076534494716 0.16939530676687
0.88729833462074 0.66999052179243 0.50000000000000 0.38069040695840

0.93056815579703 0.76923465505284 0.61930959304160
0.95308992296933 0.83060469323313

0.96623475710158

Table A.4. Jacobi polynomial roots, N = 7 . . . 10

N = 7 N = 8 N = 9 N = 10

0.02544604382862 0.01985507175123 0.01591988024619 0.01304673574141
0.12923440720030 0.10166676129319 0.08198444633668 0.06746831665551
0.29707742431130 0.23723379504184 0.19331428364970 0.16029521585049
0.50000000000000 0.40828267875218 0.33787328829810 0.28330230293538
0.70292257568870 0.59171732124782 0.50000000000000 0.42556283050918
0.87076559279970 0.76276620495816 0.66212671170190 0.57443716949082
0.97455395617138 0.89833323870681 0.80668571635030 0.71669769706462

0.98014492824877 0.91801555366332 0.83970478414951
0.98408011975381 0.93253168334449

0.98695326425859

A.6 Rosenbrock Constants

The Rosenbrock method is described for odes in Chap. 4 and for electrochem-
ical simulations, that is, DAEs, in Chap. 9. There are four variants, two of

286 A Tables and Formulae

Table A.5. Jacobi polynomial roots, N = 11 . . . 14

N = 11 N = 12 N = 13 N = 14

0.01088567092697 0.00921968287664 0.00790847264071 0.00685809565159
0.05646870011595 0.04794137181476 0.04120080038851 0.03578255816821
0.13492399721298 0.11504866290285 0.09921095463335 0.08639934246512
0.24045193539659 0.20634102285669 0.17882533027983 0.15635354759416
0.36522842202383 0.31608425050091 0.27575362448178 0.24237568182092
0.50000000000000 0.43738329574427 0.38477084202243 0.34044381553606
0.63477157797617 0.56261670425573 0.50000000000000 0.44597252564633
0.75954806460341 0.68391574949909 0.61522915797757 0.55402747435367
0.86507600278702 0.79365897714331 0.72424637551822 0.65955618446394
0.94353129988405 0.88495133709715 0.82117466972017 0.75762431817908
0.98911432907303 0.95205862818524 0.90078904536665 0.84364645240584

0.99078031712336 0.95879919961149 0.91360065753488
0.99209152735929 0.96421744183179

0.99314190434841

them second order with respect to the time interval, and two of them third-
order, that are considered in these chapters. Although it is clear that only two
variants recommend themselves, the constants for all four are given her. For
the notation and the meaning of the variant names, see these chapters. The
notation, in some cases, is not that of the (cited) sources. Omitted constants
can be taken as zero.

RO2, [474], see Sect. 4.12
γ = 1 − 1

2

√
2

a21 = 1
2 (
√

2 − 1); α2 = a21
m1 = 0; m2 = 1

ROS2, [347]
γ = 1.707106781186547
γ1 = γ; γ2 = −γ
α1 = 0; α2 = 1
a21 = 0.5857864376269050
c21 = −1.171572875253810
m1 = 0.8786796564403575; m2 = 0.2928932188134525

ROWDA3, [473,100]
γ = 0.4358665215084590
γ1 = γ
γ2 = 0.6044552840655590
γ3 = 6.379788799344883
α2 = 0.7; α3 = 0.7
a21 = 1.605996252195329

A.6 Rosenbrock Constants 287

a31 = a21; a32 = 0
c21 = 0.8874044410657833
c31 = 23.98747971635036
c32 = 5.263722371562129
m1 = 2.236727045296590
m2 = 2.250067730969644
m3 = −0.2092514044390320

ROS3P, [347,348]
γ = 0.7886751345948129
γ1 = γ
γ2 = −0.2113248654051871
γ3 = −1.077350269189626
a21 = 1.267949192431123; a31 = a21
c21 = −1.607695154586736
c31 = −3.464101615137755
c32 = −1.732050807568877
m1 = 2
m2 = 0.5773502691896258
m3 = 0.4226497308103742

B Some Mathematical Proofs

B.1 Consistency of the Sequential Method

As described in Chap. 5, for the simulation of a first order homogeneous chem-
ical reaction (hcr) coupled to diffusion such as the Reinert-Berg mechanism
(5.11) we have the governing equation

∂C

∂T
=

∂2C

∂X2 − KC (B.1)

for the explicit point method, and it discretises to

C ′
i = Ci + λ (Ci−1 − 2Ci + Ci+1) − KδTCi (B.2)

containing, on the right-hand side, a term for diffusion and one for the hcr.
The sequential method first calculates intermediate new concentrations, only
affected by diffusion,

C∗
i = Ci + λ (Ci−1 − 2Ci + Ci+1) (B.3)

and then allows the hcr to act on this

C ′
i = C∗

i − KδTC∗
i (B.4)

giving, after combining the two,

C ′
i = (1 − KδT) {Ci + λ (Ci−1 − 2Ci + Ci+1)} . (B.5)

The proof of the consistency of this procedure [485] goes as follows. Multiply
(B.1) by eKT :

∂C

∂T
eKT = eKT ∂2C

∂X2 − KCeKT . (B.6)

Now, since
∂

∂T

(
CeKT

)
=

∂C

∂T
eKT + KCeKT , (B.7)

(B.6) can be written as

∂

∂T

(
CeKT

)
= eKT ∂2C

∂X2 . (B.8)

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 289–297 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

290 B Some Mathematical Proofs

The left-hand side can be approximated as the forward difference (at point i
along X)

∂

∂T

(
CeKT

)
≈ C ′

ie
K(T+δT) − CeKT

δT
(B.9)

(recalling that Ci is Ci(T) and that C ′
i = Ci(T + δT)) and combining this

with (B.8) and discretising the second derivative as usual (5.2, page 74), this
leads to

C ′
ie

K(T+δT) = Cie
KT + λeKT (Ci−1 − 2Ci + Ci+1) (B.10)

which becomes, upon dividing throughout by eK(T+δT) and rearranging,

C ′
i = e−KδT {Ci + λ (Ci−1 − 2Ci + Ci+1)} . (B.11)

This converges to (B.5) as KδT → 0. The sequential method is therefore
mathematically consistent and this is the reason that it works rather well,
within the limits of the approximation e−KδT ≈ 1 − KδT .

B.2 The Feldberg Start for BDF

The simple start for BDF, as adopted by Mocak and Feldberg [402] cou-
pled with the subsequent subtraction of half a time interval, as described in
Chap. 4, Sect. 4.8.1, was found [142, 155] to be mathematically consistent.
This is proved as follows.

The proof is given for a general ode. It also applies to a system of odes
and thus to the system of equations resulting from the discretisation of a pde.
Let the equation to be solved be

u′ = f(u), u(0) = u0 (B.12)

with f(u) being some unspecified function. This is solved using BDF (see
Chap. 4). The contention is that after a number n time steps each of length
h the time, which should be equal to nh, has in fact been shifted by a fraction
s of the time step length h, that is, by s × h, and that this converges, after
a number of steps, to −0.5h, justifying the Feldbergian correction.

The numerical solution yields a sequence of approximations to u(t) at the
times t = h, 2h, . . . denoted respectively as u1, u2, For convenience, we
write fn to denote f(un).

In what follows here, in order to be consistent with [143] (and normal
computer science usage), BDF is described on a number of levels, rather
than the number of points in time. Thus, the symbol k now refers to levels,
and is less by 1 than the k used in other parts of this book. So, three-point
BDF corresponds to k = 2, etc.

First, the expression to be solved is developed, for a simple case. We seek
a solution to the ode (B.12), using 2-level BDF. The BDF expression at the
nth step is

B.2 The Feldberg Start for BDF 291

un−2 − 4un−1 + 3un

2h
= f(un) (B.13)

or
un = − 1

3un−2 + 4
3un−1 + 2

3hf(un) . (B.14)

For the very first step, n = 1, u−1 is lacking, and with the simple start
(see Chap. 4, Sect. 4.8.1) one simply substitutes u0. The result is then

u1 = u0 + 2
3hf1 (B.15)

(writing f1 instead of f(u1)). This is clearly equivalent to a BI step of length
2
3h, and thus, one-third of an interval has been “lost”, and s1 = − 1

3 .
At step 2, using (B.13) and substituting for u1 as from (B.15), the equa-

tion is
u2 = u0 + 8

9hf1 + 2
3hf2 (B.16)

and we now have a total advance of 14
9 h, or shift s2 = − 4

9 .
At step n − 1, let the expression be

un−1 = u0 + p1hf1 + p2hf2 + · · · + pn−1hfn−1 (B.17)

and denote the total advance (given in units of h) in t as

an−1 =
n−1∑
i=1

pi . (B.18)

At the next step, we have a new series

un = u0 + q1hf1 + q2hf2 + · · · + qnhfn (B.19)

(with qn = 2/3) and a new sum of advances

an =
n∑

i=1

qi . (B.20)

From (B.13), we note that generation of un is a linear combination of the p
and q sequences, with the added last term, 2

3hfn. Thus, we have the recursive
expression for the advances,

an = − 1
3an−2 + 4

3an−1 + 2
3 . (B.21)

There is no advance before the first step, so that

ai = 0, i ≤ 0 . (B.22)

By definition,
sn = an − n (B.23)

and this makes, given (B.22)

292 B Some Mathematical Proofs

si = −i, i ≤ 0 . (B.24)

Substituting (B.23) into (B.21) finally yields the recursive expression for all
sn,

3sn − 4sn−1 + sn−2 = 0 (B.25)

with starting values for sn obtained from (B.24). The above treatment can
be extended to higher-level forms, see below.

Up to this point, this has been presented in [142]. In that paper, this was
then followed by computer calculations showing that for k = 2, 3, 4, the sn

values converge to −0.5. There is, however, a mathematical proof [155].
The first few further recursive equations to be solved are

k=3 : 11sn − 18sn−1 + 9sn−2 − 2sn−3 = 0 (B.26)

k=4 : 25sn − 48sn−1 + 36sn−2 − 16sn−3 + 3sn−4 = 0 (B.27)

k=5 : 137sn − 300sn−1 + 300sn−2 − 200sn−3 + 75sn−4 − 12sn−5

= 0 (B.28)

k=6 : 147sn − 360sn−1 + 450sn−2 − 400sn−3 + 225sn−4 − 72sn−5

+10sn−6 = 0 (B.29)

covering all the stable cases. The general form is

α0sn + α1sn−1 + α2sn−2 + · · · + αksn−k = 0, (B.30)

starting with values s0, s−1, etc., as given above in (B.24). Consider the gen-
erating function

α0 ·
∞∑

n=0

sntn =
k−1∑
n=0

α0sntn +
∞∑

n=k

α0sntn

=
k−1∑
n=0

α0sntn −
∞∑

n=k

k∑
i=1

αisn−it
n

=
k−1∑
n=0

α0sntn −
k∑

i=1

αit
i

∞∑
n=k−i

sntn

=
k−1∑
n=0

α0sntn −
k∑

i=1

αit
i

∞∑
n=0

sntn +
k−1∑
i=1

αit
i

k−i−1∑
n=0

sntn

=
k−1∑
i=0

αit
i

k−i−1∑
n=0

sntn −
k∑

i=1

αit
i

∞∑
n=0

sntn . (B.31)

Thus

B.2 The Feldberg Start for BDF 293

∞∑
n=0

sntn =

k−1∑
i=0

αit
i

k−i−1∑
n=0

sntn

k∑
i=0

αit
i

. (B.32)

We now want to find a single power series in t to replace the expression on
the right-hand side of (B.32), and its terms will then be equivalent with those
of the left-hand side and yield the desired sn. This is done by splitting (B.32)
into partial fractions. An example follows here, namely the case k = 2 from
(B.25) above. We now solve the recursive equations for sn−1, for all n ≥ 2.
We have

∞∑
n=0

sn−1t
n =

1∑
i=0

αit
i

1−i∑
n=0

sn−1t
n

2∑
i=0

αit
i

=
3s−1 − 4s−1t + 3s0t

3 − 4t + t2
, (B.33)

i.e.,
∞∑

n=0

sn−1t
n =

1
2
−s−1 + 3s0

1 − t
+

9
2

s−1 − s0

3 − t
. (B.34)

Hence, expanding as a power series in t,
∞∑

n=0

sn−1t
n =

1
2

∞∑
n=0

(
−s−1 + 3s0 + 3(s−1 − s0)

1
3n

)
tn (B.35)

and sn−1 is obtained by identifying the coefficients of the two sums. The
solution to (B.25) is then

sn =
1
2

(−s−1 + 3s0) +
1
2

(s−1 − s0)
1
3n

. (B.36)

With increasing n, the second term on the right-hand side vanishes and
together with (B.23) above (that is, s−1 = 1 and s0 = 0); sn converges to
−1/2. The same procedure applied to the higher k values yields the following
solutions:

k=3 : sn =
1
6

(2s−2 − 7s−1 + 11s0) + O(2.35−n) (B.37)

k=4 : sn =
1
12

(−3s−3 + 13s−2 − 23s−1 + 25s0) + O(1.78−n) (B.38)

k=5 : sn =
1
60

(12s−4 − 63s−3 + 137s−2 − 163s−1 + 137s0)

+O(1.41−n) (B.39)

k=6 : sn =
1
60

(−10s−5 + 62s−4 − 163s−3 + 237s−2 − 213s−1

+147s0) + O(1.16−n) . (B.40)

294 B Some Mathematical Proofs

The numbers 3, 2.35, 1.78, 1.41, 1.16, are the numerically smallest of the
polynomial roots, all of which are shown in Table B.1, extending the range
of k.

Table B.1. Roots of the polynomials for k = 1 . . . 8

k

1 1
2 1 3
3 1 2.35 2.35
4 1 2.61 1.78 1.78
5 1 2.39 2.39 1.41 1.41
6 1 2.46 2.11 2.11 1.16 1.16
7 1 2.35 2.35 1.85 1.85 0.978 0.978
8 1 2.37 2.18 2.18 1.64 1.64 0.845 0.845

Now, si = −i for i ≤ 0, so

lim
n→∞

s(k)
n = −1

2
. (B.41)

for all five values of k, shown above, that is, k ≤ 6.
The general solution to (B.30) is of the form

sn =
k∑

i=1

Pi(n)λ−n
i (B.42)

where the λi coefficients are the complex roots of the polynomial

α0 + α1t + α2t
2 + · · · + αktk = α0

k∏
i=1

(
1 − t

λi

)
. (B.43)

See [525, Chap. 4] for a proof of this.
The convergence for k ≤ 6 is due to the fact that the roots of the five

polynomials

3 − 4t + t2 (B.44)
11 − 18t + 9t2 − 2t3 (B.45)

25 − 48t + 36t2 − 16t3 + 3t4 (B.46)
137 − 300t + 300t2 − 200t3 + 75t4 − 12t5 (B.47)

147 − 360t + 450t2 − 400t3 + 225t4 − 72t5 + 10t6 (B.48)

all are numerically equal to or greater than 1.

B.3 Similarity of the Feldberg Expansion and Transformation Functions 295

The coefficients in the above polynomials are those for the BDF forms,
given in Appendix A, as the last entry in each group in Table A.1.

Note that in the cases k > 6 there appears at least one polynomial root
which is numerically smaller than 1. The form of the general solution (B.42)
therefore implies that the values sn then do not converge to a finite value, as
n tends towards infinity. This is in accord with the known instability of BDF
for k > 6 [187].

Table B.2 shows a few shifts sn for some k, and the convergence is clearly
seen.

Table B.2. sn values

n k = 2 k = 3 k = 4

1 −0.333 −0.455 −0.520
2 −0.444 −0.562 −0.598
3 −0.481 −0.548 −0.520
4 −0.494 −0.519 −0.470
5 −0.498 −0.503 −0.474
6 −0.499 −0.499 −0.494
7 −0.500 −0.499 −0.504
8 −0.500 −0.499 −0.504
9 −0.500 −0.500 −0.501

10 −0.500 −0.500 −0.499

Convergence is slower for higher k, as is also implied by the values of the
polynomial roots in Table B.1.

B.3 Similarity of the Feldberg Expansion
and Transformation Functions

In Chap. 7, two ways of implementing unequal intervals were described. These
were the Feldberg approach, in which exponentially expanding boxes are
placed along the X-axis (7.16), and the transformation method (7.3). Here
it will be shown that they are approximately equivalent, and the relation
between their respective expansion parameters will be given.

The Feldberg expansion consists of a starting (first) box length of length
H1. Subsequent boxes are then defined such that box number i has length
βi−1 H1. See Fig. B.1 for this and the points spacing. Points spacing uses the
transformation relations

Y = ln(1 + aX) (B.49)

and the reverse
X = (eY − 1)/a . (B.50)

296 B Some Mathematical Proofs

Fig. B.1. Points and box unequal spacing

We have at any point,

Xn = H1 + H1β + H1β
2 + · · · + H1β

n−1

= H1

n−1∑
k=0

βk (B.51)

= H1

n−1∑
k=0

exp(k ln β) .

For large n, the sum approaches the integral and we have

Xn = H1

∫ n

0
exp(k ln β) dk (B.52)

and this is readily integrated to yield

Xn =
H1

ln(β)
(exp(n ln β) − 1) . (B.53)

This is of the form of (B.50), thus establishing the equivalence. Also, we can
read off the relation between the parameters, being

a ≡ ln β/H1 (B.54)

and also since Yn = nδY ,
δY ≡ ln β . (B.55)

It is noted that the derivation is an approximation, resting on the approxi-
mate equality of the sum and integral, and holding better for larger n. How-
ever, it might be useful, given the information of the values of, say, H1 and
β in a paper using the box method, to be able to translate it into the corre-
sponding values of a and δY .

The second way of establishing the parameter relations focusses on three
points (encompassing two boxes), Xn−1,Xn,Xn+1 obtained from (B.50). If
they also obey the box expansion formula, then a definite expression for β
should be obtained from the ratio of the two box lengths,

β =
Xn+1 − Xn

Xn − Xn−1
(B.56)

which, substituting from (B.50), and reducing, becomes

B.3 Similarity of the Feldberg Expansion and Transformation Functions 297

β =
eδY − 1
1 − e−δY

(B.57)

which reduces to
β = eδY (B.58)

the same as (B.55). Then using

δY = ln(1 + aH1) = lnβ (B.59)

and the approximation ln(1 + aH1) ≈ aH1 holding for aH1 � 1 (which will
usually be the case), relation (B.54). If aH1 � 1 does not hold, then the
more correct relation will be

β = 1 + aH1 . (B.60)

C Procedure and Program Examples

Here some modules, procedures and whole programs are described, that may
be useful to the reader, as they have been, to the author. They are all in
Fortran 90/95 and start with a generally useful module, that will be used in
most procedures and programs in the examples, and another module useful
for programs using a Rosenbrock variant. The source texts (except for the
two modules) are not reproduced here, but can be downloaded from the web
site www.springerlink.com/openurl.asp?genre=issue
&issn=1616-6361&volume=666
(the two lines form one contiguous URL!).

C.1 Example Modules

Module STUFF

In this module, the two kinds of real values, respectively single precision
(6 decimals or a little better) and what used to be called double precision
(here defined as 14 decimals or a little better), are given the names sgl and
dbl, and the constant pi is made a parameter. As well, the (real) parameter
small is set up. This is useful in those cases where something is tested for
being close to zero.

module STUFF
! General-purpose module.
implicit none
integer, parameter :: sgl=selected_real_kind(6),&

dbl=selected_real_kind(14)
real(kind=dbl), parameter :: small = 1.0E-08
real(kind=dbl), parameter :: pi = 3.14159265358979

end module STUFF

Module ROSTUFF

Rosenbrock methods require a set of constants, and as these are needed in
several subroutines in a given program, it is convenient to gather them in a

Dieter Britz: Digital Simulation in Electrochemistry, Lect. Notes Phys. 666, 299–311 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

300 C Procedure and Program Examples

module. Experiments have shown, that the two Rosenbrock variants, ROS2
and ROWDA3 (see Chap. 9), are about the best in the present context, respond-
ing without oscillations. Only these two have been included in the module.
Readers wanting the constants for the two other methods RO2 and ROS3P, can
find them in Appendix A, in the same unified notation as these two preferred
variants.

module ROSTUFF
! Module for the Rosenbrock coefficients.
use STUFF; implicit none
real(kind=dbl) :: gamma, gamma1, gamma2, gamma3, &

alpha1, alpha2, alpha3, &
a21, a31, a32, &
c21, c31, c32, m1, m2, m3

CONTAINS
subroutine ROCOEFFS (order)
! Sets the Rosenbrock coeffs for orders 2 or 3,
! Order 2 is ROS2 (Lang, 1995), order 3 is ROWDA3.
use STUFF; implicit none
integer :: order

gamma1 = 0; gamma2 = 0; gamma3 = 0 ! Zero defaults
alpha1 = 0; alpha2 = 0; alpha3 = 0
a21 = 0; a31 = 0; a32 = 0
c21 = 0; c31 = 0; c32 = 0
m1 = 0
select case (order)
case (2)

gamma = 1.707106781186547_dbl
gamma1 = 0; gamma2 = - gamma
alpha2 = 1
a21 = 0.5857864376269050_dbl
c21 = - 1.171572875253810_dbl
m1 = 0.8786796564403575_dbl
m2 = 0.2928932188134525_dbl

case (3)
gamma = 0.435866521508459_dbl
gamma1 = gamma; gamma2 = 0.6044552840655588_dbl

gamma3 = 6.3797887993448800_dbl
alpha2 = 0.7_dbl; alpha3 = 0.7_dbl
a21 = 1.605996252195329_dbl
a31 = a21; a32 = 0
c21 = 0.8874044410657823_dbl
c31 = 23.98747971635035_dbl
c32 = 5.263722371562130_dbl

C.2 Procedures 301

m1 = 2.236727045296589_dbl
m2 = 2.250067730969645_dbl
m3 = -0.209251404439032_dbl

end select
end subroutine ROCOEFFS

end module ROSTUFF

C.2 Procedures

Procedures are either functions or subroutines. A few, that recur in simulation
programs, are presented here.

The Error Functions

In test programs, where the numerical solution is compared with the analyti-
cal solution, the latter often involves the error function erf or the complemen-
tary error function erfc. The latter could be obtained simply by subtracting
erf from unity but a better approximation is obtained by the direct algorithm.
The two routines, ERF and ERFC, were given to the author by a colleague, who
probably obtained them from an IBM collection. They have been adapted to
Fortran 90/95 by the author, and coupled to the above module. The com-
ments in capitals are the original comments.

Current Approximations

The current value is obtained from the concentrations at any time as the di-
mensionless quantity G, the gradient dC/dX at X = 0 as an n-point forward
difference (see Appendix A, or Sect. 3.4). This is conveniently computed by
a function, here called G0FUNC. It, and the following function C0FUNC use the
function G0BETA, which supplies the n-point coefficients.

This function can be inverted to calculate C0, given G; this is useful in the
formulation of some boundary conditions. For example, to take a simple case,
in chronopotentiometry, one has constant G and computes C0 from that and
the concentration profile. The function C0FUNC does this job. Both G and H
are needed, but they appear as the product, so that product is passed to the
function.

Both these functions call on G0BETA for the coefficients. It is also useful
in other contexts, such as the setting up of boundary value calculations for
coupled systems.

For unequal intervals, see below, Sect. C.2.1.

302 C Procedure and Program Examples

MAT INV

In some programs such as CVRUCAT or the subroutine U_DERIV, matrix inver-
sion is needed. This is best done by using LU decomposition, as described
in Press et al. (1986). The subroutine MATINV does this. It assumes a square
matrix, of the exact size given, so the best way to call it is by using a section
of that size, for example

call MATINV (mat(1:N,1:N), N)

As seen, if the matrix is only 2 × 2, it is inverted “manually”. The two
subroutines DEC and SOL are the usual LU decomposition routines, of which
there are a number, freely available.

MINMAX

This subroutine is useful in linear sweep simulations, for calculating peak
(or trough) current values and where they occur, from a trio of currents, in
which the second is either larger, or smaller, than the other two. A parabola
is fitted to the three points,

y = a0 + a1x + a2x
2 (C.1)

and the parabola’s maximum or minimum is computed, as well as its position.
The positions are assumed (by the subroutine) to be, respectively, at −1, 0
and +1, so that it is up to the calling program unit to scale the minmax
position.

C.2.1 Procedures for Unequal Intervals

For arbitrarily spaced intervals, we require procedures for first and second
derivatives, and some other subroutines.

EE FAC

There is a need in some situations to generate a series of points, with the
intervals between them exponentially expanding from a base value. This can
be both in time or in space. It is often most convenient (see Chap. 7) to start
with the base interval, H1 (which is also the first value X1 after zero), the
last value, XL, and the number of points N to be generated in that range.
The expansion factor γ then makes

hi = γhi−1 (C.2)

or, as in Chap. 7,

xi =
γi − 1
γ − 1

. (C.3)

The task is then to find the γ that fits the requirements. This can easily be
done using a binary search, and the function EE_FAC is provided for this.

C.2 Procedures 303

SV FAC

There is another sequence of point positions of potential use, the S&V se-
quence, discussed in Chap. 7, page 108. This sequence is described by the
recursion

hi = hi−1(1 + αHi−1/H1) . (C.4)

As with the exponentially expanding sequence, we start with a first interval
H1, decide on a furthest point XL and choose the number of points in the
sequence. The function SV_FAC computes the expansion factor, here called α.
The task is then to find the α that fits the requirements.

U DERIV

This subroutine is a general routine for computing the first or second deriv-
ative on a number n of points, referred to the ith one among that number,
on an arbitrarily spaced grid of points. The derivatives are computed as a
linear sum of terms, and the coefficients in that sum are also passed back, for
use, for example, in the discretisation of boundary conditions or the spatial
second derivative. The number of points is in principle unrestricted, but the
routine will fail for values n > 12, where the accuracy abruptly drops. A
value, in any case, exceeding about 8, is perhaps impractical. This routine
can be used instead of the algebraic expressions shown in Chap. 7, or if n
values greater than 4 are required.

The notation behind the routine is that a first or second derivative, respec-
tively u′

i(n) or u′′
i (n) is based on a number of function values uk, k = 1 . . . n

situated at positions xk, k = 1 . . . n, and computed as the sum
∑n

k=1 αkuk,
the αk being the coefficients. The index i is the point, from 1 to n, to which
the derivative is referred. The subroutine uses MATINV. Note that, as discussed
in Chap. 3, page 46, the factorials in the denominator from the Taylor expan-
sions are attached to the solution vector, and corrected for after inversion (in
this case either by unity, for the first derivative, or 2! = 2 for the second).
This gives a slight increase in accuracy.

Current Approximations on Unequal Intervals

Once we have the subroutine U_DERIV shown above, it is simple to construct
a more convenient function to calculate the current approximation, if that
is all we want (that is, if we do not want the coefficients that make it up).
The function GU does the job, calling the more complicated U_DERIV to do
the hard work.

The “Inverse” Current Function

U_DERIV can be used to compute C0, given the current (as in chronopoten-
tiometry) and the concentration profile. As for equal intervals, the current
approximation formula on n points is adapted, by the function CU.

304 C Procedure and Program Examples

Note that the use of both GU and CU is not restricted to unequal intervals;
they can also be used with equal intervals, where we already have G0FUNC
and C0FUNC, given above. The present two functions will take a little more
computing time, but this is normally a small part of any given simulation,
where the recalculation of a concentration profile is most time consuming.

Current Integration on an Unequally Gridded Surface

In the case of the ultramicroelectrodes such as the disk electrode, it is nec-
essary to integrate over the surface, and sometimes there will be unequally
spaced points along the surface, as for example, in direct discretisation on an
unequal grid in the example program UME_DIRECT. As mentioned in Chap. 12,
it is found that due to the errors in the computed concentration values, the
local fluxes are so inaccurate that any integration method better than the
simple trapezium method is not justified. The routine U_TRAP is thus recom-
mended here. It integrates local current densities, precalculated by using the
above routine U_DERIV.

C.2.2 JCOBI

In Chap. 9, the method orthogonal collocation is described. It makes use
of certain Jacobi polynomials, whose roots become the node points X, at
which concentrations are defined. The subroutine JCOBI is an adaptation of
the subroutine reproduced in the book by Villadsen and Michelsen [562],
converting it to Fortran 90 and making use of the module STUFF, which gives
meaning to the kind dbl. There is a number of options in the subroutine.
In using the subroutine to generate Tables A.3–A.5, the recommendations of
Whiting and Carr [571] were followed, setting both parameters α and β to
zero, and not including the boundary points indexed zero and N +1. See the
book by Villadsen and Michelsen for the details.

C.3 Example Programs

Program COTT EX

This program simulates the Cottrell experiment, as discussed in Chap. 5. The
output, upon running this for NT=100 and lambda=0.45, is

iT T G G(analyt)
1 0.010 4.427 5.642
2 0.020 3.921 3.989
4 0.040 2.808 2.821
8 0.080 1.996 1.995

16 0.160 1.414 1.410

C.3 Example Programs 305

32 0.320 0.999 0.997
64 0.640 0.706 0.705
100 1.000 0.565 0.564

Ordinarily, there would be some header information, echoing the input data
and data derived from it. Also, the prompts produced by the program have
been omitted.

Program CHRONO EX

This program is much the same as COTT_EX, but with the derivative boundary
condition; see Chap. 5 for background information. Note that C0 is calculated
once at the start, so that it conforms to the rest of the initial concentration
profile, so as to satisfy the boundary condition. This calculation is repeated
after every run of the innermost loop in which all concentrations C1, . . . , CN

are recalculated. In this way, the old concentrations always include the proper
C0 value. This must always be the case, no matter what the boundary con-
ditions are.

This produces, again for NT=100 and lambda=0.45, the (trimmed) output

iT T C(0) C(0)(analyt)
1 0.010 0.887 0.900
2 0.020 0.849 0.859
4 0.040 0.792 0.800
8 0.080 0.711 0.717

16 0.160 0.596 0.600
32 0.320 0.431 0.434
64 0.640 0.198 0.200
100 1.000 -0.002 0.000

Program CV EX

This is a simple simulation of a CV experiment, using the explicit method
EX, and assuming a quasireversible reaction,

A + e− ↔ B (C.5)

with dimensionless heterogeneous rate constant K0, as defined in (2.28). If
this constant is input as K0 > 1000, the system is assumed reversible and the
Nernst boundary condition is applied. See Sect. 5.5 for the details of how to
apply the boundary conditions. Here, an important point needs to be made.
When carrying out a step forward in time using method EX, the old C-arrays
are used to explicitly generate the new arrays at the new time. Again, the
old C-arrays must include the boundary values corresponding to the arrays,
so that the boundary conditions hold.

306 C Procedure and Program Examples

The program draws on several subroutines and functions, already de-
scribed, such as G0FUNC, G0BETA and MINMAX to calculate peak and trough
currents and at what potentials they occur.

This produces the following example output in a particular run:

CV_EX
Lambda = 0.450
H = 0.149
nT per p = 100
N = 278
K0 = 1001.000
1190 points written into plot file.
Top current and -p = 0.4463 -1.1074
Bot current and -p = -0.3335 1.1318

Being an explicit method, the program uses 278 points in space, even though
H is rather large at 0.149. The peak current is surprisingly accurate (to all
4 decimals) but the peak potential is not (it should be −1.1090 for the K0
value set here at 1001 to force the Nernst boundary condition). Generally,
one finds that the peak potential is a more sensitive indicator of how well a
given simulation method works.

Program COTT CN

This program does the same work as the earlier one, COTT_EX, but uses Crank-
Nicolson (with equal intervals). It also includes the choice of M Pearson sub-
steps within the first step, to damp the oscillations, as discussed in Chap. 8,
Sect. 8.5.1.

Using similar parameters as for the earlier program, but making use of
CN’s stability with respect to λ, that parameter is set to 3, giving more
points in the X-range. Here is a sample output from a run (again omitting
the dialog part):

CN Cottrell simulation.
NT = 100
Lambda = 3.00
N = 104 pts along X.
10 Pearson substeps within first step.

iT T Gsim log(err)
2 0.020 3.878 -1.556
4 0.040 2.802 -2.164
8 0.080 1.992 -2.868

16 0.160 1.410 -3.845
32 0.320 0.997 -4.163
64 0.640 0.705 -4.149
100 1.000 0.564 -4.268

C.3 Example Programs 307

Note the improved accuracy, using 10 Pearson steps, despite using only 100
steps in time. The explicit program gave rise to errors in the third decimal at
the end of the simulation, but here they lie at around the fourth or better.

Program CHRONO CN

A chronopotentiometry program, using CN, is shown here, again, as with
the above COTT_CN, with equal intervals. The two programs are in fact very
similar, differing only in the boundary conditions in the CN routine, and the
initialisation. As before, old known concentrations always include a conform-
ing C0.

Note also that although the Pearson option has been included, it is not
really needed here. CN does not oscillate with the constant current start. A
sample output follows, again using λ = 3 as for Cottrell above.

CN chronopot. simulation.
NT = 100
Lambda = 3.00
N = 104 pts along X.
1 Pearson substeps within first step.

iT T C(0) log(err)
2 0.020 0.859 -8.414
4 0.040 0.800 -7.937
8 0.080 0.717 -7.972

16 0.160 0.600 -8.417
32 0.320 0.434 -8.874
64 0.640 0.200 -9.284
100 1.000 0.000 -9.531

As with Cottrell, note the accuracy compared with CHRONO_EX. Note also
that a single “Pearson” step has been used, meaning no subdivision of the
first step.

Program LSV CN

The following shows a CN program with unequal intervals, simulating a single
LSV sweep for a reversible system. Apart from writing out the (G,T) results
for plotting, the program also detects the peak value and the potential at
which it peaks. The boundary condition part is described in Chap. 6, page 93.

An example output, apart from the data file for plotting, was

LSV_CN_UN:
nT = 100 per p-unit
pstart = 12.000
pstop = -12.000

308 C Procedure and Program Examples

X(1) = 0.00100
N = 50
Xlim = 29.394
G, using 3 points.
gamma = 1.18811 (found by iteration)

G-peak of 0.4472 found at p = -1.1091

This program uses exponentially expanding intervals in X, and we started
here with a first interval of 0.001 and demanded 50 points across the diffusion
space. This set the γ value as seen above. The peak current is a little off (it
should be 0.4463) but the peak potential is quite good (the exact value is
−1.1090).

Program COTT EXTRAP

This is an example of a Cottrell simulation using second-order extrapola-
tion based on the BI (Laasonen) method and unequal intervals. Three-point
spatial discretisation is used here.

Program COTT EXTRAP4

This program is again a Cottrell simulation using second-order extrapolation
based on the BI (Laasonen) method and unequal intervals, but in contrast
with the above program COTT_EXTRAP, this one makes use of the four-point
spatial derivative approximation, and the GU-function. It performs a little
better than the above program, at little extra programming effort.

A Nonlinear System Linearised: Program BP LIN

One of the problems mentioned in Chap. 8 is that of second-order homoge-
neous chemical reactions, which give rise to nonlinear terms in the transport
equations. One such system is the Birk-Perone reaction [121,146], in which a
light flash produces an electroactive substance in solution, which decays with
a second-order reaction while it is electrolysed. If CN is used to simulate
this, the term in C2

i can be linearised to a good, second-order approxima-
tion. When one does not choose or is prevented from linearisation, a Newton
approach, as described in that chapter, must be used. The two programs are
examples of both approaches. The same system is simulated; a Cottrell ex-
periment (potential jump) on a decaying substance, both using CN. The first
program uses linearisation, the second the Newton method. The two pro-
grams produce almost, but not quite the same, results, the Newton version
being slightly more accurate. Both programs make automatic use of the Pear-
son start, by subdividing the first step in that number of substeps that gives
a unity value to δT/H2

1 . In this way, negative concentrations are avoided.

C.3 Example Programs 309

A Nonlinear System Using Newton: Program BP NONLIN

This is the nonlinear version using Newton iterations.

A Nonlinear System Using Rosenbrock: Program BP ROS

Rosenbrock methods, as discussed in Chaps. 4 and 9, have in a sense an
inbuilt Newton iteration, and thus suggest themselves for the solution of
nonlinear systems. The program BP_ROS, like the two previous ones, simulates
the Birk and Perone system, using one of two Rosenbrock methods. The
program illustrates not only the nonlinear handling, but also the handling of
time-dependent systems, as this one is, due to the decaying outer boundary,
CN+1. There is an analytical solution for this value and its derivative, and
both are made use of in the program. It works about as well as the above
two and illustrates the Rosenbrock approach. The program, besides the usual
STUFF, also makes use of the special Rosenbrock module ROSTUFF, see above.
The module contains the subroutine ROCOEFFS, which sets the Rosenbrock
constants. Only the Rosenbrock variants ROS2 and ROWDA3 are allowed
for in the program. The inconsistency at T = 0, mentioned in Sect. 9.4, is
overcome by the simple trick of setting C0 to zero initially.

EC Reaction, Cyclic Voltammetry: CV EC

The program CV_EC uses CN to simulate the rather simple EC reaction as de-
scribed in Chap. 8. There are no complications here. The output is in the form
of a data file for plotting. It makes use of the simple subroutine MAT_INV_22
to solve the small 2 × 2 system of equations for the boundary values. This
could have been done directly but when we already have this routine, why
not use it? Note that the a′ coefficients are different for the two species but
are constant throughout the simulation and are therefore precalculated. This
system is not coupled, so that the (scalar) Thomas algorithm can be used.
Figure C.1 shows the result of some runs of this program. The fat curve is
for K = 0, that is, plain reversible CV without a chemical reaction, and the
numbers marked on the curves show the K values input to the program. As
expected, as K increases, the negative-going peak (at the top) shifts in the
positive direction and the trough (on the reverse sweep) becomes smaller, to
disappear entirely for large K.

CV of the EC′ Reaction: Program CV RUCAT

The coupled system arising from the EC′ or catalytic system, described in
Chap. 8, was programmed using CN and the Rudolph method. That is, the
two concentration vectors were gathered into a vector of two-element vectors,
and the usual coefficients in the discrete system of equations become a number

310 C Procedure and Program Examples

-0.4

-0.2

0

0.2

0.4

-12 -8 -4 0 4 8 12

p

G

0

0.1

10

1000

0
0.1

10

1000

<

Fig. C.1. CV of the EC reaction, K values as marked

of coefficient matrices. For this system, the A matrices are constant over the
whole simulation and can be precomputed. In fact, one finds that one needs
not these but the inverse of the A′ matrices that are the result of reducing
the system to two variable (vectors) for each row; and it is these that are
precomputed and stored. The program outputs a data file for plotting. As
with the program CVEC, the routine MAT_INV_22 is used, more extensively
here. Figure C.2 shows a family of CV curves, the fat curve again being that
for the plain reversible case, and the others with rate constants K as marked.
As K increases, the curve becomes increasingly S-shaped, with a plateau of
height equal to

√
K.

LSV Simulation with iR Drop and Capacitance: Program LSV4IRC

The program LSV4IRC is a simulation of a reversible reaction with input
values of ρ (dimensionless uncompensated resistance and γc (dimensionless
double layer capacity). Unequal intervals are used, with asymmetric 4-point
second spatial derivatives, and second order extrapolation in the time direc-
tion. The nonlinear set of 6 equations for the boundary values is solved by
Newton-Raphson iteration. Some results are seen in Chap. 11.

Program UMDE DIRECT

This program simulates a Cottrellian potential jump at a UMDE, using three-
point BDF for the time integration (starting it with a single BI step), and

C.3 Example Programs 311

0

1

2

3

-12 -8 -4 0 4 8 12
p

G

0
0.1

0.3

1

10

Fig. C.2. CV of the catalytic (EC′) reaction, K values as marked

four-point asymmetric spatial discretisation, of the form u′′
2(4), on an (R,Z)

grid with exponentially expanding intervals expanding upwards in Z, and
away from the electrode edge at R = 1 in both directions. This is discussed
in Chap. 12, Sect. 12.3.1. The sparse solver MA28 is used.

Program UMDE VB

This is a version of the disk simulator but using a grid in the conformal
space given by the Verbrugge/Baker transformation, as discussed in Chap. 12,
page 224.

Program CHANNEL BAND

This program does a steady state simulation of the current at a narrow band
electrode at the bottom of a channel with laminar flow of electrolyte through
it, as discussed in Chap. 13, page 241. It is done as a march along X, the
direction of flow.

References

1. http://hsl.rl.ac/archive/hslarchive.html

2. http://www.netlib.org

3. http://www.netlib.org/ode/vode.f

4. http://www.cs.berkeley.edu/~kdatta/lsode/lsode.html

5. http://db.cwi.nl/rapporten/abstract.php?abstractnr=892

6. http://www.engineering.ucsb.edu/~cse/software.html

7. http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/

8. http://www.mgnet.org/mgnet-codes-pltmg.html

9. http://www.comsol.com

10. http://www.simulog.fr/eis/2flux1.htm

11. http://www.orcad.com

12. http://www.cyf-kr.edu.pl/~nbbienia/elsim3ad.html

13. http://www.bioanalytical.com

14. http://www.digielch.de

15. http://deepspace9.sci.ccny.cuny.edu/CVSIM.HTML

16. http://www.DrHuang.com

17. http://dbweb.liv.ac.uk/ltsnpsc/swrevs/5polar.htm

18. http://sourceforge.net/projects/echempp

19. http://physchem.ox.ac.uk/~rgc/F11/index.html

20. http://www.kanazawa-bidai.ac.jp/~momo/qrcv/QRCV.html

21. http://lem.ch.unito.it/chemistry/esp_manual.html

22. http://www.finishing.com/Software/elsyca.html

23. http://colossus.chem.umass.edu/bvining/free.htm

24. http://www.simtel.net/product.php?url_fb_product_page=12300

25. http://www.condecon.com/condesim.htm

26. http://transient.mkolar.org/

27. Ablow C.M., Schechter S., J. Comp. Phys. 27, 351–362 (1978)
28. Abramowitz M., Stegun I.A. (Eds.), Handbook of Mathematical Functions,

Dover Publications, New York (1969)
29. Albery W.J., Trans. Faraday Soc. 62, 1915–1919 (1966)
30. Albery W.J., Brett C.M.A., J. Electroanal. Chem. 148, 201–210 (1983)
31. Albery W.J., Bruckenstein S., Trans. Faraday Soc. 62, 1920–1931 (1966)
32. Albery W.J., Bruckenstein S., Trans. Faraday Soc. 62, 1946–1954 (1966)
33. Albery W.J., Bruckenstein S., Johnson D.C., Trans. Faraday Soc. 62, 1938–

1945 (1966)
34. Albery W.J., Bruckenstein S., Napp D.T., Trans. Faraday Soc. 62, 1932–1937

(1966)
35. Albery W.J., Chadwick A.T., Coles B.A., Hampson N.A., J. Electroanal.

Chem. 75, 229–239 (1977)

314 References

36. Albery W.J., Compton R.G., Chadwick A.T., Coles B.A., Lenkaits J.A., J.
Chem. Soc. Faraday Trans. I 76, 1391–1401 (1980)

37. Albery W.J., Jones C.C., Mount A.R., in: Comprehensive Chemical Kinetics
(Edited by R.G. Compton, G. Hancock), Elsevier, Amsterdam, vol. 29, 129–
148 (1989)

38. Alden J.A., Booth J., Compton R.G., Dryfe R.A.W., Sanders G.H.W., J.
Electroanal. Chem. 389, 45–54 (1995)

39. Alden J.A., Compton R.G., J. Electroanal. Chem. 404, 27–35 (1996)
40. Alden J.A., Compton R.G., J. Electroanal. Chem. 415, 1–12 (1996)
41. Alden J.A., Compton R.G., J. Phys. Chem. B 101, 9606–9616 (1997)
42. Alden J.A., Feldman M.A., Hill E., Prieto F., Oyama M., Coles B.A., Compton

R.G., Anal. Chem. 70, 1707–1720 (1998)
43. Alden J.A., Hutchinson F., Compton R.G., J. Phys. Chem. B 101, 949–958

(1997)
44. Alhumaizi K., Comp. Chem. Eng. 28, 1759–1769 (2004)
45. Altas I., Dym J., Gupta M.M., Manohar R.P., SIAM Journal on Scien-

tific Computing (1996 preprint), http://na.cs.yale.edu/mgnet/www/mgnet/
papers/Altas-Dym-Gupta-Manohar/high-order.ps.gz

46. Amatore C., in: Physical Electrochemistry (Edited by I. Rubinstein), Marcel
Dekker, New York, 131–208 (1995)

47. Amatore C., Oleinick A., Svir I., Electrochem. Commun. 5, 989–994 (2003)
48. Amatore C., Oleinick A., Svir I., J. Electroanal. Chem. 564, 245–260 (2004)
49. Amatore C., Oleinick A.I., Svir I.B., J. Electroanal. Chem. 553, 49–61 (2003)
50. Amatore C., Savéant R.G., J. Electroanal. Chem. 102, 21–40 (1979)
51. Amatore C.A., Deakin M.R., Wightman R.M., J. Electroanal. Chem. 206,

23–36 (1986)
52. Amatore C.A., Fosset B., J. Electroanal. Chem. 328, 21–32 (1992)
53. Amphlett J.L., Denuault G., J. Phys. Chem. B 102, 9946–9951 (1998)
54. Andersen J.L., Moldoveanu S., J. Electroanal. Chem. 179, 107–117 (1984)
55. Ang K.P., Gunasingham H., Tay B.T., J. Singapore Nat. Acad. Sci. 16, 80–86

(1987)
56. Aoki K., J. Electroanal. Chem. 284, 35–42 (1990)
57. Aoki K., Electroanalysis 5, 627–639 (1993)
58. Aoki K., Akimoto K., Tokuda K., Matsuda H., Osteryoung J., J. Electroanal.

Chem. 171, 219–230 (1984)
59. Aoki K., Morita M., Niwa O., Tabei H., J. Electroanal. Chem. 256, 269–282

(1988)
60. Aoki K., Nishiki Y., J. Appl. Electrochem. 19, 183–187 (1989)
61. Aoki K., Osteryoung J., J. Electroanal. Chem. 122, 19–35 (1981)
62. Aoki K., Osteryoung J., J. Electroanal. Chem. 160, 335–339 (1984)
63. Aoki K., Tanaka M., J. Electroanal. Chem. 266, 11–20 (1989)
64. Aoki S., Kishimoto K., Miyasaka M., Corrosion 44, 926–932 (1988)
65. Arkoub I.A., Amatore C., Sella C., Thouin L., Warkocz J.S., J. Phys. Chem.

B 105, 8694–8703 (2001)
66. Atkins P.W., Physical Chemistry , Oxford University Press, Oxford, UK, sixth

ed. (1998)
67. Bacha S., Bergel A., Comtat M., J. Electroanal. Chem. 359, 21–38 (1993)
68. Balslev H., Britz D., Acta Chem. Scand. 46, 949–955 (1992)
69. Banks C.E., Compton R.G., Fisher A.C., Henley I.E., Phys. Chem. Chem.

Phys. 6, 3147–3152 (2004)

References 315

70. Barakat H.Z., Clark J.A., Trans. ASME J. Heat Transfer 421–427 (1966)
71. Bard A.J., Crayston J.A., Kittlesen G.P., Shea T.V., Wrighton M.S., Anal.

Chem. 58, 2321–2331 (1986)
72. Bard A.J., Denuault G., Friesner R.A., Dornblaser B.C., Tuckerman L.S.,

Anal. Chem. 63, 1282–1288 (1991)
73. Bard A.J., Faulkner L.R., Electrochemical Methods, John Wiley, New York

(1980)
74. Bard A.J., Faulkner L.R., Electrochemical Methods, John Wiley, New York

(2001)
75. Barker A.L., Macpherson J.V., Slevin C.J., Unwin P.R., J. Phys. Chem. B

102, 1586–1598 (1998)
76. Barker A.L., Unwin P.R., J. Phys. Chem. B 105, 12019–12031 (2001)
77. Barker A.L., Unwin P.R., Amemiya S., Zhou J., Bard A.J., J. Phys. Chem. B

103, 7260–7269 (1999)
78. Barker A.L., Unwin P.R., Zhang J., Electrochem. Commun. 3, 372–378 (2001)
79. Barker P.D., Hill H.A.O., Walton N.J., J. Electroanal. Chem. 260, 303–326

(1989)
80. Bartolini R., Fantini L., Gallone P., Ann. Chim. (Rome) 66, 7–18 (1976)
81. Basak J., Penar J., Sykut K., Ann. Univ. Mariae Curie - Sk�lodowska, Sectio

AA XLII/XLIII, 43–49 (1987/1988)
82. Basha C.A., Sangaranarayanan M.V., J. Electroanal. Chem. 261, 431–436

(1989)
83. Bauer H.H., Electrodics, Thieme, Stuttgart (1972)
84. Baur J.E., Motsegood P.N., J. Electroanal. Chem. 572, 29–40 (2004)
85. Bellamy A.J., Howat G., MacKirdy I., J. Chem. Soc., Perkin 11, 786–793

(1978)
86. Bernstein C., Heindrichs A., Vielstich W., J. Electroanal. Chem. 87, 81–90

(1978)
87. Bianchi F., Ferrigno R., Girault H.H., Anal. Chem. 72, 1987–1993 (2000)
88. Bickley W.G., Math. Gaz. 25, 19–27 (1941)
89. Bieniasz L.K., Comput. Chem. 16, 311–317 (1992)
90. Bieniasz L.K., Comput. Chem. 16, 11–14 (1992)
91. Bieniasz L.K., J. Electroanal. Chem. 347, 15–30 (1993)
92. Bieniasz L.K., Comput. Chem. 17, 355–368 (1993)
93. Bieniasz L.K., J. Electroanal. Chem. 360, 119–138 (1993)
94. Bieniasz L.K., J. Electroanal. Chem. 345, 13–25 (1993)
95. Bieniasz L.K., J. Electroanal. Chem. 374, 1–22 (1994)
96. Bieniasz L.K., J. Electroanal. Chem. 374, 23–35 (1994)
97. Bieniasz L.K., J. Electroanal. Chem. 379, 71–87 (1994)
98. Bieniasz L.K., J. Electroanal. Chem. 404, 195–208 (1996)
99. Bieniasz L.K., Comput. Chem. 21, 1–12 (1997)

100. Bieniasz L.K., J. Electroanal. Chem. 469, 97–115 (1999)
101. Bieniasz L.K., J. Electroanal. Chem. 481, 115–133 (2000), corrigendum: ibid.

565 (2004) 131
102. Bieniasz L.K., J. Electroanal. Chem. 481, 134–151 (2000), corrigendum: ibid.

565 (2004) 133
103. Bieniasz L.K., Electrochem. Commun. 3, 149–153 (2001)
104. Bieniasz L.K., in: Modern Aspects of Electrochemistry (Edited by B.E. Con-

way, R.E. White), Kluwer/Plenum, New York, vol. 35, 135–195 (2002)

316 References

105. Bieniasz L.K., J. Electroanal. Chem. 527, 21–32 (2002), corrigendum: ibid.
565 (2004) 141

106. Bieniasz L.K., Comput. Chem. 26, 633–644 (2002)
107. Bieniasz L.K., J. Electroanal. Chem. 558, 167–170 (2003)
108. Bieniasz L.K., Comp. Biol. Chem. 27, 315–325 (2003)
109. Bieniasz L.K., J. Comput. Chem. 25, 1515–1521 (2004)
110. Bieniasz L.K., J. Comp. Chem. 25, 1075–1083 (2004)
111. Bieniasz L.K., Britz D., Acta. Chem. Scand. 47, 757–767 (1993)
112. Bieniasz L.K., Britz D., Anal. Chim. Acta 278, 59–70 (1993)
113. Bieniasz L.K., Britz D., J. Electroanal. Chem. 503, 141–152 (2001)
114. Bieniasz L.K., Britz D., Pol. J. Chem. 78, 1195–1219 (2004)
115. Bieniasz L.K., Bureau C., J. Electroanal. Chem. 481, 152–167 (2000), corri-

gendum: ibid. 565 (2004) 135
116. Bieniasz L.K., Østerby O., Britz D., Comput. Chem. 19, 121–136 (1995)
117. Bieniasz L.K., Østerby O., Britz D., Comput. Chem. 19, 351–355 (1995)
118. Bieniasz L.K., Østerby O., Britz D., Comput. Chem. 19, 357–370 (1995)
119. Bieniasz L.K., Østerby O., Britz D., Comput. Chem. 21, 391–401 (1997)
120. Bird R.B., Steward W.E., Lightfoot E.N., Transport Phenomena, John Wiley,

NY (1960)
121. Birk J.R., Perone S.P., Anal. Chem. 40, 496–500 (1968)
122. Blom J.G., Sanz-Serna J.M., Verwer J.G., J. Comp. Phys. 74, 191–213 (1988)
123. Bond A.M., Feldberg S.W., J. Phys. Chem. B 102, 9966–9974 (1998)
124. Bond A.M., Mahon P.J., J. Electroanal. Chem. 439, 37–53 (1997)
125. Bond A.M., Oldham K.B., Zoski C.G., J. Electroanal. Chem. 245, 71–104

(1988)
126. Borkowski M., Stojek Z., Electroanalysis 4, 615–621 (1992)
127. Bortels L., Deconinck J., Bossche B.V.D., J. Electroanal. Chem. 404, 15–26

(1996)
128. Bowyer W.J., Engelman E.E., Evans D.H., J. Electroanal. Chem. 262, 67–82

(1989)
129. Brenan K., IEEE Trans. Aut. Control AC-31, 266–269 (1986)
130. Brenan K.E., Campbell S.L., Petzold L.R., Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations, SIAM, Philadelphia (1996)
131. Britz D., J. Electroanal. Chem. 88, 309–352 (1978)
132. Britz D., Electrochim. Acta 25, 1449–31452 (1980)
133. Britz D., Anal. Chim. Acta 193, 277–285 (1987)
134. Britz D., Digital Simulation in Electrochemistry , Springer, Berlin (1988)
135. Britz D., J. Electroanal. Chem. 240, 17–26 (1988)
136. Britz D., Anal. Chem. 66, 792A–793A (1994), review of David K. Gosser,

“Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms”.
137. Britz D., Anal. Chem. 67, 600A–601A (1995), review of DigiSim.
138. Britz D., J. Electroanal. Chem. 406, 15–21 (1996)
139. Britz D., BIT 38, 217–218 (1998)
140. Britz D., Comput. Chem. 22, 237–243 (1998)
141. Britz D., Comput. Chem. Eng. 23, 297–300 (1999)
142. Britz D., J. Electroanal. Chem. 515, 1–7 (2001)
143. Britz D., Electrochem. Commun. 5, 195–198 (2003)
144. Britz D., da Silva B.M., Avaca L.A., Gonzales E.R., Anal. Chim. Acta 239,

87–93 (1990)

References 317

145. Britz D., Heinze J., Mortensen J., Störzbach M., J. Electroanal. Chem. 240,
27–43 (1988)

146. Britz D., Kastening B., J. Electroanal. Chem. 56, 73–90 (1974)
147. Britz D., Nielsen M.F., Coll. Czech. Chem. Commun. 56, 20–41 (1991)
148. Britz D., Østerby O., J. Electroanal. Chem. 368, 143–147 (1994)
149. Britz D., Østerby O., Strutwolf J., Comput. Biol. Chem. 27, 253–263 (2003)
150. Britz D., Østerby O., Strutwolf J., Svennesen T.K., Comput. Chem. 26, 97–

103 (2002)
151. Britz D., Poulsen K., Strutwolf J., Electrochim. Acta 50, 107–113 (2004)
152. Britz D., Strutwolf J., Comput. Chem. 24, 673–684 (2000)
153. Britz D., Strutwolf J., Comp. Biol. Chem. 27, 327—337 (2003)
154. Britz D., Strutwolf J., Thøgersen L., J. Electroanal. Chem. 512, 119–123

(2001)
155. Britz T.J., Britz D., J. Electroanal. Chem. 546, 123–125 (2003)
156. Brookes B.A., Davies T.J., Fisher A.C., Evans R.G., Wilkins S.J., Yunus K.,

Wadhawan J.D., Compton R.G., J. Phys. Chem. B 107, 1616–1627 (2003)
157. Bruckenstein S., Johnson D.C., Anal. Chem. 36, 2186–2187 (1964)
158. Brunner E., Z. phys. Chem. 47, 56–102 (1904)
159. Cabán R., Chapman T.W., J. Electrochem. Soc. 123, 1036–1041 (1976)
160. Caillaud J.B., Padmanabhan L., Chem. Eng. J. 2, 227–232 (1971)
161. Carnahan B., Luther H.A., Wilkes J.O., Applied Numerical Methods, John

Wiley, NY (1969)
162. Chen T., Dong S., Xie Y., J. Electroanal. Chem. 379, 239–245 (1994)
163. Cheney W., Kincaid D., Numerical Mathematics and Computing , Brooks/

Cole, Belmont, California (1985)
164. Clarenbach S., Grabner E.W., Ber. Bunsenges. phys. Chem. 80, 115–121

(1976)
165. Clarenbach S., Grabner E.W., Brauer E., Ber. Bunsenges. phys. Chem. 77,

908–913 (1973)
166. Cochran W.G., Proc. Cambr. Phil. Soc. 30, 365–375 (1934)
167. Coen S., Cope D.K., Tallman D.E., J. Electroanal. Chem. 215, 29–48 (1986)
168. Coles B.A., Compton R.G., Brett C.M.A., Brett A.M.C.F.O., J. Electroanal.

Chem. 381, 99–104 (1995)
169. Collatz L., Schriften Math. Sem. Inst. ang. Math. Univ. Berlin 3, 1–35 (1935)
170. Collatz L., Numerische Behandlung von Differentialgleichungen, Springer Ver-

lag, Heidelberg (1960)
171. Compton R.G., Coles B.A., Fisher A.C., J. Phys. Chem. 98, 2441–2445 (1994)
172. Compton R.G., Coles B.A., Gooding J.J., Fisher A.C., J. Phys. Chem. 98,

2446–2451 (1994)
173. Compton R.G., Dryfe R.A.W., Wellington R.G., Hirst J., J. Electroanal.

Chem. 383, 13–19 (1995)
174. Compton R.G., Pilkington M.B.G., Stearn G.M., J. Chem. Soc., Faraday

Trans. I 84, 2155–2171 (1988)
175. Cooper J.A., Compton R.G., Electroanalysis 10, 141–155 (1998)
176. Cope D.K., Scott C.H., Kalapathy U., Tallman D.E., J. Electroanal. Chem.

280, 27–35 (1990)
177. Cope D.K., Scott C.H., Tallman D.E., J. Electroanal. Chem. 285, 49–69 (1990)
178. Cope D.K., Tallman D.E., J. Electroanal. Chem. 285, 85–92 (1990)
179. Cope D.K., Tallman D.E., J. Electroanal. Chem. 285, 79–84 (1990)

318 References

180. Cope D.K., Tallman D.E., Electrochem. Soc. Proc. 99-5, 82–89 (1999)
181. Cottrell F.G., Z. phys. Chem. 42, 385–431 (1903)
182. Courant R., Friedrichs K., Lewy H., Math. Ann. 100, 32–74 (1928)
183. Crank J., The Mathematics of Diffusion, Clarendon Press, Oxford, 2 ed.

(1975)
184. Crank J., Furzeland R.M., J. Inst. Maths. Applics 20, 355–370 (1977)
185. Crank J., Nicolson P., Proc. Cambridge Phil. Soc. 43, 50–67 (1947), reprinted

in Adv. Comp. Math. 6 (1996) 207–226, with some slight changes to the list
of references

186. Crowder H.J., Dalton C., J. Comp. Phys. 7, 32–45 (1971)
187. Cryer C.W., BIT 12, 17–25 (1972)
188. Curtiss C.F., Hirschfelder J.O., Proc. Nat. Acad. Sci. US 38, 235–243 (1952)
189. Dahlquist G.G., BIT 3, 27–43 (1963)
190. Dahlquist G.G., Proc. Symp. Appl. Math. 15, 147–158 (1963)
191. Damaskin B.B., Petrii O.A., Batrakov V.V., Adsorption organischer

Verbindungen an Elektroden, Akademie-Verlag, Berlin (1975)
192. Dan C., Van den Bossche B., Bortels L., Nelissen G., Deconinck J., J. Elec-

troanal. Chem. 505, 12–23 (2001)
193. Davies T.J., Brookes B.A., Compton R.G., J. Electroanal. Chem. 566, 193–

216 (2004)
194. Davies T.J., Brookes B.A., Fisher A.C., Yunus K., Wilkins S.J., Greene P.R.,

Wadhawan J.D., Compton R.G., J. Phys. Chem. B 107, 6431–6449 (2003)
195. de Boor C., in: Conference on the Numerical Solution of Differential Equa-

tions, Dundee, Scotland 1973. (Edited by G.A. Watson), Springer, Berlin
(1974), 12–20

196. de Swart J.J.B., Blom J.G., Experiences with sparse matrix solvers
in parallel ODE software, Tech. Rep. Rept. NM-R9520 1995, Centrum
voor Wiskunde en Informatica (CWI), Amsterdam (1995), accessible at
http://db.cwi.nl/rapporten/abstract.php?abstractnr=892

197. Deakin M.R., Wightman R.M., Amatore C.A., J. Electroanal. Chem. 215,
49–61 (1986)

198. Deconinck J., Magetto G., Vereecken J., J. Electrochem. Soc. 132, 2960–2965
(1985)

199. Delahay P., J. Am. Chem. Soc. 75, 1190–1196 (1953)
200. Delahay P., Double Layer and Electrode Kinetics, Interscience, New York

(1966)
201. Delahay P., Mohilner D.M., J. Am. Chem. Soc. 84, 4247–4252 (1962)
202. Delahay P., Stiehl G.L., J. Am. Chem. Soc. 74, 3500–3505 (1952)
203. Delahay P., Trachtenberg I., J. Am. Chem. Soc. 79, 2355–2362 (1957)
204. Demaille C., Unwin P.R., Bard A.J., J. Phys. Chem. 100, 14137–14143 (1996)
205. Deng Z., Lin X., Chin. J. Anal. Chem. 27, 1376–1380 (1999), [In Chinese,

Engl. abstract]
206. Deng Z.X., Lin X.Q., J. Electroanal. Chem. 464, 215–221 (1999)
207. Deng Z.X., Lin X.Q., Tong Z.H., Chin. J. Chem. 20, 252–262 (2002)
208. Deng Z.X., Lin X.Q., Tong Z.H., Chin. J. Chem. 21, 1137–1145 (2003)
209. Deng Z.X., Tong Z.H., Lin X.Q., J. Electroanal. Chem. 568, 235–245 (2004)
210. Deng Z.X., X.-Q-Lin, Tong Z.H., Chin. J. Chem. 22, 719–726 (2004)
211. Diehl H., Biggs D.L., Talanta 30, 894–898 (1983)
212. Dillard J.W., Turner J.A., Osteryoung R.A., Anal. Chem. 49, 1246–1250

(1977)

References 319

213. Dorfi E.A., Drury L.O., J. Comp. Phys. 69, 175–195 (1987)
214. Douglas Jr J., Gallie Jr T.M., Proc. Am. Math. Soc. 6, 787–793 (1955)
215. Duff I.S., Reid J.K., ACM Trans. Math. Soft. 5, 18–35 (1979)
216. DuFort E.C., Frankel S.P., Math. Tables Aids Comput. 7, 135–152 (1953)
217. Eddowes M.J., J. Electroanal. Chem. 159, 1–22 (1983)
218. Emmons H.W., Quart. Appl. Math. 2, 173–195 (1944)
219. Engblom S.O., Cope D.K., Tallman D.E., J. Electroanal. Chem. 406, 23–31

(1996)
220. Engeln-Müllges G., Uhlig F., Numerical Algorithms with Fortran, Springer-

Verlag, Berlin Heidelberg (1996)
221. Engstrom R.C., Pharr C.M., Koppang M.D., J. Electroanal. Chem. 221, 251–

255 (1997)
222. Engstrom R.C., Weber M., Wunder D.J., Burgess R., Winquist S., Anal.

Chem. 58, 844–848 (1986)
223. Evans D.J., Abdullah A.R.B., Int. J. Comp. Math. 14, 73–105 (1983)
224. Evans N.T.S., Gourlay A.R., J. Inst. Maths. Appl. 19, 239–251 (1977)
225. Eyres N.R., Hartree D.R., Ingham J., Jackson R., Sarjant R.J., Wagstaff J.B.,

Phil. Trans. Roy. Soc. Lond. A 240, 1–57 (1946)
226. Fanelli N., Zálǐs S., Posṕı̌sil C., J. Electroanal. Chem. 262, 35–44 (1989)
227. Fanelli N., Zálǐs S., Posṕı̌sil C., J. Electroanal. Chem. 288, 263–269 (1990)
228. Fang H., Chen H.Y., Chin. J. Chem. 15, 250–259 (1997)
229. Feldberg S.W., in: Electroanal. Chem. (Edited by A.J. Bard), Marcel Dekker,

New York, vol. 3, 199–296 (1969)
230. Feldberg S.W., J. Electroanal. Chem. 109, 69–82 (1980)
231. Feldberg S.W., J. Electroanal. Chem. 127, 1–10 (1981)
232. Feldberg S.W., J. Electroanal. Chem. 222, 101–106 (1987)
233. Feldberg S.W., J. Electroanal. Chem. 290, 49–65 (1990)
234. Feldberg S.W., Auerbach C., Anal. Chem. 36, 505–509 (1964)
235. Feldberg S.W., Bowers M.L., Anson F.C., J. Electroanal. Chem. 215, 11–28

(1986)
236. Feldberg S.W., Goldstein C.I., J. Electroanal. Chem. 397, 1–10 (1995)
237. Fernández J.L., Bard A.J., Anal. Chem. 76, 2281–2289 (2004)
238. Ferrigno R., Brevet P.F., Girault H.H., J. Electroanal. Chem. 430, 235–242

(1997)
239. Ferrigno R., Brevet P.F., Girault H.H., Electrochim. Acta. 42, 1895–1903

(1997)
240. Ferrigno R., Girault H.H., J. Electroanal. Chem. 492, 1–6 (2000)
241. Ferrigno R., Josserand J., Brevet P.F., Girault H.H., Electrochim. Acta 44,

587–595 (1998)
242. Fick A., Pogg. Ann. 94, 59–86 (1855)
243. Finkley H.O., in: Electroanal. Chem. (Edited by A.J. Bard, I. Rubinstein),

Marcel Dekker, New York, vol. 19, 109–335 (1996)
244. Fisher A.C., Compton R.G., J. Phys. Chem. 95, 7538–7542 (1991)
245. Fisher A.C., Compton R.G., Electroanal. 4, 311–315 (1992)
246. Flanagan J.B., Marcoux L., J. Phys. Chem. 77, 1051–1055 (1973)
247. Flanagan J.B., Marcoux L., J. Phys. Chem. 78, 718–723 (1974)
248. Flanagan J.B., Takahashi K., Anson F.C., J. Electroanal. Chem. 81, 261–273

(1977)
249. Fleischmann M., Pons S., Rolison D.R., Schmidt P.P., Ultramicroelectrodes,

Datech Systems Inc., Morganton, NC (1987)

320 References

250. Fletcher C.A.J., Computational Techniques for Fluid Dynamics, Volume I ,
Springer, Berlin, 2 ed. (1991)

251. Fosset B., Amatore C.A., Bartelt J.E., Michael A.C., Wightman R.M., Anal.
Chem. 63, 306–314 (1991)

252. Fosset B., Amatore C.A., Bartelt J.E., Wightman R.M., Anal. Chem. 63,
1403–1408 (1991)

253. Fourier F., Théorie Analytique de la Chaleur , vol. I, Didot, Pere et Fils, Paris
(1822)

254. Fox L., in: Numerical solution of Ordinary and Partial Differential Equation
(Edited by L. Fox), Pergamon Press, Oxford, 230–241 (1962)

255. Friedrichs M.S., Friesner R.A., Bard A.J., J. Electroanal. Chem. 258, 243–264
(1989)

256. Frumkin A., Nekrasov L., Levich B., Ivanov Y., J. Electroanal. Chem. 1, 84–90
(1959/60)

257. Galus Z., Fundamentals of Electrochemical Analysis, Ellis Horwood, New
York, 2 ed. (1994), transl. Eds. R.A. Chalmers & W.A.J. Bryce

258. Garćıa-Hernández M.T., Castilla J., González-Fernández C.F., Horno J., J.
Electroanal. Chem. 424, 207–212 (1997)

259. Gavaghan D.J., J. Electroanal. Chem. 420, 147–158 (1997)
260. Gavaghan D.J., J. Electroanal. Chem. 456, 1–12 (1998)
261. Gavaghan D.J., J. Electroanal. Chem. 456, 13–23 (1998)
262. Gavaghan D.J., J. Electroanal. Chem. 456, 25–35 (1998)
263. Gear C.W., in: Information Processing 68 (Edited by A.J.H. Morrel), North-

Holland Publishing Company, Amsterdam, 187–193 (1969)
264. Gear C.W., Numerical Initial Value Problems in Ordinary Differential Equa-

tions, Prentice-Hall, New Jersey. (1971)
265. Georganopoulou D.G., Caruana D.J., Strutwolf J., Williams D.E., Faraday

Disc. 116, 109–118 (2000)
266. Gerald C.F., Applied Numerical Analysis, Addison–Wesley, Reading, MA,

USA, 2nd ed. (1978)
267. Gerischer H., Mattes I., Braun R., J. Electroanal. Chem. 10, 553–567 (1965)
268. Gilb T., Software Metrics, Studentlitteratur, Lund (1976)
269. Glauert M.B., J. Fluid Mech. 1, 625–643 (1956)
270. Goldberg I.B., Bard A.J., J. Electroanal. Chem. 38, 313–322 (1972)
271. González C.F., Garćıa-Hernández M.T., Horno J., Coll. Czech. Chem. Com-

mun. 57, 1373–1380 (1992)
272. Gordon P., J. Soc. Indust. Appl. Math 13, 667–678 (1965)
273. Gosser D.K., Rieger P.H., Anal. Chem. 60, 1159–1167 (1988)
274. Gosser Jr. D.K., Cyclic Voltammetry , VCH, New York and Weinheim, Ger-

many (1993)
275. Gourlay A.R., J. Inst. Maths. Appl. 6, 375–390 (1970)
276. Gourlay A.R., McGuire G.R., J. Inst. Maths Appl. 7, 216–227 (1971)
277. Gourlay A.R., Morris J.L., SIAM J. Numer. Anal. 17, 641–655 (1980)
278. Gourlay A.R., Morris J.L., IMA J. Num. Anal. 1, 347–357 (1981)
279. Gray D.G., Harrison J.A., J. Electroanal. Chem. 24, 187–194 (1970)
280. Greenfield P.F., Simulation 22, 152–154 (1974)
281. Gregory D.P., Riddiford A.C., J. Chem. Soc. 3756–3764 (1956)
282. Gresho P.M., Lee R.L., Computers Fluids 9, 223–253 (1981)
283. Großmann C., Roos H.G., Numerik partieller Differentialgleichungen, Teub-

ner, Stuttgart (1994)

References 321

284. Hairer E., Nørsett S.P., Wanner G., Solving Ordinary Differential Equations
I. Nonstiff Problems, Springer Verlag, Berlin (1987)

285. Hairer E., Wanner G., SIAM J. Num. Anal. 20, 1206–1209 (1983)
286. Hairer E., Wanner G., Solving Ordinary Differential Equations II. Stiff and

Differential-Algebraic Problems, Springer Verlag, Berlin (1991)
287. Harriman K., Gavaghan D.J., Houston P., Kay D., Süli E., Electrochem. Com-

mun. 2, 576–585 (2000)
288. Harriman K., Gavaghan D.J., Houston P., Süli E., Electrochem. Commun. 2,

567–575 (2000)
289. Harriman K., Gavaghan D.J., Houston P., Süli E., Electrochem. Commun. 2,

150–156 (2000)
290. Harriman K., Gavaghan D.J., Houston P., Süli E., Electrochem. Commun. 2,

163–170 (2000)
291. Harriman K., Gavaghan D.J., Houston P., Süli E., Electrochem. Commun. 2,

157–162 (2000)
292. Harriman K., Gavaghan D.J., Süli E., Electrochem. Commun. 5, 519–529

(2003)
293. Harriman K., Gavaghan D.J., Süli E., J. Electroanal. Chem. 569, 35–46 (2004)
294. Harrington M.S., Anderson L.B., Anal. Chem. 62, 546–550 (1990)
295. Hartree D.R., Numerical Analysis, Oxford University Press, Oxford (1958)
296. Hartree D.R., Womersley J.R., Proc. Roy. Soc. London Ser. A 161, 353–367

(1937)
297. Heinze J., J. Electroanal. Chem. 124, 73–86 (1981)
298. Heinze J., Ber. Bunsenges. Phys. Chem. 85, 1096–1103 (1984)
299. Heinze J., Angew. Chem. 105, 1327–1349 (1993)
300. Heinze J., Störzbach M., Ber. Bunsenges. Phys. Chem. 90, 1043–1048 (1986)
301. Heinze J., Störzbach M., Mortensen J., J. Electroanal. Chem. 165, 61–70

(1984)
302. Henrici P., Discrete Variable Methods in Ordinary Differential Equations,

John Wiley, New York (1962)
303. Hertl P., Speiser B., J. Electroanal. Chem. 217, 225–238 (1987)
304. Hindmarsh A.C., Petzold L.R., Computers in Physics 9, 148–155 (1995)
305. Horno J., Garćıa-Hernández, González-Fernández, J. Electroanal. Chem. 377,

53–60 (1994)
306. Horno J., Garćıa-Hernández M.T., J. Electroanal. Chem. 352, 83–97 (1993)
307. Horno J., Garćıa-Hernández M.T., Castilla J., González-Fernández C.F., Elec-

troanalysis 8, 1145–1149 (1996)
308. Horno J., González C.F., Hayas A., J. Comp. Phys. 118, 310–319 (1995)
309. Horno J., González-Fernández C.F., Hayas A., González-Caballero F., Bio-

phys. J. 55, 527–535 (1989)
310. Hsu C.T., Shao M.J., Lin S.Y., Langmuir 16, 3187–3194 (2000)
311. Huber A., Monatsh. Math. Phys. 47, 240–246 (1939)
312. Hunter I.C., Jones I.P., Numerical experiments on the effects of strong grid

stretching in finite difference calculations, Tech. Rep. AERE R-10301, United
Kingdom Atomic Energy Authority, Harwell (1981)

313. Imbeaux J.C., Savéant J.M., J. Electroanal. Chem. 28, 325–338 (1970)
314. Jain M.K., Numerical Solution of Differential Equations, Wiley Eastern, New

Delhi, 2 ed. (1984)
315. Jehring H., Elektrosorptionsanalyse mit der Wechselstrompolarographie,

Akademie-Verlag, Berlin (1974)

322 References

316. Jin B., Qian W., Zhang Z., Shi H., J. Electroanal. Chem. 411, 29–36 (1996)
317. Jin B., Qian W., Zhang Z., Shi H., J. Electroanal. Chem. 417, 45–51 (1996)
318. Jin B., Qian W., Zhang Z., Shi H., J. Electroanal. Chem. 411, 19–27 (1996)
319. Jin B.K., Shi H.S., Zhang Z.X., Chem. J. Chin. Univ. 17, 1052–1055 (1996),

[in Chinese, Eng. abstract]
320. Johannsen K., Britz D., Comput. Chem. 23, 33–41 (1999)
321. Joslin T., Pletcher D., J. Electroanal. Chem. 49, 171–186 (1974)
322. Josserand J., Morandini J., Lee H.J., Ferrigno R., Girault H.H., J. Electroanal.

Chem. 468, 42–52 (1999)
323. Juozėnas A., Šidlauskas V., Jurevičius D., Chemija (1), 13–17 (1993)
324. Jurczakowski R., Orlik M., J. Electroanal. Chem. 478, 118–127 (1999)
325. Kader B.A., Sov. Electrochem. 13, 417–423 (1977)
326. Kakihana M., Ikeuchi H., Satô G.P., Tokuda K., J. Electroanal. Chem. 108,

381–383 (1980)
327. Kakihana M., Ikeuchi H., Satô G.P., Tokuda K., J. Electroanal. Chem. 117,

201–211 (1981)
328. Kálnay de Rivas E., J. Comp. Phys. 10, 202–210 (1972)
329. Kantorovich L.V., Doklady Akad. Nauk. 2, 532–536 (1934), in Russian, with

a French translation added
330. Kantorowitsch L.W., Krylow W.I., Näherungsmethoden der höheren Analyse,

VEB Deutscher Verlag der Wissenschaften, Berlin (1956)
331. Karaoglanoff Z., Z. Elektrochem. 12, 5–16 (1906)
332. Kavanaugh T.C., Friedrichs M.S., Friesner R.A., Bard A.J., J. Electroanal.

Chem. 283, 1–14 (1990)
333. Kay J.M., Nedderman R.M., An Introduction to Fluid Mechanics and Heat

Transfer , Cambridge University Press, Cambridge, UK, 3rd ed. (1974)
334. Keast P., Mitchell A.R., Computer J. 9, 110–114 (1966)
335. Kermiche-Aouanouk F., Daguenet M., J. Chim. Phys. Physicochim. Biol. 69,

1705–1710 (1972), in French
336. Ketter J.K., Forry S.P., Wightman R.M., Feldberg S.W., Electrochem. Solid-

State Lett. 7, E18–E22 (2004)
337. Khaliq A.Q.M., Wade B.A., J. Comput. Meth. Sci. Eng. 1, 107–124 (2001)
338. Kimble M.C., White R.E., Comput. Chem. Eng. 14, 921–924 (1990)
339. Klinger J., Conway B.E., Angerstein-Kozlowska H., Comput. Chem. 2, 117–

129 (1978)
340. Klymenko O.V., Evans R.G., Hardacre C., Svir I.B., Compton R.G., J. Elec-

troanal. Chem. 571, 211–221 (2004)
341. Kopal Z., Numerical Analysis, Chapman & Hall, London (1955)
342. Koryta J., Coll. Czech. Chem. Commun. 18, 206–213 (1953)
343. Laasonen P., Acta Math. 81, 309–317 (1949)
344. Lambert J.D., Computational Methods in Ordinary Differential Equations,

Wiley, New York (1972)
345. Lang J., Appl. Num. Math. 18, 223–240 (1995)
346. Lang J., Chem. Eng. Sci. 51, 1055–1070 (1996)
347. Lang J., Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems,

Springer, Berlin (2001)
348. Lang J., Verwer J., BIT 41, 731–738 (2001)
349. Lantelme F., Groult H.H., Kumagai N., Electrochim. Acta 45, 3171–3180

(2000)

References 323

350. Lapidus L., Pinder G.F., Numerical Solution of Partial Differential Equations
in Science and Engineering , John Wiley, New York (1982)

351. Lapidus L., Seinfeld J.H., Numerical Solution of Ordinary Differential Equa-
tions, Academic Press, New York (1971)

352. Larkin B.K., Math. Comp. 18, 196–202 (1964)
353. Lasia A., Grégoire D., J. Electrochem. Soc. 142, 3393–3399 (1995)
354. Lavagnini I., Pastore P., Magno F., J. Electroanal. Chem. 333, 1–10 (1992)
355. Lavagnini I., Pastore P., Magno F., Amatore C.A., J. Electroanal. Chem. 316,

37–47 (1991)
356. Lawson J.D., Morris J.L., SIAM J. Numer. Anal. 15, 1212–1224 (1978)
357. Lemos M.A., Port. Electrochim. Acta 15, 163–187 (1997)
358. Lemos M.A.N.D.A., Lemos F., Papadopoulos N., Pombeiro A.J.L., Port. Elec-

trochim. Acta 16, 175–180 (1998)
359. Lemos M.A.N.D.A., Pombeiro A.J.L., Port. Electrochim. Acta 10, 89–99

(1992)
360. Lemos M.A.N.D.A., Pombeiro A.J.L., in: Molecular Electrochemistry of In-

organic, Bioinorganic and Organometallic Compounds (Edited by A.J.L.
Pombeiro, J.A. McCleary), Kluwer Academic Publ., Netherlands, 477–482
(1993)

361. Lerke S.A., Evans D.H., Feldberg S.W., J. Electroanal. Chem. 296, 299–315
(1990)

362. Levich V.G., Physicochemical Hydrodynamics, Prentice-Hall, New Jersey
(1962)

363. Licht S., Cammarata V., Wrighton M.S., J. Phys. Chem. 94, 6133–6140 (1990)
364. Lindberg B., BIT 11, 29–52 (1971)
365. Lingane P.J., Anal. Chem. 36, 1723–1726 (1964)
366. Liskovets O.A., Diff. Urav. 1, 1662–1677 (1965)
367. Liu S.L., Chem. Eng. Sci. 22, 871–881 (1967)
368. Liu S.L., AIChE J. 15, 334–338 (1969)
369. Lopéz-Garćıa J.J., Grosse C., Horno J., J. Colloid. Interf. Sci. 254, 287–295

(2002)
370. Lorenz W., Z. Elektrochem. 62, 192–200 (1958)
371. Lovrić M., Kormorsky-Lovrić Ŝ., Bull. Soc. Chim. Beograd 46, 93–98 (1981)
372. Ludwig K., Rajendran L., Speiser B., J. Electroanal. Chem. 568, 203–214

(2004), see Erratum, ibid. 571 (2004) 119
373. Ludwig K., Rajendran L., Speiser B., J. Electroanal. Chem. 571, 119 (2004)
374. Luskin M., Rannacher R., Appl. Anal. 14, 117–135 (1982)
375. Macpherson J.V., Unwin P.R., J. Phys. Chem. 100, 19475–19483 (1996)
376. Magno F., Bontempelli G., Perosa D., Anal. Chim. Acta 147, 65–76 (1983)
377. Mahon P.J., Oldham K.B., Electrochim. Acta 49, 5041–5048 (2004)
378. Mandin P., Pauporte T., Fanouillère P., Lincot D., J. Electroanal. Chem. 566,

159–173 (2004)
379. Margarit J., Dabosi G., Lévy M., Bull. Soc. Chim. Fr. 1509–1512 (1975)
380. Margarit J., Lévy M., J. Electroanal. Chem. 49, 369–376 (1974)
381. Marques da Silva B., Avaca L.A., Gonzalez E.R., J. Electroanal. Chem. 250,

457–460 (1988)
382. Marques da Silva B., Avaca L.A., Gonzalez E.R., J. Electroanal. Chem. 269,

1–14 (1989)
383. Martin R.D., Unwin P.R., J. Electroanal. Chem. 439, 123–136 (1997)

324 References

384. Martin R.D., Unwin P.R., Anal. Chem. 70, 276–284 (1998)
385. Mart́ınez-Ortiz F., Private communication to D. Britz (2004)
386. Mastragostino M., Nadjo L., Saveant J.M., Electrochim. Acta 13, 721–749

(1968)
387. Matsuda H., J. Electroanal. Chem. 15, 325–336 (1967)
388. Matsuda H., J. Electroanal. Chem. 16, 153–164 (1968)
389. Matsuda H., Ayabe Y., Z. Elektrochem 59, 494–503 (1955)
390. Mauzeroll J., Hueske E.A., Bard A.J., Anal. Chem. 75, 3880–3889 (2003)
391. McCormick S., Nature 337, 205 (1989)
392. Metcalf M., Reid J., The F Programming Language, Oxford University Press,

Oxford, UK (1996)
393. Metcalf M., Reid J., Fortran 90/95 Explained , Oxford University Press, Ox-

ford, UK (1996)
394. Michael A.C., Wightman R.M., Amatore C.A., J. Electroanal. Chem. 267,

33–45 (1989)
395. Miller R., Colloid & Polymer Sci. 259, 375–381 (1981)
396. Miller R., Kretzschmar G., Colloid & Polymer Sci. 258, 85–87 (1980)
397. Miller R., Lunkenheimer K., Z. phys. Chem. (Leipzig) 259, 863–868 (1978)
398. Miller R., Lunkenheimer K., Kretzschmar G., Colloid & Polymer Sci. 257,

1118–1120 (1979)
399. Mizushina T., Adv. Heat Mass Trans. 7, 87–161 (1971)
400. Mocak J., Electrochem. Commun. 4, 803–807 (2002)
401. Mocak J., Bond A., J. Electroanal. Chem. 561, 191–202 (2004)
402. Mocak J., Feldberg S.W., J. Electroanal. Chem. 378, 31–37 (1994)
403. Mohilner D.M., in: Electroanal. Chem. (Edited by A.J. Bard), Marcel Dekker,

New York, vol. 1, 241–409 (1966)
404. Morse P.M., Feshbach H., Methods in Theoretical Physics, McGraw-Hill, NY

(1953)
405. Moya A.A., Hayas A., Horno J., Ber. Bunsenges. phys. Chem. 99, 1037–1042

(1995)
406. Nagel L.W., SPICE (simulation Program with Integrated Circuit Emphasis),

Tech. Rep. ERL-m382-1977, Electronics Research laboratory, University of
California, Berkeley (1977)

407. Nann T., Digitale Simulation in der Elektrochemie mit der Methode der
Finiten Elementen, Ph.D. thesis, Albert-Ludwigs-Universität zu Freiburg im
Breisgau (1997), publ. by Shaker Verlag, Aachen

408. Nann T., Heinze J., Electrochem. Commun. 1, 289–294 (1999)
409. Nann T., Heinze J., Electrochimica Acta 48, 3975–3880 (2003)
410. Nernst W., Z. phys. Chem. 47, 52–55 (1904)
411. Newman J., J. Electrochem. Soc. 113, 501–502 (1966)
412. Newman J., Ind. Eng. Chem. Fundam. 7, 514–517 (1968)
413. Newman J., Electrochemical Systems, Prentice-Hall, New Jersey (1973)
414. Nguyen T.V., White R., Comput. Chem. Eng. 11, 543–546 (1987)
415. Nicholson R.S., Anal. Chem. 37, 667–671 (1965)
416. Nicholson R.S., Olmstead M.L., in: Comput. Chem. Instrum. (Edited by

J. Mattson, H.B. Mark Jr, H.C. MacDonald Jr), Marcel Dekker, New York,
vol. 2, 119–139 (1972)

417. Nicholson R.S., Shain I., Anal. Chem. 36, 706–723 (1964)

References 325

418. Nielsen M.F., Almdal K., Hammerich O., Parker V.D., Act Chem. Scand. A
41, 423–440 (1987)

419. Nikolić S., Digitalna simulacija elektrodnih reakcija za pulsnu polarografiju i
srodne tehnike, Master’s thesis, Zagreb University (1983)

420. Nolan J.E., Plambeck J.A., J. Electroanal. Chem. 294, 1–20 (1990)
421. Noumerov B.V., Monthly Not. Roy. Astr. Soc. 84, 592–601 (1924)
422. Noye J., in: Numerical solutions of PDE’s (Edited by J. Noye), Queen’s Col-

lege, Melbourne (1982), 3–137
423. Noye J., in: Computational techniques for differential equations (Edited by

J. Noye), Elsevier, Amsterdam, 95–354 (1984)
424. O’Brien G.G., Hyman M.A., Kaplan S., J. Math. Phys. 29, 223–251 (1950)
425. Oldham K., J. Electroanal. Chem. 122, 1–17 (1981)
426. Oldham K.B., J. Electroanal. Chem. 105, 373–375 (1979)
427. Oldham K.B., Zoski C.G., J. Electroanal. Chem. 256, 11–19 (1988)
428. Oleinick A., Amatore C., Svir I., Electrochem. Commun. 6, 588–594 (2004)
429. Orlik M., J. Electroanal. Chem. 434, 139–152 (1997)
430. Østerby O., The error of the Crank-Nicolson method for linear parabolic equa-

tions with a derivative boundary condition, Report PB-534, DAIMI, Aarhus
University (1998)

431. Østerby O., Five ways of reducing the Crank-Nicolson oscillations, Tech. Rep.
Daimi PB-558, Dept. of Computer Science, Aarhus University (2002)

432. Østerby O., BIT 43, 811–822 (2003)
433. Pao Y.H., Daugherty R.J., Time-dependent viscous incompressible flow past a

finite flat plate, Tech. Rep. Rept. DI-82-0822, Boeing Sci. Res. Lab. (1969)
434. Pastore P., Magno F., Lavagnini I., Amatore C., J. Electroanal. Chem. 301,

1–13 (1991)
435. Patankar S.V., Numerical Heat Transfer and Fluid Flow , Hemiphere Publish-

ing Corp., New York (1980)
436. Peaceman D.W., Rachford H.H., J. Soc. Ind. Appl. Math. 3, 28–41 (1955)
437. Pearson C.E., Math. Comput. 19, 570–576 (1965)
438. Pedersen S.U., Christensen T.B., Thomasen T., Daasbjerg K., J. Electroanal.

Chem. 454, 123–143 (1998)
439. Penar J., Ann. Univ. Marie Curie-Sk�lodowska Lublin-Polonia 46/47, 119–172

(1991/2), in Polish
440. Penar J., Persona A., Stawinski A., Pol. J. Chem. 67, 529–540 (1993)
441. Petzold L., in: Scientific Computing (Edited by R.S. Stepleman, M. Carver,

R. Peskin, W.F. Ames, R. Vichnevetsky), North Holland Publ. Co., Amster-
dam (1983), vol. 1, IMACS Trans. Sci. Comp., 10th IMACS World Congress on
Systems Simulation and Scientific Computation, Montreal, Canada, August
1982, 65–68

442. Phillips C.G., Jansons K.M., Proc. Roy. Soc. Lond. A 428, 431–439 (1990)
443. Pons B.S., Schmidt P.P., Electrochim. Acta 25, 987–993 (1980)
444. Pons B.S., Speiser B., McAleer J.F., Electrochim. Acta 27, 1177–1179 (1982)
445. Pons B.S., Speiser B., McAleer J.F., Schmidt P.P., Electrochim. Acta 27,

1711–1714 (1982)
446. Pons S., in: Electroanal. Chem. (Edited by A.J. Bard), Marcel Dekker, New

York, vol. 13, 115–190 (1984)
447. Postlethwaite T.A., Hutchinson J.E., Murray R., Fosset B., Amatore C., Anal.

Chem. 68, 2951–2958 (1996)

326 References

448. Prandtl L., Tietjens O.G., Applied Hydro- and Aerodynamics, Dover, New
York (1934)

449. Prater K.B., Chem. Instrum. 3, 259–269 (1972)
450. Prater K.B., Bard A.J., J. Electrochem. Soc. 117, 207–213 (1970)
451. Prater K.B., Bard A.J., J. Electrochem. Soc. 117, 335–340 (1970)
452. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical

Recipes in Fortran, Cambridge University Press, Cambridge, 2 ed. (1986)
453. Pritzker M.D., J. Electroanal. Chem. 243, 57–80 (1988)
454. Qian W., Jin B., Diao G., Zhang Z., Shi H., J. Electranal. Chem. 414, 1–10

(1996)
455. Qian W., Jin B., Shi H., Zhang Z., J. Electroanal. Chem. 439, 29–36 (1997)
456. Qian W., Jin B.K., Shi H.S., Yu J.S., Zhang Z.X., Acta. Chim. Sinica 55,

1108–1115 (1997)
457. Qiu F.L., Fisher A.C., Henley I.E., Dryfe R.A.W., Electrochem. Commun. 5,

169–174 (2003)
458. Rajantie H., Strutwolf J., Williams D.E., J. Electroanal. Chem. 500, 108–120

(2001)
459. Rampazzo L., Electrochim. Acta 14, 733–739 (1969)
460. Randles J.E.B., Trans. Faraday Soc. 44, 327–338 (1948)
461. Rannacher R., Z. Angew. Math. Mech. 62, T346–T348 (1982)
462. Rannacher R., Numer. Math. 43, 309–327 (1984)
463. Rees N.V., Klymenko O.V., Maisonhaute E., Coles B.A., Compton R.G., J.

Electroanal. Chem. 542, 23–32 (2003)
464. Reinert K.E., Berg H., Monatsber. Deut. Akad. Wiss. Berlin 4, 26–32 (1962)
465. Reinmuth W.H., J. Phys. Chem. 65, 473–476 (1961)
466. Ribeiro L.M.D., Lemos M.A.N.D.A., Pombeiro A.J.L., Sobota P., Russ. J.

Electrochem. 31, 1009–1015 (1995)
467. Rice J.R., Numerical Methods, Software, and Analysis, McGraw-Hill Interna-

tional, Auckland (1983)
468. Richardson L.F., Phil. Trans. A 210, 307–357 (1911)
469. Richardson L.F., Phil. Trans. A 226, 299–349 (1927)
470. Richtmyer R.D., Difference Methods for Initial-Value Problems, Interscience,

New York (1957)
471. Richtmyer R.D., Morton K.W., Difference Methods for Initial-Value Problems,

Interscience, New York (1967)
472. Rizzo F.J., Shippy D.J., AIAA J. 8, 2004–2009 (1970)
473. Roche M., Numer. Math. 52, 45–63 (1988)
474. Rosenbrock H., Computer J. 5, 329–300 (1962/3)
475. Rothe E., Math. Ann. 102, 651–670 (1930)
476. Rudolph M., J. Electroanal. Chem. 314, 13–22 (1991)
477. Rudolph M., in: Physical Electrochemistry (Edited by I. Rubinstein), Marcel

Dekker, New York, 81–129 (1995)
478. Rudolph M., J. Electroanal. Chem. 529, 97–108 (2002)
479. Rudolph M., J. Electroanal. Chem. 543, 23–39 (2003)
480. Rudolph M., J. Electroanal. Chem. 558, 171–176 (2003)
481. Rudolph M., J. Electroanal. Chem. 571, 289–307 (2004)
482. Rudolph M., Reddy D.P., Feldberg S.W., Anal. Chem. 66, 589A–600A (1994)
483. Ružić I., J. Electroanal. Chem. 144, 433–436 (1983)
484. Ružić I., J. Electroanal. Chem. 199, 431–435 (1986)

References 327

485. Ružić I., Britz D., Acta Chem. Scand. 45, 1087–1089 (1991)
486. Ružić I., Feldberg S., J. Electroanal. Chem. 50, 153–162 (1974)
487. Ružić I., Smith D.E., J. Electroanal. Chem. 57, 129–139 (1974)
488. Safford L.K., Weaver M.J., J. Electroanal. Chem. 261, 241–247 (1989)
489. Safford L.K., Weaver M.J., J. Electroanal. Chem. 312, 69–96 (1991)
490. Saito Y., Rev. Polarog. (Japan) 15, 177–187 (1968)
491. Salaun P., Josserand J., Morandini J., Girault H.H., Buffle J., J. Electroanal.

Chem. 566, 147–158 (2004)
492. Sanchez G., Codina G., Aldaz A., J. Chem. Educ. 68, 489–490 (1991)
493. Sand H.J.S., Z. phys. Chem. 35, 641–651 (1900)
494. Sandifer J.R., Buck R.P., J. Electroanal. Chem. 49, 161–170 (1974)
495. Sanz-Serna J.M., Christie I., J. Comput. Phys. 67, 348–360 (1986)
496. Saul’yev V.K., Integration of Equations of Parabolic Type by the Method of

Nets, Pergamon Press, New York (1964)
497. Schiesser W.E., The Numerical Method of Lines Integration of Partial Differ-

ential Equations, Academic Press, San Diego (1991)
498. Schlichting H., Grenzschicht-Theorie, G. Braun, Karlsruhe (1965)
499. Schmidt F.W., Zeldin B., AIChE J. 15, 612–614 (1969)
500. Seddon B.J., Girault H.H., Eddowes M.J., J. Electroanal. Chem. 266, 227–238

(1989)
501. Seeber R., Stefani S., Anal. Chem. 53, 1011–1016 (1981)
502. Selzer Y., Mandler D., Electrochem. Commun. 1, 569–575 (1999)
503. Selzer Y., Mandler D., Anal. Chem. 72, 2383–2390 (2000)
504. Serna C., López-Tenés M., González J., Electrochim. Acta 46, 2699–2709

(2001)
505. Ševč́ık A., Coll. Czech. Chem. Commun. 13, 349–377 (1948)
506. Shih T.M., Numerical Heat Transfer , Hemisphere Publ. Corp., Washington

(1984)
507. Shoup D., Szabo A., J. Electroanal. Chem. 140, 237–245 (1982)
508. Shoup D., Szabo A., J. Electroanal. Chem. 160, 19–26 (1984)
509. Shoup D., Szabo A., J. Electroanal. Chem. 160, 1–17 (1984)
510. Shoup D., Szabo A., J. Electroanal. Chem. 160, 27–31 (1984)
511. Shoup D., Szabo A., J. Electroanal. Chem. 199, 437–441 (1986)
512. Slevin C.J., Macpherson J.V., Unwin P.R., J. Phys. Chem. B 101, 10851–

10859 (1997)
513. Smith C.P., White H.S., Anal. Chem. 65, 3343–3353 (1993)
514. Smith G.D., Numerical Solution of Partial Differential Equations, Oxford Uni-

versity Press, Oxford, 3 ed. (1985)
515. Soos Z.G., Lingane P.J., J. Phys. Chem. 68, 3821–3828 (1964)
516. Sparrow E.M., Gregg J.L., J. Heat Trans. 81C, 249–252 (1959)
517. Speiser B., in: Softwareentwicklung in der Chemie 3 (Edited by G. Gauglitz),

Springer, Berlin, 321–332 (1989)
518. Speiser B., Comput. Chem. 14, 127–140 (1990)
519. Speiser B., J. Electroanal. Chem. 301, 15–35 (1991)
520. Speiser B., Anal. Chim. Acta 243, 301–310 (1991)
521. Speiser B., Acta Chem. Scand. 47, 1238–1240 (1993)
522. Speiser B., J. Electroanal. Chem. 374, 280–282 (1994)
523. Speiser B., in: Electroanal. Chem. (Edited by A.J. Bard, I. Rubinstein), Marcel

Dekker, New York, vol. 19, 1–108 (1996)

328 References

524. Spiegel M.R., Advanced Calculus, McGraw-Hill, New York (1963)
525. Stanley R.P., Enumerative Combinatorics, vol. 1, Cambridge University Press,

Cambridge, New York (1997)
526. Steffen B., Rousar I., Electrochim. Acta 40, 379–386 (1995)
527. Stone H.L., SIAM J. Num. Anal. 5, 530–558 (1968)
528. Strikwerda J.C., Finite Difference Schemes and Partial Differential Equations,

Wadsworth and Brooks/Cole, Pacific Grove, California (1989)
529. Strutwolf J., Digitale Simulation elektrochemischer Systeme: Untersuchungen

zeitabhängiger Phänomene an rotierenden Scheibenelektroden und Analyse von
Cyclovoltammogrammen durch direkte Simulation, Ph.D. thesis, Universität
Bielefeld, Germany (1995)

530. Strutwolf J., Barker A.L., Gonsalves M., Caruana D.J., Unwin P.R., Williams
D.E., Webster J.P.R., J. Electroanal. Chem. 483, 163–173 (2000)

531. Strutwolf J., Britz D., Comput. Chem. 25, 205–214 (2001)
532. Strutwolf J., Britz D., J. Electroanal. Chem. 566, 15–23 (2004)
533. Strutwolf J., Schoeller W.W., Electroanalysis 8, 1034–1039 (1996)
534. Strutwolf J., Schoeller W.W., Electroanalysis 9, 1403–1408 (1997)
535. Strutwolf J., Williams D.E., Electroanalysis 11, 487–493 (1999)
536. Strutwolf J., Williams D.E., Electroanalysis submitted, 0–0 (2004)
537. Sundqvist H., Veronis G., Tellus 22, 26–31 (1970)
538. Svir I.B., Golovenko V.M., Electrochem. Commun. 3, 11–15 (2001)
539. Svir I.B., Klimenko A.V., Compton R.G., Radiotekh. 118, 92–101 (2001)
540. Svir I.B., Oleinick A.I., J. Electroanal. Chem. 499, 30–38 (2001)
541. Svir I.B., Oleinick A.I., Compton R.G., J. Electroanal. Chem. 560, 117–126

(2003)
542. Svir I.B., Oleinick A.I., Klimenko A.V., J. Electroanal. Chem. 513, 119–125

(2001)
543. Szabo A., Cope D.K., Tallman D.E., Kovach P.M., Wightman R.M., J. Elec-

troanal. Chem. 217, 417–423 (1987)
544. Szymanska J., Palys M.J., Van den Bossche B., Anal. Chem. 76, 5937–5944

(2004)
545. Taylor G., Girault H.H., McAleer J., J. Electroanal. Chem. 293, 19–44 (1990)
546. Thomas L.H., Elliptic Problems in Linear Difference Equations over a Net-

work , Watson Scientific Computing Laboratory, Columbia University, New
York (1949)

547. Thompson J.F., Appl. Num. Math. 1, 3–27 (1985)
548. Treanor C.E., Math. Comp. 20, 39–45 (1966)
549. Twinanga E.W., A Guide to Circuit Simulation and Analysis Using PSPICE ,

Prentice-Hall, New Jersey (1992)
550. Urban P., Speiser B., J. Electroanal. Chem. 241, 17–31 (1988)
551. Van Den Bossche B., Bortels L., Deconinck J., Vandeputte S., Hubin A., J.

Electroanal. Chem. 397, 35–44 (1995)
552. Van Den Bossche B., Floridor G., Deconinck J., Van Den Winkel P., Hubin

A., J. Electroanal. Chem. 531, 61–70 (2002)
553. van den Houwen P.J., Sommeijer B.P., Appl. Num. Math. 11, 169–188 (1993)
554. van Leeuwen H.P., de Jong H.G., Holub K., J. Electroanal. Chem. 260, 213–

220 (1989)
555. Varadi M., Pungor E., Anal. Chim. Acta 80, 31–37 (1975)
556. Varco Shea T., Bard A.J., Anal. Chem. 59, 2101–2111 (1987)

References 329

557. Verbrugge M.W., Baker D.R., J. Phys. Chem. 96, 4572–4580 (1992)
558. Verwer J.G., Sanz-Serna J.M., Computing 33, 297–313 (1984)
559. Vetter K., Elektrochemische Kinetik , Springer, Berlin (1961)
560. Vielstich W., Z. Elektrochem. 57, 646–655 (1953)
561. Villa C.M., Chapman T.W., Ind. Eng. Chem. Res. 34, 3445–3453 (1995)
562. Villadsen J., Michelsen M.L., Solution of differential equation models by poly-

nomial approximation, Prentice-Hall, New Jersey (1978)
563. Villadsen J.V., Stewart W.E., Chem. Eng. Sci. 22, 1483–1501 (1967)
564. von Kármán T., Z. Angew. Math. Mech. 1, 233–252 (1921)
565. von Neumann J., Richtmyer R.D., J. Appl. Phys. 21, 232–237 (1950)
566. Voss R.F., Tomkiewicz M., J. Electrochem. Soc. 132, 371–375 (1985)
567. Weinberg G.M., The Psychology of Computer Programming , Van Nostrand

Reinhold, New York (1971)
568. Welford P.J., Brookes B.A., Climent V., Compton R.G., J. Electroanal. Chem.

513, 8–15 (2001)
569. Wesseling P., An Introduction to Multigrid Methods, Wiley, New York (1992)
570. White R.E., Ind. Eng. Chem. Fundam. 17, 367–369 (1978)
571. Whiting L.F., Carr P.W., J. Electroanal. Chem. 81, 1–20 (1977)
572. Wiesner K., Chem. Listy 41, 6–8 (1947)
573. Williams D.E., MacPherson J., in: Comprehensive Chemical Kinetics (Edited

by R.G. Compton, G. Hancock), Elsevier, Amsterdam, vol. 37, 369–438 (1999)
574. Wipf D.O., Wightman R.M., Anal. Chem. 60, 2460–2464 (1988)
575. Wood W.L., Lewis R.W., Int. J. Num. Methods Eng. 9, 679–689 (1975)
576. Wright K., Computer J. 6, 358–365 (1964)
577. Wu B., White R.E., Comput. Chem. Eng. 28, 303–309 (2004)
578. Wu Y., Wang Z., Electrochim. Acta 44, 2281–2286 (1999)
579. Yamada J., Matsuda H., J. Electroanal. Chem. 44, 189–198 (1973)
580. Yen S.C., Chapman T.W., J. Electroanal. Chem. 135, 305–312 (1982)
581. Zeiri L., Younes O., Efrima S., Deutsch M., J. Phys. Chem. B 101, 9299–9308

(1997)
582. Zhang W.S., Zhang X.W., J. Electroanal. Chem. 445, 55–62 (1998)
583. Zhang Y., Cheh H.Y., J. Electrochem. Soc. 146, 850–856 (1999)
584. Zlatev Z., Wasniewski J., Schaumburg K., in: Lect. Notes Comp. Sci. (Edited

by G. Goos, J. Hartmanis), Springer, Berlin, vol. 121 (1981)
585. Zoski C.G., Mirkin M.V., Anal. Chem. 74, 1986–1992 (2002)

Index

δ definition 17
2D systems 201–233

A-stability 251
accuracy 263–270

order 263–266
order determination 264
target 267

adaptive FEM 211
adaptive finite elements 173
adaptive intervals 112–117

in space 113
in time 116
monitor function 113
patch-adaptive 116
regridding 113

example 114
ADI 157, 210, 211
adsorption

fractional coverage 29
isotherms 29–30

Henry 32
Langmuir 32

kinetics 28–32, 189–192
adsorption rate limited 191
ELSIM 189
transport- and isotherm-limited

190
amplification of errors 253
analog computers 1
approximations 33

current 38
derivative 34
error orders 47
hermitian 39
multipoint derivative 36
on unequal grid 44
order 33–34

second derivative 43

backward difference 35, 121, 245
backward differentiation method see

BDF
backward implicit 56, 247, 248
BDF 57–60, 131, 219, 248

efficiency 268
starting 58–60, 132

accuracy order 265
Feldberg 58, 290
high-order 151, 165
hyperimplicit 64
KW 59, 64, 133, 151, 267
rational 58, 220
simple start 58
simple, with correction 58
tests 60

summary 271
time shifts 59

BI 56, 57, 121
for ode system 66
summary 271

Birk-Perone 22, 122, 137, 168, 308, 309
block-pentadiagonal system 151
block-tridiagonal method 95–99
block-tridiagonal system 141, 149
boundary conditions 15, 18, 19, 21, 22,

85–102
brute force 100–101
classification 85
controlled current 87, 92
controlled potential 92
derivative 14, 24, 76, 86, 87
dimensionless 17
Dirichlet 14, 24, 76, 86
flux condition 91, 93, 97, 98
general formalism 101

332 Index

LSV 26, 27
mixed 27, 85
Nernstian 15, 18
Neumann 14, 24, 76, 86
Robin 85
single species 86–89
two-point 93–94
two-species 90–101

boundary value 3
box method 2, 6, 145–148

expanding boxes 145
summary 272

Brunner 17
brute force method 95, 211, 240

boundary conditions 100–101
Cottrell 100

bulk concentration 13
Butler-Volmer equation 12, 19, 92, 99

dimensionless 13

C++ 273
capacitance effects 193–199, 310

LSV 193
cartesian coordinates 7
catalytic reaction 95, 141, 309
catalytic system 20, 23

LSV 28
central difference 35, 62, 150
channel flow 235

boundary conditions 243, 244
normalisation 242
steady state 244
transport equation 242

characteristic distance 13
characteristic time 13, 21
choice of methods 266
chronopotentiometry 14, 24–25, 166
computational molecule 3
computing time 270
concentration

bulk 13
dimensionless 13
gradient 6, 7, 16, 18

dimensionless 18
hump 112
profile 16, 24

conformal maps 221–233
Amatore & Fosset 221, 223
boundary conditions 232

current integration 228
diffusion equation in 227
discretisation 231
finding Γmax 229
inversions 226
Michael et al. 222
Oleinick et al. 225
Verbrugge & Baker 224

consistency 250
Feldberg BDF start 290
sequential method for hcrs 289

constant current 24–25
control volume method 148
controlled current 87, 99

boundary conditions 92
hermitian 163

controlled potential 92
boundary conditions 92
quasireversible 92
reversible, Nernstian 93

convection 5, 8–10, 235–246
channel flow 235, 241
diffusion layer titration 240
double electrode 240
electrochemical velocity probe 240
flow systems 239
generator-collector 240
hydrodynamic layer 239
impinging jet 238
laminar flow 236
Levich approximation 241
Reynolds number 236, 237
simulation 240–246

band in channel 241
example 241

steady state 241
tube flow 237

entry length 237
upwinding 241
velocity profile 235, 236
velocity profile linearisation 246

convective terms 8
convergence 247–250
convergence computations 28
Cottrell 19

brute force 100
equation 16
system 14–18, 85

Index 333

coupled equations 140
coupled reactions 94–99
Courant et al. 1
cpu time 270
Crank 6, 7
Crank-Nicolson 56, 119, 121–122, 247,

248, 306, 307
oscillations damped see damping of

oscillations
stability 260
summary 271

current approximation 38–42, 75
2-point 38, 89, 282
3-point 39
function 85
hermitian 39, 162
in examples 301
n-point 38
unequal intervals 48

CV
boundary conditions 81–83
EX 80

quasireversible 80, 82
reversible 82

peak and trough currents 81
CVSIM 278
cylindrical coordinates 7, 203

DAE systems 67, 158, 191
damping of oscillations 127–131

averaging and extrapolation 131
exponentially expanding intervals

129
exponentially expanding time

intervals 128
first interval subdivision 128
Pearson 128
starting with BI 130

DASSL 67, 167, 272, 277
debugging 274–275
denormalisation 13
derivative approximations 34

2-point 34
multi-point 151

derivative boundary conditions 14,
76, 86

differential algebraic equations see
DAE systems

diffusion 5, 6, 10

diffusion coefficient 6, 18
ratio d 18
unequal 90

diffusion current 7–8
diffusion equation 1, 15, 27

dimensionless 17
diffusion layer 14, 16, 239
DigiElch 278
DigiSim 145, 278
dimensionless flux G 18
dimensionless sweep rate 27
dimensionless variables 12–14
Dirichlet boundary condition 14, 24,

76, 86
discretisation 2
Douglas equation 160
dropping mercury electrode 9, 235,

238
DuFort-Frankel method 152, 250, 254

inconsistency 153
propagational inadequacy 153
summary 271

EASI/EASIEST 278
EC’ reaction 20, 23, 95, 141, 309
Echem++ 279
efficiency 266

comparison 269
egoless programming 275
eigenvalue-eigenvector method

182–184
electron transfer 7
elliptic coordinates 222
ELSIM 185, 189, 278
Emmons 1
equal flux condition 18
error functions 301
errors 52

amplification 253
global 52, 53
local 52, 53
order 47
prevention 274
propagation 251
propagation matrix 255

Euler method 52–55, 66, 73
systems of odes 66
Taylor expansion 53

EX 53, 73–83, 248

334 Index

chronopotentiometry 76
Cottrell 76
CV 80–83
discretisation 73
LSV 80–83
summary 270

example ode 51–52
example procedures & programs

299–311
examples

current approximations 301
modules 299
procedures 301–304
procedures for unequal intervals

302
Rosenbrock 309
web site 299

expanding time intervals 128
expansion function

Feldberg 105
Sundqvist & Veronis 108

explicit method see EX
extrapolation 61–62, 133–134, 219,

308
accuracy order 266
efficiency 268
summary 271

Faraday constant 8
Diehl value 26

fast reactions 9
Feldberg 2, 19

BDF start, consistency proof 290
expansion function 105

similarity to transformation 295
FEM-like methods

summary 272
FEM/BEM/FAM 172
Fick 1, 6, 7

1st diffusion equation 5, 6
2nd diffusion equation 1, 7
3D diffusion equation 7
cylindrical diffusion equation 7
spherical diffusion equation 7

finite differences 1
finite element-like methods 172–173
finite elements 113, 211
FIRM see BDF
flash photolysis 10, 20, 22

flow systems 239
flux 5–7, 13

dimensionless 13, 18
flux condition 91, 93, 97, 98
flux equality 82
Fortran 90/95 273, 274
forward difference 35
Fourier 1

heat conduction equation 1, 6
FQEFD 153
fractional coverage 29

G function definition 39
generator-collector 212
global error 52, 53

hcr see homogeneous chemical
reactions

Hermitian methods 159–164
hermitian methods 39

current approximation 162
heterogeneous equivalent 134
heterogeneous rate constant 12, 19

dimensionless 13
heterogeneous reactions 12
high order compact schemes 39
high-order BDF start 151, 165
higher-order methods

summary 271
HOC 39
homogeneous chemical reactions

10–11, 20, 22, 77–79, 134, 174
first-order 10
parallel method 78
problems 135
reaction layer 79
Runge-Kutta 78
second-order 10
sequential method 78, 159

hopscotch 153, 156–158, 210, 211, 240
oscillations 210
propagational inadequacy 158
summary 271

Horno 185
hydrodynamic layer 239
hydrodynamic voltammetry 9
hyperimplicit start for BDF 64, 151

impinging jet 238

Index 335

implicit methods 86, 119–143
improvements 126

integral equation method 184–185
UME 212

iR effects 193–199, 310
boundary values 195
example 197–199
LSV 193
nonlinear boundary conditions 193
normalisation 194

irreversible systems 15, 93, 99

Jacobian 70
Java 273

Karaoglanoff 24
Kimble & White see KW
Krylov method 141
KW 43, 44, 62–65, 148–151, 265

as BDF start 64, 151, 267

L-stability 251
Laasonen method 119, 121, 124, 308

improvements 126, 131–134
BDF 131
extrapolation 133

laminar flow 236
language choice 273
Laplace transformation 184
leapfrog scheme 62, 63, 150, 153
limit in X 74
linear sweep voltammetry see LSV
linearisation 308
linearising nonlinear terms 135–140
LMG-x 134
local error 52, 53
LSV 25–28, 80–83

boundary conditions 26
catalytic (EC’) system 28
diffusion equations 27
dimensionless variables 26
EX 80
quasireversible case 28

MA28 216, 220
Maclaurin expansion 217
mathematical proofs 289–297
MDUM 173
method of lines 158, 165–167, 277

midpoint rule 56
migration 5, 9–10
mixed boundary conditions 27, 85
model systems 14–28

constant current 24
Cottrell 15
LSV 25
potential step 14

module source texts 299
MOL 51, 158, 277
MOL/DAE 165–167

summary 272
monitor function for regridding 113
Monte Carlo method 187
moving grids 113
multidimensional upwinding method

173
multigrid method 141

negative concentrations 22
Nernst 17
Nernst diffusion layer 14
Nernst equation 12, 27, 93, 98

dimensionless 14
Nernst-Planck equation 5
Nernstian boundary condition 15
network method 185
Neumann boundary condition 14, 24,

76
Neumann boundary conditions 86
Newton method 308, 309
Nicholson & Shain 26
nonlinear ode 68
nonlinear boundary conditions

capacity 193
iR 193

nonlinear terms
linearising 135–140

normalisation 12–14, 17
diffusion coefficient 90

numerical method of lines 165
Numerov method 39, 40, 132
Numerov/Douglas 160–162

extended Numerov method 162
NUMOL 165

OC see orthogonal collocation
ode

autonomous 69

336 Index

example 51–52
nonautonomous 69
nonlinear 68
solvers 277
standard form 51
systems 65–71

Rosenbrock 67
odes 51–71
Oldham 26
order of approximation 33
orthogonal collocation 173–181

boundary values 178
current calculation 180
example 180
Jacobi polynomial roots 285, 304
normalisation 175–176
solving the system 179
spline collocation 174
summary 272

oscillations 247, 248, 254
outer boundary 86

Padé approximants 261
parallel method for hcrs 78
Pascal 273
patch-adpative intervals 116
Pearson method 128, 268, 306, 307
pentadiagonal system 152
point method 2
Polar 278
potential 13

dimensionless 13
potential step 14–24

catalytic system 23
homogeneous reactions 20–24
irreversible system 19–20
quasireversible system 19–20
reversible system 18

programming 273–275
debugging 274–275
effort 268
error prevention 274
language choice 273
style 273, 274
use of libraries 275

proofs 289–297
propagation matrix 258, 260
propagational inadequacy 211

DuFort-Frankel 153

hopscotch 158
pseudo-first-order reaction 23
PSPICE 186
Péclet number 243, 244

quadradiagonal system 125
quasireversible system 15, 92, 99

Randles 2, 26
Randles-Ševč́ık function 26, 184
random walk 187
reaction layer 11, 24, 79, 103, 112
reference species 18
regridding 113, 114
Reinert-Berg 20, 77, 86, 122, 168
reversible system 15, 98
Reynolds number 236, 237, 243
Richardson 1, 150, 152
RK see Runge-Kutta
Robin boundary conditions 85
Rosenbrock method 67, 167–172, 194,

268, 299
adsorption kinetics 191
application to simple ode 70
Birk-Perone 168
Birk-Perone example 170
constants tables 285–287
error estimates 71
example 309
nonlinear system 168
Reinert-Berg 168
ROS2 70
ROWDA3 70
summary 271
UME, chronopotentiometry 212

rotating electrode 239
disk 9, 239
ring-disk 239

roundoff 251
Rudolph method 95–99, 141
Runge-Kutta 54–55, 158–159

hcr 78
summary 270
systems of odes 66

Sand equation 24
Saul’yev method 154–156

boundary values 155
stability 260
summary 272

Index 337

scanning electrochemical microscope
212

second derivative approximations 43
tables 282

semi-implicit methods 68
sequential method for hcrs 78, 159

consistency proof 289
Ševč́ık 26
simulation methods

summary 270
simulation packages 277–279

CVSIM 278
DigiElch 278
DigiSim 278
EASI/EASIEST 278
Echem++ 279
ELSIM 278
Polar 278

SIP 141
solution resistance see iR effects
solving the implicit system 122–126
sparse solvers 277
spectral radius 256, 259
spherical coordinates 7
SPICE 186
spline collocation 174
stability 251–262

-function 261
BI 262
CN 261, 262
EX 261
extrapolation 262

-function from Padé approximants
261

analysis for BI 254
analysis for CN 254
analysis for EX 254
BDF 254
classification into A- and L- 251
condition 253
DuFort-Frankel 254
Fourier analysis 252
heuristic analysis 251
matrix analysis 254–261

BDF 257
BI 256
eigenvalues 255
EX 256

norm 260
propagation matrix 260
special cases 260

CN 260
derivative boundary conditions

260
homogeneous reactions 260
Saul’yev 260

spectral radius 255, 256, 259
symbol 261
Von Neumann analysis 252–254

starting BDF see BDF
strongly implicit procedure 141
summary of simulation methods 270
Sundqvist & Veronis expansion function

108
sweep rate 27
symbol convention 4
systems of odes 65–71

BI 66
trapezium method 67

tables 281–287
current approximations 282
first derivative approximations 281
Jacobi polynomial roots 285
second derivative approximations

282
unequal intervals approximations

282
target accuracy 267
Taylor expansion 34, 36, 45, 53
Thomas algorithm 87, 94, 122

extension to quadradiagonal 125,
269

time
dimensionless 13

time shifts with BDF 59
transfer coefficient 12
transition time 24
transport equation 5

total 10
trapezium method 56, 121

ode system 67
Treanor method 186
tridiagonal system 122

block- 149
truncation errors 247, 251
tube flow 237

338 Index

entry length 237
two-dimensional systems see 2D

systems
two-point current approximation 89
two-point derivative condition 93–94
two-species boundary conditions

90–101

u-v device 86–89, 162
coupled systems 94–99
matrix-vector case 96
two species 91

ultramicro electrode see UME
ultramicrodisk electrode see UMDE
UMDE 201–208

axis problem 217
boundary conditions 203, 206
current 203, 206
current integration 220
direct discretisation 215
discretisation on mapped space

221–233
grid mapping 216
insulating plane problem 218
LSV 207
normalisations 205–206
points grid 215
simulation 212–233

determining maximum R and Z
213

direct discretisation 213
steady state 204
theory 202–208

UME 201
band 208

Crank-Nicolson 211
hemicylindrical 209
hemispherical 209
integral equation method 212
other types 212
Rosenbrock 212
simulation 210–212
theory 202–212

uncompensated resistance
see iR effects 193

unequal diffusion coefficients 90
unequal intervals 44–49, 100, 103–117,

119, 307
adaptive 112–117
arbitrary grid 107–110
by transformation 104–107
current approximation 48
derivative approximations 282–284
discretisation 105
four-point derivatives 124
in time 111–112
parameter choice 107, 110
procedures for 302
summary 271

upwinding 241, 245

velocity profile 235, 236
Vetter 9
Volterra equation 31

wall jet 238, 239
web site 299
Wu-White method 165

Y12M 216

	Frontmatter
	Preface
	Contents
	1 Introduction
	2 Basic Equations
	2.1 General
	2.2 Some Mathematics: Transport Equations
	2.2.1 Diffusion
	2.2.2 Diffusion Current
	2.2.3 Convection
	2.2.4 Migration
	2.2.5 Total Transport Equation
	2.2.6 Homogeneous Kinetics
	2.2.7 Heterogeneous Kinetics

	2.3 Normalisation -- Making the Variables Dimensionless
	2.4 Some Model Systems and Their Normalisations
	2.4.1 Potential Steps
	2.4.2 Constant Current
	2.4.3 Linear Sweep Voltammetry (LSV)

	2.5 Adsorption Kinetics

	3 Approximations to Derivatives
	3.1 Approximation Order
	3.2 Two-Point First Derivative Approximations
	3.3 Multi-Point First Derivative Approximations
	3.4 The Current Approximation
	3.5 The Current Approximation Function G
	3.6 High-Order Compact (Hermitian) Current Approximation
	3.7 Second Derivative Approximations
	3.8 Derivatives on Unevenly Spaced Points
	3.8.1 Error Orders
	3.8.2 A Special Case
	3.8.3 Current Approximation
	3.8.4 A Specific Approximation

	4 Ordinary Differential Equations
	4.1 An Example ode
	4.2 Local and Global Errors
	4.3 What Distinguishes the Methods
	4.4 Euler Method
	4.5 Runge-Kutta, RK
	4.6 Backwards Implicit, BI
	4.7 Trapezium or Midpoint Method
	4.8 Backward Differentiation Formula, BDF
	4.8.1 Starting BDF

	4.9 Extrapolation
	4.10 Kimble & White, KW
	4.10.1 Using KW as a Start for BDF

	4.11 Systems of odes
	4.12 Rosenbrock Methods
	4.12.1 Application to a Simple Example ODE
	4.12.2 Error Estimates

	5 The Explicit Method
	5.1 The Discretisation
	5.2 Practicalities
	5.3 Chronoamperometry and -Potentiometry
	5.4 Homogeneous Chemical Reactions (hcr)
	5.4.1 The Reaction Layer

	5.5 Linear Sweep Voltammetry
	5.5.1 Boundary Condition Handling

	6 Boundary Conditions
	6.1 Classification of Boundary Conditions
	6.2 Single Species: The u-v Device
	6.2.1 Dirichlet Condition
	6.2.2 Derivative Boundary Conditions

	6.3 Two Species
	6.3.1 Two-Point Derivative Cases

	6.4 Two Species with Coupled Reactions. U-V
	6.5 Brute Force
	6.6 A General Formalism

	7 Unequal Intervals
	7.1 Transformation
	7.1.1 Discretising the Transformed Equation
	7.1.2 The Choice of Parameters

	7.2 Direct Application of an Arbitrary Grid
	7.2.1 Choice of Parameters

	7.3 Concluding Remarks on Unequal Spatial Intervals
	7.4 Unequal Time Intervals
	7.4.1 Implementation of Exponentially Increasing Time Intervals

	7.5 Adaptive Interval Changes
	7.5.1 Spatial Interval Adaptation
	7.5.2 Time Interval Adaptation

	8 The Commonly Used Implicit Methods
	8.1 The Laasonen Method or BI
	8.2 The Crank-Nicolson Method, CN
	8.3 Solving the Implicit System
	8.4 Using Four-Point Spatial Second Derivatives
	8.5 Improvements on CN and Laasonen
	8.5.1 Damping the CN Oscillations
	8.5.2 Making Laasonen More Accurate

	8.6 Homogeneous Chemical Reactions
	8.6.1 Nonlinear Equations
	8.6.2 Coupled Equations

	9 Other Methods
	9.1 The Box Method
	9.2 Improvements on Standard Methods
	9.2.1 The Kimble and White Method
	9.2.2 Multi-Point Second Spatial Derivatives
	9.2.3 DuFort-Frankel
	9.2.4 Saul'yev
	9.2.5 Hopscotch
	9.2.6 Runge-Kutta
	9.2.7 Hermitian Methods

	9.3 Method of Lines (MOL)and Differential Algebraic Equations (DAE)
	9.4 The Rosenbrock Method
	9.4.1 An Example, the Birk-Perone System

	9.5 FEM, BEM and FAM (briefly)
	9.6 Orthogonal Collocation, OC
	9.6.1 Current Calculation with OC
	9.6.2 A Numerical Example

	9.7 Eigenvalue-Eigenvector Method
	9.8 Integral Equation Method
	9.9 The Network Method
	9.10 Treanor Method
	9.11 Monte Carlo Method

	10 Adsorption
	10.1 Transport and Isotherm Limited Adsorption
	10.2 Adsorption Rate Limited Adsorption

	11 Effects Due to Uncompensated Resistanceand Capacitance
	11.1 Boundary Conditions
	11.1.1 An Example

	12 Two-Dimensional Systems
	12.1 Theories
	12.1.1 The Ultramicrodisk Electrode, UMDE
	12.1.2 Other Microelectrodes
	12.1.3 Some Relations

	12.2 Simulations
	12.3 Simulating the UMDE
	12.3.1 Direct Discretisation
	12.3.2 Discretisation in the Mapped Space
	12.3.3 A Remark on the Boundary Conditions

	13 Convection
	13.1 Some Fluid Dynamics
	13.1.1 Layer Relations

	13.2 Electrodes in Flow Systems
	13.3 Simulations
	13.4 A Simple Example: The Band Electrodein a Channel Flow
	13.5 Normalisations

	14 Performance
	14.1 Convergence
	14.2 Consistency
	14.3 Stability
	14.3.1 Heuristic Method
	14.3.2 Von Neumann Stability Analysis
	14.3.3 Matrix Stability Analysis
	14.3.4 Some Special Cases

	14.4 The Stability Function
	14.5 Accuracy Order
	14.5.1 Order Determination

	14.6 Accuracy, Efficiency and Choice
	14.7 Summary of Methods

	15 Programming
	15.1 Language and Style
	15.2 Debugging
	15.3 Libraries

	16 Simulation Packages
	A Tables and Formulae
	A.1 First Derivative Approximations
	A.2 Current Approximations
	A.3 Second Derivative Approximations
	A.4 Unequal Intervals
	A.4.1 First Derivatives
	A.4.2 Second Derivatives

	A.5 Jacobi Roots for Orthogonal Collocation
	A.6 Rosenbrock Constants

	B Some Mathematical Proofs
	B.1 Consistency of the Sequential Method
	B.2 The Feldberg Start for BDF
	B.3 Similarity of the Feldberg Expansionand Transformation Functions

	C Procedure and Program Examples
	C.1 Example Modules
	C.2 Procedures
	C.2.1 Procedures for Unequal Intervals
	C.2.2 JCOBI

	C.3 Example Programs

	References
	Index

