

SYBCA (Science) Sem-IV, Lab Book, SPPU

1

Savitribai Phule Pune University

S. Y. B. C. A. (Science) Semester-IV

(2019 Pattern)

Lab Course – III

(BCA-246) Python Programming

 Laboratory

 Work Book

Name: ___

College Name:__

Roll No.: ______________________ Division: __________________________

Academic Year: __

SYBCA (Science) Sem-IV, Lab Book, SPPU

2

From the Chairman’s Desk

It gives me a great pleasure to present this workbook prepared by the Board of studies in Computer
Applications.

The workbook has been prepared with the objectives of bringing uniformity in implementation of lab
assignments across all affiliated colleges, act as a ready reference for both fast and slow learners
and facilitate continuous assessment using clearly defined rubrics.

The workbook provides, for each of the assignments, the aims, pre-requisites, related theoretical
concepts with suitable examples wherever necessary, guidelines for the faculty/lab administrator,
instructions for the students to perform assignments and a set of exercises divided into three sets.

I am thankful to the Chairman of this course and the entire team of editors. I am also thankful to the
reviewers and members of BOS, Mr. Rahul Patil and Mr. Arun Gangarde. I thank all members of
BOS and everyone who have contributed directly or indirectly for the preparation of the workbook.

Constructive criticism is welcome and to be communicated to the Chairman of the Course and
overall coordinator Mr. Rahul Patil. Affiliated colleges are requested to collect feedbacks from the
students for the further improvements.

I am thankful to Hon. Vice Chancellor of Savitribai Phule Pune University Prof. Dr. Nitin Karmalkar
and the Dean of Faculty of Science and Technology Prof. Dr. M G Chaskar for their support and
guidance.

Prof. Dr. S S Sane
Chairman, BOS in Computer Applications
SPPU, Pune

SYBCA (Science) Sem-IV, Lab Book, SPPU

3

Chairperson of Labbook:-

Dr. Manisha Bharambe - MES Abasaheb Garware College, Pune.

Editor:-

Dr. Manisha Bharambe - MES Abasaheb Garware College, Pune

Mr. Pravin Kulkarni -New Arts, Commerce and Science College, Ahmadnagar

Mr. Mohsin Tamboli - Abeda Inamdar Senior College, Pune

Ms. Archana Ghogare -Women’s College, Loni.

Reviewed By:

1. Mr. Arun Gangarde New Arts, Commerce and Science College, Ahmednagar.

BOS, BCA(Science)

2. Mr. Rahul Patil K.R.T. Arts, B.H. Commerce and A.M. Science College, Nashik
BOS, BCA(Science)

SYBCA (Science) Sem-IV, Lab Book, SPPU

4

INTRODUCTION

1. About the work book:

This workbook is intended to be used by S.Y.B.C.A. (Science) students for the Python and

Software Engineering Assignments in Semester–IV. This workbook is designed by

considering all the practical concepts / topics mentioned in syllabus.

 2. The objectives of this workbook are:

1) Defining the scope of the course.

2) To bring the uniformity in the practical conduction and implementation in all colleges

affiliated to SPPU.

3) To have continuous assessment of the course and students.

4) Providing ready reference for the students during practical implementation.

5) Provide more options to students so that they can have good practice before facing the

examination.

6) Catering to the demand of slow and fast learners and accordingly providing the practice

assignments to them.

 3. How to use this workbook:

1) The workbook is divided into two sections. Section-I is related to Python assignments

and Section-II is related to Software Engineering.

2) The Section-I (Python) is divided into 06 assignments. Each Python assignment has

three SETs. It is mandatory for students to complete the SET A and SET B in given slot.

3) The Section-II (Software Engineering) is divided into 03 assignments.

 4. Instructions to the students

 Please read the following instructions carefully and follow them.

1) Students are expected to carry this book every time they come to the lab for practical.

2) Students should prepare oneself before hand for the Assignment by reading the relevant

material.

3) Instructor will specify which problems to solve in the lab during the allotted slot and

student should complete them and get verified by the instructor. However student should

spend additional hours in Lab and at home to cover as many problems as possible given

in this work book.

4) Students will be assessed for each exercise on a scale from 0 to 5.

Not Done 0

Incomplete 1

Late Complete 2

Needs Improvement 3

Complete 4

WellDone 5

5. Guidelines for the Instructors
1. Explain the assignment and related concepts in around ten minutes using whiteboard if

required or by demonstrating the software.

2. You should evaluate each assignment carried out by a student on a scale of 5 as specified

above by ticking appropriate box.

3. The value should also be entered on assignment completion page for the assignment.

SYBCA (Science) Sem-IV, Lab Book, SPPU

5

INDEX

ASSIGNMENT

NO.

DESCRIPTION NUMBER

OF

SESSIONS

PAGE

NO.

1 Basic Python 02 07

2 Python Strings 02 15

3 Python Tuple 02 23

4 Python Set 02 27

5 Python Dictionary 02 34

6 Functions in Python 02 38

7 Problem definition & Scope of the

Problem

02 47

8 Prepare SRS for a given problem 02 51

9 Design Data flow diagrams for the

Problem

02 57

10 Feedback form - 61

SYBCA (Science) Sem-IV, Lab Book, SPPU

6

CERTIFICATE

This is to certify that Mr./Ms.____________________________.

has successfully completed BCA-246 Python Programming

Laboratory course in year __________and his/her seat no. is

__________. He / She have scored ________ marks out of 15.

Instructor HOD/Coordinator

Internal Examiner External Examiner

SYBCA (Science) Sem-IV, Lab Book, SPPU

7

Assignment Completion Sheet

Assignment

No

Description Marks

(out of 5)

Teacher sign

1 Basic Python

2 Python Strings

3 Python Tuple

4 Python Set

5 Python Dictionary

6 Functions in Python

7 Problem definition & Scope of the Problem

8 Prepare SRS for a given problem

9 Design Data flow diagrams for the Problem

 Total (out of 45)

 Total (out of 15)

SYBCA (Science) Sem-IV, Lab Book, SPPU

8

ASSIGNMENT NO.1:-BASIC PYTHON

Python is a general purpose, dynamic, high level and interpreted programming language. It supports

Object Oriented programming approach to develop applications. It is simple and easy to learn. It also

provides high level data structures.

 The implementation of Python was started in the December 1989 by Guido Van Rossum at

CWI in Netherland.

Starting the Interpreter

After installation, the python interpreter lives in the installed directory. By default it

is /usr/local/bin/pythonX.X in Linux/Unix and C:\PythonXX in Windows, where the 'X' denotes the

version number. To invoke it from the shell or the command prompt we need to add this location in

the search path.

Search path is a list of directories (locations) where the operating system searches for executables.

For example, in Windows command prompt, we can type set path=%path%;c:\python33 (python33

means version 3.3, it might be different in your case) to add the location to path for that particular

session.

Use of Python

Python is used by hundreds of thousands of programmers and is used in many places. Python has

many standard libraries which is made up of many functions that come with Python when it is

installed. On the Internet there are many other libraries available that make it possible for the Python

language to do more things. These libraries make it a powerful language; it can do many different

things.

Some things that Python is often used for are:

 Web development

 AI & Machine learning

 Game programming

 Desktop GUI Applications

 Software Development

 Business Applications

 3D CAD Applications

 Scientific programming

 Network programming.

First Python Program

This is a small example of a Python program. It shows "Hello World!" on the screen.

Type the following code in any text editor or an IDE and save as helloWorld.py

print ("Hello , world!")

Now at the command window, go to the location of this file. One can use the cd command to change

directory. To run the script, type python helloWorld.py in the command window. We should be

able to see the output as follows:

Hello, world!

https://simple.wikipedia.org/w/index.php?title=Standard_library&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Computable_function
https://simple.wikipedia.org/wiki/Internet
https://simple.wikipedia.org/w/index.php?title=Library_(computing)&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Video_game
https://simple.wikipedia.org/wiki/Hello_World

SYBCA (Science) Sem-IV, Lab Book, SPPU

9

If you are using PyScripter, there is a green arrow button on top. Press that button or

press Ctrl+F9 on your keyboard to run the program.

In this program we have used the built-in function print(), to print out a string to the screen. String is

the value inside the quotation marks, i.e. Hello world!. Now try printing out your name by modifying

this program.

1. Immediate/Interactive mode

Typing python in the command line will invoke the interpreter in immediate mode. We can directly

type in Python expressions and press enter to get the output.

>>>

is the Python prompt. It tells us that the interpreter is ready for our input. Try typing in 1 + 1 and

press enter. We get 2 as the output. This prompt can be used as a calculator. To exit this mode

type exit() or quit() and press enter.

Type the following text at the Python prompt and press the Enter –

>>> print "Hello World"

2. Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and continues until

the script is finished. When the script is finished, the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have extension .py. Type the

following source code in a test.py file −

print"Hello World"

We assume that you have Python interpreter set in PATH variable. Now, try to run this program as

follows −

$ python test.py

This produces the following result −

Hello, Python!

3. Integrated Development Environment (IDE)

We can use any text editing software to write a Python script file.

We just need to save it with the .py extension. But using an IDE can make our life a lot easier. IDE

is a piece of software that provides useful features like code hinting, syntax highlighting and

checking, file explorers etc. to the programmer for application development.

Using an IDE can get rid of redundant tasks and significantly decrease the time required for

application development.

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/string

SYBCA (Science) Sem-IV, Lab Book, SPPU

10

IDEL is a graphical user interface (GUI) that can be installed along with the Python programming

language and is available from the official website.

We can also use other commercial or free IDE according to our preference, the PyScripter IDE can

be used for testing. It is free and open source.

Python Comments

In Python, there are two ways to annotate your code.

Single-line comment – Comments are created simply by beginning a line with the hash (#)

character, and they are automatically terminated by the end of line.

For example:

 #This would be a comment in Python

Multi-line comment- Comments that span multiple lines – used to explain things in more detail –

are created by adding a delimiter (‘“””) on each end of the comment.

””” This would be a multiline comment

In Python that spans several lines and

Describes your code, your day, or anything you want it to

…

“””

Indentation

The enforcement of indentation in Python makes the code look neat and clean.

For example:

if True:

 print(‘Hello’)

 a=5

Incorrect indentation will result into Indentation Error.

Standard Data Types

Python has five standard data types −

 Numbers

 String

 List

https://code.google.com/p/pyscripter/

SYBCA (Science) Sem-IV, Lab Book, SPPU

11

 Tuple

 Dictionary

Python Numbers: Integers, floating point numbers and complex numbers falls under Python

numbers category. They are defined as int, float and complex class in Python.

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Python Strings: Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes.

Example: str=’Hello all’

Python Lists :

Lists are the most versatile of Python's compound data types. A list contains items can be of

different data types separated by commas and enclosed within square brackets ([]).

list_obj=['table', 59 ,2.69,“chair”]

Python Tuples:

A tuple is another sequence immutable data type that is similar to the list. A tuple consists of a

number of values separated by commas and enclosed in parentheses (()).

Example:

tuple_obj=(786,2.23, “college”)

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays or hashes found

in Perl and consist of key-value pairs.

Dictionaries are enclosed by curly braces ({ })

Example:dict_obj={'roll_no': 15,'name':’xyz’,'per': 69.88}

Python Operators:

Python language supports the following types of operators.

 Arithmetic Operators

SYBCA (Science) Sem-IV, Lab Book, SPPU

12

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Arithmetic, logical, Relational operators supported by Python language are same as other languages

like C,C++.

i. Arithmetic Operators:

The new arithmetic operators in python are,

a) ** (Exponent)- Performs exponential (power) calculation on operators

Example: a**b =10 to the power 20

b) // (Floor Division) - The division of operands where the result is the quotient in which

the digits after the decimal point are removed. But if one of the operands is negative, the

result is floored, i.e., rounded away from zero (towards negative infinity)

Example: 9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -11.0//3 = -4.0

ii. Logical operators :

Logical operators are the and, or, not operators.

a) and - True if both the operands are true

b) or - True if either of the operands is true

c) not - True if operand is false (complements the operand)

iii. Relational/Comparison operators :

== (equal to), != (not equal to), < (less than),<= (Less than or equal to), > (greater

than) and >= (Greater than or equal to) are same as other language relational operators.

The new relational operator in python is,

<>- If values of two operands are not equal, then condition becomes true.

Example: (a <> b) is true. This is similar to != operator.

iv. Assignment Operators: The following are assignment operators in python which are same as

in C,C++.

 =, +=, -=, *=, /=, %=, **=, //=

v. Bitwise Operators: The following are bitwise operators in python which are same as in

C,C++.

&(bitwise AND), |(bitwise OR) ,̂ (bitwise XOR),~ (bitwise NOT),<<(bitwise left

SYBCA (Science) Sem-IV, Lab Book, SPPU

13

shift), >>(bitwise right shift)

vi. Membership operators:

in and not in are the membership operators; used to test whether a value or variable is in a

sequence.

in - True if value is found in the sequence

not in - True if value is not found in the sequence

vii. Identity operators:
is and is not are the identity operators both are used to check if two values are located on the

same part of the memory. Two variables that are equal does not imply that they are identical.

is - True if the operands are identical

is not - True if the operands are not identical

Decision making Statement

Python programming language provides following types of decision making statements.

i. If statement: It is similar to that of other languages

Syntax

 if expression:

 statement(s)

ii. IF...ELIF...ELSE Statements:

Syntax

 if expression:

 statement(s)

 else:

 statement(s)

iii. nested IF statements:

In a nested if construct, one canhave an if...elif...else construct inside

another if...elif...else construct.

Syntax

if expression1:

 statement(s)

if expression2:

 statement(s)

elif expression3:

 statement(s)

else:

 statement(s)

elif expression4:

 statement(s)

else:

SYBCA (Science) Sem-IV, Lab Book, SPPU

14

 statement(s)

Python – Loops

i. while loop:

A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax-

while expression:

 statement(s)

Example:

count=0

while(count <3):

 print'The count is:', count

 count= count +1

ii. for loop:
It has the ability to iterate over the items of any sequence, such as a list or a string.

Syntax

foriterating_var in sequence:

 statements(s)

Example:

for x in'Hi':

 print x

Command Line Arguments

One canget access to the command line parameters using the sys module. len(sys.argv) contains the

number of arguments. To print all of the arguments simply execute str(sys.argv)

import sys

print('Arguments:', len(sys.argv))

print('List:', str(sys.argv))

Storing command line arguments

import sys

print('Arguments:', len(sys.argv))

print('List:', str(sys.argv))

if sys.argv< 2:

 print('To few arguments, please specify a filename')

SYBCA (Science) Sem-IV, Lab Book, SPPU

15

filename = sys.argv[1]

print('Filename:', filename)

Set A]

1) Write a Python Program to Calculate the Average of Numbers in a Given List.

2) Write a program which accepts 6 integer values and prints “DUPLICATES” if any of the

values entered are duplicates otherwise it prints “ALL UNIQUE”.

 Example: Let 5 integers are (32, 10, 45, 90, 45, 6) then output “DUPLICATES” to be printed.

3) Write a program which accepts an integer value as command line and print “Ok” if value is

between 1 to 50 (both inclusive) otherwise it prints” Out of range”

4) Write a program which finds sum of digits of a number.

Example n=130 then output is 4 (1+3+0).

5) Write a program which prints Fibonacci series of a number.

Set B]

1) Write a program which accept an integer value ‘n’ and display all prime numbers till ‘n’.

2) Write a program that accept two integer values and if both are equal then prints “SAME

identity” otherwise prints, “DIFFERENT identity”.

3) Write a program to display following pattern.

1 2 3 4

1 2 3

1 2

1

4) Write a program to reverse a given number.

Set C]

1) Write a Sequential search function which searches an item in a sorted list. The function

should return the index of element to be searched in the list.

Assignment Evaluation

0: Not Done [] 1 : Incomplete [] 2 : Late Complete []

3: Needs Improvement [] 4 : Complete [] 5 : Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

16

ASSIGNMENT NO.2:- PYTHON STRING

Python string is a built-in type text sequence. It is used to handle textual data in python.

A string is a sequence of characters. A character is simply a symbol. For example, the English

language has 26 characters. Computers do not deal with characters; they deal with numbers (binary).

Even though you may see characters on your screen, internally it is stored and manipulated as a

combination of 0's and 1's.

This conversion of character to a number is called encoding, and the reverse process is decoding.

ASCII and Unicode are some of the popular encoding used.

In Python, string is a sequence of Unicode character. Unicode was introduced to include every

character in all languages and bring uniformity in encoding.

We can create them simply by enclosing characters in quotes. Python treats single quotes the same

as double quotes. Creating strings is as simple as assigning a value to a variable. For example –

var1 = 'Hello World!'
var2 = "Python Programming"

Accessing Values in Strings

Python does not support a character type; these are treated as strings of length one, thus also

considered a substring.

To access substrings, use the square brackets for slicing along with the index or indices to obtain
your substring. For Example:1)
−

#!/usr/bin/python

var1 = 'Hello World!'
var2 = "Python Programming"

print "var1[0]: ", var1[0]
print "var2[1:5]: ", var2[1:5]

Updating Strings

One can"update" an existing string by reassigning a variable to another string. The new value can

be related to its previous value or to a completely different string altogether. For example −

#!/usr/bin/python

var1 = 'Hello World!'

print "Updated String: - ", var1[:6] + 'Python'

When the above code is executed, it produces the following result −

SYBCA (Science) Sem-IV, Lab Book, SPPU

17

Updated String: - Hello Python

Example:2)a = “Pravin”
 b = “Kulkarni”
 print (a+” “+b)
output: Pravin Kulkarni

Escape Characters

Following table is a list of escape or non-printable characters that can be represented with

backslash notation.

An escape character gets interpreted; in a single quoted as well as double quoted strings.

BackslashNotation Description

\a Bell or alert

\b Backspace

\cx or \C-x Control-x

\e Escape

\f Formfeed

\M-\C-x Meta-Control-x

\n Newline

\nnn Octal notation, where n is in the range 0.7

\r Carriage return

\s Space

\t Tab

\v Vertical tab

\x Character x

String Special Operators

Assume string variable a holds 'Hello' and variable b holds 'Python', then −

Operator Description Example

+

Concatenation - Adds values on either

side of the operator a + b will give HelloPython

*

Repetition - Creates new strings,

concatenating multiple copies of the

same string a*2 will give -HelloHello

SYBCA (Science) Sem-IV, Lab Book, SPPU

18

[]

Slice - Gives the character from the given

Index a[1] will give e

[:]

Range Slice - Gives the characters from the

given range a[1:4] will give ell

In

Membership - Returns true if a character

exists in the given string H in a will give 1

not in

Membership - Returns true if a character

does not exist in the given string M not in a will give 1

% Format - Performs String formatting See at next section

String Formatting Operator

One of Python's coolest features is the string format operator %. This operator is unique to strings

and makes up for the pack of having functions from C's printf family. Following is a simple example

−

#!/usr/bin/python

print "My name is %s and weight is %d kg!" % ('Kamil ', 65)

When the above code is executed, it produces the following result −

My name is Kamil and weight is 65 kg!

Here is the list of complete set of symbols which can be used along with % −

FormatSymbol Conversion

%c Character

%s string conversion via str prior to formatting

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer lowercaseletters

%X hexadecimal integer UPPERcaseletters

%e exponential notation withlowercase′e′

%E exponential notation withUPPERcase′E′

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

SYBCA (Science) Sem-IV, Lab Book, SPPU

19

Other supported symbols and functionality are listed in the following table –

Symbol Functionality

* argument specifies width or precision

- left justification

+ display the sign

<sp> leave a blank space before a positive number

add the octal leading zero ′0′ or hexadecimal leading '0x' or '0X',

 depending on whether 'x' or 'X' were used.

0 pad from left with zeros insteadofspaces

% '%%' leaves you with a single literal '%'

Var mapping variable dictionary arguments

m.n.

m is the minimum total width and n is the number of digits to

display after the decimal point ifappl.

Triple Quotes

Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including

verbatim NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes.

#!/usr/bin/python
para_str = """this is a long string that is made up of several lines and non-printable characters such as
TAB (\t) and they will show up that way when displayed. NEWLINEs within the string, whether
explicitly given like this within the brackets [\n], or just a NEWLINE within the variable
assignment will also show up. """

print para_str

When the above code is executed, it produces the following result. Note how every single special

character has been converted to its printed form, right down to the last NEWLINE at the end of the

string between the "up." and closing triple quotes. Also note that NEWLINEs occur either with an

explicit carriage return at the end of a line or its escape code \n −

this is a long string that is made up of
several lines and non-printable characters such as

TAB () and they will show up that way when displayed. NEWLINEs within the string, whether

explicitly given like this within the brackets [

], or just a NEWLINE within
the variable assignment will also show up.

Raw strings do not treat the backslash as a special character at all. Every character you put into a raw

string stays the way you wrote it −

#!/usr/bin/python

print 'C:\\nowhere'

When the above code is executed, it produces the following result −

C:\nowhere

SYBCA (Science) Sem-IV, Lab Book, SPPU

20

Built-in String Methods

Python includes the following built-in methods to manipulate strings −

Sr.No. Methods Description

1 Capitalize() Capitalizes first letter of string

2 count(str, beg= 0,end=len(string))

Counts how many times str occurs in

string or in a substring of string if starting

index beg and ending index end are

given.

3 endswith(suffix, beg=0,

end=len(string))

Determines if string or a substring of

string (if starting index beg and ending

index end are given) ends with suffix;

returns true if so and false otherwise.

4 isalnum()

Returns true if string has at least 1

character and all characters are

alphanumeric and false otherwise.

5 isalpha()

Returns true if string has at least 1

character and all characters are alphabetic

and false otherwise.

6 isdigit()

Returns true if string contains only digits

and false otherwise.
7 islower()

Returns true if string has at least 1 cased

character and all cased characters are in

lowercase and false otherwise.

8 isnumeric()

Returns true if a unicode string contains

only numeric characters and false

otherwise.

9 isspace()

Returns true if string contains only

whitespace characters and false

otherwise.

10 istitle()

Returns true if string is properly

"titlecased" and false otherwise.

11 isupper()

Returns true if string has at least one

cased character and all cased characters

are in uppercase and false otherwise.

12 join(seq)

Merges (concatenates) the string

representations of elements in sequence

seq into a string, with separator string.

13 len(string) Returns the length of the string

14 ljust(width[, fillchar])

Returns a space-padded string with the

original string left-justified to a total of

width columns.

https://www.tutorialspoint.com/python/string_count.htm
https://www.tutorialspoint.com/python/string_endswith.htm
https://www.tutorialspoint.com/python/string_endswith.htm
https://www.tutorialspoint.com/python/string_isalnum.htm
https://www.tutorialspoint.com/python/string_isalpha.htm
https://www.tutorialspoint.com/python/string_isdigit.htm
https://www.tutorialspoint.com/python/string_islower.htm
https://www.tutorialspoint.com/python/string_isnumeric.htm
https://www.tutorialspoint.com/python/string_isspace.htm
https://www.tutorialspoint.com/python/string_istitle.htm
https://www.tutorialspoint.com/python/string_isupper.htm
https://www.tutorialspoint.com/python/string_join.htm
https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_ljust.htm

SYBCA (Science) Sem-IV, Lab Book, SPPU

21

15 lower()

Converts all uppercase letters in string to

lowercase.

16 lstrip()

Removes all leading whitespace in string.

17 maketrans()

Returns a translation table to be used in

translate function.

18 max(str)

Returns the max alphabetical character

from the string str.

19 min(str)

Returns the min alphabetical character

from the string str.

20 replace(old, new [, max])

Replaces all occurrences of old in string

with new or at most max occurrences if

max given.

21 rfind(str, beg=0,end=len(string))

Same as find(), but search backwards in

string.

22 rjust(width,[, fillchar])

Returns a space-padded string with the

original string right-justified to a total of

width columns.

23 rstrip()

Removes all trailing whitespace of string.

24 split(str="", num=string.count(str))

Splits string according to delimiter str

(space if not provided) and returns list of

substrings; split into at most num

substrings if given.

25 splitlines(num=string.count('\n'))

Splits string at all (or num) NEWLINEs

and returns a list of each line with

NEWLINEs removed.

26 swapcase()

Inverts case for all letters in string.

27 title()

Returns "titlecased" version of string, that

is, all words begin with uppercase and the

rest are lowercase.

28 translate(table, deletechars="")

Translates string according to translation

table str(256 chars), removing those in

the del string.

29 upper()

Converts lowercase letters in string to

uppercase.

30 zfill (width) Returns original string leftpadded with

https://www.tutorialspoint.com/python/string_lower.htm
https://www.tutorialspoint.com/python/string_lstrip.htm
https://www.tutorialspoint.com/python/string_maketrans.htm
https://www.tutorialspoint.com/python/string_max.htm
https://www.tutorialspoint.com/python/string_min.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_rfind.htm
https://www.tutorialspoint.com/python/string_rjust.htm
https://www.tutorialspoint.com/python/string_rstrip.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_splitlines.htm
https://www.tutorialspoint.com/python/string_swapcase.htm
https://www.tutorialspoint.com/python/string_title.htm
https://www.tutorialspoint.com/python/string_translate.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_zfill.htm

SYBCA (Science) Sem-IV, Lab Book, SPPU

22

 zeros to a total of width characters;

intended for numbers, zfill() retains any

sign given (less one zero).

31 isdecimal()

Returns true if a unicode string contains

only decimal characters and false

otherwise.

SET A]

1. Write a program to replace all occurrences of ‘a’ with $ in a String. (Ex. apple then output is

$pple).

2. Write a Python program to count the number of characters (character frequency) in a string.

Sample String: google.com'

Expected Result : {'o': 3, 'g': 2, '.': 1, 'e': 1, 'l': 1, 'm': 1, 'c': 1}

3. Write a Python program to get a string made of the first 2 and the last 2 chars

from a given a string. If the string length is less than 2, return instead of the empty string.

Sample String : 'General12'

Expected Result : 'Ge12'

Sample String : 'Ka'

Expected Result : 'KaKa'

Sample String : ' K'

Expected Result : Empty String

4. Write a Python program to calculate the Length of a String without using a Library Function.

5. Write a Python program to get a single string from two given strings, separated by a space and

swap the first two characters of each string.

Sample String: 'ppk', 'abc’

Expected Result: 'abkppc’

SET B]

1. Write a python program to check if a string is a Palindrome or Not.

2. Write a Python program to calculate the Number of Digits and Letters in a string.

3. Write a Python program to remove the characters which have odd index values of a given string.

https://www.tutorialspoint.com/python/string_isdecimal.htm

SYBCA (Science) Sem-IV, Lab Book, SPPU

23

4. Write a Python program to count the occurrences of each word in a given sentence.

SET C]

1. Remove special symbols/Punctuation from a given string.

Given:

str1 = "/*Sachin is @Cricketer& kind person"

Expected Output:

“Sachin is Cricketerkind person”

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

24

ASSIGNMENT NO. 3:- PYTHON TUPLE

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The

differences between tuples and lists are, the tuples cannot be changed unlike lists.Tuples use

parentheses {}, whereas lists use square [] brackets.

Tuple is similar to list. Only the difference is tat list is enclosed between square bracket, tuple

between parenthesis and List has mutable objects where as Tuple has an immutable object.

Creating a tuple is as simple as putting different comma-separated values. Optionally one canput

these comma-separated values between parentheses also. For example −

 Tuple = () # empty tuple
tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5);
tup3 = "a", "b", "c", "d";

The empty tuple is written as two parentheses containing nothing −

tup1 = ();

To write a tuple containing a single value you have to include a comma, even though there is only

one value −

tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuple:

To access values in tuple, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example −

#!/usr/bin/python

tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0]
print "tup2[1:5]: ", tup2[1:5]

When the above code is executed, it produces the following result −

tup1[0]: physics
tup2[1:5]: [2, 3, 4, 5]

Updating Tuple

Tuples are immutable which means you cannot update or change the values of tuple elements.

You are able to take portions of existing tuples to create new tuples as the following example

SYBCA (Science) Sem-IV, Lab Book, SPPU

25

demonstrates –

#!/usr/bin/python

tup1 = (12, 34.56);
tup2 = ('abc', 'xyz');

Following action is not valid for tuples
tup1[0] = 100;

So let's create a new tuple as follows
tup3 = tup1 + tup2;
print tup3

When the above code is executed, it produces the following result −

(12, 34.56, 'abc', 'xyz')

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with putting

together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example:

#!/usr/bin/python

tup = ('physics', 'chemistry', 1997, 2000);

print tup
del tup;
print "After deleting tup : "
print tup

This produces the following result. Note an exception raised, this is because after del tup tuple

does not exist any more −

('physics', 'chemistry', 1997, 2000)
After deleting tup :
Traceback (most recent call last):

File "test.py", line 9, in <module>
print tup;

NameError: name 'tup' is not defined

SYBCA (Science) Sem-IV, Lab Book, SPPU

26

Basic Tuple Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new tuple, not a string.

Python Expression Results Description

len(1, 2, 3) 3 Length

1, 2, 3 + 4, 5, 6 1, 2, 3, 4, 5, 6 Concatenation

′Hi!′,* 4 ′Hi!′,′Hi!′,′Hi!′,′Hi!′ Repetition

3 in 1, 2, 3 True Membership

for x in 1, 2, 3: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for

strings. Assuming following input −

L = ('spam', 'Spam', 'SPAM!')

 Python Expression Results Description

L[2] 'SPAM!' Offsets start at zero

L[-2] 'Spam' Negative: count from the right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

 No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e., brackets for

lists,parentheses for tuples, etc., default to tuples, as indicated in these short examples −

 #!/usr/bin/python

 print 'abc', -4.24e93, 18+6.6j, 'xyz'

 x, y = 1, 2;

 print "Value of x , y : ", x,y

 When the above code is executed, it produces the following result −

 abc -4.24e+93 (18+6.6j) xyz

 Value of x , y : 1 2

 Built-in Tuple Functions

Python includes the following tuple functions

SYBCA (Science) Sem-IV, Lab Book, SPPU

27

Function Description

all() Return True if all elements of the tuple are true (or if the tuple is empty).

any() Return True if any element of the tuple is true. If the tuple is empty, return False.

enumerate()

Return an enumerate object. It contains the index and value of all the items of tuple

as pairs.

len() Return the length (the number of items) in the tuple.

max() Return the largest item in the tuple.

min() Return the smallest item in the tuple

sorted() Take elements in the tuple and return a new sorted list (does not sort the tuple itself).

sum() Retrun the sum of all elements in the tuple.

tuple() Convert an iterable (list, string, set, dictionary) to a tuple.

 SET A]

1. Reverse the following tuple

aTup = (10, 20, 30, 40, 50)

2. Write a Python program to create a list of tuples with the first element as the number and second

element as the square of the number.

3. Write a Python program to create a tuple with numbers and print one item.

4. Write a Python program to unpack a tuple in several variables.

5. Write a Python program to add an item in a tuple.

6. Copy element 44 and 55 from the following tuple into a new tuple

tuple1 = (11, 22, 33, 44, 55, 66)

 SET B]
1. Write a Python program to convert a tuple to a string.

2. Sort the tuple - Tuple=(2, 4, 6, 1, 4, 7.8, 2.7)

3. Write a Python program to get the 5th element from front and 5th element from last of a tuple.

4. Write a Python program to find the repeated items of a tuple.

5. Write a Python program to check whether an element exists within a tuple.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

 Signature of Instructor

https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/max
https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/sorted
https://www.programiz.com/python-programming/methods/built-in/sum
https://www.programiz.com/python-programming/methods/built-in/tuple

SYBCA (Science) Sem-IV, Lab Book, SPPU

28

ASSIGNMENT NO. 4:- PYTHON SET

A set is an unordered collection of items. Every element is unique (no duplicates) and must be

immutable (which cannot be changed).

However, the set itself is mutable. We can add or remove items from it.

Sets can be used to perform mathematical set operations like union, intersection, symmetric

difference etc.

How to create a set?

A set is created by placing all the items (elements) inside curly braces {}, separated by comma or

by using the built-in function set().

It can have any number of items and they may be of different types (integer, float, tuple, string

etc.). But a set cannot have a mutable element, like list, set or dictionary, as its element.

Example

set of integers

my_set = {1, 2, 3}

print(my_set)

set of mixed datatypes

my_set = {1.0, "Hello", (1, 2, 3)}

print(my_set)

Output:{1, 2, 3}

{1.0, (1, 2, 3), 'Hello'}

Creating an empty set is a bit tricky.

Empty curly braces {} will make an empty dictionary in Python. To make a set without any

elements we use the set() function without any argument.

initialize a with {}

a = {}

check data type of a

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/dictionary

SYBCA (Science) Sem-IV, Lab Book, SPPU

29

Output: <class 'dict'>

print(type(a))

initialize a with set()

a = set()

check data type of a

Output: <class 'set'>

print(type(a))

How to change a set in Python?

Sets are mutable. But since they are unordered, indexing have no meaning.

We cannot access or change an element of set using indexing or slicing. Set does not support it.

We can add single element using the add() method and multiple elements using

the update() method. The update() method can take tuples, lists, strings or other sets as its

argument. In all cases, duplicates are avoided.

initialize my_set

my_set = {1,3}

print(my_set)

if you uncomment line 9,

you will get an error

TypeError: 'set' object does not support indexing

#my_set[0]

add an element

Output: {1, 2, 3}

my_set.add(2)

print(my_set)

add multiple elements

Output: {1, 2, 3, 4}

my_set.update([2,3,4])

print(my_set)

add list and set

Output: {1, 2, 3, 4, 5, 6, 8}

https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

SYBCA (Science) Sem-IV, Lab Book, SPPU

30

my_set.update([4,5], {1,6,8})

print(my_set)

How to remove elements from a set?

A particular item can be removed from set using methods, discard() and remove().

The only difference between the two is that, while using discard() if the item does not exist in the

set, it remains unchanged. But remove() will raise an error in such condition.

my_set = {1, 3, 4, 5, 6}

print(my_set)

discard an element

Output: {1, 3, 5, 6}

my_set.discard(4)

print(my_set)

remove an element

Output: {1, 3, 5}

my_set.remove(6)

print(my_set)

discard an element

not present in my_set

Output: {1, 3, 5}

my_set.discard(2)

print(my_set)

Python Set Operations

Sets can be used to carry out mathematical set operations like union, intersection, difference and

symmetric difference. We can do this with operators or methods.Let us consider the following

two sets for the following operations.

>>> A ={1,2,3,4,5}

>>> B ={4,5,6,7,8}

Set Union

SYBCA (Science) Sem-IV, Lab Book, SPPU

31

Union of A and B is a set of all elements from both sets.

Union is performed using | operator. Same can be accomplished using the method union()

Set Intersection

Intersection of A and B is a set of elements that are common in both sets.

Intersection is performed using & operator. Same can be accomplished using the

method intersection().

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

#union

print(A | B)

InterSection

Output: {4, 5}

print(A& B)

SYBCA (Science) Sem-IV, Lab Book, SPPU

32

Method Description

add() Add an element to a set

clear() Remove all elements form a set

copy() Return a shallow copy of a set

difference() Return the difference of two or more sets as a new set

difference_update() Remove all elements of another set from this set

discard()

Remove an element from set if it is a member. (Do nothing if

the element is not in set)

intersection() Return the intersection of two sets as a new set

intersection_update() Update the set with the intersection of itself and another

isdisjoint() Return True if two sets have a null intersection

issubset() Return True if another set contains this set

issuperset() Return True if this set contains another set

pop()

Remove and return an arbitary set element. Raise KeyErrorif

the set is empty

remove()

Remove an element from a set. If the element is not a member,

raise a KeyError

symmetric_difference() Return the symmetric difference of two sets as a new set

symmetric_difference_update()

Update a set with the symmetric difference of itself and

another

union() Return the union of sets in a new set

update() Update a set with the union of itself and others

https://www.programiz.com/python-programming/methods/set/add
https://www.programiz.com/python-programming/methods/set/clear
https://www.programiz.com/python-programming/methods/set/copy
https://www.programiz.com/python-programming/methods/set/difference
https://www.programiz.com/python-programming/methods/set/difference_update
https://www.programiz.com/python-programming/methods/set/discard
https://www.programiz.com/python-programming/methods/set/intersection
https://www.programiz.com/python-programming/methods/set/intersection_update
https://www.programiz.com/python-programming/methods/set/isdisjoint
https://www.programiz.com/python-programming/methods/set/issubset
https://www.programiz.com/python-programming/methods/set/issuperset
https://www.programiz.com/python-programming/methods/set/pop
https://www.programiz.com/python-programming/methods/set/remove
https://www.programiz.com/python-programming/methods/set/symmetric_difference
https://www.programiz.com/python-programming/methods/set/symmetric_difference_update
https://www.programiz.com/python-programming/methods/set/union
https://www.programiz.com/python-programming/methods/set/update

SYBCA (Science) Sem-IV, Lab Book, SPPU

33

Built-in Functions with Set

Built-in functions like all(), any(), enumerate(), len(), max(), min(), sorted(), sum() etc. are

commonly used with set to perform different tasks.

Function Description

all() Return True if all elements of the set are true (or if the set is empty).

any() Return True if any element of the set is true. If the set is empty, return False.

enumerate()

Return an enumerate object. It contains the index and value of all the items of

set as a pair.

len() Return the length (the number of items) in the set.

max() Return the largest item in the set.

min() Return the smallest item in the set.

sorted() Return a new sorted list from elements in the set(does not sort the set itself).

sum() Retrun the sum of all elements in the set.

SET A]

1. What is the output of following program:

 sets = {1, 2, 3, 4, 4}

print(sets)

2. Write a python program to remove and return an arbitrary set element.Raise KeyErrorif

the set is empty

3. Write a Python program to do iteration over sets.

4. Write a Python program to add and remove operation on set.

SET B]

1. Write a Python program to accept the strings which contains all vowels .

2. Write a Python program to create a union of sets.

3. Write a Python program to create an intersection of sets.

4. Write a Python program to find maximum and the minimum value in a set.

https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/max
https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/sorted
https://www.programiz.com/python-programming/methods/built-in/sum
https://www.geeksforgeeks.org/python-program-to-accept-the-strings-which-contains-all-vowels/

SYBCA (Science) Sem-IV, Lab Book, SPPU

34

5. Write a Python program to create set difference and a symmetric difference

6. Write a Python program to find the length of a set.

 SET C]

1. Write a Python program to perform different set operations.

2. Write a Python program to create a shallow copy of sets.

Note: Shallow copy is a bit-wise copy of an object. A new object is created that has an exact

copy of the values in the original object.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

35

ASSIGNMENT NO.5:- PYTHON DICTIONARY

Definition:

Python dictionary is an unordered collection of items. While other compound data types have

only value as an element, a dictionary has a key: value pair.

Dictionaries are optimized to retrieve values when the key is known.

How to create a dictionary?

Creating a dictionary is as simple as placing items inside curly braces {} separated by comma.

An item has a key and the corresponding value expressed as a pair, key: value.

While values can be of any data type and can repeat, keys must be of immutable type

(string, number or tuple with immutable elements) and must be unique.

empty dictionary

my_dict = {}

dictionary with integer keys

my_dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys

my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()

my_dict = dict({1:'apple', 2:'ball'})

from sequence having each item as a pair

my_dict = dict([(1,'apple'), (2,'ball')])

How to access elements from a dictionary?

While indexing is used with other container types to access values, dictionary uses keys. Key can

be used either inside square brackets or with the get() method.

The difference while using get() is that it returns None instead of KeyError, if the key is not

found.

my_dict = {'name':'Jack', 'age': 26}

Output: Jack

print(my_dict['name'])

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/numbers
https://www.programiz.com/python-programming/tuple

SYBCA (Science) Sem-IV, Lab Book, SPPU

36

Output: 26

print(my_dict.get('age'))

How to change or add elements in a dictionary?

Dictionary is mutable. We can add new items or change the value of existing items using

assignment operator.

If the key is already present, value gets updated, else a new key: value pair is added to the

dictionary.

my_dict = {'name':'aliza', 'age': 16}

update value

my_dict['age'] = 17

#Output: {'age': 17, 'name': 'aliza'}

print(my_dict)

add item

my_dict['address'] = 'Downtown'

Output: {'address': 'Downtown', 'age': 17, 'name': aliza'}

print(my_dict)

Python Dictionary Methods

Methods that are available with dictionary are tabulated below. Some of them have already been

used in the above examples.

Method Description

clear() Remove all items from the dictionary.

copy() Return a shallow copy of the dictionary.

fromkeys(seq[, v])

Return a new dictionary with keys from seq and value equal to v(defaults

to None).

get(key[,d]) Return the value of key. If key doesnot exit, return d (defaults to None).

items() Return a new view of the dictionary's items (key, value).

https://www.programiz.com/python-programming/methods/dictionary/clear
https://www.programiz.com/python-programming/methods/dictionary/copy
https://www.programiz.com/python-programming/methods/dictionary/fromkeys
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/items

SYBCA (Science) Sem-IV, Lab Book, SPPU

37

keys() Return a new view of the dictionary's keys.

pop(key[,d])

Remove the item with key and return its value or d if key is not found.

If d is not provided and key is not found, raises KeyError.

popitem()

Remove and return an arbitary item (key, value). Raises KeyError if the

dictionary is empty.

setdefault(key[,d])

If key is in the dictionary, return its value. If not, insert key with a value

of d and return d (defaults to None).

update([other])

Update the dictionary with the key/value pairs from other, overwriting

existing keys.

values() Return a new view of the dictionary's values

SET A]

1. Write a Python script to access the value of a key from a dictionary.

2. Write a Python script to concatenate following dictionaries to create a new one.

Sample Dictionary:

dic1={1:10,2:20}

dic2={3:30,4:40}

dic3={5:50,6:60}

Expected Result : {1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60}

3. Write a Python program to iterate over dictionaries using for loops.

4. Write a Python program to sum all the items in a dictionary.

Sample Dictionary: my_dict={'data1':100,'data2':-54,'data3':247}

Expected Result: 293

5. Write a Python program to remove a key from a dictionary.

Sample Dictionary: myDict={'a':1,'b':2,'c':3,'d':4}

Sample Output:

{'c': 3, 'b': 2, 'd': 4, 'a': 1}

{'c': 3, 'b': 2, 'd': 4}

SET B]

1. Write a Python program to sort a dictionary by key.

Sample Dictionary:

color_dict = {'red':'#FF0000','green':'#008000','black':'#000000','white':'#FFFFFF'}

Expected Output:

black: #000000

https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/setdefault
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/values

SYBCA (Science) Sem-IV, Lab Book, SPPU

38

green: #008000

red: #FF0000

white: #FFFFFF

2. Write a Python program to combine two dictionary adding values for common keys.

Sample Dictionary:

d1={'a':100,'b':200,'c':300}

d2={'a':300,'b':200,'d':400}

Sample output: Counter({'a': 400, 'b': 400, 'd': 400, 'c': 300})

3. Write a Python script to generate and print a dictionary that contains a number (Between

1 and n) in the form (x, x*x).

Sample Dictionary (n = 5)

Expected Output : {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

4. Write a Python program to create a dictionary from a string.

Sample-String:’W3resource’

Expected output: {'3': 1, 's': 1, 'r': 2, 'u': 1, 'w': 1, 'c': 1, 'e': 2, 'o': 1}

SET C]

1. Write a Python program to create a dictionary from two lists without losing duplicate

values.

Sample lists: ['Class-V', 'Class-VI', 'Class-VII', 'Class-VIII'], [1, 2, 2, 3]

Expected Output: defaultdict(<class 'set'>, {'Class-VII': {2}, 'Class-VI': {2}, 'Class-VIII':

{3}, 'Class-V': {1}})

2. Write a Python program to create a dictionary of keys x, y, and z where each key has as

value a list from 11-20, 21-30, and 31-40 respectively. Access the fifth value of each key

from the dictionary.

Expected Output:

{'x': [11, 12, 13, 14, 15, 16, 17, 18, 19],

'y': [21, 22, 23, 24, 25, 26, 27, 28, 29],

'z': [31, 32, 33, 34, 35, 36, 37, 38, 39]}

15

25

35

x has value [11, 12, 13, 14, 15, 16, 17, 18, 19]

y has value [21, 22, 23, 24, 25, 26, 27, 28, 29]

z has value [31, 32, 33, 34, 35, 36, 37, 38, 39]

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

39

ASSIGNMENT NO.6:-PYTHON FUNCTIONS

Function:

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions give modularity and reusing of code in a program.

There are many built-in functions like in Python but one canalso create your own functions.

These functions are called user-defined functions.

How to define a function

SYNTAX:

Def functionname(parameters):

"function_docstring"

function_body

return [expression]

The function blocks starts with the keyword def followed by the function name and parentheses

and colon(:).

The input parameters or arguments should be placed within these parentheses. One canalso

define parameters inside these parentheses.

The first statement of a function is an optional statement - the documentation string of the

function or docstring.

The code block within every function starts with a colon (:) and is indented.

The statement return [expression] exits a function, the return statement with no arguments means

return Nothing.

Consider the following function:

def revno(n):

sum=0

while (n>0):

rem=n%10

n=n/10

sum=(sum*10)+rem

return sum

print "The reverse of 54321 is :",revno(54321)

Calling a function

Once the function is defined, one canexecute it by calling it from another function or directly

from the Python prompt. In the above code the function is called from print statement.

Function Arguments:

There are the following types of formal arguments:

1. Required arguments

2. Keyword arguments

3. Default arguments

SYBCA (Science) Sem-IV, Lab Book, SPPU

40

4. Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

#!/usr/bin/python

def display(str):

printstr;

return;

call the function

display("hello");

Keyword Arguments:

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name. In this we can change

the order of arguments or may skip it.

#!/usr/bin/python

def display(classname, roll_no):

print "Class: ", classname;

print "Roll_no ", roll_no;

return;

call the function

display(roll_no=10, classname="TYBCA");

Default Arguments:

A default argument is an argument that considers a default value if a value is not provided in the

function call for that argument.

#!/usr/bin/python

def display(classname, roll_no=11):

print "Class: ", classname;

print "Roll_no ", roll_no;

return;

display(classname="TYBCA", roll_no=10);

display("SYBCA");

output is…

Class: TYBCA

Roll_no 10

Class: SYBCA

Roll_no 11

Variable length arguments:

We may require more arguments than specified while defining the function. These

arguments are called variable-length arguments and are not named in the function definition.

SYBCA (Science) Sem-IV, Lab Book, SPPU

41

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_body

return [expression]

An asterisk (*) is placed before the variable name that will hold the values of all non keyword

variable arguments. This tuple remains empty if no additional arguments are specified during the

function call.

#!/usr/bin/python

def display(arg1, *varargs):

print "Output is: "

print arg1

forvar in varargs:

printvar

return;

call the function

display(100);

display(10, 20, 30);

Output is:

100

Output is:

10 20 30

Return Statement:

The statement return [expression] exits a function, passing back an expression to the caller.

defcheckprime(n):

if n>1 :

fori in range(2,n):

if(n%i)==0:

return 0

return 1

a=checkprime(10)

if a==1:

print " no is prime"

else:

print " no is not prime"

Functions returning multiple values:

def display(x, y):

return x * 3, y * 4

a, b = display(5, 4)

print a

print b

SYBCA (Science) Sem-IV, Lab Book, SPPU

42

Anonymous Functions:

The anonymous functions are not declared in the standard manner by using the def keyword.

The lambda keyword is used to create small anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the form of

an expression.

 They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression.

 Lambda functions have their own local namespace and cannot access variables other than

those in their parameter list and those in the global namespace.

SYNTAX:

lambda [arg1 [,arg2,.....argn]]:expression

#!/usr/bin/python

total = lambda arg1, arg2: arg1 + arg2;

print "Value of total : ", total(100, 20)

print "Value of total : ", total(200, 10)

#output

Value of total : 120

Value of total : 210

Scope of Variables:

All variables in a program may not be accessible at all locations in that program. It depends on

where you have declared a variable.The scope of a variable is the portion of the program where

one canaccess it. Thereare two basic scopes of variables in Python:

• Global variables

• Local variables

Variables that are defined inside a function body arehaving local scope, and defined outside the

function body have a global scope.

Recursive Functions

The function which calls itself is a recursive function. Python allows us to write recursive

functions.

Recursive function for factorial of a number:

def fact(n):

if(n==1):

return 1

else:

return n* fact(n-1)

print fact(4)

Function ducktyping

SYBCA (Science) Sem-IV, Lab Book, SPPU

43

In the Python programming, the duck type is a type of dynamic style. In this style, the effective

semantics of an object are determined by the current set of methods and properties rather than

inheriting from a specific class or by implementing a particular interface.

In the duck type, the concern is not the type of object itself, but how it is used.

Consider the following code in which there is fly method for Parrot and Airplane classes but not

for Whale class, so error will be generated for whale object

class Parrot:

def fly(self):

print("Parrot flying")

class Airplane:

def fly(self):

print("Airplane flying")

class Whale:

def swim(self):

print("Whale swimming")

def action(entity):

entity.fly()

parrot = Parrot()

airplane = Airplane()

whale = Whale()

action(parrot) # prints `Parrot flying`

action(airplane) # prints `Airplane flying`

action(whale) # Throws the error `'Whale' object has no attribute 'fly'`

class Duck:

def quack(self):

 print "Quaaaaaack!"

class Bird:

def quack(self):

 print "bird imitate duck."

class Doge:

def quack(self):

 print "doge imitate duck."

defin_the_forest(duck):

duck.quack()

duck = Duck()

bird = Bird()

doge = Doge()

for x in [duck, bird, doge]:

in_the_forest(x)

SYBCA (Science) Sem-IV, Lab Book, SPPU

44

List comprehension:

List comprehension is the way to define and create list in Python. These lists have often the

qualities of sets, but are not in all cases sets.

List comprehension is a complete substitute for the lambda function as well as the functions

map(), filter() and reduce(). Consider the list comprehension to convert Celsius values into

Fahrenheit :

Celsius = [39.2, 36.5, 37.3, 37.8]

Fahrenheit = [((float(9)/5)*x + 32) for x in Celsius]

print Fahrenheit

######output####

[102.56, 97.7, 99.14, 100.03999999999999]

Cross product of two sets:

colours = ["red", "green", "yellow", "blue"]

things = ["house", "car", "tree"]

coloured_things = [(x,y) for x in colours for y in things]

printcoloured_things

output

[('red', 'house'), ('red', 'car'), ('red', 'tree'), ('green', 'house'), ('green', 'car'), ('green', 'tree'), ('yellow',

'house'), ('yellow', 'car'), ('yellow', 'tree'), ('blue', 'house'), ('blue', 'car'), ('blue', 'tree')]

Unpacking argument list

Python allows us to use variable number of arguments. We can also change the values inside

functions using argument unpacking

packing and unpacking allows us to do:

1. validate arguments before passing them

2. set defaults for positional arguments

3. create adaptors for different pieces of code / libraries

4. modify arguments depending on context

5. log calls to methods

Consider the following code:

def func1(x, y, z):

print x

print y

 print z

def func2(*args):

 # Convert args tuple to a list so we can modify it

args = list(args)

args[0] = 'Hello'

SYBCA (Science) Sem-IV, Lab Book, SPPU

45

args[1] = 'Everybody'

func1(*args)

func2('Goodbye', 'Hi', 'welcome')

####output

Hello

Everybody

welcome

Generator function

def infinite_generator(start=0):

 while True:

 yield start

 start += 1

for num in infinite_generator(4):

 print num

if num> 20:

 break

Try this generator function:

def vowels():

yield "a"

yield "e"

yield "i"

yield "o"

yield "u"

for i in vowels():

print(i)

Consider the following example for iterator and generator

def simplegenerator():

 yield 'aaa'

 yield 'bbb'

 yield 'ccc'

def list_tripler(somelist):

 for item in somelist:

 item *= 3

SYBCA (Science) Sem-IV, Lab Book, SPPU

46

 yield item

def limit_iterator(somelist, max):

 for item in somelist:

 if item > max:

 yield item

def test():

 itr = simplegenerator()

 for item in itr:

 print item

alist = range(5)

it = list_tripler(alist)

for item in it:

 print item

alist = range(8)

 it = limit_iterator(alist, 4)

for item in it:

print item

it = simplegenerator()

try:

printit.next()

 print it.next()

printit.next()

printit.next()

exceptStopIteration, exp:

 print 'reached end of sequence'

if __name__ == '__main__':

test()

SET A]

1. Write an anonymous function to calculate area of square.

2. Write a Python function to multiply all the numbers in a list.

Sample-List :(8,2,3,-1,7)

Expected Output : -336

3. Write a Python function to check whether a number is in a given range.

4. Create a function showEmployee() in such a way that it should accept employee name,

and it’s salary and display both, and if the salary is missing in function call it should

show it as 9000

SYBCA (Science) Sem-IV, Lab Book, SPPU

47

SET B]

1. Write a Python function that takes a number as a parameter and check the number is

prime or not.

2. Write a generator function that reverses a given string.

3. Write a recursive function to calculate the sum of numbers from 0 to 10.

4. Write a Python program to filter a list of integers using Lambda

SET C]

1. Create an inner function to calculate the addition in the following way

 Create an outer function that will accept two parameters a and b

 Create an inner function inside an outer function that will calculate the addition of a and b.

 At last, an outer function will add 5 into addition and return it.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

48

Assignment No. 7: Problem Definition and Scope of the Problem

Mini Project for Designing Backend using Software Engineering Techniques

The Mini project is to be carried out using following steps and document them by filling the

forms provided herewith

Step 1 – Form the team of two students

Step 2 – Identify the problems that involves data processing and finalize the project after

discussing with your teacher guide.

Step 3 – Understand the problem, study the existing system and prepare a problem description

and present drawbacks of existing system and scope of the proposed System

Step 4- Prepare software requirement specification for a given problem.

Step 5 – Prepare data flow diagram for a given problem.

The certificate for the mini project is as follows:

SYBCA (Science) Sem-IV, Lab Book, SPPU

49

S. Y. B.C.A. (Science)

Mini Project

Academic Year (2020- 2021)

Project Title:___

__

__

Team members:

1) Name : __

Roll No . Exam Seat No:

2) Name : ___

Roll No .Exam Seat No:

Project Guide Name:__

Project Guide Signature: _______________

SYBCA (Science) Sem-IV, Lab Book, SPPU

50

Problem Description

Study of Existing system (Manual or Computerized)

Drawbacks of Existing system

SYBCA (Science) Sem-IV, Lab Book, SPPU

51

Scope of the Proposed System

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

52

Assignment no 8: Prepare SRS for a given problem

SOFWARE REQUIREMENT SPECIFICATION

A software requirements specification (SRS) is a detailed description of a software system to

be developed with its functional and non-functional requirements. The SRS is developed based

the agreement between customer and contractors.

It may include the use cases of how user is going to interact with software system.

 The software requirement specification document consistent of all necessary requirements

required for project development. To develop the software system we should have clear

understanding of Software system. To achieve this we need to continuous communication

with customers to gather all requirements.

 A good SRS defines the how Software System will interact with all internal modules,

hardware, communication with other programs and human user interactions with wide range

of real life scenarios.

 Using the Software requirements specification (SRS) document on QA lead, managers

creates test plan. It is very important that testers must be cleared with every detail specified

in this document in order to avoid faults in test cases and its expected results.

 It is highly recommended to review or test SRS documents before start writing test cases and

making any plan for testing. Let’s see how to test SRS and the important point to keep in

mind while testing it.

Table of Contents
1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview
2 Overall Description

 2.1 Product Perspective

 2.2 Product function

2.3 User characteristics

2.4 General Constraints

2.5 Assumption and dependencies

3 Specific Requirements

3.1 External Interface Requirements

3.1.1 User Interfaces

3.1.2 Hardware Interfaces

3.1.3 Software Interfaces

3.1.4 Communication Interfaces

3.2 Functional Requirements

3.3 Performance requirement

SYBCA (Science) Sem-IV, Lab Book, SPPU

53

4. Software Quality Attributes

5. Other requirements

Appendix (if any)

Sample SRS of Library Management System

1. Introduction:

A development process consist of various phases, each phase ending with a defined output. The

main reason for having a phased process is that it breaks the problem of developing software into

successfully performing a set of phases, each handling a different concern of software

development. This ensures that the cost of development is lower than what it would have been if

the whole problem was tackled together. Furthermore, a phased process allows proper checking

for quality and progress at some defined points during the development (end of process).Without

this one would have to wait until the end to see what software has been produced.

Any problem solving in software consist of these steps:-

Requirement Analysis:

Requirement Analysis is done in order to understand the problem the software system is to solve.

There are two major activities in this phase: problem understanding or analysis and requirement

specification. In problem analysis, the aim is to understand the problem and its context, and the

requirements of the new system that is to be developed. Once the problem is analyzed and the

essentials understood, the requirements must be specified in the requirement Specification

document. The requirements document must specify all functional and performance

requirements; the formats of inputs and outputs etc.

● Software Design:

The purpose of design phase is to plan a solution of the problem Specified by the requirements

document. This phase is the first step in moving from the problem domain to solution domain.

The design activity often results in three separate outputs: architecture design, high level design

and detailed design.

● Coding:

The main goal of coding phase is to translate the design of the System into code in a given

programming language. The coding phase affects both testing and maintenance profoundly. The

goal of coding should be to reduce the testing and maintenance effort, hence during coding the

focus should be on developing programs that are easy to read and understand.

● Testing:

The function of testing is to detect the defects in the Software. The main goal testing is to

uncover requirement, design and coding errors in the programs. The main goal of the

requirement phase is to produce the software requirement specification (SRS), which accurately

SYBCA (Science) Sem-IV, Lab Book, SPPU

54

capture the client’s requirements. SRS is A document that describes what the software should do.

The basic purpose of SRS is to bridge the communication gap between the clients, the end users

and the

Software developers. Another purpose is helping user to understand their own needs.

1.1 Purpose:

The SRS typically contains the brief description of the project. The purpose of the requirement

document is to specify all the information required to design, develop and test the software.

● The purpose of this project is to provide a friendly environment to maintain the details of

books and library members.

● The main purpose of this project is to maintain easy circulation system using computers and to

provide different reports.

1.2 Scope:

The document only covers the requirements specifications for the Library Management System.

This document does not provide any references to the other component of the Library

Management System. All the external interfaces and the dependencies are also identified in this

document.

Feasibility study:

 The overall scope of the feasibility study was to provide sufficient information to allow a

decision to be made as to whether the Library Management System project should proceed and if

so, its relative priority in the context of other existing Library Management Technology.

The feasibility study phase of this project had undergone through various stepswhich as describe

as under:

● Identity the origin the information at different level.

● Identity the expectation of user from computerized system.

● Analyze the drawback of existing system(manual system)

1.3 Definition, Acronyms, Abbreviation:

● JAVA ->Java is a general-purpose computer programming language that is concurrent, class

based; object oriented, and specifically designed to have as few implementation dependencies as

possible.
● SQL -> Structured query Language

● DFD -> Data Flow Diagram

● ER -> Entity Relationship Diagram

● IDE -> Integrated Development Environment

● SRS -> Software Requirement Specification

1.4 Reference:

Websites:-

 www.google.com

http://www.google.com/

SYBCA (Science) Sem-IV, Lab Book, SPPU

55

 www.youtube.com

Reference books:-

 SQL: THE COMPLETE REFERENCE BY GROFF AND JAMES, MCGRAW HILL

 PROGRAMMING WITH JAVA - E BALGURUSAMY

1.5 Overview:

The implementation of Library Management starts with entering and updating master records

like book details, library information. Any further transaction like book issue, book return will

automatically update the current books.

2. Overall Description:

2.1 Product Perspective:

The proposed Library Management System will take care of the current book detail at any point

of time. The book issue, book return will update the current book details automatically so that

user will get the update current book details.

2.2 Product function:

● The main purpose of this project is to reduce the manual work.

● This software is capable of managing Book Issues, Returns, and Calculating/Managing Fine.

Generating various Reports for Record-Keeping according to end user requirements

2.3 User characteristics:

We have 2 levels of users

 User module: In the user module, user will check the availability of the books.

 Book return

 Administration module: The following are the sub module in the administration module.

 Register user

 Entry book details

 Book issue

2.4 General Constraints:

Any update regarding the book from the library is to be recorded to have update & correct

values.

2.5 Assumption and dependencies:

All the data entered will be correct and up to date. This software package is developed using java

as front end which is supported by sun micro system. Microsoft SQL server 2005 as the back

end.

3. Specific Requirement:

3.1 External Interface Requirement:

The user should be simple and easy to understand and use. Also be aninteractive interface .The

SYBCA (Science) Sem-IV, Lab Book, SPPU

56

system should prompt for the user and administrator to login to the application and for proper

input criteria.

3.1.1 User Interface:

The software provides good graphical interface for the user any administrator can operate on the

system, performing the required task such as create, update, viewing the details of the book.

● Allows user to view quick reports like Book Issues/Returned etc in between particular time.

● Stock verification and search facility based on different criteria.

3.1.2 Hardware interface:

● Operating system: Windows 7/ Linux

● Hard disk:40 GB

●RAM: 256 MB

● Processor: Pentium(R) Dual-core CPU

3.1.3 Software interface:

● Java language

● Net beans IDE 7.0.1

● MS SQL server 2005

3.1.4 Communication interface:

Linux, Java, MS-SQL Server

3.2 Functional requirements:

■ Book entry: In this module we can store the details of the books.

■ Register student: in this module we can keep the details of the new student.

■ Book issue: This module is used to keep a track of book issue details.

■ Book return: This module enables to keep a track of return the books.

3.3 Performance requirements:

The capability of the computer depends on the performance of the software. The software can

take any number of inputs provided the database size is larger enough. This would depend on the

available memory space.

1. Design constraints:

Each member will be having a identity card which can be used for the library book issue, fine

payment etc. whenever library member wish to take a book, the book issued by the library

authority will be check both the book details as well as the student details and store it in library

database. In case of retrieval of book much of human intervention can be eliminated.

SYBCA (Science) Sem-IV, Lab Book, SPPU

57

2. System attributes:

●Maintainability: There will be no maintained requirement for the software. The database is

provided by the end user and therefore is maintained by this user.

●Portability: The system is developed for secured purpose, so it is can’t be portable.

●Availability: This system will available only until the system on which it is install, is running.

● Scalability: Applicable.

Q.1] Solve the Following Assignment.

SET A]

1. What is functional and non-function requirements?

2. What are the user Interface requirements?

3. What is the need for SRS documents?

SET B]

1. Write SRS for Restaurant Management System.

2. Write SRS for Online Shopping System.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

58

Assignment No. 9:-Design Data Flow Diagrams For the Problem

 What is a data flow diagram?

A data flow diagram shows the way information flows through a process or system. It includes

data inputs and outputs, data stores, and the various subprocesses the data moves through. DFDs

are built using standardized symbols and notation to describe various entities and their

relationships.

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows

within a system. A neat and clear DFD can depict the right amount of the system requirement

graphically. It can be manual, automated, or a combination of both.It shows how data enters and

leaves the system, what changes the information, and where data is stored.

The objective of a DFD is to show the scope and boundaries of a system as a whole. It may be

used as a communication tool between a system analyst and any person who plays a part in the

order that acts as a starting point for redesigning a system

 Symbols used in Data Flow diagram

 Levels in Data Flow Diagrams (DFD)

 0-level DFD(Context level Diagram)

 1-level DFD

 2-level DFD

SYBCA (Science) Sem-IV, Lab Book, SPPU

59

0-level DFD:

It is also known as context diagram. It’s designed to be an abstraction view, showing the system

as a single process with its relationship to external entities. It represents the entire system as

single bubble with input and output data indicated by incoming/outgoing arrows.

1-level DFD:

In 1-level DFD, context diagram is decomposed into multiple bubbles/processes. in this level we

highlight the main functions of the system and breakdown the high level process of 0-level DFD

into sub processes

SYBCA (Science) Sem-IV, Lab Book, SPPU

60

 .

2-level DFD:

2-level DFD goes one step deeper into parts of 1-level DFD.It can be used to plan or record the

specific/necessary detail about the system’s functioning.

SYBCA (Science) Sem-IV, Lab Book, SPPU

61

Q.1] Solve the Following Assignment.

1. Consider the Savings Bank Deposit and Withdrawal System in a Nationalized Bank. Also

involve calculation of Interest.

i. Identify all entities.

ii. Draw context level diagram

iii. First level DFD for the system

2. Consider a Hospital Management System in which the Hospital has InPatient Department

(IPD), Outpatient Department (OPD) the system maintains patient records and bills of

patient it also manages, information of various wards in the hospital like ICU, General,

Private, Semi-private and Deluxe.

i. Identify all entities.

ii. Draw context level diagram

iii. First level DFD for the system

Q2.] Instructor/ Teacher can give more case studies to the students.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

3: Needs Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

SYBCA (Science) Sem-IV, Lab Book, SPPU

62

Work Book Feedback Form

1. Whether objective of the Workbook is clear to you?

2. Are the workbook contents meet your expectations?

3. Is the work book contents were clear and easy to understand?

4. What benefit you derived from the work book?

5. Did the work book exposed you to new knowledge and practices?

6. Please give suggestions for the improvement of the Workbook.

7. Please give overall rating for the workbook.

	Reviewed By:
	1. Mr. Arun Gangarde New Arts, Commerce and Science College, Ahmednagar. BOS, BCA(Science)
	2. Mr. Rahul Patil K.R.T. Arts, B.H. Commerce and A.M. Science College, Nashik BOS, BCA(Science)
	2. Script Mode Programming

	Python Comments
	Indentation

	Standard Data Types
	Python Numbers: Integers, floating point numbers and complex numbers falls under Python numbers category. They are defined as int, float and complex class in Python.
	Python Strings: Strings in Python are identified as a contiguous set of characters represented in the quotation marks. Python allows for either pairs of single or double quotes.
	Python Lists :
	Python Tuples:
	Python Dictionary
	Python Operators:
	The new arithmetic operators in python are,
	a) ** (Exponent)- Performs exponential (power) calculation on operators
	Example: a**b =10 to the power 20
	b) // (Floor Division) - The division of operands where the result is the quotient in which the digits after the decimal point are removed. But if one of the operands is negative, the result is floored, i.e., rounded away from zero (towards negative ...
	Example: 9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -11.0//3 = -4.0
	== (equal to), != (not equal to), < (less than),<= (Less than or equal to), > (greater than) and >= (Greater than or equal to) are same as other language relational operators. The new relational operator in python is,
	<>- If values of two operands are not equal, then condition becomes true.
	Example: (a <> b) is true. This is similar to != operator.
	iv. Assignment Operators: The following are assignment operators in python which are same as in C,C++.
	=, +=, -=, *=, /=, %=, **=, //=
	v. Bitwise Operators: The following are bitwise operators in python which are same as in C,C++.
	&(bitwise AND), |(bitwise OR) ,^ (bitwise XOR),~ (bitwise NOT),<<(bitwise left
	shift), >>(bitwise right shift)
	Syntax
	ii. IF...ELIF...ELSE Statements:
	Syntax

	iii. nested IF statements:
	Syntax

	Python – Loops
	i. while loop:
	Syntax-

	ii. for loop:
	Syntax
	Command Line Arguments
	1. Remove special symbols/Punctuation from a given string.

	How to create a set?
	print(type(a))
	How to change a set in Python?
	How to remove elements from a set?
	Python Set Operations
	Sets can be used to carry out mathematical set operations like union, intersection, difference and symmetric difference. We can do this with operators or methods.Let us consider the following two sets for the following operations.
	Set Intersection
	Built-in Functions with Set

	How to create a dictionary?
	How to access elements from a dictionary?
	How to change or add elements in a dictionary?
	Python Dictionary Methods
	Sample Dictionary: my_dict={'data1':100,'data2':-54,'data3':247}
	Sample Dictionary: myDict={'a':1,'b':2,'c':3,'d':4}
	Sample Dictionary:
	Sample Dictionary: (1)
	1. Create an inner function to calculate the addition in the following way

	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms and Abbreviations
	1.5 Overview
	2 Overall Description
	2.1 Product Perspective
	5. Other requirements
	Appendix (if any)
	 What is a data flow diagram?

	 Levels in Data Flow Diagrams (DFD)

