Brief Introduction to the C
Programming Language

By:- Mr. Kashid P.R.

Introduction

The C programming language was designed by Dennis
Ritchie at Bell Laboratories in the early 1970s

» Influenced by

- ALGOL 60 (1960),

- CPL (Cambridge, 1963),

- BCPL (Martin Richard, 1967),
- B (Ken Thompson, 1970)

Traditionally used for systems programming, though
this may be changing in favor of C++

Traditional C:

- The C Programming Language, by Brian Kernighan and Dennis
Ritchie, 2" Edition, Prentice Hall

- Referred to as K&R

Standard C

Standardized in 1989 by ANSI (American National
Standards Institute) known as ANSI C

 International standard (ISO) in 1990 which was

adopted by ANSI and is known as £89

* As part of the normal evolution process the standard
was updated in 1995 (£95) and 1999 (£99)

- C++and C

- C++ extends C to include support for Object Oriented
Programming and other features that facilitate large software
development projects

- Cis not strictly a subset of C++, but it is possible to write
“Clean C" that conforms to both the C++ and C standards.

Elements of a C Program

* A C development environment includes

- System libraries and headers. a set of standard libraries and
their header files. For example see /usr/include and glibc.

- Application Source:. application source and header files
- Compiler. converts source to object code for a specific platform

- Linker. resolves external references and produces the
executable module

- User program structure
- there must be one main function where execution begins when
the program is run. This function is called main
e int main (void) { ... 1},
e int main (int argc, char *argv([]) { ... }

+ UNIX Systems have a 3¢ way to define main(), though it is not
POSIX.1 compliant

int main (int argc, char *argv([], char *envp[])

- additional local and external functions and variables

A Simple C Program

Create example file: try.c

Compile using gcc:
gcc —o try try.c

The standard C library /ibc is included

au’roma’rically /* you generally want to
* include stdio.h and

Execute program * stdlib.h

./try * x/

#include <stdio.h>

Note, I always specify an absolute path #include <stdlib.h>

Normal termination:

void exit (int status); int main (void)
: : : {
- calls functions registered with printf (“Hello World\n”) ;
atexit () exit (0);
- flush output streams }

- close all open streams

- return status value and control to host
environment

Source and Header files

- Just as in C++, place related code within the same module
(i.e. file).
* Header files (*.h) export interface definitions
- function prototypes, data types, macros, inline functions and other
common declarations
Do not place source code (i.e. definitions) in the header
file with a few exceptions.
- inline'd code
- class definitions
- const definitions

C preprocessor (cpp) is used to insert common definitions
into source files

* There are other cool things you can do with the
preprocessor

Another Example C Program

/usr/include/stdio.h

/* comments */
#ifndef STDIO H
#define STDIO H

. definitions and protoypes

#fendif

/usr/include/stdlib.h

/* prevents including file
* contents multiple
* times */

#ifndef STDLIB H

#define STDLIB H

. definitions and protoypes

#endif

#include directs the preprocessor
to “include” the contents of the file
at this point in the source file.
#define directs preprocessor to
define macros.

example.c

/* this is a C-style comment
* You generally want to palce

**/

/////’ * all file includes at start of file

#include <stdio.h>
#include <stdlib.h>

int

main (int argc, char **argv)

{
// this is a C++-style comment
// printf prototype in stdio.h
printf (“Hello, Prog name = %$s\n”,

argv([0]);

exit (0) ;

}

Passing Command Line Arguments

When you execute a program
you can include arguments on
the command line.

The run time environment will
create an argument vector.
- argv is the argument vector
— argc is the number of
arguments
Argument vector is an array of
pointers to strings.
a string is an array of
characters terminated by a
binary O (NULL or \O').
argv/0]is always the program
name, so argc is at least 1.

./try —-g 2

fred

4,
<add

argc

S w N PO

argv:
<addresl>
<addres2>-
<addres 3>
<addres4>=—
NULL

ress(0>

f)\tl \rl \yl \\Ol

/_>_r \g.r \\Or

\)\2/ ‘\O’

U

\fl \rl \el \dl \\Ol

C Standard Header Files you may want to use

» Standard Headers you should know about:

- stdio.h - file and console (also a file) IO: perror, printf,
open, close, read, write, scanf,efc.

- stdlib.h - common utility functions: malloc, calloc,
strtol, atoi, etfc

- string.h - string and byte manipulation: strlen, strcpy,
strcat, memcpy, memset, efc.

- ctype.h - character types: isalnum, isprint,
isupport, tolower, etc.

- errno.h -defines errno used for reporting system errors
— math.h - math functions: ceil, exp, floor, sqrt, etc.
- signal.h -signal handling facility: raise, signal, efc

- stdint.h - standard integer: intN t, uintN ¢, etc

- time.h - time related facility: asctime, clock, time ¢,
etc.

The Preprocessor

The C preprocessor permits you to define simple
macros that are evaluated and expanded prior to
compilation.

Commands begin with a '#'. Abbreviated list:
— #define :defines a macro
— #undef : removes a macro definition
— #include : insert text from file
— #1if : conditional based on value of expression
— #ifdef : conditional based on whether macro defined
— #ifndef : conditional based on whether macro is not defined
— #else : alternative
— #elif : conditional alternative

- defined() : preprocessor function: 1 if name defined, else O
#if defined(NetBSD)

Preprocessor: Macros

» Using macros as functions, exercise caution:
- flawed example: #define mymult (a,b) a*b
- Source: k = mymult (i-1, J+5);
- Post preprocessing:k = i - 1 * j + 5;
- better: #define mymult (a,b) (a)* (b)
- Source: k = mymult (i-1, J+5);

- Post preprocessing: k = (1 - 1)*(j + 5);
* Be careful of side effects, for example what if we did
the following

- Macro: #define mysqg(a) (a)* (a)
- flawed usage:
- Source: k = mysq (i++)
- Post preprocessing: k = (i++)* (i++)
* Alternative is to use inline'ed functions
— inline 1int mysg(int a) {return a*a};
- mysqg (i++) works as expected in this case.

Preprocessor: Conditional Compilation

Its generally better to use inline'ed functions

Typically you will use the preprocessor to define
constants, perform conditional code inclusion, include
header files or to create shortcuts

#define DEFAULT SAMPLES 100
#ifdef linux

static inline 1into4d t
gettime (void) {...}

#e1i1f defined (sun)

static inline 1into4d t
gettime (void) {return (into64 t)gethrtime() }

#felse

static inline 1into4d t
gettime (void) {... gettimeofday() ...}

#fendif

Another Simple C Program

int main (int argc, char **argv) {
int 1;
printf ("There are %d arguments\n”, argc);
for (1 = 0; i < argc; i++)
printf (“Arg %$d = %$s\n”, 1, argv([i]):

return 0O;

}

* Notice that the syntax is similar o Java

*What's new in the above simple program?

- of course you will have to learn the new interfaces and utility
functions defined by the C standard and UNIX

- Pointers will give you the most trouble

Arrays and Pointers

A variable declared as an array represents a contiguous
region of memory in which the array elements are stored.
int x[5]; // an array of 5 4-byte ints.

little endian byte ordering

All arrays begin with an index of O o

A~ W N = O

memory Iayoiut foriarray X
An array identifier is equivalent to a pointer that
references the first element of the array
- int x[b5], *ptr;
ptr = &x[0] isequivalent to ptr = x;
Pointer arithmetic and arrays:

- int x[5];
x[2] is the same as * (x + 2), the compiler will assume you
mean 2 objects beyond element x.

Pointers

For any type T, you may form a pointer type to T.
- Pointers may reference a function or an object.

- The value of a pointer is the address of the corresponding object or
function

- Exampks:int *1; char *x; int (*myfunc) (),

Pointer operators: * dereferences a pointer, & creates a pointer

(reference to)

— 1nt 1 = 3; 1int *]J
*] = 4; printf (N1

&1;
$d\n”, 1); // prints 1 = 4
— 1int myfunc (int arqg);
int (*fptr) (int) = myfunc;
i = fptr(4); // same as calling myfunc (4);
Generic pointers:
- Traditional C used (char *)
- Standard C uses (void *) - these can not be dereferenced or used in
pointer arithmetic. So they help to reduce programming errors
Null pointers: use NULL or O. It is a good idea to always initialize
pointers to NULL.

Pointers in C (and C++)

Step 1:
int main (int argc, argv) {
int x = 4;

int *y = &x;
int *z[4] = {NULL, NULL, NULL, NULL};
int a[4] = {1, 2, 3, 4};

Note: The compiler converts z[1] or *(z+1) to
Value at address (Address of z + sizeof(int));

In C you would write the byte address as:
(char *)z + sizeof (int);

or letting the compiler do the work for you
(int *)z + 1;

X
y

z[3]
z[2]
z[1]
z[0]
al3]
al2]
all]
al0]

Program Memory

0x3dc

Z
2>

Z
>

S 5 N 5 I B S T [[T [)

Address

0x3dc
0x3d8
0x3d4
0x3d0
0Ox3cc
0x3c8
0x3c4
0x3c0
0x3bc
0x3b8
0x3b4
0x3b0

Pointers Continued

{

NULL, NULL};

&al0];

Step 1:

int main (int argc, argv)
int x = 4;
int *y = &x;
int *z[4] = {NULL, NULL,
int af(4] = {1, 2, 3, 4};

Step 2: Assign addresses to array 2
z[0] = a; // same as
z[1l] = a + 1; // same as
z[2] = a + 2; // same as
z[3] = a + 3; // same as

z[3]
z[2]
z[1]
z[0]
al3]
al2]
al1]
al0]

0x3dc

NA

NA

0x3bc

0x3b8

0x3b4

0x3b0

=l I\ R S

Program Memory Address

0x3dc
0x3d8
0x3d4
0x3d0

0Ox3cc
0x3c8
0x3c4
0x3c0
0x3bc
0x3b8
0x3b4
0x3b0

Step 1:
int main

int x =

int *
int a
Step 2:

int *y
v4
[

Pointers Continued

Program Memory Address

int argc,

{NULL,

= {1, 2/

argv)

NULL,

3/ 41 ;

{

NULL, NULL};

: No change in z’s values
(int *) ((char *)a);
(int *) ((char *)a

+ sizeof (int));

(int *) ((char *)a

+ 2 * sizeof(int));

(int *) ((char *)a

+ 3 * sizeof(int));

z[3]
z[2]
z[1]
z[0]
al3]
al2]
al1]
al0]

0Ox3dc

NA

NA

0x3bc

0x3b8

0x3b4

0x3b0

=l I\ RS

0x3dc
0x3d8
0x3d4
0x3d0
0x3cc
0x3c8
0x3c4
0x3c0
0x3bc
0x3b8
0x3b4
0x3b0

Getting Fancy with Macros

#define QONODE (type) \ #define QINSERT BEFORE (loc, node, field) \
strzct i . . . t do { \
struc e *next;)
struct tzie **prev; \ *(loc)->field.prev = (node); \
} (node)->field.prev = \
(loc)->field.prev; \
#define QNODE INIT (node, field) \ (loc)->field.prev = \
do({ de) —>field (node) t & ((node) ->field.next); \
node)->field.next = (node);)
(node) ->field.prev = \ (node) ->field.next = (loc); \
& (node) ->field.next; \ } while (/* */0)
} while (/* */ 0);
#define QINSERT_AFTER(lOC, node, field) \
#define QFIRST (head, field) \ do { \
((head) ->field.next) ((loc)->field.next)->field.prev = \
& (node) ->field.next; \
#define QNEXT (node, field) \ (node) ->field.next = (loc)->field.next; \
((node)->field.next) (loc)->field.next = (node); \
(node) ->field.prev = &(loc)->field.next; \
#define QEMPTY (head, field) \ } while (/* */ 0)
((head)->field.next == (head))
#define QREMOVE (node, field) \
#define QFOREACH (head, var, field) \ do { \
for ((var) = (head)->field.next; \ * ((node) ->field.prev) = (node)->field.next; \
(var) != (head); \ ((node)->field.next)->field.prev = \
(var) = (var)->field.next) (node) ->field.prev; \
(node) ->field.next = (node); \
(node) ->field.prev = &((node)->field.next); \

} while (/* */ 0)

After Preprocessing and Compiling

typedef struct wth t

L CPP
1int state; L = = = =
ONODE (wth t) alist;

1 PEPS N PN 4+ 2

typedef struct wth t {
int state;
struct {
struct wth t *next;
struct wth t **prev;
} alist;

#define QNODE INIT (node, field)
do {
(node) ->field.next = (node);

(node) ->field.prev = & (node)->field.next;

} while (/* */ 0);

~ - -

after GCC

) head: instance of wth_t

0x100 | o QNODE_INIT(head, alist) | <integer> state
0x104 | 0x00100 = = = = = = ==|<gddress> next

0x108 | 0x00104

3 words in memory

<address> prev

QNODE Manipulations

#define QINSERT BEFORE(head, node, alist)\
before N \
head node0 *(head)->alist.prev = (node); \
0x100) 0 0x1a0 | 0 (node)->alist.prev = (head)->alist.prev; \
0x104 | 0x100 Ox1a4 | Ox1a0])
0x108 | 0x104 0x1a8 | Ox1a4 (head)->alist.prev = &(node)->alist.next;\
(node)->alist.next = (head); \

' while (/* */0)

QINSERT_BEFORE(head, node0, alist);

?

QNODE Manipulations

#define QINSERT BEFORE(head, node, alist)\
before OB)
head node0 *(head)->alist.prev = (node); \
0x100 | 0 0x1a0| 0
0x104 | 0x100 Ox1a4 | Ox1a0
0x108 | 0x104 Ox1a8 | Ox1a4
\

' while (/* */0)

QINSERT_BEFORE(head, nodeO0, alist);

head node0
0x100 _—////,————» Ox1a0
0x104 | 0x1a0 — Ox1a4

0x108 Ox1a8

QNODE Manipulations

#define QINSERT BEFORE(head, node, alist)\
before e QINSERT- (\)
head node0
0x100 | O 0x1a0 | 0 . .
de)->alist. = (head)->alist. <\
0x104 | 0x100 Ox1a4 | 0x1a0 (node)->alist.prev = (head)->alist.prev:
0x108 | 0x104 Ox1a8 | Ox1a4

v while (/* */0)

QINSERT_BEFORE(head, nodeO0, alist);

head node0
0x100 | 0 , 0x1a0 | 0
0x104 | 0x1a0 =" Ox1a4 | Ox1a0
0x108 Ox1a8 | 0x104 -

QNODE Manipulations

node0

before
head
0x100 | O 0x1a0 | 0
0x104 | 0x100 Ox1a4
0x108 | 0x104 Ox1a8

*
#...
..........

0Ox1a0
Ox1a4

#define QINSERT BEFORE(head, node, alist)\

do {

\

(head)->alist.prev = &(node)->alist.next;\

v while (/* */0)

QINSERT_BEFORE(head, nodeO0, alist);

.
...........
. "y
o uy
.
. ‘e
* ‘e
.
*e
.

head

0 e 0x1a0
0x1a0 =" Ox1a4
oxlad -— Oxias

*
.
.
Py

b

QNODE Manipulations

b efo re #dg(f)ilge QINSERT BEFORE(head, node, alist\)\
head node0
0x100 | O 0x1a0 | 0
0x104 | 0x100 Ox1a4 | Ox1a0
0x108 | 0x104 Ox1a8 | Ox1a4
(node)->alist.next = (head); \

.
o*
o
*

*
#...

v while (/* */0)

QINSERT_BEFORE(head, nodeO0, alist);

--

........
......
]
"a
L]
L]
]

head

0 e 0x1a0
Ox1@0 === e > Ox1a4
Ox1ad «feemem"" O0x1a8

QNODE Manipulations

#define QINSERT BEFORE(head, node, alist)\
before N :
head node0 *(head)->alist.prev = (node); \
g;‘ 82 8x 100 g;‘ 22 8x 120 (node)->alist.prev = (head)->alist.prev; \
0x108 | 0x104 0x1a8 | Ox1a4 (head)->alist.prev = &(node)->alist.next;\
(node)->alist.next = (head); \

v while (/* */0)

QINSERT_BEFORE(head, nodeO0, alist);

(head node0
0x100 O0x1a0| 0

0 /_’
0x104 | 0x1a0 —/-—» Ox1a4 | 0x100 —
0x108 | Ox1a4 — Ox1a8 | 0x104

Adding a Third Node

#define QINSERT BEFORE(head, node, alist)\

head node0
0x100 | 0 0x1a0 | 0 do {
0x104 | 0x1a0 | Ox1a4 | 0x100 *(head)->alist.prev = (node);
0x108 | Ox1a4 Ox1a8 | 0x104 (node)->alist.prev = (head)->alist.prev;
(head)->alist.prev = &(node)->alist.next;
nodef (node)->alist.next = (head);
0x200 | 0 \ while (/* */0)

0x204 | 0x200
0x208 | 0x204

QINSERT_BEFORE(head, node1, alist);

= = =

(head node0 node1
0x100 | O Ox1a0 |0 0x200 (0

0x104 | Ox1a0 —? Ox1a4 | 0x100 — 0x204 | 0x200

0x108 | Ox1a4 - Ox1a8 | 0x104 — 0x208 | 0x204

Adding a Third Node

#define QINSERT BEFORE(head, nodel, alist)\

head node0
0x100 | 0 0x1a0 | 0 do {
0x104 | Ox1a0 | Ox1a4 | 0x100 (1) *(head)->alist.prev = (nodel);
0x108 | Ox1a4 Ox1a8 | 0x104 (nodel)->alist.prev = (head)->alist.prev;
(head)->alist.prev = &(nodel)->alist.next;
nodef (nodel)->alist.next = (head);
0x200 | 0 \ while (/* */0)

0x204 | 0x200
0x208 | 0x204

QINSERT_BEFORE(head, node1, alist);

= = =

head node0 (1) node1
0x100 | O /—’Ox1a0 0 0x200| 0
0x104 | Ox1a0 — Ox1a4 | 0x200 — 0x204 | 0x200
0x108 | Ox1a4 — 0x1a8 | 0x104 — 0x208 | 0x204

Adding a Third Node

#define QINSERT BEFORE(head, nodel, alist)\

*(head)->alist.prev = (nodel);
(2) (nodel)->alist.prev = (head)->alist.prev;

(head)->alist.prev = &(nodel)->alist.next;
(nodel)->alist.next = (head);

head node0
0x100 | 0 0x1a0| 0 do
0x104 | Ox1a0 Ox1a4 | 0x100
0x108 | Ox1a4 Ox1a8 | 0x104
node1
0x200/ 0 ! while (/* */0)
0x204 | 0x200
0x208 | 0x204
QINSERT_BEFORE(head, node1, alist);
head node0
0x100 | O _—’//,,——--* Ox1a0| 0
0x104 | Ox1a0 — Ox1a4 | 0x200 —
0x108 | Ox1a4 — 0Ox1a8 | 0x104 —

0x200
0x204
0x208

node1

0x200

Ox1a4 _

= = =

Adding a Third Node

#define QINSERT BEFORE(head, nodel, alist)\

node1

0x200

Ox1a4 -

head node0
0x100 | 0 0x1a0 | 0 do {
0x104 | 0x1a0 | Ox1a4 | 0x100 (1) *(head)->alist.prev = (nodel);
0x108 | Ox1a4 Ox1a8 | 0x104 (2) (nodel)->alist.prev = (head)->alist.prev;
(3) (head)->alist.prev = &(nodel)->alist.next;
nodef (nodel)->alist.next = (head);
0x200 | 0 \ while (/* */0)
0x204 | 0x200
0x208 | 0x204
QINSERT_BEFORE(head, node1, alist);
head node(0
0x100 [0 | 0xa0o (1 0x200
0x104 | Ox1a0 — Ox1a4 | 0x200 — 0x204
0x108 | 0x204 — Ox1a8 | 0x104 / 0x208
(3)

= = =

Adding a Third Node

#define QINSERT BEFORE(head, nodel, alist)\

head node0
0x100 | 0 0x1a0 | 0 do {
0x104 | Ox1a0 | Ox1a4 | 0x100 (1) *(head)->alist.prev = (nodel);
0x108 | Ox1a4 Ox1a8 | 0x104 (2) (nodel)->alist.prev = (head)->alist.prev;
(3) (head)->alist.prev = &(nodel)->alist.next;
nodet (4) (nodel)->alist.next = (head);
0x200 | 0 L while (/* */0)
0x204 | 0x200
0x208 | 0x204
QINSERT_BEFORE(head, node1, alist);
(4)
head node0 node1
0x100 [0 | ——oxta0fo (1 0x200 [0
0x104 | Ox1a0 — Ox1a4 | 0x200 — 0x204 | 0x100 —
0x108 | 0x204 - Ox1a8 Ox104/ 0x208 | Ox1a4 -
(3)

= = =

Removing a Node

head node0 #define QREMOVE(node, alist) \
0x100 | 0 0x1a0| 0 do { \
0x104 | Ox1a0 | Ox1a4 | 0x200 (1) *((node)->alist.prev) = (node)->alist.next; \
0x108 | 0x204 Ox1a8 | 0x104 (2) ((node)->alist.next)->alist.prev = (node)->alist.prev;\
(3) (node)->alist.next = (node); \
nodet (4) (node)->alist.prev = &((node)->alist.next); \
0x2001 0 ! while (/* */ 0)

0x204 | 0x100
0x208 | Ox1a4

QREMOVE(nodeO, alist);

head node0 node1
0x100 | O 0x1a0| 0 0x200| 0
0x104 | ?? Ox1a4| ?? 0x204 | ?7?
0x108 | ?? Ox1a8 | ?? 0x208 | ?7?

Removing a Node

head node0 #define QREMOVE(node, alist) \
0x100 | 0 0x1a0 | 0 do{ \
0x104 | 0x1a0 | O0x1a4 | 0x200 *((node)->alist.prev) = (node)->alist.next; \
0x108 | 0x204 Ox1a8 | 0x104 ((node)->alist.next)->alist.prev = (node)->alist.prev;\
(node)->alist.next = (node); \
nodet (node)->alist.prev = &((node)->alist.next); \
0x200) 0 \ while (/* %/ 0)

0x204 | 0x100
0x208 | Ox1a4

QREMOVE(nodeO0, alist);

head node0 node1
0x100 | O /—’ 0x1a0| 0 0x200 | 0
0x104 | Ox1a0 — Ox1a4 | 0x200 — 0x204 | 0x100
0x108 | 0x204 - 0x1a8 | 0x104 — 0x208 | Ox1a4 -

Removing a Node

head node0 #define QREMOVE(node0, alist) \
0x100 | 0 0x1a0 | 0 do{ \
0x104 | 0x1a0 | O0x1a4 | 0x200 (1) *((node0)->alist.prev) = (node0)->alist.next; \
0x108 | 0x204 Ox1a8 | 0x104 ((node0)->alist.next)->alist.prev = (node0)->alist.prev;\
(node0)->alist.next = (node0); \
nodef (node0)->alist.prev = &((node0)->alist.next); \
0x200) 0 L while (/% */ 0)

0x204 | 0x100
0x208 | Ox1a4

QREMOVE(nodeO0, alist);

-
head node0 \‘ node1

0x100 | 0 (1) 0x1a0 | 0 0x200 | 0

0x104 | 0x200 ~ Ox1a4 | 0x200 — 0x204 | 0x100]
0x108 | 0x204 -{Ox1a8 Ox104/ 0x208 (@

SN—_

Removing a Node

#define QREMOVE(node0, alist)

\

head node0
0x100 | 0 0x1a0 | 0 do { !
0x104 | 0x1a0 | Ox1a4 | 0x200 *((node0)->alist.prev) = (node0)->alist.next; \
0x108 | 0x204 0x1a8 | 0x104 (2) ((node0)->alist.next)->alist.prev = (node0)->alist.prev;\
(node0)->alist.next = (node0); \
nodef (node0)->alist.prev = &((node0)->alist.next); \
0x200 0 + while (/* */ 0)
0x204 | 0x100
0x208 | Ox1a4
QREMOVE(node0, alist);
-
head node0 X node1
0x100 | 0 Ox1a0 | 0 0x200| 0
0x104 | 0x200 — Ox1a4 | 0x200 — 0x204 | 0x100 -
0x108 | 0x204 -\ Ox1a8 | 0x104 / 0x208
(2)

0x104~)

Removing a Node

#define QREMOVE(node0, alist)

\

head node0
0x100 | 0 0x1a0 | 0 do{ !
0x104 | 0x1a0 | O0x1a4 | 0x200 *((node0)->alist.prev) = (node0)->alist.next; \
0x108 | 0x204 | 0x1a8 | 0x104 ((node0)->alist.next)->alist.prev = (node0)->alist.prev;\
(3) (node0)->alist.next = (node0); \
nodef (node0)->alist.prev = &((node0)->alist.next); \
0x200 0 \ while (/* */ 0)
0x204 | 0x100
0x208 | Ox1a4
QREMOVE(node0, alist);
-
head node0 X node1
) <
0x100 | 0 oxta0[0) 0x200 [0
0x104 | 0x200 —~ Ox1a4 | 0x1a0 -~ 0x204 | 0x100 -
0x108 Ox1a8 | 0x104 — 0x208

0x204 -\

0X104~)

Removing a Node

#define QREMOVE(node0, alist)

\

head node0
0x100 | 0 0x1a0| 0 do { '
0x104 | 0x1a0 | Ox1a4 | 0x200 *((node0)->alist.prev) = (node0)->alist.next; \
0x108 | 0x204 0x1a8 | 0x104 ((node0)->alist.next)->alist.prev = (node0)->alist.prev;\
(node0)->alist.next = (node0); \
nodef (4) (node0)->alist.prev = &((node0)->alist.next); \
0x200 0 \ while (/* */0)
0x204 | 0x100
0x208 | Ox1a4
QREMOVE(nodeO, alist);
head node0 node1
0x100 | 0 COx1a0 0 0x200 |0
0x104 | 0x200 — (4) Ox1a4 | 0x1a0 - 0x204 | 0x100
0x108 | 0x204 -\Qm a8 | 0x1 a4—) 0x208 | 0x104 D

Solution to Removing a Node

#define QREMOVE(node, alist)

\

head node0
0x100 | 0 0x1a0 | 0 do { \
0x104 | 0x1a0 | Ox1a4 | 0x200 (1) *((node)->alist.prev) = (node)->alist.next; \
0x108 | 0x204 0x1a8 | 0x104 (2) ((node)->alist.next)->alist.prev = (node)->alist.prev;\
(3) (node)->alist.next = (node); \
nodef (4) (node)->alist.prev = &((node)->alist.next); \
0x200 0 + while (/* %/ 0)
0x204 | 0x100
0x208 | Ox1a4
QREMOVE(node0, alist);
node1
0x100 0x200 (| O
0x104 0x204 | 0x100 —
0x108 0x208

0x104)

Functions

Always use function prototypes
int myfunc (char *, int, struct MyStruct *);
int myfunc noargs (void);
void myfunc noreturn (int 1);

C and C++ are call by value, copy of parameter passed to function
- C++ permits you to specify pass by reference

- if you want to alter the parameter then pass a pointer to it (or use
references in C++)

If performance is an issue then use inline functions, generally
better and safer than using a macro. Common convention

- define prototype and function in header or name.i file

— static inline int myinfunc (int i, int 7J);

— static inline int myinfunc (int 1, int 3j) { ... }

Basic Types and Operators

Basic data types
- Types: char, int, float and double
- Qualifiers: short, long, unsigned, signed, const

Constant: 0x1234, 12, "Some string”

Enumeration:
- Names in different enumerations must be distinct

— enum WeekDay t {Mon, Tue, Wed, Thur, Fri};
enum WeekendDay t {Sat = 0, Sun = 4};

Arithmetic: +, -, *,/, %

- prefix ++i or --i ; increment/decrement before value is used
- postfix i++, i--; increment/decrement after value is used
Relational and logical: <, >, <=, >=, ==, |=, &&, ||

Bitwise: &, |, ™ (xor), <<, », ~(ones complement)

Operator Precedence

(from “C a Reference Manual”, 5th Edition)

3 -
5 1 e g 1 5 1 o |2]
) 2 Q) =) 2 o)
3 s] =9 c. o s & =9 c.
Z g “ S = Z S @ S =
= e 2 =~ &]
(¢~ (¢~
’ . . t icht-to-
1?22 1s simple tokens primary n/a (type) casts unary | 14 | right-to-left
* /% multiplicative | binary | 13 | left-to-right
alk - o
[k] subscripting postfix left-to-right . - ~dditive binary | 12 | left-to-right
£(... i -to-ri
(.. function call postfix 6 left-to-right << >> | left, right shift | binary | 11 | left-to-right
direct selection postfix left-to-right < <= > >= relational binary | 10 | left-to-right
-> indirect selecti i e . .
indirect selection postfix left to right — 1= cquality/ineq. | binary | 9 | left-to-right
++ -- i ~to-ri
increment, decrement | postfix left-to-right & bitwise and binary | 8 | lefi-to-right
type) {init i -to-1i
(type) { } compound literal postfix left-to-right ~ bitwise xor binary | 7 | lefi-to-right
++ -- i t ight-to- - . .
increment, decrement | prefix right-to-left | bitwise or binary | 6 | lefi-to-right
sizeof i ioht-to-
Sz ety right-to-left && logical and binary | 5 | left-to-right
~ itwi ight-to- . . .
bitwise not oy right-to-left Il logical or binary | 4 | left-to-right
! logical ight-to- i .
ogica’ not ety 15 right-to-left ?: conditional ternary | 3 [right-to-left
- + negation, plus unary right-to-left — 4= _—
& address of unary right-to-left *= [= %=
—— R assignment binary | 2 | right-to-left
N indirection bt toleft &= %= |=
una right-to-le
(dereference) a 8 <<= >>=
’ sequential eval. | binary | 1 |[left-to-right

Structs and Unions

* Structures
— struct MyPoint {int x, int v};
- typedef struct MyPoint MyPoilint t;
- MyPoint t point, *ptr;
— point.x = 0;point.y = 10;
— ptr = &point; ptr->x = 12; ptr->y = 40;

* unions
— union MyUnion {int x; MyPoint t pt; struct {int
3; char cl[4]} S; 1},
— union MyUnion Xx;
- Can only use one of the elements. Memory will be allocated for
the largest element

Conditional Statements (if/else)

if (a < 10)

printf (Ya is less than 10\n”);
else if (a == 10)

printf (Ya is 10\n”);
else

printf (“a is greater than 10\n”);

» If you have compound statements then use brackets (blocks)
- 1if (a < 4 && b > 10) {
c =a * b; b=20;
printf (Ya = %d, a\’s address = 0x%08x\n”, a, (uint32 t)é&a);
} else {
c =a + b; b= a;
}

- These two statements are equivalent:

- 1if (a) x = 3; else if (b) x = 2; else x = 0;

- 1f (a) x = 3; else {if (b) x = 2; else x = 0;}
+ Is this correct?

- if (a) x

= 3; else i1f (b)) x = 2;
else (z) x =

0; else x = -2;

Conditional Statements (switch)

int ¢ = 10;
switch (c) {
case 0(:
printf (“c is 0\n”);
break;
default:
printf (“Unknown value of c\n”);
break;
}

What if we leave the break statement out?
Do we need the final break statement on the default case?

Loops

for (1 = 0; 1 < MAXVALUE; 1++) {
dowork () ;
}
while (c != 12) {
dowork () ;

}

do {
dowork () ;
} while (c < 12);

flow control
- break - exit innermost loop
- continue - perform next iteration of loop

Note, all these forms permit one statement to be executed. By
enclosing in brackets we create a block of statements.

Building your program

For all labs and programming assignments:

you must supply a make file

you must supply a README file that describes the assignment
and results. This must be a text file, no MS word.

of course the source code and any other libraries or uftility
code you used

you may submit plots, they must be postscript or pdf

make and Makefiles, Overview

Why use make?
- convenience of only entering compile directives once

- make is smart enough (with your help) to only compile and link modules
that have changed or which depend on files that have changed

- allows you to hide platform dependencies

- promotes uniformity

- simplifies my (and hopefully your) life when testing and verifying your
code

A makefile contains a set of rules for building a program
target ... : prerequisites ...
command

Static pattern rules.

- each target is matched against target-pattern to derive stem which is
used to determine prereqs (see example)
targets ... : farget-pattern : prereq-patterns ...
command

Makefiles

Defining variables

MyOPS := -DWTH
MyDIR ?= /home/fred
MyVar = $(SHELL)
Using variables
MyFLAGS := $ (MyOPS)

Built-in Variables
- $@ = filename of target
- $< = name of the first prerequisites

Patterns
- use % character to determine stem
- foo.o matches the pattern %.0 with foo as the stem.

- f00.0 moo.o: %.0: %.c # says that foo.o depends on foo.c and
moo.o depends on moo.c

Example Makefile for wulib

Makefile.inc

Makefile.inc
Contains common definitions

MyOS = $(shell uname -s)
MyID := $(shell whoami)
MyHost = $(shell hostname)
WARNSTRICT = -W \
\ -Wstrict-prototypes
-Wmissing-prototypes
WARNLIGHT = -Wall
WARN = S{WARNLIGHT}
ALLFLGS := -D_GNU SOURCE \
-D_REENTRANT \
-D THREAD SAFE
APPCFLGS = $ (ALLFLGS) \
S (WARN)
wUCC 1= gcc
WUCFLAGS = -DMyO0S=$ (MyOS) \
$ (OSFLAGS) \
$ (ALLFLGS) $ (WARN)
WUINCLUDES =
WULIBS := -1m

ifeq (${MyOS), Sun0S)
OSLIBS+= -1rt

endif

Makefile

Project specific

include ../Makefile.inc

INCLUDES = S${WUINCLUDES} -I.

LIBS = ${WILIBS} ${OSLIBS}
CFLAGS = S${WUCLFAGS} —-DWUDEBUG
CC = ${WUCC}

HDRS := util.h

CSRCS = testappl.c testapp2.c

SRCS := util.c callout.c
COBJS = S (addprefix ${OBJDIR}/, \
$ (patsubst %$.c,%.0,$(CSRCS)))

OBJS = S (addprefix ${OBJDIR}/, \

$ (patsubst %$.c¢,%.0,$(SRCS)))
CMDS = $(addprefix ${OBJIDIR}/, $(basename $(CSRCS)))
all : $ (OBJDIR) $(CMDS)

install : all

S (OBJDIR)
mkdir $ (OBJDIR)

$(OBJS) $(COBJS) ${OBJDIR}/%.0 : %.c $(HDRS)
${CC} S${CFLAGS} S${INCLUDES} -o S$S@ -c S<

$(CMDS) : ${OBJDIR}/% : ${OBJDIR}/%.0 $(OBJS)
${CC} S${CFLAGS} -o S$@ S@.o ${LIBS}
chmod 0755 $@

clean
/bin/rm -f $(CMDS) $ (OBJS)

Project Documentation

README file structure

Section A. Introduction
describe the project, paraphrase the requirements and state your
understanding of the assignments value.

Section B. Design and Implementation

List all files turned in with a brief description for each. Explain your
design and provide simple psuedo-code for your project. Provide a simple
flow chart of you code and note any constraints, invariants, assumptions
or sources for reused code or ideas.

Section C Results

For each project you will be given a list of questions to answer, this is
where you do it. If you are not satisfied with your results explain why
here.

Section D. Conclusions
What did you learn, or not learn during this assignment. What would you
do differently or what did you do well.

Attacking a Project

Reguirements and scope. Identify specific requirements and or goals.
Also note any design and/or implementation environment
requirements.

- knowing when you are done, or not done

- estimating effort or areas which require more research

- programming language, platform and other development environment

issues

Approach. How do you plan to solve the problem identified in the first
step. Develop a prototype design and document. Next figure out how
you will verify that you did satisfy the requirements/goals. Designing
the tests will help you to better understand the problem domain and
your proposed solution

Iterative development. It is good practice to build your project in
small pieces. Testing and learning as you go.

Final Touches. Put it all together and run the tests identified in the
approach phase. Verify you met requirements. Polish you code and
documentation.

Turn it in.

	Brief Introduction to the C Programming Language
	Introduction
	Standard C
	Elements of a C Program
	A Simple C Program
	Source and Header files
	Another Example C Program
	Passing Command Line Arguments
	C Standard Header Files you may want to use
	The Preprocessor
	Preprocessor: Macros
	Preprocessor: Conditional Compilation
	Another Simple C Program
	Arrays and Pointers
	Pointers
	Pointers in C (and C++)
	Pointers Continued
	Pointers Continued
	Getting Fancy with Macros
	After Preprocessing and Compiling
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	QNODE Manipulations
	Adding a Third Node
	Adding a Third Node
	Adding a Third Node
	Adding a Third Node
	Adding a Third Node
	Removing a Node
	Removing a Node
	Removing a Node
	Removing a Node
	Removing a Node
	Removing a Node
	Solution to Removing a Node
	Functions
	Basic Types and Operators
	Operator Precedence (from “C a Reference Manual”, 5th Edition)
	Structs and Unions
	Conditional Statements (if/else)
	Conditional Statements (switch)
	Loops
	Building your program
	make and Makefiles, Overview
	Makefiles
	Example Makefile for wulib
	Project Documentation
	Attacking a Project

