
Brief Introduction to the C
Programming Language

By:- Mr. Kashid P.R.

Introduction

• The C programming language was designed by Dennis
Ritchie at Bell Laboratories in the early 1970s

• Influenced by
– ALGOL 60 (1960),

– CPL (Cambridge, 1963),

– BCPL (Martin Richard, 1967),

– B (Ken Thompson, 1970)– B (Ken Thompson, 1970)

• Traditionally used for systems programming, though
this may be changing in favor of C++

• Traditional C:
– The C Programming Language, by Brian Kernighan and Dennis

Ritchie, 2nd Edition, Prentice Hall

– Referred to as K&R

Standard C

• Standardized in 1989 by ANSI (American National
Standards Institute) known as ANSI C

• International standard (ISO) in 1990 which was
adopted by ANSI and is known as C89

• As part of the normal evolution process the standard
was updated in 1995 (C95) and 1999 (C99)was updated in 1995 (C95) and 1999 (C99)

• C++ and C
– C++ extends C to include support for Object Oriented

Programming and other features that facilitate large software
development projects

– C is not strictly a subset of C++, but it is possible to write
“Clean C” that conforms to both the C++ and C standards.

Elements of a C Program

• A C development environment includes
– System libraries and headers: a set of standard libraries and

their header files. For example see /usr/include and glibc.

– Application Source: application source and header files

– Compiler: converts source to object code for a specific platform

– Linker: resolves external references and produces the
executable moduleexecutable module

• User program structure
– there must be one main function where execution begins when

the program is run. This function is called main

• int main (void) { ... },

• int main (int argc, char *argv[]) { ... }

• UNIX Systems have a 3rd way to define main(), though it is not
POSIX.1 compliant
int main (int argc, char *argv[], char *envp[])

– additional local and external functions and variables

A Simple C Program

• Create example file: try.c

• Compile using gcc:
gcc –o try try.c

• The standard C library libc is included
automatically

• Execute program
./try

• Note, I always specify an absolute path

/* you generally want to
* include stdio.h and
* stdlib.h
* */
#include <stdio.h>

• Note, I always specify an absolute path

• Normal termination:
void exit(int status);

– calls functions registered with
atexit()

– flush output streams

– close all open streams

– return status value and control to host
environment

#include <stdio.h>
#include <stdlib.h>

int main (void)
{

printf(“Hello World\n”);
exit(0);

}

Source and Header files

• Just as in C++, place related code within the same module
(i.e. file).

• Header files (*.h) export interface definitions
– function prototypes, data types, macros, inline functions and other

common declarations

• Do not place source code (i.e. definitions) in the header
file with a few exceptions.file with a few exceptions.
– inline’d code

– class definitions

– const definitions

• C preprocessor (cpp) is used to insert common definitions
into source files

• There are other cool things you can do with the
preprocessor

Another Example C Program

example.c
/* this is a C-style comment
* You generally want to palce
* all file includes at start of file

/* comments */
#ifndef _STDIO_H
#define _STDIO_H

... definitions and protoypes

#endif

/usr/include/stdio.h
#include directs the preprocessor
to “include” the contents of the file
at this point in the source file.
#define directs preprocessor to
define macros.

* all file includes at start of file
* */
#include <stdio.h>
#include <stdlib.h>

int
main (int argc, char **argv)
{
// this is a C++-style comment
// printf prototype in stdio.h
printf(“Hello, Prog name = %s\n”,

argv[0]);
exit(0);

}

/* prevents including file
* contents multiple
* times */
#ifndef _STDLIB_H
#define _STDLIB_H

... definitions and protoypes

#endif

/usr/include/stdlib.h

Passing Command Line Arguments

• When you execute a program
you can include arguments on
the command line.

• The run time environment will
create an argument vector.

– argv is the argument vector

– argc is the number of
arguments

./try –g 2 fred

argc = 4,
argv = <address0>

arguments

• Argument vector is an array of
pointers to strings.

• a string is an array of
characters terminated by a
binary 0 (NULL or ‘\0’).

• argv[0] is always the program
name, so argc is at least 1.

‘t’‘r’‘y’‘\0’
argv:

[0] <addres1>
[1] <addres2>
[2] <addres3>
[3] <addres4>
[4] NULL

‘-’‘g’‘\0’

‘2’‘\0’

‘f’‘r’‘e’‘d’‘\0’

C Standard Header Files you may want to use

• Standard Headers you should know about:
– stdio.h – file and console (also a file) IO: perror, printf,
open, close, read, write, scanf, etc.

– stdlib.h - common utility functions: malloc, calloc,
strtol, atoi, etc

– string.h - string and byte manipulation: strlen, strcpy,
strcat, memcpy, memset, etc.strcat, memcpy, memset, etc.

– ctype.h – character types: isalnum, isprint,
isupport, tolower, etc.

– errno.h – defines errno used for reporting system errors

– math.h – math functions: ceil, exp, floor, sqrt, etc.

– signal.h – signal handling facility: raise, signal, etc

– stdint.h – standard integer: intN_t, uintN_t, etc

– time.h – time related facility: asctime, clock, time_t,
etc.

The Preprocessor

• The C preprocessor permits you to define simple
macros that are evaluated and expanded prior to
compilation.

• Commands begin with a ‘#’. Abbreviated list:
– #define : defines a macro

– #undef : removes a macro definition– #undef : removes a macro definition

– #include : insert text from file

– #if : conditional based on value of expression

– #ifdef : conditional based on whether macro defined

– #ifndef : conditional based on whether macro is not defined

– #else : alternative

– #elif : conditional alternative

– defined() : preprocessor function: 1 if name defined, else 0
#if defined(__NetBSD__)

Preprocessor: Macros

• Using macros as functions, exercise caution:
– flawed example: #define mymult(a,b) a*b

• Source: k = mymult(i-1, j+5);

• Post preprocessing: k = i – 1 * j + 5;

– better: #define mymult(a,b) (a)*(b)
• Source: k = mymult(i-1, j+5);

• Post preprocessing: k = (i – 1)*(j + 5);

• Be careful of side effects, for example what if we did • Be careful of side effects, for example what if we did
the following
– Macro: #define mysq(a) (a)*(a)

– flawed usage:
• Source: k = mysq(i++)

• Post preprocessing: k = (i++)*(i++)

• Alternative is to use inline’ed functions
– inline int mysq(int a) {return a*a};

– mysq(i++) works as expected in this case.

Preprocessor: Conditional Compilation

• Its generally better to use inline’ed functions

• Typically you will use the preprocessor to define
constants, perform conditional code inclusion, include
header files or to create shortcuts

• #define DEFAULT_SAMPLES 100

• #ifdef __linux
static inline int64_t static inline int64_t
gettime(void) {...}

• #elif defined(sun)
static inline int64_t
gettime(void) {return (int64_t)gethrtime()}

• #else
static inline int64_t
gettime(void) {... gettimeofday()...}

• #endif

Another Simple C Program

int main (int argc, char **argv) {

int i;

printf(“There are %d arguments\n”, argc);

for (i = 0; i < argc; i++)

printf(“Arg %d = %s\n”, i, argv[i]);

return 0;

}

• Notice that the syntax is similar to Java

•What’s new in the above simple program?
– of course you will have to learn the new interfaces and utility

functions defined by the C standard and UNIX

– Pointers will give you the most trouble

• A variable declared as an array represents a contiguous
region of memory in which the array elements are stored.
int x[5]; // an array of 5 4-byte ints.

• All arrays begin with an index of 0

Arrays and Pointers

0

1

2

3

4

10 2 3

little endian byte ordering

memory layout for array x

• An array identifier is equivalent to a pointer that
references the first element of the array
– int x[5], *ptr;
ptr = &x[0] is equivalent to ptr = x;

• Pointer arithmetic and arrays:
– int x[5];
x[2] is the same as *(x + 2), the compiler will assume you
mean 2 objects beyond element x.

memory layout for array x

Pointers

• For any type T, you may form a pointer type to T.
– Pointers may reference a function or an object.

– The value of a pointer is the address of the corresponding object or
function

– Examples: int *i; char *x; int (*myfunc)();

• Pointer operators: * dereferences a pointer, & creates a pointer
(reference to)
– int i = 3; int *j = &i;

*j = 4; printf(“i = %d\n”, i); // prints i = 4*j = 4; printf(“i = %d\n”, i); // prints i = 4

– int myfunc (int arg);
int (*fptr)(int) = myfunc;
i = fptr(4); // same as calling myfunc(4);

• Generic pointers:
– Traditional C used (char *)

– Standard C uses (void *) – these can not be dereferenced or used in
pointer arithmetic. So they help to reduce programming errors

• Null pointers: use NULL or 0. It is a good idea to always initialize
pointers to NULL.

Pointers in C (and C++)
Address

0x3dc

0x3d8

Program Memory

0x3cc

0x3c8

Step 1:
int main (int argc, argv) {
int x = 4;
int *y = &x;
int *z[4] = {NULL, NULL, NULL, NULL};
int a[4] = {1, 2, 3, 4};

...

0x3d4

0x3d0

z[3]

z[2]

4

0x3dc

0

NA

NA

x

y

0x3c8

0x3c4

0x3c0

Note: The compiler converts z[1] or *(z+1) to
Value at address (Address of z + sizeof(int));

In C you would write the byte address as:
(char *)z + sizeof(int);

or letting the compiler do the work for you
(int *)z + 1;

0x3bc

0x3b8

0x3b4

0x3b0

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]
a[0]

0

0

0

4

3

2

1

Pointers Continued

4

0x3dc

Address

0x3dc

0x3d8

Program Memory

0x3bc 0x3cc

Step 1:
int main (int argc, argv) {
int x = 4;
int *y = &x;
int *z[4] = {NULL, NULL, NULL, NULL};
int a[4] = {1, 2, 3, 4};

Step 2: Assign addresses to array Z
z[0] = a; // same as &a[0];
z[1] = a + 1; // same as &a[1];

NA 0x3d4

0x3d0

z[3]

z[2]

NA

x

y

0x3b8

0x3b4

0x3b0

0x3c8

0x3c4

0x3c0

z[1] = a + 1; // same as &a[1];
z[2] = a + 2; // same as &a[2];
z[3] = a + 3; // same as &a[3];

0x3bc

0x3b8

0x3b4

0x3b0

4

3

2

1

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

Pointers Continued

4

0x3dc

Address

0x3dc

0x3d8

Program Memory

0x3bc 0x3cc

0x3c8

Step 1:
int main (int argc, argv) {
int x = 4;
int *y = &x;
int *z[4] = {NULL, NULL, NULL, NULL};
int a[4] = {1, 2, 3, 4};

Step 2:
z[0] = a;
z[1] = a + 1;

NA 0x3d4

0x3d0

z[3]

z[2]

NA

x

y

0x3b8

0x3b4

0x3b0

0x3c8

0x3c4

0x3c0

z[2] = a + 2;
z[3] = a + 3;

Step 3: No change in z’s values
z[0] = (int *)((char *)a);
z[1] = (int *)((char *)a

+ sizeof(int));
z[2] = (int *)((char *)a

+ 2 * sizeof(int));
z[3] = (int *)((char *)a

+ 3 * sizeof(int));

0x3bc

0x3b8

0x3b4

0x3b0

4

3

2

1

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

Getting Fancy with Macros
#define QNODE(type) \
struct { \
struct type *next; \
struct type **prev; \

}

#define QNODE_INIT(node, field) \
do { \

(node)->field.next = (node); \
(node)->field.prev = \

&(node)->field.next; \
} while (/* */ 0);

#define QFIRST(head, field) \

#define QINSERT_BEFORE(loc, node, field) \

do { \

*(loc)->field.prev = (node); \

(node)->field.prev = \

(loc)->field.prev; \

(loc)->field.prev = \

&((node)->field.next); \

(node)->field.next = (loc); \

} while (/* */0)

#define QINSERT_AFTER(loc, node, field) \
do { \#define QFIRST(head, field) \

((head)->field.next)

#define QNEXT(node, field) \
((node)->field.next)

#define QEMPTY(head, field) \
((head)->field.next == (head))

#define QFOREACH(head, var, field) \
for ((var) = (head)->field.next; \

(var) != (head); \
(var) = (var)->field.next)

do { \
((loc)->field.next)->field.prev = \

&(node)->field.next; \
(node)->field.next = (loc)->field.next; \
(loc)->field.next = (node); \
(node)->field.prev = &(loc)->field.next; \

} while (/* */ 0)

#define QREMOVE(node, field) \
do { \

*((node)->field.prev) = (node)->field.next;\
((node)->field.next)->field.prev = \

(node)->field.prev; \
(node)->field.next = (node); \
(node)->field.prev = &((node)->field.next);\

} while (/* */ 0)

typedef struct wth_t
{
int state;
QNODE(wth_t) alist;

} wth_t;

#define QNODE(type) \
struct { \

After Preprocessing and Compiling

typedef struct wth_t {
int state;
struct {
struct wth_t *next;
struct wth_t **prev;

} alist;
} wth_t;

CPP

#define QNODE_INIT(node, field) \
do { \
(node)->field.next = (node); \struct { \

struct type *next; \
struct type **prev; \

}

<integer> state
<address> next
<address> prev

3 words in memory

0
0x00100
0x00104

0x100

head: instance of wth_t

0x104

0x108

memory layout after GCC

QNODE_INIT(head, alist)

(node)->field.next = (node); \
(node)->field.prev = &(node)->field.next;\

} while (/* */ 0);

#define QINSERT_BEFORE(head, node, alist)\

do { \

*(head)->alist.prev = (node); \

(node)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node)->alist.next;\

(node)->alist.next = (head); \

} while (/* */0)

QNODE Manipulations

0x100 0
0x100
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

before

QINSERT_BEFORE(head, node0, alist);

?

#define QINSERT_BEFORE(head, node, alist)\

do { \

*(head)->alist.prev = (node); \

(node)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node)->alist.next;\

(node)->alist.next = (head); \

} while (/* */0)

0x100 0
0x100
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

QNODE Manipulations

before

QINSERT_BEFORE(head, node0, alist);

0x100 0
0x1a0
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

#define QINSERT_BEFORE(head, node, alist)\

do { \

*(head)->alist.prev = (node); \

(node)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node)->alist.next;\

(node)->alist.next = (head); \

} while (/* */0)

0x100 0
0x100
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

QNODE Manipulations

before

QINSERT_BEFORE(head, node0, alist);

0x100 0
0x1a0
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x104

node0

0x1a4

0x1a8

#define QINSERT_BEFORE(head, node, alist)\

do { \

*(head)->alist.prev = (node); \

(node)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node)->alist.next;\

(node)->alist.next = (head); \

} while (/* */0)

0x100 0
0x100
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

QNODE Manipulations

before

QINSERT_BEFORE(head, node0, alist);

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x1a0
0x104

node0

0x1a4

0x1a8

#define QINSERT_BEFORE(head, node, alist)\

do { \

*(head)->alist.prev = (node); \

(node)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node)->alist.next;\

(node)->alist.next = (head); \

} while (/* */0)

0x100 0
0x100
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

QNODE Manipulations

before

QINSERT_BEFORE(head, node0, alist);

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x100
0x104

node0

0x1a4

0x1a8

#define QINSERT_BEFORE(head, node, alist)\

do { \

*(head)->alist.prev = (node); \

(node)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node)->alist.next;\

(node)->alist.next = (head); \

} while (/* */0)

0x100 0
0x100
0x104

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

QNODE Manipulations

before

QINSERT_BEFORE(head, node0, alist);

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x100
0x104

node0

0x1a4

0x1a8

Adding a Third Node

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x100
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x204

node1

0x204

0x208

#define QINSERT_BEFORE(head, node, alist)\

do { \

*(head)->alist.prev = (node); \

(node)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node)->alist.next; \

(node)->alist.next = (head); \

} while (/* */0)

QINSERT_BEFORE(head, node1, alist);

0x200 0
0x200
0x204

node1

0x204
0x208

0x100 0
0x1a0
0x1a4

head

0x104
0x108

0x1a0 0
0x100
0x104

node0

0x1a4
0x1a8

Adding a Third Node

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x100
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x204

node1

0x204

0x208

#define QINSERT_BEFORE(head, node1, alist)\

do { \

*(head)->alist.prev = (node1); \

(node1)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node1)->alist.next; \

(node1)->alist.next = (head); \

} while (/* */0)

(1)

QINSERT_BEFORE(head, node1, alist);

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x204

node1

0x204

0x208

(1)

Adding a Third Node

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x100
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x204

node1

0x204

0x208

#define QINSERT_BEFORE(head, node1, alist)\

do { \

*(head)->alist.prev = (node1); \

(node1)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node1)->alist.next; \

(node1)->alist.next = (head); \

} while (/* */0)

(2)

QINSERT_BEFORE(head, node1, alist);

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x1a4

node1

0x204

0x208

(1)

(2)

Adding a Third Node

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x100
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x204

node1

0x204

0x208

#define QINSERT_BEFORE(head, node1, alist)\

do { \

*(head)->alist.prev = (node1); \

(node1)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node1)->alist.next; \

(node1)->alist.next = (head); \

} while (/* */0)

(1)

(2)

(3)

QINSERT_BEFORE(head, node1, alist);

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x1a4

node1

0x204

0x208

(1)

(2)

(3)

Adding a Third Node

0x100 0
0x1a0
0x1a4

head

0x104

0x108

0x1a0 0
0x100
0x104

node0

0x1a4

0x1a8

0x200 0
0x200
0x204

node1

0x204

0x208

#define QINSERT_BEFORE(head, node1, alist)\

do { \

*(head)->alist.prev = (node1); \

(node1)->alist.prev = (head)->alist.prev; \

(head)->alist.prev = &(node1)->alist.next; \

(node1)->alist.next = (head); \

} while (/* */0)

(1)

(2)

(3)

(4)

QINSERT_BEFORE(head, node1, alist);

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

(1)

(2)

(3)

(4)

Removing a Node

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

#define QREMOVE(node, alist) \

do { \

(1) *((node)->alist.prev) = (node)->alist.next; \

(2) ((node)->alist.next)->alist.prev = (node)->alist.prev;\

(3) (node)->alist.next = (node); \

(4) (node)->alist.prev = &((node)->alist.next); \

} while (/* */ 0)

QREMOVE(node0, alist);

0x100 0
??
??

head

0x104

0x108

0x1a0 0
??
??

node0

0x1a4

0x1a8

0x200 0
??
??

node1

0x204

0x208

Removing a Node

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

#define QREMOVE(node, alist) \

do { \

*((node)->alist.prev) = (node)->alist.next; \

((node)->alist.next)->alist.prev = (node)->alist.prev;\

(node)->alist.next = (node); \

(node)->alist.prev = &((node)->alist.next); \

} while (/* */ 0)

QREMOVE(node0, alist);

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

Removing a Node

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

#define QREMOVE(node0, alist) \

do { \

(1) *((node0)->alist.prev) = (node0)->alist.next; \

((node0)->alist.next)->alist.prev = (node0)->alist.prev;\

(node0)->alist.next = (node0); \

(node0)->alist.prev = &((node0)->alist.next); \

} while (/* */ 0)

0x100 0
0x200
0x204

head

0x104
0x108

0x1a0 0
0x200
0x104

node0

0x1a4
0x1a8

0x200 0
0x100
0x1a4

node1

0x204
0x208

QREMOVE(node0, alist);

(1)

Removing a Node

0x100 0
0x1a0
0x204

head

0x104
0x108

0x1a0 0
0x200
0x104

node0

0x1a4
0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

#define QREMOVE(node0, alist) \

do { \

*((node0)->alist.prev) = (node0)->alist.next; \

(2) ((node0)->alist.next)->alist.prev = (node0)->alist.prev;\

(node0)->alist.next = (node0); \

(node0)->alist.prev = &((node0)->alist.next); \

} while (/* */ 0)

0x100 0
0x200
0x204

head

0x104
0x108

0x1a0 0
0x200
0x104

node0

0x1a4
0x1a8

0x200 0
0x100
0x104

node1

0x204
0x208

0x1a40x208

QREMOVE(node0, alist);

(2)

Removing a Node

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

#define QREMOVE(node0, alist) \

do { \

*((node0)->alist.prev) = (node0)->alist.next; \

((node0)->alist.next)->alist.prev = (node0)->alist.prev;\

(3) (node0)->alist.next = (node0); \

(node0)->alist.prev = &((node0)->alist.next); \

} while (/* */ 0)

0x100 0
0x200
0x204

head

0x104
0x108

0x1a0 0
0x1a0
0x104

node0

0x1a4
0x1a8

0x200 0
0x100
0x104

node1

0x204
0x208

0x1a40x208

QREMOVE(node0, alist);

(3)

Removing a Node

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204
0x208

#define QREMOVE(node0, alist) \

do { \

*((node0)->alist.prev) = (node0)->alist.next; \

((node0)->alist.next)->alist.prev = (node0)->alist.prev;\

(node0)->alist.next = (node0); \

(4) (node0)->alist.prev = &((node0)->alist.next); \

} while (/* */ 0)

0x100 0
0x200
0x204

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

0x200 0
0x100
0x104

node1

0x204

0x208

0x1a40x208

QREMOVE(node0, alist);

(4)

Solution to Removing a Node

0x100 0
0x1a0
0x204

head

0x104

0x108

0x1a0 0
0x200
0x104

node0

0x1a4

0x1a8

0x200 0
0x100
0x1a4

node1

0x204

0x208

#define QREMOVE(node, alist) \

do { \

(1) *((node)->alist.prev) = (node)->alist.next; \

(2) ((node)->alist.next)->alist.prev = (node)->alist.prev;\

(3) (node)->alist.next = (node); \

(4) (node)->alist.prev = &((node)->alist.next); \

} while (/* */ 0)

0x1a40x208

QREMOVE(node0, alist);

0x100 0
0x200
0x204

head

0x104

0x108

0x1a0 0
0x1a0
0x1a4

node0

0x1a4

0x1a8

0x200 0
0x100
0x104

node1

0x204

0x208

Functions

• Always use function prototypes
int myfunc (char *, int, struct MyStruct *);
int myfunc_noargs (void);
void myfunc_noreturn (int i);

• C and C++ are call by value, copy of parameter passed to function

– C++ permits you to specify pass by reference

– if you want to alter the parameter then pass a pointer to it (or use – if you want to alter the parameter then pass a pointer to it (or use
references in C++)

• If performance is an issue then use inline functions, generally
better and safer than using a macro. Common convention

– define prototype and function in header or name.i file

– static inline int myinfunc (int i, int j);

– static inline int myinfunc (int i, int j) { ... }

Basic Types and Operators

• Basic data types

– Types: char, int, float and double

– Qualifiers: short, long, unsigned, signed, const

• Constant: 0x1234, 12, “Some string”

• Enumeration:

– Names in different enumerations must be distinct

– enum WeekDay_t {Mon, Tue, Wed, Thur, Fri};– enum WeekDay_t {Mon, Tue, Wed, Thur, Fri};
enum WeekendDay_t {Sat = 0, Sun = 4};

• Arithmetic: +, -, *, /, %

– prefix ++i or --i ; increment/decrement before value is used

– postfix i++, i--; increment/decrement after value is used

• Relational and logical: <, >, <=, >=, ==, !=, &&, ||

• Bitwise: &, |, ^ (xor), <<, >>, ~(ones complement)

Operator Precedence (from “C a Reference Manual”, 5th Edition)

T
ok

en
s

O
p

erator

C
lass

P
reced

en
ce

A
ssociates

names,
literals

simple tokens primary

16

n/a

a[k] subscripting postfix left-to-right

f(...) function call postfix left-to-right

. direct selection postfix left-to-right

-> indirect selection postfix left to right

T
ok

en
s

O
p

erator

C
lass

P
reced

en
ce

A
ssociates

(type) casts unary 14 right-to-left

* / % multiplicative binary 13 left-to-right

+ - additive binary 12 left-to-right

<< >> left, right shift binary 11 left-to-right

< <= > >= relational binary 10 left-to-right

== != equality/ineq. binary 9 left-to-right
++ -- increment, decrement postfix left-to-right

(type){init} compound literal postfix left-to-right

++ -- increment, decrement prefix

15

right-to-left

sizeof size unary right-to-left

~ bitwise not unary right-to-left

! logical not unary right-to-left

- + negation, plus unary right-to-left

& address of unary right-to-left

*
indirection

(dereference)
unary right-to-left

== != equality/ineq. binary 9 left-to-right

& bitwise and binary 8 left-to-right

^ bitwise xor binary 7 left-to-right

| bitwise or binary 6 left-to-right

&& logical and binary 5 left-to-right

|| logical or binary 4 left-to-right

?: conditional ternary 3 right-to-left

= += -=

*= /= %=

&= ^= |=

<<= >>=

assignment binary 2 right-to-left

, sequential eval. binary 1 left-to-right

Structs and Unions

• structures
– struct MyPoint {int x, int y};

– typedef struct MyPoint MyPoint_t;

– MyPoint_t point, *ptr;

– point.x = 0;point.y = 10;

– ptr = &point; ptr->x = 12; ptr->y = 40;

• unions
– union MyUnion {int x; MyPoint_t pt; struct {int
3; char c[4]} S;};

– union MyUnion x;

– Can only use one of the elements. Memory will be allocated for
the largest element

Conditional Statements (if/else)

if (a < 10)
printf(“a is less than 10\n”);

else if (a == 10)
printf(“a is 10\n”);

else
printf(“a is greater than 10\n”);

• If you have compound statements then use brackets (blocks)

– if (a < 4 && b > 10) {
c = a * b; b = 0;c = a * b; b = 0;
printf(“a = %d, a\’s address = 0x%08x\n”, a, (uint32_t)&a);

} else {
c = a + b; b = a;

}

• These two statements are equivalent:

– if (a) x = 3; else if (b) x = 2; else x = 0;

– if (a) x = 3; else {if (b) x = 2; else x = 0;}

• Is this correct?

– if (a) x = 3; else if (b) x = 2;
else (z) x = 0; else x = -2;

Conditional Statements (switch)

int c = 10;

switch (c) {

case 0:

printf(“c is 0\n”);

break;

...

default:default:

printf(“Unknown value of c\n”);

break;

}

• What if we leave the break statement out?

• Do we need the final break statement on the default case?

Loops

for (i = 0; i < MAXVALUE; i++) {
dowork();

}

while (c != 12) {
dowork();

}

do {
dowork();

• flow control
– break – exit innermost loop

– continue – perform next iteration of loop

• Note, all these forms permit one statement to be executed. By
enclosing in brackets we create a block of statements.

dowork();
} while (c < 12);

Building your program

• For all labs and programming assignments:
– you must supply a make file

– you must supply a README file that describes the assignment
and results. This must be a text file, no MS word.

– of course the source code and any other libraries or utility
code you used

– you may submit plots, they must be postscript or pdf– you may submit plots, they must be postscript or pdf

make and Makefiles, Overview

• Why use make?

– convenience of only entering compile directives once

– make is smart enough (with your help) to only compile and link modules
that have changed or which depend on files that have changed

– allows you to hide platform dependencies

– promotes uniformity

– simplifies my (and hopefully your) life when testing and verifying your
codecode

• A makefile contains a set of rules for building a program
target ... : prerequisites ...

command
...

• Static pattern rules.

– each target is matched against target-pattern to derive stem which is
used to determine prereqs (see example)
targets ... : target-pattern : prereq-patterns ...

command
...

Makefiles
• Defining variables
MyOPS := -DWTH
MyDIR ?= /home/fred
MyVar = $(SHELL)

• Using variables
MyFLAGS := $(MyOPS)

• Built-in Variables• Built-in Variables
– $@ = filename of target

– $< = name of the first prerequisites

• Patterns
– use % character to determine stem

– foo.o matches the pattern %.o with foo as the stem.

– foo.o moo.o : %.o : %.c # says that foo.o depends on foo.c and
moo.o depends on moo.c

Example Makefile for wulib

Project specific
include ../Makefile.inc
INCLUDES = ${WUINCLUDES} –I.
LIBS = ${WILIBS} ${OSLIBS}
CFLAGS = ${WUCLFAGS} –DWUDEBUG
CC = ${WUCC}

HDRS := util.h
CSRCS := testapp1.c testapp2.c
SRCS := util.c callout.c
COBJS = $(addprefix ${OBJDIR}/, \

$(patsubst %.c,%.o,$(CSRCS)))
OBJS = $(addprefix ${OBJDIR}/, \

$(patsubst %.c,%.o,$(SRCS)))

Makefile.inc
Contains common definitions

MyOS := $(shell uname -s)
MyID := $(shell whoami)
MyHost := $(shell hostname)
WARNSTRICT := -W \

-Wstrict-prototypes
\

-Wmissing-prototypes
WARNLIGHT := -Wall
WARN := ${WARNLIGHT}
ALLFLGS := -D_GNU_SOURCE \

-D_REENTRANT \
-D_THREAD_SAFE

Makefile.inc Makefile

$(patsubst %.c,%.o,$(SRCS)))
CMDS = $(addprefix ${OBJDIR}/, $(basename $(CSRCS)))

all : $(OBJDIR) $(CMDS)

install : all

$(OBJDIR) :
mkdir $(OBJDIR)

$(OBJS) $(COBJS) : ${OBJDIR}/%.o : %.c $(HDRS)
${CC} ${CFLAGS} ${INCLUDES} –o $@ -c $<

$(CMDS) : ${OBJDIR}/% : ${OBJDIR}/%.o $(OBJS)
${CC} ${CFLAGS} -o $@ $@.o ${LIBS}
chmod 0755 $@

clean :
/bin/rm -f $(CMDS) $(OBJS)

-D_THREAD_SAFE

APPCFLGS = $(ALLFLGS) \
$(WARN)

WUCC := gcc
WUCFLAGS := -DMyOS=$(MyOS) \

$(OSFLAGS) \
$(ALLFLGS) $(WARN)

WUINCLUDES :=
WULIBS := -lm

ifeq (${MyOS), SunOS)

OSLIBS+= -lrt

endif

Project Documentation

• README file structure

– Section A: Introduction
describe the project, paraphrase the requirements and state your
understanding of the assignments value.

– Section B: Design and Implementation
List all files turned in with a brief description for each. Explain your
design and provide simple psuedo-code for your project. Provide a simple
flow chart of you code and note any constraints, invariants, assumptions
or sources for reused code or ideas.or sources for reused code or ideas.

– Section C: Results
For each project you will be given a list of questions to answer, this is
where you do it. If you are not satisfied with your results explain why
here.

– Section D: Conclusions
What did you learn, or not learn during this assignment. What would you
do differently or what did you do well.

Attacking a Project
• Requirements and scope: Identify specific requirements and or goals.

Also note any design and/or implementation environment
requirements.
– knowing when you are done, or not done

– estimating effort or areas which require more research

– programming language, platform and other development environment
issues

• Approach: How do you plan to solve the problem identified in the first
step. Develop a prototype design and document. Next figure out how step. Develop a prototype design and document. Next figure out how
you will verify that you did satisfy the requirements/goals. Designing
the tests will help you to better understand the problem domain and
your proposed solution

• Iterative development: It is good practice to build your project in
small pieces. Testing and learning as you go.

• Final Touches: Put it all together and run the tests identified in the
approach phase. Verify you met requirements. Polish you code and
documentation.

• Turn it in:

	Brief Introduction to the C Programming Language
	Introduction
	Standard C
	Elements of a C Program
	A Simple C Program
	Source and Header files
	Another Example C Program
	Passing Command Line Arguments
	C Standard Header Files you may want to use
	The Preprocessor
	Preprocessor: Macros
	Preprocessor: Conditional Compilation
	Another Simple C Program
	Arrays and Pointers
	Pointers
	Pointers in C (and C++)
	Pointers Continued
	Pointers Continued
	Getting Fancy with Macros
	After Preprocessing and Compiling
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	Adding a Third Node
	Adding a Third Node
	Adding a Third Node
	Adding a Third Node
	Adding a Third Node
	Removing a Node
	Removing a Node
	Removing a Node
	Removing a Node
	Removing a Node
	Removing a Node
	Solution to Removing a Node
	Functions
	Basic Types and Operators
	Operator Precedence (from “C a Reference Manual”, 5th Edition)
	Structs and Unions
	Conditional Statements (if/else)
	Conditional Statements (switch)
	Loops
	Building your program
	make and Makefiles, Overview
	Makefiles
	Example Makefile for wulib
	Project Documentation
	Attacking a Project

