Assignment Number 5 SKH CD100

Tuesday, October 23, 2007

1. Describe the following wave functions as symmetric (even), antisymmetric (odd) or neither (unsymmetric or asymmetric):
a) $\Psi(\theta)=\cos \theta$ b) $\Psi(\theta)=\sin \theta \cos \theta$ (c) $\Psi(x)=A \exp (-x)$, where A is a constant(d$) \Psi(x)=x^{n}$, where n is odd; and (e) $\Psi(x)=x+x^{2}$
2. Identify which of the following wave functions are "acceptable":
a) $\Psi(x)= \pm x^{2}$ b) $\Psi(x)=A x^{2}$ where A is a constant (c) $\Psi(\theta)=\cos \theta$
(d) $\Psi(x)=A \exp (-a x)$, where a is a constant
3. Determine $\Psi^{*} \Psi$ for the following wave functions
a) $\Psi(\theta)=\sin \theta+i \cos \theta$ b) $\Psi(x)=A \exp (i a x)$ and (c) $\Psi(x)=\exp \left(-x^{2}\right)$, where $i=(-1)^{\frac{1}{2}}$
4. For the wave function $\Psi(\theta)=A \exp (\operatorname{im} \phi)$ where m is an integer, evalvate A so that the wave function is normalized?
5. Show that the wave functions $\Psi_{1}(x)=\sin \left(\frac{n \pi x}{a}\right)$ and $\Psi_{2}(x)=\cos \left(\frac{n \pi x}{a}\right)$, where n and a are constants, are orthogonal. The permitted values of x are $0 \leq x \leq a$.
6. Show that the wave functions $\Psi_{1}(\phi)=A \exp (\operatorname{im} \phi)$ and $\Psi_{2}(\phi)=B \exp (i m \phi)$, where m and n are constants, are orthonormal.
7. The operators for position and linear momentum are given by $\hat{x}=x$ and $\hat{p}_{(x)}=\frac{\eta}{i} \frac{\partial}{\partial x}$ respectively. Determine the result of operating on the function $\Psi(x)=A \sin \left(\frac{n \pi x}{a}\right)$, where A, n and a are constants, with each operator.
8. Show that the wave functions describing a 1 s electron and 2 s electron are orthogonal.

$$
\begin{aligned}
& \Psi_{1 s}=\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} \frac{1}{\pi^{\frac{1}{2}}} \exp \left(-\frac{\rho}{2}\right)=\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} \frac{1}{\pi^{\frac{1}{2}}} \exp \left(-\frac{Z r}{a_{0}}\right) \\
& \Psi_{2 s}=\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} \frac{1}{4(2 \pi)^{\frac{1}{2}}}(2-\rho) \exp \left(-\frac{\rho}{2}\right)=\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} \frac{1}{4 \pi^{\frac{1}{2}}}\left(2-\frac{Z r}{a_{0}}\right) \exp \left(-\frac{Z r}{2 a_{0}}\right)
\end{aligned}
$$

