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The book is an outcome of the experience of the authors� which they have acquired in guiding
the under-graduate and post-graduate students. The book is written in a simple and systematic
form to enable the students to follow and perform the experiments on their own. Procedure for
conducting each experiment is given in detail. Important precautions for performing the
experiments have been listed. Viva-voce given at the end of each chapter sets on the thinking
process in the mind of the reader.

The book is divided into sixteen chapters. Chapter 1 deals with the experimental errors
and the general instructions for the performance of different experiments.

Detailed description of several apparatus are given in chapter 2 which would be helpful in
enabling the students to handle the laboratory apparatus and to take measurements.

The experiments in the under-graduate courses prevalent at various Indian Universities
are contained in chapters 3 to 15. The theory and the procedure associated with each experiment
have been thoroughly described. The precautions to be taken are also enumerated. The
determination of experimental error for the quantity to be determined is also given.

Tables of physical constants� log tables etc. are given in chapter 16.
We are also greatful to Prof. T.P. Pandya and Prof. L.M. Bali for their constructive suggestions

and constant encouragement. We extend our thanks to Prof. G.P. Gupta� Head of our department
for his constant support.

We hope that the book will prove helpful and will meet the needs of the students at under-
graduate level of almost all the Indian Universities. We shall welcome suggestions for the
improvement of this book.

R.K. Shukla
Anchal Srivastava
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Experiments form the foundation of the growth and development of science. The chief aim
of experimentation in science is to discover the law which governs a certain phenomenon or
to verify a given law which has been derived from a theory. A general scheme of scientific
investigation known as Scientific Method involves the following steps:

Observations : Qualitative information about a phenomenon collected by un-
aided senses.

Experimentation : Quantitative measurements (with the help of instruments) of
certain physical quantities which have some bearing on the
phenomenon.

Formulation of hypothesis : Analysis of the data to determine how various measured quan-
tities affect the phenomenon and to establish a relationship
between them, graphically or otherwise.

Verification : The hypothesis is verified by applying it to other allied
phenomena.

Predictions of new phenomena.

New experiments to test the predictions.

Modification of the law if necessary

The above discussion show that experimentation is vital to the development of any kind
of science and more so to that of Physics.

��� ������������������������� ��!

Physics is an experimental science and the history of science reveals the fact that most of the
notable discoveries in science have been made in the laboratory. Seeing experiments being
performed i.e., demonstration experiments are important for understanding the principles of
science. However, performing experiments by one’s own hands is far more important because
it involves learning by doing. It is needless to emphasise that for a systematic and scientific
training of a young mind; a genuine laboratory practice is a must. For the progress of science
and acceptance of various hypothesis measurements play a key role.
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1. Before performing an experiment, the student should first thoroughly understand the
theory of the experiment. The object of the experiment, the kind of apparatus needed and
the procedure to be followed should be clear before actually performing the experiment.
The difficulties and doubts if any, should be discussed with the teacher.

2. The student should check up whether the right type of apparatus for the experiment to
be performed is given to him or not.

3. All the apparatus should be arranged on the table in proper order. Every apparatus
should be handled carefully and cautiously to avoid any damage. Any damage or
breaking done to the apparatus accidentally, should be immediately brought to the notice.

4. Precautions meant for the experiment should not only be read and written in the practical
file but they are to be actually observed while doing the experiment.

5. All observations should be taken systematically, intelligently and should be honestly
recorded on the fair record book. In no case an attempt should be made to cook or change
the observations in order to get good results.

6. Repeat every observation, number of times even though their values each time may be
exactly the same. The student must bear in mind the proper plan for recording the
observations.

7. Calculations should be neatly shown using log tables. The degree of accuracy of the
measurement of each quantity should always be kept in mind so that the final result does
not show any fictitious accuracy. So the result obtained should be suitably rounded off.

8. Wherever possible, the observations should be represented with the help of graph.
9. Always mention the proper unit with the result.

��& �� ���������'������������������������������������

A neat and systematic recording of the experiment in the practical file is very important in
achieving the success of the experimental investigations. The students may write the experi-
ment under the following heads in their fair practical note-books.

Date............. Experiment No.............. Page No..............

1. Object/Aim
2. Apparatus used
3. Formula used
4. Theory
5. Procedure/Method
6. Observation
7. Calculations
8. Results
9. % error

10. Sources of error and precaution

Object/Aim: The object of the experiment to be performed should be clearly and precisely
stated.
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Apparatus used: The main apparatus needed for the experiment are to be given under this
head. If any special assembly of apparatus is needed for the experiment, its description should
also be given in brief and its diagram should be drawn on the left hand page.

Diagram: A circuit diagram for electricity experiments and a ray diagram for light experiment
is a must. Simply principle diagram wherever needed, should be drawn neatly on left hand
page.

Theory: The principle underlying the experiment should be mentioned here. The formula used
should also be written explaining clearly the symbols involved. Derivation of the formula may
not be required.

Procedure: The various steps to be followed in setting the apparatus and taking the measure-
ments should be written in the right order as per the requirement of the experiment.

Observations: The observations and their recording, is the heart of the experiment. As far as
possible, the observations should be recorded in the tabular form neatly and without any
over-writing. In case of wrong entry, the wrong reading should be scored by drawing a
horizontal line over it and the correct reading should be written by its side. On the top of the
observation table the least counts and ranges of various measuring instruments used should
be clearly given. If the result of the experiment depends upon certain environmental condi-
tions like temperature; pressure, place etc., then the values of these factors should also
be mentioned.

Calculations: The observed values of various quantities should be substituted in the formula
and the computations should be done systematically and neatly with the help of log tables.
Wherever possible, graphical method for obtaining result should be employed.

Estimation of error: Percentage error may also be calculated if the standard value of the result
is known.

Result: The conclusion drawn from the experimental observations has to be stated under this
heading. If the result is in the form of a numerical value of a physical quantity, it should be
expressed in its proper unit. Also mention the physical conditions like temperature, pressure,
etc, if the result happens to depend upon them.

Sources of error and precautions: The possible errors which are beyond the control of the
experimenter and which affect the result, should be mentioned here.

The precautions which are actually observed during the course of the experiment should
be mentioned under this heading.

��( �����$���'���$��)�����$

We come across following errors during the course of an experiment:

1. Personal or chance error: Two observers using the same experimental set up, do not
obtain exactly the same result. Even the observations of a single experimenter differ when
it is repeated several times by him or her. Such errors always occur inspite of the best and
honest efforts on the part of the experimenter and are known as personal errors. These
errors are also called chance errors as they depend upon chance. The effect of the chance
error on the result can be considerably reduced by taking a large number of observations
and then taking their mean.
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2. Error due to external causes: These are the errors which arise due to reasons beyond the
control of the experimenter, e.g., change in room temperature, atmospheric pressure etc.
A suitable correction can however, be applied for these errors if the factors affecting the
result are also recorded.

3. Instrumental errors: Every instrument, however cautiously designed or manufactured,
possesses imperfection to some extent. As a result of this imperfection, the measurements
with the instrument cannot be free from errors. Errors, however small, do occur owing
to the inherent manufacturing defects in the measuring instruments. Such errors which
arise owing to inherent manufacturing defects in the measuring instruments are called
instrumental errors. These errors are of constant magnitude and suitable corrections can
be applied for these errors.

��* ���%����������$��)�����$

The manner in which an observation is recorded, indicates how accurately the physical
quantity has been measured. For example, if a measured quantity is recorded as 50 cm, it
implies that it has been measured correct ‘to the nearest cm’. It means that the measuring
instrument employed for the purpose has the least count (L.C.) = 1 cm.

Since the error in the measured quantity is half of the L.C. of the measuring instrument,
therefore, here the error is 0.5 cm in 50 cm. In other words we can say, error is 1 part in 100.

If the observation is recorded in another way i.e., 50.0 cm, it implies that it is correct ‘to
the nearest mm. As explained above, the error now becomes 0.5 mm or 0.05 cm in 50 cm. So
the error is 1 part in 1000.

If the same observation is recorded as 50.00 cm. It implies that reading has been taken with
an instrument whose L.C. is 0.01 cm. Hence the error here becomes 0.005 cm in 50 cm, i.e., 1
part in 10,000.

It may be noted that with the decrease in the L.C. of the measuring instrument, the error
in measurement decreases, in other words accuracy of measurement increases. When we say
the error in measurement of a quantity is 1 part in 1000, we can also say that accuracy of the
measurement is 1 part in 1000. Both the statements mean the same thing. Thus from the above
discussion it follows that:
(a) the accuracy of measurement increases with the decrease in the least count of the

measuring instrument; and
(b) the manner of recording an observation indicates the accuracy of its measurement.

��+ ���%��������������$%��

The accuracy of the final result is always governed by the accuracy of the least accurate
observation involved in the experiment. So after making calculation, the result should be
expressed in such a manner that it does not show any superfluous accuracy. Actually the result
should be expressed upto that decimal place (after rounding off) which indicates the same
accuracy of measurement as that of the least accurate observation made.

��, �����$$��������������������$%��

Even under ideal conditions in which personal errors, instrumental errors and errors due to
external causes are some how absent, there is another type of error which creeps into the
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observations because of the limitation put on the accuracy of the measuring instruments by
their least counts. This error is known as the permissible error.

��- �� �����$����������������$$��������������������$%��

Case I: When the formula for the quantity to be determined involves the product of only first
power of the measured quantities: Suppose in an experiment, there are only two measured
quantities say p and q and the resultant quantity s is obtained as the product of p and q, such
that

s = p ◊ q ...(1)
Let Dp and Dq be the permissible errors in the measurement of p and q respectively. Let Ds

be the maximum permissible error in the resultant quantity s. Then
s ± Ds = (p ± Dp) ◊ (q ± Dq) ...(2)

From (1) and (2), we have
(s ± Ds) – s = p ◊ q ± p ◊ Dq ± q ◊ Dp ± Dp ◊ Dq – p ◊ q

Ds = ± p ◊ Dq ± q ◊ Dp ± Dp ◊ Dq ...(3)
The product of two very small quantitites, i.e. (the product Dp ◊ Dq) is negligibly small as

compared to other quantities, so equation (3) can be written as
Ds = ± p ◊ Dq ± q ◊ Dp ...(4)

For getting maximum permissible error in the result, the positive signs with the individual
errors should be retained so that the errors get added up to give the maximum effect.

Thus equation (4) becomes
Ds = p ◊ Dq + q ◊ Dp ...(5)

Dividing L.H.S. by s and R.H.S. by the product p ◊ q, we get

�s
s

 = p q
p q

q p
p q

.
.

.
.

� �
�

or
�s
s max.

 =
� �q
q

p
p

� ...(6)

Expressing the maximum permissible error in terms of percentage, we get

�s
s

 =
� �q
q

p
p

�
F
HG

I
KJ � 100% ...(7)

The result expressed by equation (7) can also be obtained by logarithmic differentiation
of relation (1). This is done as follows:

On taking log of both the sides of equation (1), one gets
log s = log p + log q ...(8)

On differentiating (8), one gets

�s
s

 =
� �p
p

q
q

� ...(9)

� D (log x) =
�x
x

.

The result (6) and (9) are essentially the same.
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Case II: When the formula for the physical quantity to be determined contains higher powers
of various measured quantities.

Let s = paqbrc ...(10)
Then taking log of both sides of (10), we have

log s = a log p + b log q + c log r ...(11)
On differentiating equation (11), we get

�s
s

 = a
p

p
b

q
q

c
r

r
� � �

� � ...(12)

Thus
�s
s max.

 = a
p

p
b

q
q

c
r

r
� � �

� �
F
HG

I
KJ � 100% ...(13)

Since maximum permissible error can be conveniently estimated by logarithmic differen-
tiation of the formula for the required quantity, so, the maximum permissible error is also
called as the Maximum Log Error.

In actual practice the maximum permissible error is computed by logarithmic differentia-
tion method.

���. �$�������#������%�������$$����������

For determination of resistivity of a material, the formula used is

r =
R d

l

�
1
4

2�
,

the maximum permissible error in r is computed as follows.
Resistivity r is a function of three variable R, d and l.
Taking log of both sides, we get

log r = log R + 2 log d – log l + log 
�

4
F
HG

I
KJ

Differentiating with respect to variable itself, we get

��

�
 = � � �R

R
d

d
l

l
� �2 0– �

�

4
is constantF

HG
I
KJ

changing negative sign into positive sign for determining maximum error, we have
��

�
 =

� � �R
R

d
d

l
l

� �2

The error is maximum due to error in physical quantity occuring with highest power in
the working formula.

In an experiment, the various measurements were as follows:
R = 1.05W, DR = 0.01W
d = 0.60 mm, Dd = 0.01 mm = least count of the screw gauge
l = 75.3 cm, Dl = 0.1 cm = least count of the metre scale

��

�
 =

0 01
105

2 0 01
0 60

01
75 3

.

.
.

.
.
.

�
�

�  = 0.0095 + 0.0334 + 0.0013 = 0.0442 = 0.044
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The permissible error, in r in the above case is

��

�
 = 0.044 ¥ 100

= 4.4%, out of which 0.0334 ¥ 100 i.e. 3.3% is due to error in d.

���� ��������#�������

The mean value of the experimentally determined quantity is compared with the standard
(correct) value of the quantity. It is done as follows:

Percentage Error = standard value – calculated value
standard value

F
HG

I
KJ � 100

���� $�#�����������#%��$�/�����$����������$%������0

No measurement of any physical quantity is absolutely correct. The numerical value obtained
after measurement is just an approximation. As such it becomes quite important to indicate the
degree of accuracy (or precision) in the measurement done in the experiment. Scientists have
developed a kind of short hand to communicate the precision of a measurement made in an
experiment. The concept of significant figures helps in achieving this objective. To appreciate
and understand the meaning of significant figures let us consider that in an experiment, the
measured length of an object is recorded as 14.8 cm. The recording of length as 14.8 cm means
(by convention) that the length has been measured by an instrument accurate to one-tenth of
a centimetre. It means that the measured length lies between 14.75 cm and 14.85 cm. It also
indicates that in this way recording of lengths as 14.8 cm, the figures 1 and 4 are absolutely
correct where as the figures ‘8’ is reasonably correct. So in this way of recording a reading of
a measurement, there are three significant figures. Let us now consider another way of
recording a reading. Let the measured length be written as 14.83 cm. This way of writing the
value of length, means that the measurement is done with an instrument which is accurate upto
one-hundredth of centimetre. It means that the length lies between 14.835 cm and 14.825 cm,
which shows that in 14.83 cm, the figures 1, 4 and 8 are absolutely correct and the fourth figure
‘3’ is only reasonably correct. Thus this way of recording length as 14.83 cm contains four
significant figures. Thus this significant figure is a measured quantity to indicate the number
of digits in which we have confidence. In the above measurement of length, the first
measurement (14.8 cm) is good to three significant figures whereas the second one (14.83 cm)
is good to four significant figures. From the above discussion, we should clearly understand
that the two ways of recording an observation such as 15.8 cm and 15.80 cm represent two
different degrees of precision of measurements.

���" ��%�'��#� ���

When the quantities with different degees of precision are to be added or subtracted, then the
quantities should be rounded off in such a way that all of them are accurate upto the same place
of decimal.
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For rounding off the numerical values of various quantities, the following points are
noted.

1. When the digit to be dropped is more than 5, then the next digit to be retained should
be increased by 1.

2. When the digit to be dropped is less than 5, then the next digit should be retained as it
is, without changing it.

3. When the digit to be dropped happens to be the digit 5 itself, then (a) the next digit to be
retained is increased by 1, if the digit is an odd number. (b) the next digit is retained as
it is, if the digit is an even number.

After carrying out the operations of multiplication and division, the final result should be
rounded off in such a manner that its accuracy is the same as that of the least accurate quantity
involved in the operation.

���& ��#������$

Logarithm of number to a given base is the number to which the base must be raised to get
the number. For example, we have

8 = 23 it means log of 8 to the base 2 is equal to 3
or log2 8 = 3

Napierian Logarithms: In these logarithms, the base used is e, value of e is equal to 2.17828.

Common Logarithms: In these logarithms, the base used is 10. These are used in all arithmeti-
cal calculations.

General Relations:
1. The logarithms of 1 to any base is 0.
2. The logarithms of the product of two or more numbers is equal to the sum of their

logarithms.
Thus loga m ◊ n = loga m + loga n

3. The logarithm of a fraction is equal to the difference between the logarithms of the
numerator and that of the denominator.

Thus loga
m
n

 = loga m – loga n

4. The logarithm of a number raised to any power (integral or fraction) is equal to the
product of the index of power and the logarithm of the number.
Thus loga m

n = n loga m

Characteristic and Mantissa: Logarithms consist of an integral part called the characteristic,
and a fractional part called mantissa. For example, 856 lies between 800 and 900, or between
102 and 103, and so the logarithm of it lies between 2 and 3.

log 856  = 2 + a fraction
Hence, 2 is the characteristic and the unknown fraction (which is always positive) is the

mantissa.
The mantissa is determined with the help of logarithm and antilogarithm tables, while

reading the mantissa from the tables, the position of the decimal points and zeroes at both ends
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of the number are ignored. These do not affect the mantissa. For example, the mantissa of 856,
85.6 and 0.00856 is the same.

���( �� �������'���%����#%�����#������������$

To read the mantissa for 2345, look for 23 in the extreme left vertical column. Move horizon-
tally against it to the number under column marked 4 at the top. This is 3692. Move forward
in the same horizontal line and note down the number under mean difference 5. This is 9. On
adding the number 9 to 3692, we get 3701. This is the mantissa of 2345.

Therefore, log 2345 = 3.3701
log 234.5 = 2.3701
log 23.45 = 1.3701
log 2.345 = 0.3701

log 0.2345 = 1 3701.
log 0.002345 = 3 3701.

Antilogarithms: The antilogarithm of the logarithm of a number is equal to the number itself.
For example, if the number is x, then antilog (log x) = x.

Thus, antilogarithm tables are used for finding out the number from its logarithm. If it is
required to find the number whose logarithm is 1.3456 look for 0.34 in the extreme left vertical
column of the antilogarithm table. Move horizontally against it to the number under column
marked ‘5’ at the top. The number is 2213. Move forward in the same horizontal line and note
down the number under mean difference 6. The number is 3. Adding this number to 2213, we
get 2216. Since the characteristic in the given logarithm is 1, there are two figures to the left
of the decimal point in the required number. Hence the required number is 22.16.

Therefore,
Antilog 1.3456 = 22.16

log 22.16 = 1.3456
Example of addition: Suppose we have to add 2 6495.  and 0.9419

For the mantissa part, we have
.6495 + .9419 = 1.5914

And for the characteristic part, we have
 2 0 1� �  = – 2 + 0 + 1 = –1 = 1

Thus the sum is 1.5914.

Example of subtraction: Suppose we have to subtract 2 9419.  from 3 6495. .
For the mantissa part, we have

0.6495 – 0.9419 = .7076 with a borrow 1.
And for the characteristic part, we have 3 – 2 – 1  (borrow)

= – 3 + 2 – 1 = – 2 = 2
Thus 3.6495 – 2.9419  = 2.7076

Example: Calculate 
456.2a f

a f
1 2

1 4

0 024

325

� .
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Let x be the required number, then

x =
456.2a f

a f
1 2

1 4

0 024

325

� ( . )

taking log on both sides, we get

log x = 1
2

456 2 0 024
1
4

325log ( . ) log( . ) – log ( )�

= 1
2

2 6592 2 3802
1
4

2 5119� � �. . – .

= 1.3296 + 2 3802 0 6280. – .  = 1 0818.

x = antilog 1 0818.  = 0.1207

���* #����

A graph is a pictorial way to show how two physical quantities are related. It is a numerical
device dealing not in cm, ohm, time, temperature etc but with the numerical magnitude
of these quantities. Two varying quantities called the variables are the essential features of
a graph.

Purpose: To show how one quanitity varies with the change in the other. The quantity which
is made to change at will, is known as the independent variable and the other quantity which
varies as a result of this change is known as dependent variable. The essential features of the
experimental observations can be easily seen at a glance if they are represented by a suitable
graph. The graph may be a straight line or a curved line.

Advantage of Graph: The most important advantage of a graph is that, the average value of
a physical quantity under investigation can be obtained very conveniently from it without
resorting to lengthy numerical computations. Another important advantage of graph is that
some salient features of a given experimental data can be seen visually. For example, the points
of maxima or minima or inflexion can be easily known by simply having a careful look at the
graph representing the experimental data. These points cannot so easily be concluded by
merely looking at the data. Whenever possible, the results of an experiment should be
presented in a graphical form. As far as possible, a straight line graph should be used because
a straight line is more conveniently drawn and the deduction from such a graph are more
reliable than from a curved line graph.

Each point on a graph is an actual observation. So it should either be encircled or be made
as an intersection (i.e. cross) of two small lines. The departure of the point from the graph is
a measure of the experimental error in that observation.

How to Plot a Graph? The following points will be found useful for drawing a proper graph:

1. Examine carefully the experimental data and note the range of variations of the two
variables to be plotted. Also examine the number of divisions available on the two axes
drawn on the graph paper. After doing so, make a suitable choice of scales for the two
axes keeping in mind that the resulting graph should practically cover almost the entire
portion of the graph paper.
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2. Write properly chosen scales for the two axes on the top of the graph paper or at some
suitable place. Draw an arrow head along each axis and write the symbol used for the
corresponding variable alongwith its unit as headings of observations in the table,
namely, d/mm, R/W, l/cm, T/S, I/A etc. Also write the values of the respective variables
on the divisions marked by dark lines along the axes.

3. After plotting the points encircle them. When the points plotted happen to lie almost on
a straight line, the straight line should be drawn using a sharp pencil and a straight edged
ruler and care should be taken to ensure that the straight line passes through the
maximum number of points and the remaining points are almost evenly distributed on
both sides of the line.

4. If the plotted points do not lie on a straight line, draw free hand smooth curve passing
through the maximum number of points. Owing to errors occuring in the observations,
some of the points may not fall exactly on the free hand curve. So while drawing a smooth
curve, care should be exercised to see that such points are more or less evenly distributed
on both sides of the curve.

5. When the plotted points do not appear to lie on a straight line, a smooth curve is drawn
with the help of a device known as French curve. If French curve is not available, a thin
flexible spoke of a broom can also be used for drawing smooth curve. To make the spoke
uniformly thin throughout its length, it is peeled off suitably with a knife. This flexible
spoke is then held between the two fingers of left hand and placed on the graph paper
bending it suitably with the pressure of fingers is such a manner that the spoke in the
curved position passes through the maximum number of points. The remaining points
should be more or less evenly distributed on both sides of the curved spoke. In this bent
position of the spoke, a smooth line along the length of the spoke is drawn using a sharp
pencil.

6. A proper title should be given to the graph thus plotted.
7. Preferably a millimetre graph paper should be used to obtain greater accuracy in the

result.

���+ ����%������$����$����������$����#�������

In order to compute the value of slope m of the straight
line graph, two points P (x1, y1,) and Q (x2, y2) widely
separated on the straight line are chosen. PR and QS are
drawn ^ to x-axis and PN ^ QS.

The slope of the line
m = QN

PN
y y
x x

� 2 1

2 1

–
–

This method of calculating the slope emphasises the
important fact that: QN and PN which are (y2 – y1)
and (x2 – x1) must be measured according to the particu-
lar scales chosen along y and x-axis respectively, the
angle q must not be measured by a protractor and the
values of tan q should not be read from trigonometric
table.
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S.I. is the abbreviation for Le Systeme International d Unites which is French translation of
the International System of Units. International system was accepted in 1960, in the general
conference of weights and measures. There are seven fundamental units and two supplimentary
units.

Fundamental Units

Physical Quantity Unit Symbol
Length metre m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela Cd
Amount of substance mole mol

Suppliment Units

Physical Quantity Unit Symbol
Angle Radian rad
Solid angle Steradian sr

Rest of the physical quantities can be expressed in terms of the above fundamental
quantites.

To express large variations in magnitudes of quantities, their multiplies or submultiplies
are expressed by prefixes as follows:
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Measurements of most of the physical quantities in the laboratory should be done in the most
convenient units, e.g., mass of a body in gram, measurements using micrometer screw in mm,
small currents in electronic tubes, diode and triode in mA etc.

Calculations: All the measured quanitites must be converted into S.I. units before substituting
in the formula for the calculation of the result.
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An instrument is a device used to determine the value of a quantity or variable. We discuss
below the instruments required to perform the experiments. The procedure for handling the
instruments and the methods of taking readings are also outlined, where necessary. Some
accessories and devices are additionally considered.
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To measure a length a metre scale is generally used. The scale is graduated in centimetres and
millimetres and is one meter in length. For the measurement of a length with a metre scale,
adopt the following procedure.

(a) Note the value of one smallest division of the scale.
(b) Hold the scale on its side such that the marking of the scale are very close to the points

between which the distance is to be measured.
(c) Take readings by keeping the eye perpendicular to the scale above the point at which

measurement is made.
(d) Avoid using zero of the scale as it may be damaged. Measure the distance as a difference

of two scale readings. For situation where direct placing of the scale is inconvenient, use
a divider. In this case the divider is set to the length to be measured and then transfered
to the scale for actual measurement of the length.

A metre scale can be used with an accuracy of 0.1 cm. To measure a small length with an
accuracy more than that obtainable from a metre scale, the instruments used are (1) the
diagonal scale, (2) the slide callipers, (3) the screw gauge.

Since we shall use mainly the slide callipers and the screw gauge we shall describe these
two instruments here. In addition the spherometer which is used to measure the radius of
curvature of a spherical surface will be considered.
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The vernier consists of an auxilliary scale, called the vernier scale, which is capable of sliding
along the edge of a main scale (Fig. 2.1). With the help of the vernier scale, length can be
measured with an accuracy greater than that obtainable from the main scale. The graduations
on the vernier scale are such that n divisions of this scale are generally made to coincide with
(n – 1) divisions of the main scale. Under this condition, lengths can be measured with an

accuracy of 1
n  of the main scale division.
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The vernier constant (v.c) is given by
vernier constant (v.c) = (1 main scale div – 1 vernier scale div.) � value of 1 main

scale division.
The same principle is employed in the construction of circular vernier used to measure

angles.
The slide callipers consists of a steel scale, called the main scale (m.s) with a jaw (A) fixed

at one end at right angles to its length as shown in Fig. 2.2. A second jaw (B) carrying a vernier
scale and capable of moving along the main scale can be fixed to any position by means of a
screw cap S. The main scale is graduated in centimetres or inches. The zero of the main scale
and vernier scale coincide when the moveable jaw is allowed to touch the fixed jaw. To use
the side callipers proceed as follows:

��&�
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(i) Loosen the screw S and let the two jaws touch each other. If the zeros or both the vernier
and the main scales coincide then the instrumental error is zero. If not, find the
instrumental error (below).

(ii) Find the vernier constant (v.c) of the slide callipers by recording data in the tabular form
as shown in Table 2.1.

(iii) Put the movable jaw away from the fixed jaw and hold the object whose length is to be
measured against the fixed jaw. Allow the movable jaw to touch the object. Lock the
movable jaw by means of the screw S.

(iv) Find the length L of the object by taking readings (a) on the main scale and (b) on the
vernier scale. Note the readings as follows:
(a) If the zero of the vernier stands after lth division of the main scale then note

the reading of the main scale corresponding to the lth division. Let the reading be
l (cm).

(b) If the pth division of the vernier is found to be in line with a main scale graduation
then the vernier scale reading is p � (vernier constant).
Therefore, the length L of the object is

L = l + p � v.c. cm,
where v.c. is given in cm.
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A length correct to one-tenth or one-fiftieth part of a millimetre can be measured with slide
callipers.

An instrumental error or zero error exists when, with the two jaws touching each other,
the zero of the vernier scale is ahead of or behind the zero of the main scale. If x divisions of
the vernier scale coincides with a certain mark of the main scale, ‘the instrumental error is y
= x ��v.c. The error is positive when the vernier zero is on the right and is negative when the
vernier zero is cm the left side of the main scale zero. If the instrumental error is positive it
is to be subtracted from the measured length to obtain the correct length. If the error in
negative is to be added to the measured length.

To measure the internal diameter of a cylinder the jaws P and Q are used.
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It consists of a U-shaped piece of steel, one arm of which carries a fixed stud B where as the
other arm is attached to a cylindrical tube [Fig. 2.3(a)]. A scale S graduated in centimeters or
inches is marked on this cylinder. An accurate screw provided with a collar, moves inside the
tube. The screw moves axially when it is rotated by the milled head (H). The fixed and the
movable studs are provided with plane surfaces.

The beveled end of the collar is generally divided into 50 or 100 equal divisions forming
a circualr scale. Depending upon the direction of rotation of the screw the collar covers or
uncovers the straight scale divisions. When the movable stud is made to touch the fixed stud,
the zero of the linear (straight) scale should coincide with the zero of the circular scale. If they
do not coincide then the screw gauge is said to possess an instrumental error.

A ratched wheel (R) which slips over the screw top can be seen in some screw gauges. The
purpose of the ratched wheel is to give light pressure on the object during its measurement
so that the object does not suffer any deformation.

The principle of the instrument is the conversion of the circular motion of the screw head
into the linear motion of the movable stud. For an accurately cut screw, if the screw head is
rotated through equal angles then the screw will move axially through equal distances.
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The pitch of the screw is defined as its axial displacement for a complete rotation.
The least count of the screw gauge refers to the axial displacement of the screw for a

rotation of one circular division. Thus, if n represents the number of divisions on the circular
scale and the pitch of the screw is m scale divisions, then the least count (L.C.) of the screw
gauge is given by

Least Count (L.C.) =
m
n

 scale divisions.

The determination of least count (L.C.) of a screw gauge is conveniently done by
completing the following Table 2.2.

������ ���
� ��������	��
�� 
�� ��	��� �
���

�����	
� ��� ����� �	�	
�������	���� ������	��� �����

� ���� 	�� ��� ��������� ����� ����

If the pitch of the screw corresponds to one full scale division on the linear scale and the
instrumental error is zero then the reading L of an object between the studs is given by

L = l + s � (l.c.),
Where l represents the linear scale reading and s represents the number of circular scale

divisions, sth division coinciding with the reference line.
When the studs are in touch with each other and the zero of the circular scale has crossed

the reference line on the tube, the instrumental error is considered to be –ve. This error is,
therefore, required to be added to the apparent reading. But if the zero on the circular scale
fails to reach the reference line, the error is considered to be +ve and is required to be
subtracted from the apparent reading. The magnitude of the instrumental error is the axial
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distance through which the screw should move in order to bring the zero of the circular and
the main scale in coincidence when the studs are in contact with each other. If x circular scale
division are above or below the reference line, then the magnitude of the zero or the
instrumental error is L = x � least count.

Back-lash error: When a screw moves through a threaded hole there is always some misfit
between the two. As a result, when the direction of rotation of the screw is reversed, axial
motion of the screw takes place only after the screw head is rotated through a certain angle.
This lag between the axial and the circular motion of the screw head is termed the back-lash
error. This error is present in micrometer screw gauge. The error is small when the instrumen-
tal is new and it gradually increases with the use of the instrument. In order to get rid of
this error, the screw head should always be rotated in the same direction while measurement
is made.

��� 
 �"	
 �%"	���	�	�

This instrument is used to measure (i) the radius of curvature
of a spherial surface and (ii) the thickness of a very thin glass
plate. It consists of a micrometer screw S moving through a nut
N, the latter being supported on their three legs. A, B and C,
as shown in [Fig. 2.3(b)]. The points A, B and C form the corners
of an equilateral triangle and the tip of the screw S passes
through the center of this triangle. Attached to this screw is a
circular metallic disc D which is divided into 100 equal divi-
sions. A linear vertical scale S1, adjacent to the edge of the
circular scale give the vertical displacement of the circular
scale. When the three legs and the tip of the screw rest on the
same plane P, the zero mark of the circular scale coincides with
the zero of the linear scale S1.

Before using the instrument, the least count (l.c.) is deter-
mined. For this, note the shift in position of the circular scale
on the linear scale for one complete rotation of the former. This
gives the pitch of the instrument. The least count is obtained
by dividing the pitch by the total number of circular scale
division.

The procedure of using this instrument for the measurement of radius of curvature is as
follows:

(i) Place the spherometer on the spherical surface whose radius of curvature is to be
determined and raise or lower the screw S by means of the head H so that the tip of the
screw just touches the curved surface.

(ii) Note the reading of the circular scale (c.s.). Let this initial reading be a.
(iii) Replace the spherical surface by a plane glass plate.
(iv) Lower or raise gradually the screw so that the tip of the screw just touches the glass

plate. To obtain the exact point of touching the surface of the plate, look tangentially
along the glass plate and move the screw until the gap between the tip of the screw and
its images just vanishes. During the movement of the screw, note the number (n) of the
complete rotations of the circular scale. Multiply this number by the pitch to get the
value of the vertical shift due to those complete rotations of the circular scale. Let it be
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denoted by M. Note also the final reading (b) on the circular scale when the tip just
touches the plate. The difference between the final and the initial circular scale reading
(b ~ a) gives the additional circular scale readings. Multiply (b ~ a) by the least count to
get the value of the additional circular scale reading. Call it N. Thus the value of the
elevation h is M + N.

(v) Measure h for the three different positions on the spherical surface, if possible.

If d represents the average distance between any two legs of the spherometer, then the
radius of curvature R of the spherical surface is given by

R =
h d

h2 6

2
�

Results:
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[while using this instrument take care of avoiding the back-lash error by rotating the screw
always in the same direction.]
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The travelling microscope [Fig. 2.4 (a)] is an instrument well-
suited for the purpose of measuring small vertical or horizontal
distances with high accuracy. It consists of a compound micro-
scope that is capable of independent horizontal and vertical
movements. The amount of movement in the vertical direction
can be obtained from the scale M1 and the vernier V1 where as
that in the horizontal direction can be obtained the scale M2 and
the vernier V2. The microscope may be raised or lowered along
a vertical pillar PN and its axis may be fixed horizontally,
vertically, or in between them by the screw S1. The screw S2 is
used to move the pillar PN horizontally. The object is viewed
through the eye piece E when the objective lens O is turned
towards the object. The focal length of the objective generally
lies between 3 to 4 cm. The focussing of the microscope is
accomplished by a screw attached to the body of the microscope. The cross-wire of the eye
piece is focussed by moving eye piece in or out. Four screws at the base of instrument are used
for its levelling.

Before using the instrument note the vernier constants of the both the verniers V1 and V2.
Generally the vernier constants of V1 and V2 are the same.

The procedure to measure the horizontal or the vertical distance between two points is
as follows:

(i) Level the instrument with the help of the base screw and a spirit level.
(ii) View one of the points through the microscope and focus the cross-wire with the image

of the point. Note the readings of the main scale and the vernier scale (v.s.).
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(iii) Displace the microscope vertically or horizontally, as required by means of the screw
S1 or S2

 to view the second point and focus the cross wire with the image of the second
point. Note again the reading of the main scale and the vernier scale.

(iv) Calculate the difference (horizontal or vertical) between these two readings to obtain
the distance between the points.

��( $����������

This instrument is used to measure vertical distances accurately in experiments where the
range of a travelling microscope is inadequate. A typical form of the instrument is shown in
Fig. 2.4(b).

It consists of a graduated rod AA� held vertically by means of a stand provided with three
levelling screws (S1, S2 and S3) at the base. The rod AA� carries a slide to which a telescope T
is mounted horizontally. The rod along with the telescope can be rotated about a vertical axis.
The screw F is used for horizontal adjustment of the telescope. A spirit level L is mounted on
the top of the telescope to indicate the horizontal condition of the axis of the telescope.

The slide along with the telescope can be moved vertically up and down and can be fixed
at any position by means of a screw S. The carriage holding the telescope has a vernier V. This
vernier along with a micro meter screw M is used for measuring the small vertical distance.

To measure a vertical distance with the help of a cathetometer adopt the following
procedure:

(i) Make the telescope parallel to the line joining any two of the
levelling screws of the stand. (Some cathetometer are pro-
vided with two adjustement screw and a pin of fixed length
is fixed to the third leg. For such cathetometers the telescope
is set parallel to a line that passes through the fixed pin and
any one of the two screws.) If the bubble of the spirit level is
away from the centre of its scale then bring it half way back
to the centre by turning the screw F.

(ii) Now turn the base screws simultaneously by equal amounts
in opposite directions until the bubble reaches the centre of
the scale. Note that these screws are in a line which is parallel
to the telescope axis. (For those having two adjustable screws
and a fixed pin, adjust the screw that in conjunction with the
pin forms an imaginary line parallel to the axis of the tele-
scope).

(iii) Turn the rod AA� through 180�. If the bubble of the spirit level
is found away from the centre, bring it to the centre by first
adjusting the screw F and then the two base screws, as dis-
cussed in steps (i) and (ii).

(iv) Turn the rod AA� again through 90° so that the telescope is
now set at right angles to the previous line joining the two
base screws. Adjust the remaining base screw and bring the
bubble back to the centre, if necessary.
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In practice, the above four steps are to be repeated several times in order that the bubble
remains at the centre of its scale irrespective of the direction in which the telescope is set.

To measure accurately the vertical distance between two points very close to each other,
focus the telescope on the first point until the image of the point coincides with the cross-wires
of the telescope. Note the vernier reading. Alter the vertical position of the telescope and focus
on the second point so that its image coincides with the cross-wires. Again note the vernier
reading. The difference between the first and the second vernier readings gives the vertical
distance between the points.

A very familiar application of cathetometer in the laboratory in the measurement of the
vertical depression of the mid-point of a bar place horizontally between two knife edges and
loaded at the middle.
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The mass of a body is determined by weighing the body
in a balance. The essential parts of a physical balance are
shown in Fig. 2.5.

1. The beam: It is a horizontal metal rod AB mounted
at its centre by an agate Knife-edge K1. The agate
Knife-edge, in turn, rests on an agate plate P at-
tached to the pillar C when the balance is in use. At
the two ends of the beam two identical agate Knife-
edges (K2, K2) are attached with their sharp edges
upwards.

2. The stirrups (R1, R2) and the pans (S, S): The
stirrups are provided with agate pieces which rest
on the terminal Knife-edges (K2, K2). Each stirrup
carries a pan (S). The distances of the centres of
gravity of the stirrups from the sharp Knife-edges
K1 are called arms and are equal in length.

3. The pillar (C): This is a vertical rod which can be
raised or lowered when required by means of a handle (H) fixed at the front of the
wooden base of the instrument. At the top of the pillar there is an agate plate upon which
the central Knife-edge (K1) of the beam rests.

4. The pointer (P1): This is attached at its upper end at the middle of the beam where as its
lower end can move freely over a graduated scale (G) which is fixed at the foot of the
pillar. When the beam is horizontal, the tip of the pointer is on the zero mark of the scale.

5. The base-board (B): The base of the instrument, called the base-board, is provided with
levelling screws. The screws are adjusted to make the pillar vertical and the beam
horizontal. A plumb line (not shown in the figure) suspended from the top of the pillar
is used for correct adjustment of the pillar and the beam.

When the balance is not in use, the beam is lowered and is allowed to rest on another
support. In this case, the botton surfaces of the pans just touch the base board. In the rest
position of the beam its central Knife-edge (K1) is separated from the agate plate. At both
ends of the beam there is a screw which can be used to alter the effective weight of each
side through a small range.
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6. Rider and its function: The beams of some physical balances are graduated from the
centre outwards. Here weights smaller than 10 mgm are obtained by moving a small piece
of wire, called the rider (R) along the beam by means of a rider hook and a rider carriage
(R.C.). The mass of the rider is usually made 10 mg and each division on the beam
corresponds to 0.1 mgm or 0.2 mgm depending upon the construction. Before using the
rider it is better to ascertain its correct mass.

7. Weight box: The body to be weighed is placed on the left pan and various weights of
known masses are placed on the right pan. These weights of known masses are contained
in a box called the ‘weight box.’ Inside the box there are bodies of masses ranging from
100 gm to 10 mgm or less. Masses weighing 1 gm or greater are generally made of brass
whereas the lighter masses are made of aluminium. The mass of each is marked on it.
These standard weights are carefully handled with a pair of forceps also contained in the
box.

A delicate balance contains various other parts of finer weighing. The balance is
always kept within a glass case to prevent external disturbance during weighing.

Sensitivity of a balance: The sensitivity of a balance is defined as the number of scale division
through which the pointer moves on account of an excess of weight of 1 mgm on one of the
pans.

In Fig. 2.6, A1, B1, represents the position of the beam when it is deflected by an angle �
from its rest position AB due to an excess weight of �W on one of the pans. If l is the length

of the pointer and d (= PP1) is the deflection of the pointer then we have � = d
l

.

Suppose the weight W of the beam and the pointer acts at its centre of gravity G where
OG = h. Under equilibrium condition the moment due to �, i.e. �a cos � is balanced by the
moment due to W, i.e. Wh sin �, where a (= OB1) is the length of the arms of the balance. Thus,

Wh sin ��= �a cos �

or, tan � =
� a
Wh

When a is small,

tan �, = � = d
l

Therefore, d
l

 =
� a
Wh

Hence the sensitivity of the balance is
d
�

 = al
Wh

.

Note that in the above equations ��and W are both expressed in the same units, i.e gms
or mgms. If ��is in mgm and W is in gm, the equation will be

d
�

 = al
Wh1000

.

This shows that the sensitivity of a balance can be increased by (i) increasing the length
of the arm, (ii) diminishing the weight of the beam and the pointer, (iii) decreasing the distance
h of the centre of gravity of the beam and the pointer from the fulcrum and (iv) increasing the
length of the pointer.
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The sensitivity of a balance is a maximum and is independent of the load when the three
knife-edges K1 and (K2, K2) are in the same horizontal plane. When the middle Knife-edge is
below the plane of the terminal knife-edges and equal leads placed on each pan, the sensitivity
increases initially with load since the beam bends and lowers the position of the terminal
knife-edges. On the other hand, if the middle knife-edge lies above the plane of the terminal
knife-edge then the sensitivity decreases continuously with
increasing load. Practical balances are constructed with the
central knife-edge lying a little below the plane of the termi-
nal knife-edge. As a result, the sensitivity of a balance initially
increases with load, reaches a maximum and then decreases,
as shown in Fig. 2.7.

A balance is said to be stable if the arms of the balance
quickly return to their equilibrium positions after the balance
is disturbed. For a better stability, the arms are made short.
In order to make a compromise between stability and sensi-
tivity, generally balances with short arms but with long
pointers are made.
Weighing a body with a balance: The weight of a body may be determined either by the
method of oscillation or by the method of equal displacements.

(a) Method of oscillation: To determine the rest position of the pointer: When the beam of
a balance oscillates, it executes simple harmonic vibrations with gradually diminishing
amplitude and a long time is spent before it comes to rest. To save time the rest position of
the pointer is determined from the amplitudes of oscillations. For this, the exterme left of the
scale over which the pointer moves is marked zero (as shown in Fig. 2.6). During the oscillation
of the pointer, five readings on the turning points of the pointer are taken; three on one side
(say, left) and two on the other (say, right) of the rest position. Calculate the mean of the three
readings on the left and that of the two readings on the right. The mean of these two means
gives the rest position of the pointer.

Suppose P is the rest position of the pointer when no weights are placed on the pans. Let
Q be the rest position of the pointer when the body to be weighed is placed on the left pan
and a weight W1, gm is placed on the right pan. Also let R be the rest position of the pointer
when an extra load of m mgm is placed over W1 gm.

Therefore, (Q – R) divisions represent the change in the rest position of the pointer due
to the extra weight m mgm. Hence (Q – P) divisions shift of the rest position of the pointer

will correspond to 
Q P
Q R

m–
–

�
1000

 gm. The correct weight of the body, is therefore,

W = W
Q P
Q R

m
1 1000

� �
–
–

gm

Procedure:
(i) Level the balance by adjusting the levelling screws. Removes dust particles, if any, on

the pans by a camel-hair brush.
(ii) Adjust the screw nuts at the ends of the beam until the pointer swings almost equally

on both sides of the central line of the scale.
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(iii) Disturb the balance a little and note the reading of the five successive turning points of
the pointer; three to the left and two to the right. Calculate the average of the two sets
separately and obtain the mean of these two averages. This is the resting position P of
the pointer and is called the zero-point.

(iv) Adjust the balance: Place the body to be weighed at the centre of the left hand pan and
suitable weights W1 at the centre of the right-hand pan.

(v) Determine the resting position of the pointer with the body and the weights by
adopting the procedure described in step (iii) Denote the resting position by Q. The
weight W1 should be such that Q lies about 5 divisions to the right of the zero point.

(vi) Put an additional 10 mgm weight on the right hand pan and find the view rest position
of the pointer following step (iii), let it be R.

Experimental Results:
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Calculation:

W = W
Q P
Q R1

10
1000

� �
–
–

gm

Substitute the experimental values of W1, P, Q and R and obtain W, the correct weight of
the body.

(b) Method of equal displacements: In this method adopt the following procedure:
(i) Level the balance by adjusting the levelling screw. The plumb line will then be vertical.

(ii) The dust particles on the pans are then brushed off.
(iii) The screw nuts at the ends of the beam are to be shifted in or out till the pointer swings

equally on both sides of the central line of the scale.
(iv) The body to be weighed is then placed at the centre of the left pan. Suitable standard

weights are placed at the centre of the right pan until the pointer swings equally on both
sides of the central line of the scale. If the lowest weight in the weight box fails to achieve
this, use a rider till the swings of the pointer about the central line are equal.

(v) Make a detailed recording of the weights put on the right pan and note the readings
of the rider. Sum the weights to obtain the weights of the body.
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Precautions in weighing
(i) Each time a standard load is placed on the right hand pan, test the balancing of the beam

by raising it a little with the handle H after closing the door. Final balance is to be
checked by raising the beam in full.

(ii) The standard weights should always be handled with a pair of forceps.
(iii) The body to be weighed and the standard weights should be placed at the centre of

the pans.
(iv) While reading the turning points of the pointers, avoid parallax by keeping the eyes

perpendicular to the scale and the pointer.
N.B.: Do not weigh a too hot or a too cold body in a balance. The different parts of the balance
may expand (or contract) when a too hot (or cold) body is placed on the pan; weighing is
therefore not accurate.
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There are two types of optical bench: (i) ordinary and (ii) accurate types. We describe below
the second type. The first type is a simple one and is used for measurements of optical
constants of mirrors and lenses. A student, acquainted with the accurate type of optical bench,
will be able to handle the ordinary type easily.

The optical bench employed for biprism work is shown in Fig. 2.8. It consists of two long
horizontal steel rails, R1R2 and R3R4 placed at a fixed distance apart. On one of these rails, a
scale is graduated in mm. This is shown in Fig. 2.8 on the rail R1R2. Several uprights such as
U1, U2, U3, U4 having verniers attached to their bases can slide over the rails. L1, L2, L3 and L4
are four levelling screw; U1 is the upright carrying the slit S, U2 is the upright carrying the
biprism, U3 is the upright carrying the micrometer eyepiece E, and U4 is the upright carrying
a convex lens L; T1 and T2 are two tangent screws by which the slit and the biprism can be
rotated in their planes about a horizontal axis, M is a micrometer screw provided with a
circular and a linear scale; the screw attached to the upright U2 can move the upright
perpendicular to the bench.

From the scale and the vernier, the shift of any upright from any position can be
determined. The height of the uprights from the bed of the bench can be adjusted; the bed can
be made horizontal by the levelling screws, L1, L2, L3 and L4. The screw represented by L4 is
not seen in the figure.
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Index error: The distance between any two stands, as obtained from the difference of the
bench scale readings, may not be the true distance between them. Thus an error, known as
index error, may exist between any two stands. If L be the actual distance between the two
stands and d be the distance obtained from the bench scale readings, then the index error is
given by x = L – d. This is to be added algebraically to the quantity to be corrected for index
error. When the distances are measured from the centre of an equi-convex lens of thickness

t, the index error becomes l d
t

– �
F
HG

I
KJ2

.
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Let any eye E be placed in a straight line joining two object
points O and O�, as shown in Fig. 2.9. Now if the eye is moved
in a direction perpendicular to the line EOO�, then the more
distant object O� will appear to move with the eye. This
phenomenon is known as parallax. To eliminate parallax,
either the nearer object O should be moved away from the eye
E, or the distant object O� should be moved towards the eye
until there is no separation between them as the eye is moved
in a direction perpendicular to the line joining the two objects.
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This instrument (Fig. 2.10) is normally used to study spectra and to measure refractive indices.
It has the following essential parts:

(i) Collimator (C): It consists of a horizontal tube with a converging achromatic lens Oc at
one end of the tube and a vertical slit S (shown separately in the right side of Fig. 2.10)
of adjustable width at the other end. The slit can be moved in or out of the tube by a
rack and pinion arrangement Fc and its width can be adjusted by turning the screw F.
The collimator is rigidly fixed to the main part of the instrument and can be made exactly
horizontal by two screws C1 and C2 below it. When properly focussed, the slit lies in the
focal plane of the lens Oc. Thus the collimator provides a parallel beam
of light.

(ii) Prism table (P): It is a small
circular table and capable of
rotation about a vertical axis. It
is provided with three level-
ling screws, shown separately
in Fig. 2.11, as P1, P2, and P3.
On the surface of the prism
table, a set of parallel, equidis-
tant lines parallel to the line
joining two of the levelling
screws, is ruled. Also, a series
of concentric circles with the
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centre of the table as their common centre is ruled on the surface. The screw H
(Fig. 2.11) fixes the prism table to the two verniers V1 and V2 and also keep it at a given
height. These two verniers rotate with the table over a circular scale are graduated in
fraction of a degree. The angle of rotation of the prism table can be recorded by these
two verniers. The screw F1 fixes the prism table and the screw Tp is the tangent screw
for the prism table by which a smaller rotation can be imparted to it. It should be noted
that a tangent screw functions only after the corresponding fixing screw is tightened.

(iii) Telescope (T ): It is a small astronomical telescope with an achromatic doublet as the
objective Ot and the Ramsden type eye-piece E. The eye-piece is fitted with cross-wires
and slides in a tube which carries the cross-wires. The tube carrying the cross wires in
turn, slides in another tube which carries the objective. The distance between the
objective and the cross-wires can be adjusted by a rack and pinion arrangement F1. The
Telescope can be made exactly horizontal by two screws t1 and t2. It can be rotated about
the vertical axis of the instrument and may be fixed at a
given position by means of the screw Ft slow motion can
be imparted to the telescope by the tangent screw Tt.

(iv) Circular Scale (C.S.): This is shown separately in the left
hand side of the Fig 2.10. It is graduated in degrees and
coaxial with the axis of rotation of the prism table and the
telescope. The circular scale is rigidly attached to the
telescope and turned with it. A separated circular plate
mounted coaxially with the circular scale carries two ver-
niers, V1 and V2, 180° apart. When the prism table is
clamped to the spindle of this circular plate, the prism table
and the verniers turn together.

The whole instrument is supported on a base provided with three levelling screws S1,
S2, and S3. One of these is situated below the collimator. In Fig. 2.10, this screw has been
called S3.
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The following essential adjustments are to be made step by step in a spectrometer experiment:
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Levelling the apparatus means making (a) the axis of rotation of the telescope vertical, (b) the
axis of the telescope and that of the collimator horizontal, and (c) the top of the prism table
horizontal. The following operations are performed for the purpose.

(a) Levelling of telescope: Place a spirit level on the telescope tube T making its axis parallel
to that of the telescope. Set the telescope parallel to the line joining the levelling screw S1 and
S2. Bring the air bubble of the spirit level halfway towards the centre by turning the screw S1
and S2 by equal amounts in the opposite direction. Next bring the bubble at centre by turning
the levelling screw t1 and t2 below the telescope by equal amounts in opposite directions.

Now rotate the telescope through 180° so that it is placed to its first position on the other
side. Bring the air bubble at centre as before, i.e. half by the screws S1 and S2 and the other
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half by t1 and t2. Repeat the operations several times so that the bubble remains at the centre
for both positions of the telescope.

Next place the telescope in the line with the collimator and bring the air bubble of the spirit
level at the centre by turning the screw below the collimator, i.e. S3 check the first adjustment
after this second one is made. The axis of the rotation of the telescope has thus become vertical
and the axis of the telescope has become horizontal.

(b) Levelling of collimator: Remove the spirit level from the telescope. Place it on the
collimator along its length. Bring the air bubble of the spirit level at the centre by adjusting
the levelling screws C1 and C2 below the collimator. This makes the axis of the collimator
horizontal.

(c) Levelling of the prism table: Place a spirit level at the centre of the prism table and parallel
to the line joining two of the levelling screw of the prism table. Bring the air bubble of the spirit
level at the centre by turning these two screws in the opposite directions. Now place the spirit
level perpendicular to the line joining the two screws and bring the bubble at the centre by
adjusting the third screw. This makes the top of the prism table horizontal.

��� 
 !�&��	��
 �7
 �"	
 �����	

Place the Bunsen burner at a distance of 15 to 20 cms from the slit in such a way that the axis
of the collimator passes through the centre of the flame. Soak the asbestos wound round the
iron or copper ring in a concentrated solution of sodium chloride. Place the ring round the
flame at such a height that the brightest part of the flame lies opposite to the slit.

Now place a screen with an aperture between the source and the slit so that light from the
source can reach the slit without obstruction while, at the same time, stray light is prevented
from reaching the observer’s eyes directly.
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Rotate the telescope towards any illuminated background. On looking through the eye-piece,
you will probably find the cross-wires appear blurred. Move the eye-piece inwards or
outwards until the cross-wire appear distinct.
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Place the telescope in line with the collimator. Look into the eye-piece without any accommo-
dation in the eyes. The image of the slit may appear blurred. Make the image very sharp by
turning the focussing screw of the telescope and of the collimator, if necessary. If the images
does not appear vertical, make it vertical by turning the slit in its own plane. Adjust the width
of the slit so that its image may have a breadth of about one millimetre.
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Schuster�s method: This is the best method of focussing the telescope and the collimator for
parallel rays within the space available in the dark room. The method is explained below:

Place the prism on the prism table with its centre conciding with the centre of the table and
with its refracting edge vertical.* Rotate the prism table so that one of the refracting faces of

* Use optical levelling as described on page 31, if necessary.
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the prism AB (Fig. 2.12) is directed towards the collima-
tor and light from the collimator is incident on the
refracting face at an angle of about 45° to the face. Look
through the other face AC of the prism for the refracted
beam which is bent towards the base of the prism. You
will see with the naked eye the image of the slit formed
by refraction through the prism. Slightly rotating the
prism table, first in one direction and then in the other,
you will also see that the image moves. Now turn the prism table in the proper direction so
that the images of the slit moves towards the direct path of rays from the collimator and
reaches the positions of minimum deviation. At this position of the prism the images will move
away from the direct path of rays in whatever direction the prism table is turned. Next bring
the telescope between the prism and the eye and move it slightly this way or that so that you
can see the image of the slit in it. Slightly rotate the prism table so that you find the image
through the telescope exactly at the position of minimum deviation. Displace the telescope
from this position in a direction away from the direct path of rays. For this position of the
telescope, the image of the slit can be brought on the cross-wires for two positions of the prism.
In one position, the angle of incidence of the prism is larger than that at minimum deviation
and in the other position it is smaller. In the former position, the refracting edge of the prism
is nearer to you than at minimum deviation, and in the latter it is more remote from you. The
former position of the prism is called the slant position and the latter position is called the
normal position.

Next perform the following operations:

(a) Bring the image on the cross-wires of the telescope by rotating the prism table in such a
way that the refracting edge of prism is nearer to you (the prism is at the slant position)
than at minimum deviation. Focus the image by rack and pinion arrangement of the
telescope. The image now becomes very narrow.

(b) Next rotate the prism table in the opposite direction. The refracting edge of the prism will
move away from you. Go on rotating the prism table until the image moving towards the
position of minimum deviation, turns back and reaches the cross-wires again. Keeping the
prism at this position, i.e. at the normal, focus the image by the rack and pinion
arrangement of the collimator. The image is now very wide.

Repeat the operations (a) and (b) several times in succession till the image remains sharp
for both the positions of the prism. The telescope and the collimator are then focussed for
parallel rays.

Mnemonic: The operations in Schuster�s method can be easily remembered as follow: When
the refracting edge of the prism is nearer to you, focus the image by the telescope. When the
refracting edge of the prism is away from you, focus by the collimator. Or simply, near-near,
away-away. Alternatively, the operations can be remembered by noting that when the image
is Broad, focussing is done by the collimator. When the image is thin, focus by the Telescope,
Simply, b – c, t – t.
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When a narrow beam of light is incident on one face (AB) of a prism, the emergent beam from
the other face (AC) appears to come a point image I [Fig. 2.13 (a)].

The relation between the distance of the image from the prism, v and that of the object u
is given by

v = u
i
r

i
r

cos
cos

cos
cos

2

2

2

2
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I
KJ ,

where i and r are respectively the angle of
incidence and refraction at the first face,
and r� and i� are those at the second face.

When the prism is at the position
of minimum deviation for the mean ray
of the beam, i = i� and r = r�. In that case,
v = u, i.e. the distance of the image from
the prism is equal to the distance of the
object. This is shown in Fig. 2.13 (b).

When the prism is at the normal position, the angle of incidence is smaller than that at
minimum deviation. Under this condition, i < i�, and (cos2 i/cos2 r) > (cos2 i�/cos2 r�). Thus
v < u  i.e. the image is nearer to the prism than the object [Fig. 2.13 (c)].

Similarly it can be shown that for the slant position of the prism when the angle of incidence
is larger than that at minimum deviation, v > u, i.e. the image of the slit formed by refraction
at the prism is at a longer distance than the object [Fig. 2.13 (d)].
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Now in operation (a) of Sec 2.8 (v), when the prism is in the slant position, the image of
the slit is focussed in the telescope by its rack and pinion arrangement. This means that the
telescope is focussed on a remote point (since the image is formed at a greater distance from
the object.). Next in operation (b) when the prism is turned to the normal position, the image
moves nearer to the prism and goes out of focus of the telescope. This time, when the image
is focussed in the telescope by moving the collimator lens nearer to the slit, the image is pushed
to the previous position of focus of the telescope. If the prism is now changed from the normal
to the slant position (as is done when the operation (a) is again repeated), the image moves
further away from the prism. When the image is focussed by the telescope the telescope is
focussed on a more remote point.

Thus with every adjustment of the collimator, the image formed by refraction at the prism
at the normal position is pushed at the position corresponding to the slant position of the prism
and in the latter position the telescope is focussed on the point which moves away to greater
and greater distances. Ultimately the images corresponding to the two positions of the prism
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are formed at very great distances and appear to be in focus for both positions of the prism.
The spectrometer is thus focussed for parallel rays.

Optical levelling of a prism: The levelling of a prism table by the method discussed in Sec.
2.8 (i)c makes the refracting faces of the prism vertical only when the bottom face of the prism,
which is placed on the prism table, is perpendicular to its three edges. But if the bottom face
is not exactly perpendicular to the edges, which is actually the case, the prism should be
levelled by the optical method, as described below:

(i) Illuminate the slit by sodium light and place the telescope with its axis making an angle
of about 90° with that of the collimator.

(ii) Place the prism on the prism table with its centre coinciding with that of the table and
with one of its faces (faces AB in Fig. 2.11) perpendicular to the line joining the two screw
P1 and P2 and of the prism table.

(iii) Rotate the prism table till the light reflected from this face AB of the prism enters the
telescope. Look through the telescope and bring the image at the centre of the field of
the telescope by turning the screws P1 and P2 equally in the opposite directions.

(iv) Next rotate the prism table till the light reflected from the other face AC of the prism
enters the telescope, and bring the image at the centre of the field by turning the third
screw P2 of the prism table.

Care in handling the prism: The reflecting surfaces of the prism should be cleaned with a piece
of cloth soaked in alcohol. Do not touch the refracting surfaces by hand. Place the prism on
the prism table or remove it from the prism table by holding it with fingers at the top and
bottom faces.
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A rheostat offers a resistance that can be altered in a continuous manner.
A sliding rheostat [Fig. 2.14 (a)] consists of a coil of bare wire wound uniformly round a

porcelain cylinder. Manganin or eureka is generally chosen for the material of the wire. The
ends of the coil are connected to two binding screws, A and B. C is a metal contact which moves
along a rod DE which also contains a binding screw at E.

If the terminals A and B are connected to a circuit, the whole of the coil resistance is
included in the circuit and the contact becomes ineffective. But if the terminal A and E of the
rheostat are connected to the circuit, the actual resistance included in the circuit is determined
by the portion of the coil between A and C, and so can be varied by varying the position of
the contact C, as is evident from Fig. 2.14(b). Thus, by sliding the contact C the resistance
between the terminal A and E (and also between terminal B and E) can be changed almost
continuously.
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Our eye is a natural lens fixed in its place through muscles. This lens has the power to change
its focal length and it is because of this that we can see clearly near as well as far objects.

When we see a distant object, the parallel rays of lights falling on our eye are focussed by
the lens on the retina. Therefore, the object is seen distinctly. At this moment our eye is in a
relaxed state (there is no tension in muscles) and the focal-length of the lens is maximum.
When, however, we see a near object, the muscles contract to increase the curvature of the lens.
Hence the focal length of the lens decreases and again a clear image of the object is formed
at the retina. This power of changing the focal length of the eye is called power of accomodation.
As we see more and more near objects, more and more power of accomodation is to be applied.
But there is a limit of applying the power of accommodation. The nearest distance up to which
eye can see clearly (by applying maximum power of accomodation) is called ‘least distance of
distinct vision’. For normal eye, this distance is 25 cm. If an object is placed at a distance less
than 25 cm from the eye, it will not be seen distinctly.
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Visual Angle: The angle which an object subtends at our eye is called the ‘visual angle.’ The
apparent size of an object as seen by our eye depends upon the visual angle. Greater the visual
angle, larger the apparent size of the object.

In Fig. 2.15, an object AB subtends a visual
angle ��at the eye and its image CD is formed at
the retina. When the same object is brought nearer
the eye in the position A1, B1, it subtends a larger
visual angle 	 at the eye and a larger image CD1,
is formed at the retina. Obviously, the same
object appears bigger to the eye. Thus in order to
see an object larger, the visual angle should be increased. Telescope and Microscopes are the
aids to increase the apparent size of object by increasing visual angle.

Very distant objects (such as moon), although very big in size, appear very small because
they subtend very small visual angle at the eye. To see them bigger, we cannot decrease their
distance. But if, with the help of proper lenses, a small angle of the distant object be formed
‘close’ to the eye then this image will subtend a large visual angle at the eye and the object will
appear large. Telescope is based exactly on this principle.

Very small objects subtend small visual angle due to their smallness. We can increase the
visual angle by bringing these objects closer to eye, but we cannot do so beyond a certain limit
(25 cm) because then the object will not be seen distinct. If, with the help of proper lenses, a
‘large’ image of small object is formed, then this image will subtend a large visual angle at the
eye and the object will appear large. Microscope is based on this principle.

Magnifying Power: The purpose of microscopes and telescope is to increase the visual angle.
Therefore, the power of these instruments is measured by their power of increasing the visual
angle. This is called the ‘magnifying power’ of the instrument. The magnifying power of an
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optical instrument is defined as the ratio of the visual angle subtended by the image formed
by the instrument at the eye to the visual angle subtended by the object at the unaided eye.
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A telescope is an optical instrument used to see distant objects. The image of the distant object
formed by the telescope subtends a large visual angle at the eye, so that the object appears
large to the eye.

Construction: It consists of a long cylindrical metallic tube carrying at one end an achromatic
convex lens of large focal length and large aperture* which is called the ‘objective lens’. At the
other end of the tube is fitted a smaller tube which can be moved in and out in the bigger tube
by a rack and pinion arrangement. At the other end of the smaller tube is fitted an achromatic
convex lens of small focal length and small aperture** which is called the ‘eye-piece’. Cross-
wires are mounted in the smaller tube at the focus of the eye-piece.

Adjustment: First of all the eye-piece is moved backward and forward in the smaller tube and
focussed on the cross-wire. Then the objective-lens is directed toward the object which is to
be observed. Now, by rack and pinion arrangement, the smaller tube is moved in the larger
tube until the distance of the objective lens from the cross-wire is so adjusted that there is no
parallax between the image of the object and the cross-wires. In this position a distinct image
of the object will be seen. This image is formed by refraction of the light through the lenses.
Hence this telescope is called a ‘refracting’ telescope.

Formation of Image: In Fig. 2.16 are shown the objective-lens O and the eyepiece E of a
telescope. AB is a distant object whose end A is on the axis of the telescope. The lens O forms
a small, real and inverted image A�B� at its second focus Fo. This image lies inside the first focus
Fe� of the eye-piece E and acts as an object for the eye-piece which forms a virtual, erect and
magnified final image A�� B��. To find the position of B��, two dotted rays are taken from B�. One

(*) objective of ‘large’ aperture is taken so that it may collect sufficient light and form bright image of
very distant objects (stars, etc).

(**) Eyepiece of small aperture is taken so that the whole light may enter the eye.
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ray, which passes through the optical centre E, goes straight and the second ray which is taken
parallel to be principal axis goes, after refraction, through the second focus Fe of E. The two
refracted rays when produced backward meet at B��.
Magnifying power: The magnifying power (angular magnification) of a telescope is defined
by

M =
angle subtended by the final image at the eye

angle subtended by the object at the eye when the object is in actual position

Since eye is near the eye-piece E, the angle 	 subtended by the final image A��B�� at the
eyepiece may be taken as the angle subtended at the eye. In the same way, since the object AB
is very far from the telescope, the angle � subtended by the object at the objective may be taken
as the angle subtended at the eye.

Then

M =
	

�

Since angles 	 and � are very small, we can write

	 = tan 	 = � �

�

A B
EA

� = tan � = � �

�

A B
OA


 M = � � �

� � �
�

�

�

A B EA
A B OA

OA
EA

/
/

If the focal length of the objective O be fo and the distance of A�B� from the eye-piece E be
ue then, with proper sign, OA� = + fo and EA� = –ue. Thus by the above equation, we have

M = – f
u

o

c

...(i)

This is general formula of magnifying power. Now there are two possibilities:

(i) The final image is formed at the least distance D of distinct vision: If the distance of
the final image A��B�� from the eye-piece be D, then in applying the lens formula
1 1 1
v u f

– �  for the eye-piece, we shall have

v = –D, u = –ue and f = + fe

where fe is the focal length of the eyepiece. We get

1
–D

 –
1 1

–u fe e
�

or
1
ue

 =
1 1 1

1
f D f

f
De e

e� � �
F
HG

I
KJ.

Substituting this value of 1/ue in eq. (i), we have

M =
– f

f
f
D

o

e

e1 �
F
HG

I
KJ ...(ii)
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We shall substitute only the numerical values of fo, fe and D in this formula. In this
position the length of the telescope will be fo + ue.

(ii) When the final image is formed at infinity: To see with relaxed eye the final image
should be formed at infinity (Fig. 2.17). For this, the distance between the objective and
the eye-piece is adjusted so that the images A�B� formed by the objective O is at the focus
Fe� of the eye-piece (ue = fe). This adjustment of the telescope is called normal adjustment.
Substituting ue = fe in eq (i), we get,

M =
– f
f

o

e
...(iii)

In this position the length of the telescope will be fo + fe.

It is clear from eq. (ii) and (iii) that in order to increase the magnifying power of a
telescope the focal length fo of the objective lens should be large and the focal length fe
of the eye-piece should be small. Negative sign indicates that the final image is inverted.

���+ �����$����
�����$�*�

To obtain a ‘bright’ image of a distant object
by means of a refracting telescope it is es-
sential that the objective is of a large aper-
ture so that it may collect enough light com-
ing from the object. But objectives of very
large aperture are difficult to manufacture
and are very costly. The same can be
achieved by using a concave mirror of large
aperture instead of a lens.

Construction: In a reflecting telescope the
objective is a concave mirror M1 (Fig. 2.18)
of the large focal-length and large aperture
which is fitted at one end of a wide tube.
The open end to the tube is directed to-
wards the distant object to be seen. The
tube carries a plane mirror M2 which is
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placed between the concave mirror M1 and its focus, and is inclined at an angle of 45° to the
principal axis of M1. A small side-tube carries a lens E of small focal length and small aperture.
E is called the eye-piece.

Formation of Image: The (parallel) rays from a distant object AB fall on the concave mirror
M1. The reflected convergent beam is received by the plane mirror M2 which
reflects this beam to form a small, real image A�B�. The image A�B� acts as object for the eye-
piece E, which forms a magnified virtual image A��B�� between the least distance of distinct
vision and infinity. If A�B� is in the focal-plane of E then the final image will be formed at
infinity.

Magnifying Power: Magnifying power of the telescope is

M =
angle subtending by the final image at the eye

angle subtended by the object at the eye
It can be shown that when the final image is formed at infinity, then the magnifying power

is given by

M =
f
f
o

e
,

Where fo and fe are the focal lengths of the concave mirror M1 and the eye-piece E.
The modern reflecting telescopes carry paraboloidal mirror which is free from spherical

aberration. One of the largest reflecting telescope of the world is kept at Mount Palomer in
California. The aperture of its objective mirror is 200 inch (� 5 meter). It is used to study distant
stars and planets.

Merits:
(i) The image formed by a reflecting telescope is brighter than that formed by a refracting

telescope.
(ii) Further, in reflecting telescope the image is free from chromatic aberration, while this

defect persists in the image formed by a refracting telescope.
(iii) With the use of paraboloidal mirror the image may also be made free from spherical

aberration.
(iv) The objective of the telescope should have a larger aperture. It is difficult to construct

lenses of large aperture because the glass becomes distorted during the manufacturing
process. The image formed by such a lens becomes distorted. On the other hand, the
image produced by a mirror is not affected by any distortion in the interior of the glass.
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A microscope is an optical instrument which forms large image of a close and minute object.
In the simplest form a simple microscope or magnifying glass is just a thin, short-focus

convex lens carrying a handle. The object to be seen is placed between the lens and its focus
and the eye is placed just behind the lens. Then, the eye sees a magnified, erect and virtual
image on the same side as the object. The position of the object between the lens and its focus
is so adjusted that the image is formed at the least distance of distinct vision (D) from the eye.
The image it is then seen most distinctly.
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In Fig. 2.19 (a), AB is a small object placed between a lens L and its first focus F�. Its
magnified virtual image A�B� is formed at distance D from the lens, the distance of the image
A�B� from the eye is also D.

Magnifying Power: Let 	 be the angle subtended by the image A�B� at the eye [Fig. 2.19 (a)]
and � the angle subtended by the object AB at the eye when placed directly at a distance D
from the eye [Fig. 2.19 (b)]. Then, the magnifying power of the simple microscope is given by

M =
angle subtended by the image at the eye

angle subtended by the object at the eye when placed
at least distance of distict vision 

 = 
	

�

	�= tan 	�= AB/OA
��= tan ��= AB/D.


 M =
AB OA
AB D

D
OA

/
/

.�

But OA = u (distance of the object from the lens.)


 M =
D
u

. ...(i)

The image A�B� is being formed at a distance D from the lens. Hence, in the lens formula

1 1
v u

–  = 1
f

, we shall put v = –D and u = –u(with proper sign). Thus,

1 1
–

–
–D u

 =
1
f

or 1
u

 = 1 1
D f

�

or D
u

 = 1 �
D
f

Putting this value of D/u in eq. (i), we get

M = 1 �
D
f

.
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We shall substitute only the numerical values of D and f. Thus M is positive which means
that an erect image is formed. It is also clear, that shorter the focal length of the lens, larger
is the magnifying power.

If the eye is kept at the distance d from the lens, then v =  – (D – d), and the magnifying
power will be

M = 1 �
D d

f
–

.

Thus, magnifying power is reduced. Hence to obtain maximum magnifying power, the eye
must be very close to the lens.

To see with relaxed eye, the image A�B� should be formed at infinity. In this case, the object
AB will be at the focus of the lens, that is, u = f. Thus, from eq. (1) we have

M = D
f

.
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Construction: It consists of a long cylindrical metallic tube carrying at one end an achromatic
convex lens O of small focal length and small aperture (Fig. 2.20). This lens is called the
‘objective lens’. At the other end of the tube is fitted a smaller tube. At the outer end of this
smaller tube is fitted an achromatic convex lens E whose focal length and aperture are larger
than that of the objective lens. The lens E is towards the eye and is called the eye-piece. The
entire tube can be moved forward and backward by rack and pinion arrangement.

Adjustment: First of all the eye-piece is moved forward or backward in the tube and brought
in a position so that on seeing through it the cross-wire appear distinct. Then the object is
placed just below the objective lens and the entire tube is moved by rack and pinion
arrangement until the image of the object is formed on the cross-wire and there is no parallax
between the image and the cross-wire. In this position the image of the object will be seen
distinctly.

Formation of Image: Suppose AB is a small object placed slightly away from the first focus Fo�
of the objective O (Fig. 2.20) which form a real inverted and magnified image A�B�. This image
lies between the eye-piece E and its first focus Fe�  and acts as an object for the eye-piece which
forms a magnified, virtual final image A��B��. To find the position of B��, two dotted rays
are taken from B��. One ray; which is parallel to the principal axis passes, after refracting,
through the second focus Fe of E. The other ray which passes through the optical centre of E
travel straight. Both the refracted rays when produced backward meet at B��. The image A��B��
is generally formed at the least distance of distinct vision although it can be formed any where
between this position and infinity. The rays by which the eye sees the image are clearly shown
in the Fig. 2.20.

Magnifying Power: Suppose the final image A��B�� subtends an angle 	 at the eye-piece E. Since
eye is very near to the eye-piece, the angle 	 can also be taken as subtended by A��B�� at the
eye. Suppose when the object AB is at the least distance of distinct vision D, then it subtends
an angle � at the eye. The magnifying power of the microscope is
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M =
angle subtended by the final image at the eye

angle subtended by the object,  when placed at least 
distance of distinct vision

= 	

�

Since 	�and ��are very small, we can write

	 = tan 	 = 
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�
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If the distance of the object AB and the image A�B� from the objective O be uo and vo
respectively, then from the magnification formula we have (taking proper sign)

� �A B
AB

 =
�v

u
o

o–
.

Similarly, if the distance of A�B� from the eye-piece be ue, then EA� = –ue. Therefore, from
the above formula, we have

M =
– –

–
–
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Now there are two possibilities:

(i)  The final image is formed at the least distance D of distinct vision: If the distance of the final image

A��B�� from the eye-piece be D, then applying the lens formula 
1 1
v u

–  = 
1
f

 for the eye-piece,

we shall have
v = –D, u = – ue and f = + fe,

where fe is the focal length of the eye-piece. Now, we get

1 1
–

–
–D ue

 =
1
fe

or 1
ue

 = 1 1
D f

�
e

or D
ue

 = 1 �
D
fe

substituting this value of D/ue in eq. (i), we get

M = –v
u

D
f
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o e
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F
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I
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...(ii)

In this position the length of the microscope will be vo + ue.

(ii)  When the final image is formed at infinity: To see with relaxed eye, the final image A��B�� should
be formed at infinity (Fig. 2.21). In this case the image A�B� will be at the focus Fe� of the eye-
piece E i.e. ue = fe. Substituting this value in equation (i), we get the magnifying power of the
relaxed eye, which is given by

M = –
.

v
u

D
f

o

o e

F
HG

I
KJ

...(iii)

In this position the length of the microscope will be vo + fe.
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In formula (ii) and (iii) we shall substitute only the numerical values of vo, uo, fe and D.
Negative sign shows that the final image is inverted. It is clear from these formula that in order
to increase the magnifying power of microscope:

1. u should be small i.e. the object AB should be placed quite close to the objective O. But
to obtain a real and magnified image of the object, the object should be placed beyond the
focal length fo of the objective. Hence, for greater magnifying power of the microscope,
the focal length of the objective should be small.

2. The distance vo of the image A�B� from the objective O should be large. For this, the object
should be placed near the first focus of the objective.

3. The focal length fe of the eye-piece should be small.

Thus it is clear that the magnifying power of the microscope depends upon the focal
lengths of both the lenses. Hence by taking proper focal lengths the magnification can be
increased.
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Concept of Resolving Power: When light from a point-source passes through an optical
instrument, the image of the point-objects is not a sharp point, but a spot is obtained which
is called the diffraction pattern. This happens because of the wave-form of light. Hence if two
point objects are very close to each other, then their diffraction patterns will also be very close
and will overlap each other. If the overlapping in the diffraction patterns is small, then both
the objects are seen separate in the optical instrument i.e, the optical instrument is able to
resolve the objects. If, however, the overlapping is large, then the objects will not be seen as
separate; they will be seen as one. In other words the optical instrument is not resolving them.
The power of an optical instrument to produce distinctly separate images of two close objects
is called the ‘resolving power’ of that instrument.

One eye is also an optical instrument. If two small objects are placed very close to each
other, then it is not necessary that our eye see them separate. This can be seen by a simple
experiment. Suppose there is a wall before us on which is pasted a white paper having a
number of back parallel lines drawn at separations of 2 mm. When we are quite near the wall,
these lines are seen as separate. But as we move away from the wall, a stage is reached when
the lines appear mixing with each other and we can no longer distinguish that the lines are
separated from one another.

As we move away from the wall, the angle subtended at our eye by any two lines goes
on decreasing. From this we conclude that seeing two close objects as separate depends upon
the angle subtended by them at the eye. It is seen by experiment that if this angle is less than

1��(1 minute) or 
1
60

F
HG

I
KJ

�

 then lines will not be seen as separate. This angle is called the ‘resolving

limit’ of the eye.
Similarly, an optical instrument has a limit to form separate images of two objects placed

very close to each other. That minimum distance between two objects when they can be seen
as separate by an optical instrument is called the ‘limit of resolution’ of that instrument.
Smaller the limit of resolution of an optical instrument, greater is said to be its resolving
power.
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Resolving Power of Telescope : Necessity of Large-aperture Objective: The resolving power
of a telescope is its ability to show two distant closely-lying objects as just separate. The
reciprocal of resolving power is the limit of resolution� of the telescope.

The limit of resolution of telescope is measured by the angle subtended at its objective by
those two distant objects which are seen just separate through the telescope. Its value is
directly proportional to the wavelength � of the light used and inversely proportional to the
aperture (diameter) d of the objective of the telescope.

Limit of resolution of telescope 
�

d
 = 1 22.

�

d
 radian.

Telescope is used to see distant objects which are generally seen in sunlight. Therefore,
we have no control on �. Hence, to reduce the limit of resolution of a telescope., we must use
objective lens of large aperture (d). Larger the aperture of the objective lens, smaller the limit
of resolution, or greater the resolving power of the telescope.

There is also an additional advantage of large objective. It sends
greater amount of light in the telescope and so intense images are
formed. Thus, objects extremely far away (whose luminosity ap-
pears feeble because of distance) can also be seen.

Resolving Power of Microscope : Necessity of Light of Small
Wavelength: The resolving power of a microscope is its ability to
show two nearly closely-lying objects as just separate. The reciprocal
of resolving power is the ‘limit of resolution’ of the microscope.

The limit of resolution of microscope is measured by the mini-
mum distance between those two point-objects which are seen just
separate through the microscope. Its value is directly proportional to
the wavelength � of light and inversely proportional to the angle of
the cone of lights-rays from any one object entering the microscope:

Limit of resolution of microscope 
�

cone angle

If the angle of the cone of light rays entering the objective of a microscope be 2� (Fig. 2.22),
then

Limit of resolution of microscope 
�

�2
 = 

1 22.
.

�

�2 sin

If instead of air a liquid of refractive index n be filled between the object and the objective

of the microscope, then the limit of resolution will become 
1 22

2
.

.
�

�n sin
Microscope is used to see close objects (such as biological slides, minute particles etc).

Those objects are illuminated by a light source. Now, to reduce the limit of resolution of a
microscope, we cannot increase the cone-angle (because then the aperture of the lens will have
to be increased), but we can decrease �. For example, we can reduce the limit of resolution by
using blue light instead of ordinary light. In visible light the minimum wavelength is 4000 Å.
If the distance between two objects is less than this, then we cannot see them separate in the
visible light by means of a microscope.
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This microscope is used to see very minute particles distinctly. In this microscope an electron-
beam is used instead of light-rays. The electron-beam is focussed by magnetic and electric
fields. It behaves as a wave of wavelength of the order of 1 Å; which is 5000 times smaller than
the mean wavelength of visible light. Hence an electron microscope can resolve 5000 times
compared to an optical microscope.
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Microscope and telescope suffer from various defects due to the following reasons:

1. Chromatic aberration of the lenses used, and
2. Spherical aberration

The first defect is removed by using achromatic combination of lenses and the second
defect is removed by using the more spherical surfaces towards the incoming parallel rays.

As already discussed, the eye cannot be held close to the eye-piece because the rays from
the extremities of the image are refracted through the peripheral portion of the eye-piece lens.
The best position for the eye is the eye ring. Therefore, to avoid this difficulty a field Lens is
used and usually an eye-piece consists of two lenses, the field lens and the eye lens. The
angular object field and the angular image field can be increased considerably.

In Fig. 2.23 L1 is the objective and the extreme ray that can
be collected by the eye lens L3 in the absence of L2 makes an
angular object field � and the angular image field will be 	.
A is the centre of the exit pupil. When a lens L2 is placed where
the image of the object due to the objective is formed, the
dotted ray which was first not collected by the eye lens is
now collected by it. The centre of the exit pupil shifts to B.
The angular object field is �� where ������ and the angular
image field is 	� where 	� � 	. This combination of the field
lens L2 and the eye lens L3 forms the eye-piece or the ocular.

The functions of the field lens are:

1. It increases the angular object field.
2. It brings the centre of the exit pupil nearer the eye lens and increases the angular image

field.
3. It helps to minimise spherical aberration and chromatic aberration.
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�;�*��$�

This eye-piece is achromatic and the spherical aberration is also eliminated. It consists of two
lenses having focal length in the ratio 3:1 and the distance between them is equal to the
difference in their focal lengths. The focal lengths and the positions of the two lenses are such
that each lens produces an equal deviation of the ray and the system is achromatic.

Suppose the field lens and the eye lens of focal lengths f1 and f2 are placed D distance apart.
If F is the focal length of the combination,
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Also, for equal deviation of a ray by the two lenses, the distance between the two lenses
should be equal to f1 – f2.

Thus, to satisfy both the conditions Huygens constructed an eye-piece consisting of two
plano-convex lenses of focal lengths 3f and f placed at a distance of 2f from each other.

ll, is the image of the distant object formed by the objective in the absence of the field lens.
With the field lens, the rays get refracted on passing through it and the image l�l�, is formed.
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This image lies at the focus of the eye lens so that the final image is seen at infinity
The focal length of the combination

1
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1 1
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3 2f f
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3 f
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The equivalent lens must be placed behind the field lens at a distance

= F d
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F f
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f f

f
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2
3
2

2
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i.e, 3f from the field lens or at a distance f behind the eye lens.
In the modern design, the focal length of the lenses are 2f and f placed at a distance of

1.5 f from each other.
Huygen eye-piece is known as the negative eye-piece because the real inverted image

formed by the objective lies behind the field lens and this image acts as a virtual object for the
eye lens. The eye-pieces cannot be used to examine directly an object or a real image formed
by the objective. The eye-piece is used in microscopes or other optical instruments using white
light only.

Moreover, the cross-wires must be placed (if the measurement of final image is required)
between the field lens and the eye lens. But the cross wire are viewed through the eye lens
only while the distant object is viewed by rays refracted through both the lenses. Due to this
reason relative length of the cross-wires and the image are disproportionate. Hence cross
wires cannot be used in a Huygens eye-piece and this is a disadvantage. Hence, Huygens
eye-piece cannot be used in telescopes and other optical instruments with which distance and
angles are to be measured.
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The first principal point is at a distance � from the field lens.

� = Fd
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The second principal point is at a distance 	 from eye lens.
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Therefore, the first principal point P1 is at a distance 3f on the right of the field lens and
the second principal point P2 is at a distance f to the left of the eye lens. Since the system is in
the air, the nodal points coincide with the principal points Fig. 2.25.
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The first point F1 is at a distance of 
3
2

f

from the first principal point and the second

focal point F2 is at a distance of 
3
2

f  from the

second principal point.

Therefore, F1 is at a distance of 3f – 
3
2

f  =
3
2

f  to the right of the field lens L1 and F2 is

at a distance of 
3
2

f – f = 
1
2

f  to the right of the

eye lens.
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It consists of two plano-convex lenses of equal focal length separated by the distance equal to
two-thirds the focal length of either. The convex faces are towards each other and the eye-
piece is placed beyond the image formed by the objective (Fig. 2.26). In this eye-piece cross
wire are provided and it is used in optical instruments where accurate quantitative measure-
ments are made let F be the focal length of the equivalent lens.

Thus 1
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The equivalent lens must be placed at a distance 
3
4

f  behind the field lens at a distance �

from it.
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Thus, equivalent lens is in between the field lens and the eye lens.

As the focal length of the eye-piece (equivalent lens) is 
3
4

f  the image of the object due to

the objective must be formed at a distance 
3
4

1
2

f f–  = 
1
4

f  in front of the field lens. This image

will act as an object for the eye-piece and the final image will be formed at infinity. The cross
wires must be placed at the position where the image due to the objective is formed i.e, at a

distance of 
1
4

f  in front of the field lens. This is the advantage of Ramsden eye-piece over the

Huygens eye-piece.
The chromatic aberration in a Ramsden eye-piece is small. In some cases, both the lenses

of the eye-piece are made of a combination of crown and flint glass and chromatic aberration
is eliminated. As both the lenses are plano-convex with their convex surface facing each other
the spherical aberration produced is small.
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The first principal point is at a distance � from the field lens.

� =
Fd
f

f

f
f

f

2

3
4 2

3 2
� � �
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Therefore, the first principal point P1 is

at a distance of 
f
2

 to the right of the field

Lens and the second principal point P2 is at

a distance of 
f
2

 to the left of the eye lens.

Since the system is in air, the nodal points
coincide with the principal points (Fig. 2.27).

The first focal point F1 is at a distance of 
3
4

f

from the first principal point and the second

focal point F2 is at a distance of 
3
4

f  from the

second principal point.
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Therefore F1 is at a distance of 
3
4 2 4

f
f f

– �  to the left of the field lens and F2 is at a distance

of 
3
4 2 4

f
f f

– �  to the right of the eye lens.
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Gauss eye-piece is a modification of Ramsden eye-piece. The field lens and the eye lens are
two plano-convex lenses of equal focal length and separated by a distance equal to two-third
of the focal length of either.

To illuminate the field of view a glass plate G is held at an angle of 45° to the axis of the
lens system. S is a source of light. Light reflected from G illuminates the field of view. The cross

wire is C kept at a distance 
1
4

f  front of the field lens. This eye-piece is used in the telescope

of a spectrometer.
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When the atoms or molecules of a substance are excited to high energies, they jump back to
their normal ground state either directly or in several steps. While returning from the excited
state to the lower energy state, the difference of energy �E between the two states is radiated
out as a quantum of frequency � given by �E = h�, where h is Plank’s constant.

The human eye is sensitive only to the radiations having their wave length in the range
4000 Å to 8000 Å. This is known as the visible region of spectrum and the eye is not able to
sense radiation beyond violet region (� < 4000 Å) and the red region (� > 8000 Å). In between
these two extremes the wave-length are divided into Violet, Indigo, Blue, Green, Yellow,
Orange and Red colour sub-regions abbreviated as VIBGYOR. The eye is not equally sensitive
in all these regions. It is most sensitive in the yellow region of visible spectrum.

Usually the light emitted by a source contains several wave-lengths. The process of
separating these wave-lengths is called ‘dispersion’. The term dispersion is popularly
employed for ‘separation of colours’ but truely speaking dispersion means separations of
wave-lengths. Two close wave-lengths separated by an instrument are said to be dispersed,
yet to eye they appear to have the same colour.

In all instruments producing dispersion, the light from a source is made to illuminate a
narrow slit and the instrument produces several images of the slit-one corresponding to each
wave-length. It is why, instead of saying than a given source emits so many wave-lengths, we
commonly say the source emits so many lines. The whole set of wave-length wise separated
images of the slit taken together is called the spectrum and the instrument used for study of
spectrum of a source is called a spectrometer, spectroscope or a spectrograph depending upon
whether we make direct measurements, just observe the spectrum or take a photograph of it.

Types of Spectrum: The spectrum of a source can be obtained in two ways. In the first method
the, atoms or molecules of the substance, which at normal temperature exist in the ground
state, are excited to higher energy state by either heating, irradiation, ion-bombardment or
applying high electric field etc, where their life time is very small (~10–8 sec) and they return
back to their ground state either directly or through intermediate energy levels emitting out
photons of energy equal to difference of the energies between the two levels. The spectrum
obtained by such process is called the emission spectrum. In the other method, white light
is allowed to pass through the substance under study. The substance absorbs certain
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wave lengths from the incident light. These wave-lengths correspond to the diference of
energy between various excited states and the ground state. The transmitted light when
examined shows these lines missing from the continuous spectrum. Such a spectrum is called
the absorption spectrum. Both the emission as well as the absorption spectrum are the
characteristic spectrum of the substance under study. Both these spectra can be either of the
following three types:

Line Spectrum: A Line spectrum consists of the fine bright lines widely scattered on a dark
back ground in case of emission spectrum, or fine dark line on a continuous coloured back-
ground i.e, the lines missing in various regions of white light spectrum. The line spectrum is
produced by substances in the atomic state i.e., by elements alone. The line spectrum of each
element is the characteristic of its own and can be used to identify it. Line spectra are emitted
by vaporised elements in flames and by gases in discharge tube. Arcs and sparks give lines
characteristic of the electrodes. Absorption line spectrum is obtained by passing light from
white light source through the vapours of the element or the gases.

Band Spectrum: A band spectrum consists of a number of groups of lines in different regions
of spectrum with dark background. Each band starts with a bright line and then the intensity
of lines gradually fades out. In absorption band spectrum such band or group of lines are
found missing from a continuous spectrum. The band spectrum is obtained for the substances
in the molecular state. The band spectrum of a molecule is characteristic of its own.

Continuous Spectrum: A continuous spectrum consists of all possible wave-lengths in the
given region of spectrum. In emission a continuous spectrum appears as a bright patch of light
with gradually changing colours from violet to red. Maximum intensity occurs in a particular
region. Continuous spectrum is emitted by materials in the incandescent state i.e, at very high
temperatures. The spectrum resembles black body spectrum. The maximum of intensity
occurs at a wave-length depending upon the temperature. As the temperature increases the
maximum of intensity shifts towards the violet end of the spectrum.
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Discharge Tubes: Elements which either exist normally in the gaseous state or can easily be
converted into vapours such as Hg, Na are excited in a discharge tube. These discharge tubes
can be classified under two categories (a) Cold cathode type, and (b) Hot cathode type or
vapour lamps.

(a) Cold Cathode Discharge Tubes: These tubes are used for substances which are in the gaseous
form at ordinary temperatures, such as Argon, Neon, Xenon, Oxygen, Hydrogen Helium
etc. In a glass tube of the shape shown in Fig. 2.28, the gas is filled at a low pressure, 5
to 1 mm of Hg depending upon the nature of the gas. The electrodes are of aluminium
welded to the ends of platinum or tungsten wire fused through the glass tube. The
aluminium is used because it sputters less. A high voltage of the order of 3000 volts or
more is required for working of these tubes. Therefore, either a transformer or an
induction coil is required to run these discharge tubes. The current capacity of these tubes
is small, therefore, either the transformer or the induction coil should itself have a suitable
high resistance or the same may be introduced externally. When worked, a diffuse glow
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of the positive column fills the tubes. The middle part of the tube is made narrow so that
the intensity is concentrated in a narrower cross-section. The light from this capillary
portion is focussed onto the slit of the spectrometer for the study of spectrum.

(b) Hot Cathode Tubes: For elements which at normal temperature do not exist in the gaseous
state, arrangements are required to first convert them into vapours before passing the
electric discharge through them. Sodium and mercury vapour lamps employ such ar-
rangement and are usually classified as hot cathode tubes. These are described below:
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As shown in Fig. 2.29 sodium vapour lamp consists of a U-shape glass tube-filled with neon
gas at a pressure of about 10 mm of mercury. Some specks of metallic sodium are introduced
in the tube which usually get deposited on its walls. The U-tube is fitted with two electrodes
made of tungsten spiral and coated with barium-oxide.

This device provides a copious supply of electrons from the electrodes which are always
hot due to discharge. To start the discharge through the tube a high voltage of about 500 volts
is required which is supplied by a single wound auto-transformer. When the potential is
applied between the electrodes situated at either end of the U-tube, the discharge initially
passes through the neon gas which gives light of red colour. This discharge causes an increase
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in the temperature and the metallic sodium starts evaporating, the colour of light starts
acquiring yellow tinge. When the vapour pressure of sodium rises to about 0.01 mm of Hg the
discharge is then maintained by sodium vapours emitting out characteristic golden yellow
light. Though in running condition the relative concentrations of neon and sodium are 8000:1,
still the discharge passes through the sodium Vapour. This is because of the fact that the energy
required to excite Na atoms is much less than that required for the Ne atoms. The neon atoms
lose their energy by collision with sodium atoms before acquiring enough energy for their
(neon) own excitation. Hence light is predominatly that of sodium. In the beginning since the
vapour pressure of sodium is very low it can not support the discharge; neon helps in
maintaining it and also provides a path for the start of discharge. The working temperature
of the lamp is high, about 250º C, at which the vapour pressure of sodium is high enough to
allow the discharge to pass through it and to maintain this temperature with the smallest
possible heat loss, the sodium discharge tube is surrounded by a double walled evacuated
glass jacket.

The electric circuit of the sodium vapour lamp is shown in Fig. 2.29 (b). Since the electrodes
are not preheated, and the ionization potential of neon is high (21.5V) a high voltage is
necessary to start the discharge. This high voltage is obtained by a step-up auto-leak
transformer ABD. The AC mains is connected across portion AB of the single winding ABD
and the sodium lamp across portion AD. When AC mains is applied, a high voltage of about
500 volts is developed across AD due to self inductance, which is applied to the lamp. At this
stage discharge starts in neon. Initially when the resistance of the lamp is high nearly all
voltage acts across the lamps. When the discharge sets up the resistance of the lamp falls and
the current rises. With this rise of current the leakage reactance of the transformer also
increases enormously by the use of magnetic shunts. Thus, with increase of current the
effective resistance of coil AD also increases and it shares a substantial part of the voltage. In
other words, while the lamp gets a large starting voltage this voltage automatically falls as the
discharge sets up (no separate choke is needed). The working voltage is usually about 140
volts. The condenser in the circuit is used for suitably adjusting the ‘power factor.’

Sodium produces only one doublet line called D-line which consists of two wave-lengths,
D1 line (��= 5890 Å) and D2 line ��2 = 5896 Å). Since difference between D1 and D2 lines is very
small (6Å) they ordinarily appear as a single line.
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It consists of a cylindrical tube containing some mercury and argon at a pressure of about
10 mm of Hg. The main electrodes are A and B, but an auxiliary electrode A’ is provided nearer
to B. This acts to start the discharge through the tube and is connected to the more distant main
electrode A through a ballast resistance r of about 50,000 ohms. The main electrodes are in the
form of spirals of tungsten wire, each holding a pipet of barium oxide for electron omission.

When the lamp is connected to A.C. mains through a choke-coil, initial discharge is started
by argon contained in the tube. The discharge taking place between the auxiliary electrode A’
and the adjacent main electrode B. This produces sufficient ionisation in the tube and the
discharge spreads to other main electrode A. This is because the ionised argon gas between
A and B becomes more conducting and due to high resistance of the ballast, the discharge
across A�B is suppressed. Discharge between AB through argon produces sufficient amount
of heat to vaporise mercury and then the discharge is taken over (from argon) by mercury
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giving very brilliant light. The amount of
mercury in the discharge tube is just enough
to give a pressure of 1 atmosphere at the
temperature of working of the tube, which
is about 600º C. For maintaining this high
temperature the discharge tube is enclosed
in an evacuated outer glass jacket.

The mercury vapour lamp does not need
a higher voltage to start the discharge. If it
works at a lower voltage of about 90–100
volts. A suitable choke is connected in series
with the lamp (see Fig. 2.30 (b)). This shares
the voltage as well as controls the current.
A capacitor is also connected across the lamp-
choke combination to obtain a suitable
‘power-factor.’

The efficiency of the mercury vapour lamp is very high. It radiates chiefly in green, violet
and ultraviolet regions of spectrum.

��(3 ���$���������$
�*�$����

In the spectrum of sun-light we see all colours from red to violet. This spectrum is called the
visible spectrum. The longest wavelength in the red region is nearly 7.8 × 10–7 meter and the
smallest wavelength in the violet region is 4.0 × 10–7 meter. Thus the visible spectrum extends
from 7.8 × 10–7 meter to 4.0 × 10–7 meter. After Newton, it was discovered that the sun’s
spectrum is not limited from red to violet colour, but is considerably spread above the red
colour and below the violet colour. These parts of the spectrum are not observed by our eye.
The part of longer wavelength above the red colour is called the ‘infrared spectrum’ and that
of smaller wavelength below the violet colour is called the ‘ultra-violet spectrum.’

Later on were discovered x-rays, �-rays and radio waves. Now it has been established that
all these radiations (including visible spectrum) are electro-magnetic waves. The range of the
wavelength of these waves is very large and on this basic they can be given an order. This
order is called the ‘electro-magnetic spectrum.’ It ranges from the very small gamma rays to
the very long radio waves. The visible spectrum is only a very small part of the electro-
magnetic spectrum. The wavelength-ranges, the method of production and the properties of
the whole electro-magnetic spectrum are summarised below:

1. Gamma Rays:
Wave length range: From 10–13 to 10–10 meter.
Production: Emitted on the disintegration of the nuclei of atoms.
Properties: Chemical reaction on photographic plates, fluorescence, phospho-

rescence, ionisation, diffraction, highly-penetrating and uncharged.
2. X-rays:

Wavelength range: From 10–10 to 10–8 meter.
Production: Produced by striking high-speed electrons on heavy target.
Properties: All properties of �-rays, but less penetrating.
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3. Ultra-violet Radiation:
Wavelength range: From 10–8 to 4 × 10–7 meter.
Production: Produced by sun, arc, spark, hot vacuum spark and ionised gases.
Properties: All properties of �-rays, but less penetrating, produce photo-electric

effect.
4. Visible Radiation:

Wavelength range: From 4 × 10–7 to 7.8 × 10–7 meter.
Production: Radiated from ionised gases and incandescent bodies.
Properties: Reflection, refraction, interference, diffraction, polarisation, photo-

electric effect, photographic action and sensation of sight.
5. Infra-red Radiation:

Wavelength range: From 7.8 × 10–7 to 10–3 meter.
Production: From hot bodies.
Properties: Heating effect on the thermopiles and bolometer, reflection, refrac-

tion, diffraction, photographic action.
6. Hertzian or Short Radio Waves:

Wavelength range: From 10–3 to meter.
Production: Produced by spark discharge.
Properties: They are reflected, refracted and produce spark in the gaps of

receiving circuits. Waves of wavelength from 10–3 m to 3 × 10–2 m are
also called ‘microwaves.’

7. Long Radio Waves or Wireless:
Wavelength range: From 1 to 104 meter.
Production: From spark gap discharge and oscillating electric circuits.
Properties: They are reflected, refracted and diffracted.
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If an external force is applied on a body such that it does not shift the body as a whole, it
produces a change in the size or shape or both of the body. In such a case the body is said to
be deformed and the applied external force is called the deforming force. This force disturbs
the equilibrium of the molecules of the solid bringing into picture the internal forces which
resist a change in shape or size of the body. When the deforming force is removed, these
internal forces tend to bring the body to its original state. This property of a body by virtue of
which it resists and recovers from a change of shape or size or both on removal of deforming
force is called its elasticity. If the body is able to regain completely its original shape and size
after removal of deforming force it is called perfectly elastic while, if it completely retains its
modified size and shape, it is said to be perfectly plastic.

It need hardly be pointed out that there exists no such perfectly elastic or perfectly plastic
bodies in nature. The nearest approach to the former is a quartz fibre and to the latter, ordinary
putty. All other bodies lie between these two extremes.

�
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Any combination of external forces acting on a body (e.g., its own weight, along with the forces
connected with it, like centrifugal force, force of friction etc.) whose net effect is to deform the
body, i.e., to change its form or dimensions, is referred to as a load.

�
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A body in equilibrium under the influence of its internal forces is, as we know, in its natural
state. But when external or deforming forces are applied to it, there is a relative displacement
of its particles ad this gives rise to internal forces of reaction tending to oppose and balance the
deforming forces, until the elastic limit is reached and the body gets permanently deformed.
The body is then said to be stressed or under stress.

If this opposing or recovering force be uniform, i.e., proportional to area, it is clearly a
distributed force like fluid pressure and is measured in the same manner, as force per unit area,
and termed stress.

If 
�

F  be the deforming force applied uniformly over an area A, we have stress = F
A

.  If the

deforming force be inclined to the surface, its components perpendicular and along the surface
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are respectively called normal and tangential (or shearing) stress. The stress is, however,
always normal in the case of a change of length or volume and tangential in the case of a
change of shape of a body.

Its dimensional formula is ML–1 T–2 and its units in M.K.S. and C.G.S. systems are respec-
tively newton/m2 and dyne/cm2.

�
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When the body is deformed on application of external force, it is said to be strained. The
deformation of the body is quantitatively measured in terms of strain which is defined as the
change in some dimension of the body per unit that dimension. A body can be deformed in
three ways viz. (i) a change in length producing longitudinal strain, (ii) a change in volume
producing volume strain and, (iii) a change in shape without change in volume (i.e., shearing)
producing shearing strain. Thus change in length per unit length is called longitudinal strain,
change in volume per unit volume is called volume strain, and change in an angle of body is
called shearing strain being a ratio the strain is a dimensionless quantity and has no unit.

�
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This law states that when the deforming force is not very large and strain is below a certain
upper limit, stress is proportional to strain i.e.,

stress µ strain

stress
strain

 = constant.

This ratio of stress and strain, which is constant, is known as the modulus of elasticity and
depends upon the material of the body. The limit upto which Hooke’s law holds is called the
limit of elasticity. Thus Hooke’s law may be stated as within elastic limit, stress is proportional
to strain.

�
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In the case of a solid, if the stress be gradually increased, the strain too increases with it in
accordance with Hooke’s law until a point is reached at which the linear relationship between
the two just ceases and beyond which the strain increases much more rapidly than is war-
ranted by the law. This value of the stress for which Hooke’s law just ceases to be obeyed is
called the elastic limit of the material of the body for the type of stress in question.

The body thus recovers its original state on removal of the stress within this limit but fails
to do so when this limit is exceeded, acquiring a permanent residual strain or a permanent set.

�
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Since in a body there can be three types of strain viz. , longitudinal strain, volume strain and
the shearing strain, correspondingly we have three types of elasticity as described below.
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When the deforming force is applied to a body in such a manner that its length is changed,
longitudinal or linear strain is produced in the body. The internal force of reaction or the
restoring force trying to restore its length, restoring force acts along the length of the body and
its magnitude per unit cross-sectional area is the normal stress. The ratio of this normal stress
and the linear strain is called Young’s modulus of elasticity Y.

Thus if a uniform wire of length L and cross-section area A is stretched in length by an
amount l by a force F acting along its length, the internal restoring force equals the external
force in the equilibrium state, then

Longitudinal strain = l
L

and Normal stress = F
A

\ Y =
Normal stress

Longitudinal strain
 = 

F
A
l
L

The dimensional formula for Young’s modulus is (ML–1 T–2) and its units in M.K.S. and
C.G.S. systems are respectively newton/metre2 and dyne/cm2.

�
* +%��� ��%�%��(��������������#�,��% �)

When a force is applied normally over the whole surface of the body, its volume changes while
its shape remains unchanged. In equilibrium state, internal restoring force equals the external
force. The magnitude of normal force per unit area is the normal stress. This may also be
appropriately called pressure. The ratio of normal stress and the volume strain is called bulk
modulus of elasticity, K.

Thus, if v is the change in volume produced in the original volume V of the body by
application of force F normally on surface area A of the body, we have

Volume strain = v
V

Normal stress = F
A

p�

\ Bulk modulus = � Pressure
Volume strain

or K = –
P

v V/
The minus sign has been introduced to give K a positive value. This is because an increase

in pressure (p-positive) causes a decrease in volume (V-negative) of the body.
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K is also sometimes referred to as incompressibility of the material of the body and,

therefore, 
1
K

 is called its compressibility.

Since liquids and gases can permanently sustain only a hydrostatic pressure, the only
elasticity they possess is Bulk modulus (K).

The dimensional formula for bulk modulus of elasticity is [ML–1 T–2] and its units in MKS
and C.G.S. systems are newton/metre2 and dyne/cm2 respectively.
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When under application of an external force the shape of the body changes without change in
its volume, the body is said to be sheared. This happens when a tangential force is applied to
one of the faces of the solid.

Consider a rectangular solid ABCD abcd whose lower face DC cd is fixed and a tangential
force F is applied to its upper face. ABba as shown in figure. The layers parallel to the lower
face slip through distances proportional to their distance from the fixed face such that finally
face ABba shifts to A¢B¢b¢a¢ and solid takes the form A¢B¢C Da¢b¢cd its volume remaining
unchanged. Thus one face of solid remains fixed while the other is shifted laterally. The angle

ADA' = q =  ′  
=  where =  and =

l
AD L AA l

L
 through which the edge AD which was initially

perpendicular to the fixed face is turned, is called the shearing strain or simply the shear. Due
to this shearing of the solid, tangential restoring force is developed in the solid which is equal
and opposite to the external force. The ratio of tangential stress and shearing strain is called
modulus of rigidity, h. Thus

Tangential stress = F
A

shearing strain q = AA
AD

l
L

�
�

Modulus of rigidity =
Tangential stress
Shearing strain

h =

F
A
�

where A is the area of the upper face of the solid.
The dimensional formula for modulus of rigidity is ML–1T–2 and its MKS and CGS units

are newton/m2 and dyne/cm2 respectively.
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This is defined as longitudinal stress required to produce unit linear strain, unaccompanied by
any lateral strain and is denoted by the Greek letter Z. It is thus similar to Young’s modulus,
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with the all-important difference that here the lateral strain produced (in the form of lateral
contraction) is offset by applying two suitable stresses in directions perpendicular to that of
the linear stress. So that the total stress is Young’s modulus plus these two perpendicular
stresses.

�
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When we apply a force on a wire to increase its length, it is found that its size change not only
along the length but also in a direction perpendicular to it. If the force produces an extension
in its own direction, usually a contraction occurs in the lateral or perpendicular direction and
vice-versa. The change in lateral dimension per unit lateral dimension is called lateral strain.
Then, within elastic limit, the lateral strain (though opposite in sign) is proportional to the
longitudinal strain i.e., the ratio of lateral strain to the longitudinal strain within the limit of
elasticity is a constant for the material of a body and is called the Poisson’s ratio. It is usually
denoted by s.

Consider a wire of length L and diameter D. Under application of an external longitudinal
force F, let l be the increase in the length and d the decrease in the diameter, then

Longitudinal strain a = l
L

Lateral strain b = d
D

\ Poisson’s ratio = Lateral strain
Longitudinal strain

s = �
�
�

d
D
l
L

Being ratio of two strains, Poisson’s ratio has no units and dimensions.

�
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In the above discussion we have defined four elastic constants, viz. Y, K, h and s. Out of these
only two are independent while other two can be expressed in terms of the two independent
constants. Hence if any two of them are determined, the other two can be calculated. The
following are the inter-relations between the four elastic constants.

(i) Y = 3K (1 – 2s)
(ii) Y = 2h (1 + s)

(iii) Y = 9
3

K
K

�
��

(iv) s = 
3 2
6 2
K
K
�
�

�
�
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From the relation 3k (1 – 2s) = 2h (1 + s), where, as we know, K and h are both positive
quantities it follows therefore, that

(i) If s be a positive quantity, the expression on the right hand side in the relation above
will be positive. The expression on the left hand side too must therefore be positive. This

is, obviously, possible when 2s < 1 or s < 
1
2

 or 0.5; and

(ii) If s be a negative quantity, the left hand expression in the above relation will be positive
and hence the expression on the right hand side too must be positive, and this can be so
only if s be not less than –1.

Thus, theoretically, the limiting values of s are –1 and 0.5, though in actual practice it lies
between 0.2 and 0.4 for most of the materials.

�
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(i) Case of a solid cylinder or wire: Let a solid cylinder (or wire) of length L and radius R be fixed
at its upper end and let a couple be applied to its lower end in a plane perpendicular to its
length (with its axis coinciding with that of the cylinder) such that it is twisted through an
angle q.

This will naturally bring into play a resisting couple tending to oppose the twisting couple
applied, the two balancing each other in the position of equilibrium.

To obtain the value of this couple, let us imagine the cylinder to consist of a large number
of hollow, coaxial cylinder, one inside the other and consider one such cylinder of radius x and
thickness dx, As will be readily seen, each radius of the base of the cylinder will turn through
the same angle q but the displacement (BB¢) will be the maximum at the rim, progressively
decreasing to zero at the centre (O) indicating that the stress is not uniform all over.

Thus, a straight line AB, initially, parallel to the axis OO¢ of the cylinder will take up the
position AB¢ or the angle of shear (or shear) = –BAB¢ = f. This may be easily visualised if we

��� ��� ���
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imagine the hollow cylinder to be cut along AB and spread out when it will initially have a
rectangular shape ABCD, and will acquire the shape of a parallelogram AB¢C¢D after it has
been twisted, so that angle of shear = BAB¢ = f.

Now, BB¢ = xq = Lf, where, the shear f = 
x
L
�

 and will obviously have the maximum value

when x = R, i.e., at the outermost part of the cylinder and the least at the innermost.
If h be the coefficient of rigidity of the material of the cylinder, we have

h = shearing stress
shear

or shearing stress = h × shear

or shearing stress = hf = 
� �x

L

\ Shearing force on face area of the hollow cylinder = 
� �x

L
F
HG

I
KJ 	 face area of the cylinder

=
� � 
 
��x

L
xdx

L
x dxF

HG
I
KJ 	

F
HG

I
KJ2

2 2=

And the moment of the force about the axis OO¢ of the cylinder

= 2 32 2
x dx x x dx

L L
πηθ πηθ   ⋅ =      

\ twisting couple on the whole cylinder

=
2 3

4

0


�� 
�
�

L
x dx

R
L

R

�z 2

or, twisting couple per unit twist of the cylinder or wire, also called torsional rigidity of its
material, is given by

C =

�R

L

4

2

(ii) Case of a hollow cylinder: If the cylinder be a hollow one, of inner and outer radii R1 and R2
respectively we have

twisting couple on the cylinder = 
2 3

2
4

1
4
�� 
�
�

L
x dx

L
R R� �z 2

R

R

1

2

e j

\ twisting couple per unit twist, say C¢ = 
�
2 2

4
1
4

L
R R( )�

Now, if we consider two cylinders of the same material, of density r, and of the same mass
M and length L, but one solid, of radius R and the other hollow of inner and outer radii R1 and
R2 respectively.

We have C
C
�  =

R R

R

R R R R

R
2
4

1
4

4

2
2

1
2

2
2

1
2

4

�
�

� �( ) e j
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Since M = p(R2
2 – R1

2) Lr = pR2Lr, we have (R2
2 – R1

2) = R2

or C
C
�  =

( )R R R

R
2
2

1
2 2

4

�
 = 

( )R R

R
2
2

1
2

2

�

Again, because R2
2 – R1

2 = R2, we have R2
2 = R2 + R1

2

And, therefore, R2
2 + R1

2 = R2 + R1
2 + R1

2 = R2 + 2R1
2, i.e.,

(R2
2 + R1

2) > R2.

Clearly, therefore, 
C
C
�
� 1 or C¢ > C

or, the twisting couple per unit twist is greater for a hollow cylinder than for a solid one of the
same material, mass and length.

This explains at once the use of hollow shafts, in preference to solid ones, for transmitting
large torque in a rotating machinery.
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To determine the value of modulus of rigidity of the material of a wire by statical method using
vertical pattern apparatus (Barton’s apparatus).

Apparatus: Barton’s vertical pattern torsion apparatus, a wire, screw gauge, a vernier callipers,
meter scale, set of weights, thread and a meter scale.

Formula Used: The modulus of rigidity h is given by

h = 2
4

mg Dl

r
�
where m = load suspended from each pan

g = acceleration due to gravity
D = Diameter of the heavy cylinder
r = radius of the experimental wire
l = length of the wire

q = angle of twist in degree

Description of apparatus: The vertical pattern of torsion apparatus (Barton’s apparatus)
shown in figure is used for specimen available in the form of a long thin rod, whose upper end
is fixed securely to a heavy metallic frame and lower end is fixed to a heavy metal cylinder C.
This heavy cylinder keeps the wire vertical. Flexible cord attached to two diametrically oppo-
site pegs on the cylinder leave it tangentially diametrically opposite points after half a turn.
These cords pass over two frictionless pulleys P1 and P2, fixed in the heavy frame, and at their
free end carry a pan each of equal weight. When equal loads are placed on the pans, couple acts
on the cylinder which produces a twist in the rod. The twists are measured by double ended
pointer which move over the concentric circular scales graduated in degrees. The three level-
ling screws are provided at the base of the metallic frame supporting the rod, to make it
vertical. In this case the centres of the scale fall on the axis of the rod.

Theory: The modulus of rigidity (h) is defined as the ratio of shearing stress to shearing strain.
The shearing stress is the tangential force F divided by the area A on which it is applied and
the shearing strain is the angle of shear f, therefore:
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h =

F
A
�

or F = hAf ...(1)

The twisting of a wire can be related to shearing as follows. Consider a solid cylinderical
wire (length l and radius r) as consisting of a collection of thin hollow cylindrical elements.
One such element is shown shaded in Fig. 3.5 (b). A line PQ of length l is drawn on the surface
of the element parallel to its axis OO¢. If the wire is clamped at the top and the bottom is
twisted through the same angle and the line PQ would become PQ¢. The same picture is shown
in cross-section in Fig. 3.5(b). If we consider this element only, cut it along the line PQ and
unroll it, the picture would be seen in Fig. 3.4. This picture is similar to Fig. 3.2(c), with an area
A, being given by 2pxdx and the shearing angle being QPQ¢ = f

From Fig. 3.4(b) (if f is small), the arc QQ¢ is equal to (l × f) and from Fig. 3.5 (b), the arc QQ¢
is equal (x × q). Therefore lf = xq

f = x
l
�

...(2)

From Fig. 3.5, we see that the area (A) on which the shearing tangential force is applied to
the element A = 2pxdx.

Substituting for A and f in Eq. (1), we obtain

F = h 2pxdx 
x
l
�

or F = 2
2


�
�x

l
dx

The moment of this force about the axis of the element (OO¢) is

F × x = 2
3


�
�x

l
dx

We can calculate the total moment required to twist the entire solid cylinder (wire), by
integrating over all the elements. The moment, or couple, C is given by

C = 2 3

0


�
�
l

x dx
r

z

or C = 2
4

4

�

�
l

rL
NM

O
QP

or C =

�� r

l

4

2
...(3)

In this experiment, the twisting or shearing moment is provided by the couple applied to
the thick heavy cyclinder of diameter D, fixed at the bottom of the wire. This couple is due to
the tension in the threads bearing the weights (Fig. 3.3(b). Thus C = mgD, where mg is the
tension in each thread. Therefore,
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mgD =

�� r

l

4

2

or h = 2
4

mgDl

r
�
 where q is measured in degree
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Manipulation
1. Level the base of the Barton’s apparatus by the levelling screws at the base using spirit

level so that the wire hangs freely vertically and can be twisted without any friction.



Elasticity 65

2. Wind the thread around the thick cylinder as shown in Fig. 3.3(b), pass the two ends over
the pulleys and attach the pans to them.

3. Take readings of the pointers on the circular scale with no weights on the pans.
4. Add weights of 10 gm on each pan and take the readings again, repeating this until the

total weight on each pan is 50 gms. Take readings again while the weights are reduced to
zero.

5. Measure the diameter of the wire using the screw gauge and the diameter of the thick
cylinder using a vernier callipers. Take readings of diameters along the entire length in
mutually perpendicular directions to correct for any departure from uniform or circular
cross-section (some places the area is elliptical hence we measure many places).

6. Measure the length of the wire which is being twisted.
7. Using the vernier callipers measure the diameter of the metallic cylinder.

Observations: (A) Table for the measurement of angle of twist (q):
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Mean deflection angle for 30 gm load = _______ radian.

(i) The wire should not be twisted beyond elastic limits
(ii) Table for the measurement of diameter of the given wire.

Least count of screw gauge =
Zero error = ±

S. No. 1 2 3 4 5 6 7 8 9 10 Mean
Diameter in one direction (in cm)
Diameter perpendicular to above (in cm)
Diameter of wire corrected for zero error =

Radius r =
(iii) Table for the measurement of diameter of the given cylinder

Least count of vernier callipers =
Zero error =

S. No. 1 2 3 4 5 6 7 8 9 10 Mean
Diameter in one direction (in cm)
Diameter perpendicular to above (in cm)
Diameter (D) of cylinder corrected for zero error =

(iv) Length of the wire  l =

Calculations: h =
2

4

mg Dl

r
�
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Result: The value of modulus of rigidity, h of the given iron wire as determined from
Barton’s apparatus is =

Standard value =  h for iron = 7.2 – 8.5 × 1010 N/m2

Percentage error =  %

Theoretical error = h = 
2

4
mg Dl

r
 �
Taking log, and differentiating, we get


�
x

 =
     �

�
M
M

D
D

l
l

l
l

l
r

� � � � �4

= __________
Maximum permissible error =

Precautions:
1. First of all base of the instrument should be levelled using sprit level.
2. The wire must be of uniform circular cross-section, free of links, hanging freely and

vertically, firmly clamped at the top.
3. Too much weights must not be put on the pans, else the wire may twist beyond elastic

limit.
4. The wire should be trained before the readings are taken.
5. The radius of the wire must be taken carefully since its occurs fourth power is occurring

in the formula.
6. The pulleys should be frictionless.
7. Load should be increased of decreased gradually and gently.
8. The chord wound round the cylinder should be thin and strong.
9. Before starting experiment ensure that the upper end of the rod is firmly clamped. If it is

not so, the rod may slip at this end on application of load.
10. The length of the wire, it measured between the two clamps.
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A rod or a bar of circular or rectangular cross-section, with its
length very much greater than its thickness (so that there are no
shearing stresses over any section of it) is called a beam.

If the beam be fixed only at one end and loaded at the other, it
is called a cantilever.

�
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Suppose we have a beam, of a rectangular cross-section, say, fixed
at one end and loaded at the other (within the elastic limit) so as to
be bent a little, as shown in figure with its upper surface becoming
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slightly convex and the lower one concave. All the longitudinal filaments in the upper half of
the beam thus get extended or lengthened, and therefore under tension, and all those in the
lower half get compressed or shortened and therefore under pressure.

These extensions and compressions increase progressively as we proceed away from the
axis on either side so that they are the maximum in the uppermost and the lowermost layers
of the beam respectively. There must be a layer between the uppermost and the lowermost
layers where the extensions in the upper half change sign to become compressions in the lower
half. In this layer or plane, which is perpendicular to the section of the beam containing the
axis, the filaments neither get extended nor compressed, i.e. retain their original lengths. This
layer is therefore called the neutral surface of the beam.

�
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There are the following assumptions:

(i) That Hooke’s law is valid for both tensile and compressive stresses and that the value
of Young‘s modulus (Y) for the material of the beam remains the same in either case.

(ii) That there are no shearing stresses over any section of the beam when it is bent. This is
more or less ensured if the length of the beam is sufficiently large compared with its
thickness.

(iii) That there is no change in cross-section of the beam on bending. The change in the shape
of cross-section may result in a change in its area and hence also in its geometrical
moment of inertia Ig. Any such change is however always much too small and is, in
general, ignored.

(iv) That the radius of curvature of the neutral axis of the bent beam is very much greater
than its thickness.

(v) That the minimum deflection of the beam is small compared with its length.

�
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When two equal and opposite couples are applied at the ends of the rod it gets bent. The plane
of bending is the same as the plane of the couple. Due to elongation and compression of the
filaments above and below the neutral surface, internal restoring forces are developed which
constitute a restoring couple. In the position of equilibrium the internal restoring couple is
equal and opposite to the external couple producing bending of the beam. Both these couples
lie in the plane of bending. The moment of this internal restoring couple is known as bending
moment.

Expression for bending moment: Consider the forces acting on a cross-section through CD
Fig. 3.7 of a bent beam. The external couple is acting on end B in the clockwise direction. The
filaments above the neutral surface are elongated such that change in length is proportional to
their distance from neutral axis. Therefore, the filaments to the right of CD and above neutral
axis exert a pulling force towards left due to elastic reaction. Similarly, since the filaments
below neutral axis are contracted, with change in length proportional to their distance from
neutral axis, due to elastic reaction they exert a pushing force towards right as shown in figure.
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Thus on CD, the forces are towards left above neutral axis while they are towards right below
it. These forces form a system of anticlockwise couples whose resultant is the internal restoring
couple. This couple is equal and opposite to the external couple producing bending in the
beam, and keeps the position of beam to the right of CD in equilibrium. The moment of this
internal restoring couple acting on the cross-section at CD is termed as bending moment. Its
value is given by

G =
YI

R
g

Where Ig = Sda. z2 is called the geometrical moment of inertia of the cross-section of the
beam about the neutral filament (This quantity is analogous to the moment of inertia with the
difference that mass is replaced by area). For a beam of rectangular cross-section of width b
and thickness d

I = 1
12

3bd

and bending moment G =
Ybd

R

3

12

For a beam of circular cross-section of radius r its value is

I =
1
4

4
r

and Bending moment G =
Y r

R

 4

4
In the position of equilibrium, this bending moment balances the enternal bending couple

t, thus

t = C = 
YI
R

or R = YI
�

showing that the beam of uniform cross-section is bend into an arc of circle, since R is constant
for given t.
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When a beam of uniform cross-section is clamped hori-
zontally at one end and could be bent by application of a
load at or near the free end, the system is called a cantile-
ver.

When the free end of the cantilever is loaded by a
weight W (= Mg), the beam bends with curvature chang-
ing along its length. The curvature is zero at the fixed end
and increases with distance from this end becoming maxi-
mum at the free end. This is because of the fact that at
distance x from fixed end, for equilibrium of portion CB
of the beam the moment of external couple is W(l – x), where l is the length of the cantilever.
Thus for equilibrium of portion CB of cantilever, we have

 G =
YI
R

 = W(l – x)

Here it is assumed that the weight of the beam is negligible.
Now the radius of curvature R of the neutral axis at P distant x from fixed end, and having

depression y is given by

1
R

 =
d y dx

dy dx

2 2

2 3 2
1 � b g

where (dy/dx) is the slope of the tangent at print P(x, y). If the depression of the beam is small

dy
dx

F
HG

I
KJ  will be very small quantity in comparison to 1 and is, therefore, negligible. Hence

1
R

 =
d y

dx

2

2

Thus C = YI
d y

dx

2

2  = W(l – x)

or
d y

dx

2

2  =
W
YI

(l – x)

Integrating twice under the condition that at x = 0, y = 0 and 
dy
dx

 = 0, we get

y =
W
YI

lx x2 3

2
�

F
HG

I
KJ�

This gives the depression of the beam at distance x from the fixed end, under the assump-
tion that the weight of the beam itself is negligible.

At the loaded end where x = l, the depression is maximum and is given by

ymax = d = Wl
YI

3

3
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If the beam is of rectangular cross-section (breadth b and thickness d), I = 
1

12
 bd3, so that

d =
4 3

3

Wl

ybd

and for beam of circular cross-section of radius r, I = 

r 4

4
, so that

d =
4

3

3

4

Wl

y r
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The arrangement of a beam supported at its both the
ends and loaded in the middle is the most convenient
method of measurements. A long beam AB of uniform
cross-section is supported symmetrically on two knife
edges K1 and K2 in the same horizontal plane and
parallel to each other at a distance l apart. When the
beam is loaded at its middle point c by a weight W, this

generates two reactions equal to 
W
2

 each, acting verti-

cally upwards at the two knife-edges. The beam is bent in the manner as shown in figure. The
maximum depression is produced in the middle of the beam where it is loaded.

By consideration of symmetry it is clear that the tangent to the beam at C will be horizon-
tal. Hence the beam can be divided into two portions AC and CB by a transverse plane through

the middle point of the beam. Each portion can be regarded as a cantilever of length 
l
2

, fixed

horizontally at point C and carrying a load 
W
2

 in the upward direction at the other end (i.e.,

these are inverted cantilevers). The elevation of the ends A and B
above middle point C is equal to the depression of the point C.
The depression at the middle point is thus obtained as

d =

W l

YI
2 2

3

3F
H

I
K 	

F
H

I
K

 = Wl
YI

3

48

d = Mgl
YI

3

48
 since W = Mg

Hence for a rectangular beam of breadth b and thickness d

d =
Mgl

Ybd

3

34

#�/
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$
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and for a beam of circular cross-section of radius r

d = Mgl

Yr

3

412

From these expressions, knowing the dimensions of the beam and the depression at the

middle point by a known weight, the value of Young’s modulus Y, for the material of the beam
can be calculated.

Methods of measuring depression: The depression of the beam supported at its ends and
loaded in the middle is usually measured by either of the methods viz.

(i) by micrometer screw or spherometer with some electrical indicating device like a bell,
bulb, galvanometer or voltmeter.

(ii) by single optical lever method
(iii) By double optical lever or Koenig’s method

�
�� �+0���

To determine the Young’s modulus of the material of a given beam supported on two knife-
edges and loaded at the middle point.

Apparatus used: Two parallel knife edges on which the beam is placed, a hook to suspend
weights, a scale attached to the hook, 0.5 kg weights, a cathetometer, a vernier callipers and a
meter scale.

Formula used: The Young’s modulus (Y) for a beam of rectangular cross-section is given by the
relation

Y =
Mgl

bd y

3

34
Newton /meter2

Where M = load suspended from the beam, g = acceleration due to gravity, l = length of the
beam between the two knife edges, b = breadth of the beam, d = thickness of the beam and y
= depression of the beam in the middle.

Theory: Let a beam be supported horizontally on two parallel knife edges A and B (Figure 3.8),
distance l apart and loaded in the middle C with weight W. The upward reaction at each knife

edge being 
W
2

 and the middle part of beam being horizontal, it may be taken to be combina-

tion of the two inverted cantilevers CA and CB, each of effective length 
l
2

 fixed at C and

bending upward under a load 
W
2

 acting on A and B. Let the elevation of A and B above C or

the depression of C below A and B be ‘y’.
Consider the section DB of the cantilever CB at a distance x from its fixed end C (Figure

3.9). Bending couple due to load 
W W l

x
2 2 2
� �F

HG
I
KJ.  The beam being in equilibrium, this must be
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just balanced by the bending moment (or the moment of the resistance to bending) 
YI

R
g , where

R is the radius of curvature of the section at D and Ig is the geometrical moment of inertia of
the cross-section of the beam about an axis passing through the centre of the beam and
perpendicular to it. Therefore, we have

YI

R
g  = YI

d y

dx

W l
xg

2

2 2 2
� �F

HG
I
KJ  since 1 2

2R
d y

dx
�

Which on integration gives 
dy
dx

 = W
YI

lx x
c

2 2 2

2

g

L
N
M
M

O
Q
P
P

�
L
NM

O
QP
�

since at x = 0, 
dy
dx

� 0,  we have c = 0 and therefore,

dy
dx

 = W
YI

lx x
2 2 2

2

g

L
N
M
M

O
Q
P
P

�
L
NM

O
QP

or dy =
W
YI

lx x
dx

2 2 2

2

g

L
N
M
M

O
Q
P
P

�
L
NM

O
QP

Which on further integration between the limits x = 0 and x
l�
2

 gives

y =
W
YI

l l
2 16 48

3 3

g
�

L
NM

O
QP

= Wl
YI

3

48 g

If the cross-section of the beam be rectangular of breadth ‘b’ and thickness ‘d’, we have

Ig = bd3

12
. Hence above equation can now be written as

y =
Wl
Ybd

3

34

or y =
Mgl

Ybd

3

34
Where M is the mass suspended from the hook. The depression y of the mid-point is noted

directly with the help of cathetometer.

Manipulation:
1. Adjust the cathetometer so that

(a) The vertical column that carries the microscope and scale is vertical.
(b) As microscope is moved up and down the column, the axis of the microscope is

parallel to some fixed direction in the horizontal plane.
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2. Support the experimental beam symmetrically on the knife edges with equal lengths
projecting beyond the knife edges.

3. Measure the distance between knife edges with a meter scale. This gives the length l of the
beam under flexure.

4. Suspend the hanger with a graduated scale attached to it, on the mid-point of the beam.
Focus the microscope horizontal cross-wire of the microscope on a certain division of the
scale. Take the reading of the vernier scale of cathetometer (observation table I)

5. Suspend a weight of 1 kg on the hanger. A depression is produced in the beam. Move the
microscope downwards till its horizontal cross-wire again coincides with the previous
division of the scale attached to the hook (or hanger). Take the readings of the vernier scale
of the cathetometer. The difference between (4) and (5) gives the depression in the beam
due to 1 kg weight.

6. Repeat the previous step for loads increasing by 1 kg at a time and then for loads decreas-
ing in that order.

7. Measure the distance between knife edges (observation II)
8. Measure the breadth ‘b’ and thickness ‘d’ of the beam precisely using vernier callipers and

screw gauge respectively (observation table III).
9. A graph is plotted between M and y.

From graph find the slope. calculate Y using the formula and slope of the graph.

Observation: (I) Readings for the depression ‘y’ in the beam due to the load applied:
Least count of vernier scale of cathetometer =
Zero error of the cathetometer =
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(II) The distance between two knife edges (l) =
(III) Readings for the breadth (b) and thickness (d) of the beam:
Least count of Vernier callipers =
Zero error of the vernier callipers =
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Calculations: The Young’s modulus of the material (Iron) of the beam can be calculated by
substituting the values of M, y, L, b, d and g in C.G.S. in Eq.

Y =
Mgl

ybd

3

34

From graph = 
gl

bd
M
y

3

34

F
HG

I
KJ

Result: The value of Young’s modulus of the material (Iron) of the beam is found to be =
Standard Value =
Percentage error =

Precautions and Sources of Error
1. The beam must be symmetrically placed on the knife edges with equal lengths projecting

out beyond the knife edges.
2. The hanger should be suspended from the centre of gravity of the beam.
3. The loads should be placed or removed from the hanger as gently as possible and the

reading should be recorded only after waiting for sometime, so that the thermal effects
produced in the specimen, get subsided.

4. Avoid the backlash error in the cathetometer.
5. Since the depth (thickness) of the beam appears as its cube in the formula and is relatively

a small quantity, it should be determined by measuring it at several places along length
by screw gauge.

Theoretical error: The value of Young’s modulus for the material of the beam is given by

Y =
Mgl

bd y

3

34

Taking log and differentiating above expression, we get

Y
Y

 = 3 3   l
l

b
b

d
d

y
y

� � �

Maximum possible error = _______%.

�
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To determine the Poisson’s ratio for rubber.

Apparatus used: Rubber tube with metal sleeve and rubber stopper, metre scale, small pointer,
slotted weights, hanger, Burette and rubber stopper

Formula used: The Poisson’s ratio s for rubber is given by

s = 1
2

1
1�L

NM
O
QPA

dV
dL

Where A = area of cross-section of rubber tube
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= 
 D2

4
 where D is its diameter

dV = Small increase in the volume of the tube when stretched by a small weight
dL = corresponding increase in the length of the tube.

Theory: Let a rubber tube suspended vertically be loaded at its lower end with a small weight.
This stretches the rubber tube slightly with a consequent increase in its length and internal
volume. Let V be the original volume of the tube, A its area of cross-section, L its length and D
its diameter. Then, if for a small increase of volume dV, the corresponding increase in length is
dL and the decrease in area is dA, we have

V + dV = (A – dA) (L + dL)
= AL + AdL –LdA – dAdL

Putting AL = V and neglecting dAdL a product of two small quantities, we have

dV = AdL – LdA ...(1)

Now A = 
 
D D
2 4

2 2F
HG

I
KJ �

Differentiating dA = 
D
dD

2
 = 2A

D
dD

Substituting this value of dA in equation (1) we get

dV = AdL
AL
D

dD�
2

or
dV
dL

 = A
AL
D

dD
dL

� �
2

Whence LdD
DdL

 =
1
2

1 �F
HG

I
KJ

dV
AdL

Poisson’s ratio s =

L
dL
D
dD

 = 
1
2

1
1�F

HG
I
KJA

dV
dL

This equation can be employed to calculate s, if other quantities are determined.

Description of apparatus: A rubber tube about one metre long and 4 cms in diameter is
suspended in a vertical position as shown in Fig. 3.10. Its two ends are closed by means of two
rubber corks A and B such that both ends are water tight. A burette C about 50 cms long and
1 cm in diameter open at both ends is inserted in the rubber tube through the upper cork A.
The tube is held vertical with most of its portion out of the rubber tube.

Water is filled in the rubber tube till it rises in the glass tube from the end A of rubber tube.
A pointer P is fixed at lower end B which moves on a scale S when weights are placed on the
hanger.
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Procedure
1. The apparatus is suspended through a clamp fixed at a convenient height.
2. Pour water in the rubber tube until the water meniscus appears nearly at the top of the

burette.
3. Note down the position of the pointer on the scale and the reading of water meniscus in

burette. We take this as zero position though the hanger remains suspended from the
hook.

4. Measure the diameter of the rubber tube at a  number of points with a vernier callipers
and find its mean value, and thus calculate the area of cross-section of the tube.

5. Place gently a load, of say 100 gm, on the hanger at the lower end of the tube and wait for
about 5 minutes. Note down the readings of pointer and the meniscus of water.

6. The difference between the two readings of the burette gives the change in volume dV for
the load on the hanger and the difference between the two readings of the pointer on the
scale gives the corresponding change in length.

7. Now increase the load on the hanger in equal steps
of, say 100 gm, till maximum permissible load within
elastic limit is reached, taking down the reading of
the burette and the pointer after addition of each load
when the apparatus has settled down.

8. Repeat the above procedure for weights decreasing.
9. Take the mean of the two readings of the burette for

the same load on the hanger obtained with increas-
ing and decreasing load, and then subtracting the
mean readings for zero load on the hanger from the
mean reading for any load, calculate the change in
volume dV of the rubber tube for various loads on the
hanger.

10. Similarly calculate the volume of corresponding change in length dL for the various loads.

11. Calculate the value of dV
dL

 for each set of observations separately and find its mean value

for s.
12. Plot a graph taking dL along the X-axis and the corresponding value of dV along the

Y-axis. This will come out to be a straight line as shown in figure 3.10.

Its slope will give the average value of 
dV
dL

.

13. Also use this value to calculate again the value of s.

Observation:
Least count of the scale =
Least count of microscope =
(A) Measurement of diameter of the rubber tube.
Vernier constant =
Zero error =

#�/
��
�-
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Mean uncorrected diameter =
(B) Determination of change in volume dV and the corresponding change in length dL.
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Calculations: Mean corrected diameter of the rubber tube = ..... cm.

\ Area of cross-section of the tube A = 

D2

4
 = ....... sq. cm

s = 1
2

1
1�F

HG
I
KJA

dV
dL

Also from graph calculate the value of slope dV
dL

 and substitute this value in above

equation.

Result: The value of Poisson’s ratio for rubber as obtained experimentally
(i) by calculations =

(ii) by graph =
Standard value of s =
\ Error = %
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Sources of error and precautions
1. Microscope should be used to measure internal radius of the rubber as also to measure the

radius of the capillary.
2. Hanger should be stationary at the time of taking down the observations.
3. There should be no air bubble inside the rubber tube or the burette.
4. Weights should be placed or removed gently and in equal steps.
5. After each addition or removal of load wait for about 5 minutes before taking observa-

tions in order to allow the apparatus to settle down to new conditions of stress and strain.
6. The load suspended at the lower end of the rubber tube should not exceed the maximum

load permissible within elastic limit.

�
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Object: To determine the moment of inertia of a fly-wheel about its axis of rotation.

Apparatus: The flywheel, weight box, thread, stop-watch, meter scale and vernier callipers.

Description of apparatus: A fly-wheel is a heavy wheel or disc, capable of rotating about its
axis. This fly-wheel properly supported in bearings may remain at rest in any position, i.e., its
centre of gravity lies on the axis of rotation. Its moment of inertia can be determined experi-
mentally by setting it in motion with a known amount of energy.

Theory: The flywheel is mounted in its bearings with its axle horizontal and at a suitable
height from the ground, and a string carrying a suitable mass m at its one end and having a
length less than the height of the axle from the ground, is wrapped completely and evenly
round the axle. When the mass m is released, the string unwinds itself, thus setting the
flywheel in rotation. As the mass m descends further and further the rotation of the flywheel
goes on increasing till it becomes maximum when the string leaves the axle and the mass drops
off.

Let h be the distance fallen through by the mass before the string leaves the axle and the
mass drops off, and let v and w be the linear velocity of the mass and angular velocity of the
flywheel respectively at the instant the mass drops off. Then, as the mass descends a distance
h, it loses potential energy mgh which is used up: (i) partly in providing kinetic energy of

translation 
1
2

2mv  to the falling mass itself, (ii) partly in giving kinetic energy of rotation 
1
2

2I�

to the flywheel (where I is the moment of inertia of the flywheel about the axis of rotation) and
(iii) partly in doing work against friction.

If the work done against friction is steady and F per turn, and, if the number of rotations
made by the flywheel till the mass detaches is equal to n1, the work done against friction is
equal to n1F. Hence by the principle of conservation of energy, we have

mgh = 1
2

1
2

2 2
1mv I n F� �� ...(1)

After the mass has detached the flywheel continues to rotate for a considerable time t
before it is brought to rest by friction. If it makes n2 rotations in this time, the work done against
friction is equal to n2F and evidently it is equal to the kinetic energy of the flywheel at the
instant the mass drops off. Thus,
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n2F =
1
2

2I�

F =
1
2

2

2

I
n
�

...(2)

Substituting this value of F in Eq. (1), we get

mgh =
1
2

1
2

1
2

2 2 2 1

2
mv I I

n
n
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Whence I =
2

1

2

2 1

2

mgh mv

n
n

�

�
F
HG

I
KJ�

If r be the radius of the flywheel,
v = rw

\ I =
2

1

2 2

2 1

2

mgh mr

n
n
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�
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...(3a)
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...(3b)

After the mass has detached, its angular velocity decreases on account of friction and after
some time t, the flywheel finally comes to rest. At the time of detachment of the mass the
angular velocity of the wheel is w and when it comes to rest its angular velocity is zero. Hence,
if the force of friction is steady, the motion of the flywheel is uniformly retarded and the

average angular velocity during this interval is equal to 
�
2

. Thus,

�
2

 =
2 2
n

t

or w = 4 2
n
t

...(4)

Thus observing the time ‘t’ and counting the rotations n1 and n2 made by the flywheel its
moment of inertia can be calculated from equation (3) and (4).

For a fly-wheel with large moment of inertia (I), 
1
2

2mv  may be neglected, the equation (3a)

becomes

I =
2

12 1

2

mgh

n
n
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F
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I
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Substituting the value of w from Eq. (4) in above equation, we get

I =
mgh

n
t

n
n

8
1

2
2
2

2
1

2
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..(5)

This formula is used to calculate the moment of inertia of a flywheel.

Procedure
1. Attach a mass m to one end of a thin thread and a loop is made at the other end which is

fastened to the peg.
2. The thread is wrapped evenly round the axle of the wheel.
3. Allow the mass to descend slowly and count the number of revolutions n1 during descent.
4. When the thread has unwound itself and detached from the axle after n1 turns, start the

stop watch. Count the number of revolutions n2 before the flywheel comes to rest and stop
the stop watch. Thus n2 and t are known.

5. Repeat the experiment with three different masses.
6. Calculate the value of I using the given Eq. (5).

Observation: Least count of the stop-watch = ..... sec.
Table for determination of n1, n2 and t
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Calculation: I = mgh

n
t

n
n
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Result: The moment of inertia of the flywheel is ..... kg–m2.

Sources of error and precautions
1. The length of the string should be always less than the height of the axle of the flywheel

from the floor so that it may leave the axle before the mass strikes the floor.
2. The loop slipped over the peg should be quite loose so that when the string has unwound

itself, it must leave the axle and there may be no tendency for it to rewind in the opposite
direction.
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3. The string should be evenly wound on the axle, i.e., there should be no overlapping of, or
a gap left between, the various coils of the string.

4. To ensure winding to whole number of turns of string on the axle the winding should be
stopped, when almost complete at a stage where the projecting peg is horizontal.

5. To determine h measure only the length of the string between the loop and the mark at the
other end where the string left the axle before the start of the flywheel.

6. The string used should be of very small diameter compared with the diameter of the axle.
If the string is of appreciable thickness half of its thickness should be added to the radius
of the axle to get the effective value of r.

7. The friction at the bearings should not be great and the mass tied to the end of the string
should be sufficient to be able to overcome the bearing-friction and so to start falling of its
own accord.

8. Take extra care to start the stop-watch immediately the string leaves the axle.

Criticism of the method: In this method the exact instant at which the mass drops off cannot
be correctly found out and hence the values of n1, n2 and t cannot be determined very accu-
rately. The angular velocity w of the flywheel at the instant the mass drops off has been

calculated from the formula w = 4 2
n
t

 on the assumption that the force of friction remains

constant while the angular velocity of the flywheel decreases from w to zero. But as the friction
is less at greater velocities, we have no justification for this assumption. Hence for more
accurate result, w should be measured by a method in which no such assumption is made e.g.,
with a tuning fork.
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Object: To determine the modulus of rigidity of the material of the given wire and moment of
inertia of an irregular body with the help of a torsion table.

Apparatus used: Torsion pendulum, a fairly thin and long wire of the material to be tested,
clamps and chucks, a stop-watch, an auxillary body (a cylinder), screw guage, vernier calli-
pers, meter scale, spirit level, a balance and a weight box.

Formula used:

h = 8 1

1
2

0
2 4


I l

T T r( )�

where I1 =
1
2

2MR

I2 =
T T

T T
I2

2
0
2

1
2

0
2 1

�
�

T0 is the time period of oscillations of the torsion table only. T1 is the time period of
oscillations of the torsion table plus a regular body of moment of inertia I1 placed on the table,
its axis coinciding with the axis of the wire. T2 is the time period for the torsion table plus an
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irregular body placed on the table. l is the length of the wire between two clamps, r is the
radius of the wire, M is the mass of the regular cylinder, R is the radius of the regular cylinder.

Description of apparatus: The torsion table is illustrated in figure 3.12. One end of a fairly thin
and long wire is clamped at A to a rigid support and the other end is fixed in the centre of a
projection coming out of the central portion of a circular disc B, of aluminium or brass. On the
upper face of the disc are described concentric circles and a concentric groove is cut in which
three balancing weights can be placed. Beneath the disc is a heavy iron table T provided with
three levelling screws. The plumb-line arrangement between the disc and the table serves to
test the horizontality of the disc.

Theory: When the disc is rotated in a horizontal plane and then released, it executes torsional
vibrations about the wire as the axis. If I0 be the moment of inertia of the disc with its projection
about the wire as the axis, its period of oscillation is, from eq.

T = 2
 I
C

 given by

T0 = 2 0

I
C

...(1)

Where C is the torsional couple per unit radian twist. If an auxiliary body of known
moment of inertia I is placed centrally upon the disc, then the period of oscillation T of the
combination is given by

T = 2 0

I I

C
�

...(2)

Squaring equations (1) and (2) and then subtracting equation (1) from Eq. (2), we get

T2 – T2
0 =

4 2
 I
C

But from Eq. t = 
� �r
l

4

2
, C is also-equal to 


�r
l

4

2
.  Hence the above equation yields.

h = 8
2

0
2 4


Il
T T r( )�

...(3)

From Eq. (3) the value of modulus of rigidity h of the wire
can be calculated, if its length l and radius r are determined
and the periods T0 and T observed.

Methods
1. Set up the torsion pendulum as shown in figure.
2. Level the heavy iron table T by the levelling screws and

test the levelling with a spirit level.
3. Adjust the positions of the balancing weights in the groove

in the disc such that the disc is horizontal as indicated by
the plumb-line arrangement between the disc and the
table. Place a vertical pointer in front of the disc and just
behind it put a mark on the disc when the latter is at rest. #�/
��
��
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4. Rotate the disc slightly in a horizontal plane and then release it. It will perform torsional
oscillations when undesirable motions have subsided, say after two or three oscillations,
begin timing the oscillations of the disc with an accurate stop-watch by observing the
transits of the mark on the disc past the vertical pointer. Determine twice the time for a
large number of oscillations say, 30 and taking at least two sets of observations with
different number of oscillations, find the mean period T0 of the disc.

5. Place a right cylinder centrally upon the disc and determine as before, the period T of the
combination. Note T will be greater than T0.

6. Measure the length of the wire between the clamps with a metre scale and the diameter
of the wire at several places with a screw gauge. Also weight the cylinder in a physical
balance and find its diameter with vernier callipers.

7. Calculate the moment of inertia of the cylinder from the formula I = MR2/2 and then the
value of modulus of rigidity of the wire from Eq. (3).

Observation: (A) Determination of periods T and T0
Least count of stop-watch = ..... sec
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(B) (i) Length of the wire = .........
(ii) Measurement of diameter of the wire

Least count of the screw gauge =
Zero error =
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(C) (i) Mass of the cylinder =
(ii) Measurement of diameter of the cylinder
Vernier constant of the callipers =
zero error =
Diameter of the cylinder—(i) ...... cm
(ii) ...... cm
(iii) ...... cm
(iv) ...... cm
Mean diameter = ..... cm

Calculations:
Mean corrected diameter of the wire = ...... cm
Radius of the wire = ...... cm
Mean corrected diameter of the cylinder = cm
\ Radius of the cylinder = .... cm

I =
MR2

2
= ......

h =
8

2
0

2 4

Il

T T r( )�

Result: The modulus of rigidity of the material of the given wire = ...... dynes/cm2

standard value = ...... dynes/cm2

\ error = %

Sources of error and precautions:
1. The disc should always remain horizontal so that its moment of inertia I0 remain unal-

tered throughout the experiment. Consequently the balancing weights, when once ad-
justed, should not be disturbed in subsequent observations for T.

2. The motion of the torsion pendulum should be purely rotational in a horizontal plane.
3. The suspension wire should be free from kinks and should be fairly thin and long, say

about 70 cm, and 0.1 cm thick, so that torsional rigidity may be small and hence the
periods of the pendulum large.

4. The wire should not be twisted beyond elastic limit otherwise the torsional couple will not
be proportional to the value of the twist.

5. The auxiliary body (cylinder) should be of uniform density throughout e.g., of brass, and
should be placed centrally upon disc so that its axis is coincident with the axis of the
suspension wire.

6. As the periods occur raised to the second power in the expression for h, they must be
measured very accurately by timing a large number of oscillations with a stop-watch

reading upto 
1
5

 sec.

7. As the radius of the wire occurs raised to the fourth power in the expression for h and is
a small quantity, the diameter of the wire must be measured very accurately with a screw
gauge. Reading should be taken at several points along the length of the wire and at each
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point two mutually perpendicular diameters should be measured. The diameter of the
cylinder should be similarly measured with a vernier callipers.

�
�! �+0���

To determine the restoring force per unit extension of a spiral spring by statical and dynamical
methods and also to determine the mass of the spring.

Apparatus used: A spiral spring, a pointer and a scale-pan, slotted weights and a stop watch.

Formula used: 1. Statical method
The restoring force per unit extensions (k) of the spring is given by

k =
Mg

l
 Newton/meter

where M = mass applied at the lower end of the spring
g = acceleration due to gravity
l = extension produced in the spring

2. Dynamical method

k =
4 2

1 2

1
2

2
2


 ( )

( )

M M

T T

�
�

 Newton/meter

where M1, M2 = Masses applied at the lower end of the spring successively
T1, T2 = Time periods of the spring corresponding to masses M1 and M2

respectively.
3. The mass m of the spring is given by

m = 3 1 2
2

2 1
2

1
2

2
2

M T M T

T T
kg

�
�

L
N
MM

O
Q
PP

where the symbols have their usual meanings.

Theory: A spiral-spring consists of a uniform wire,
shaped permanently to have the form of a regular
helix. A flat spiral-spring is one in which the plane
of the spiral is perpendicular to axis of the cylinder.
We deal here only with flat spiral-spring.

The spring is suspended from a rigid support
with a hanger on the other end. A mass M is placed
on the hanger so that spiral spring stretched verti-
cally downward. If the extension of the spring is
small, the force of elastic reaction F is, from Hooke’s
law, proportional to the extension l, or

F a l
or F = kl

where k is a constant giving a measure of the stiff-
ness of the spring and is called the restoring force
per unit extension of the spring. #�/
��
��
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But in the equilibrium state
F = Mg

\ kl = Mg

or k =
Mg

l

from which k may be calculated, if the extension l for a known load M at the end of the spring
is determined.

If the mass at the end of the spring is now displaced vertically downward and then
released, then for small oscillations, the restoring force at any instant is proportional to the
displacement x, i.e., F = kx.

If 
d x
dt

2

2  is the acceleration of the mass at that instant, the inertial reaction of the system is

( ) ,M m
d x
dt

�
2

2 where m is the effective mass of the spring. Equating the sum of these forces to

zero we get from Newton’s third law of motion, the equation

( )M m
d x

dt
kx� �

2

2  = 0

or
d x
dt

k
M m

x
2

2 �
�( )

 = 0

This equation represents a S.H.M. whose period is given by

T = 2

M m

k
�

...(1)

If the experiment is performed with two masses M1 and M2 suspended successively at the
end of the spring and the respective periods are T1 and T2, we have

T1 = 2 1

M m

k
�

...(2)

and T2 = 2 2

M m

k
�

...(3)

Squaring Eq. (2) and (3) and subtracting, we get

T T1
2

2
2�  = 4 2

1 2


k

M M( )�

Whence k =
4 2

1 2

1
2

2
2


 ( )M M

T T

�
�

...(4)

From which k may be calculated.
Squaring Eq. (2) and (3) and then dividing Eq. (2) by Eq. (3) we have



Elasticity 87

T
T

1
2

2
2

 =
M m
M m

1

2

�
�

Whence on simplification

m =
M T M T

T T
1 2

2
2 1

2

1
2

2
2

�
�

It can be shown that the mass of the spring m¢ is three times the effective mass of the spring.

\ Mass of the spring m¢ = 3 1 2
2

2 1
2

1
2

2
2

M T M T

T T

�
�

L
N
MM

O
Q
PP

...(5)

Squaring and rearranging Eq. (1) gives

T2 = 4 42 2
 

k

M
k

m
F
HG

I
KJ �

F
HG

I
KJ

...(6)

A plot of T2 against M gives a straight line as shown in
figure 3.14. The negative intercept OP on the x-axis equals m
and may be used to find m graphically.

Description of apparatus: A spiral spring A whose restoring force per unit extension is to be
determined is suspended from a rigid support as shown in figure 3.13. At the lower end of the
spring, a small scale pan is fastened. A small horizontal pointer P is also attached to the scale
pan. A millimeter scale S is also set in front of the spring in such a way that when spring
vibrates up and down, the pointer freely moves over the scale.

Procedure: (a) Statical Method
1. Hang a spiral spring A from a rigid support as shown in figure 3.13 and attached a scale

pan B.
2. With no load in the scale-pan, note down the zero reading of the

pointer on the scale.
3. Place gently in the pan a load of, say 100 gm.
4. Now the spring slightly stretches and the pointer moves down

on the scale. In the steady position, note down the reading of the
pointer. The difference of the two readings is the extension of the
spring for the load in the pan.

5. Increase the lead in the pan in equal steps until maximum per-
missible load is reached and note down the corresponding pointer
readings on the scale.

6. The experiment is repeated with decreasing loads.
7. Plot a graph as illustrated in figure 3.15 between the load and the scale readings taking the

load on X-axis and corresponding scale readings on Y-axis. The graph will be a straight

line. Measure PR and QR and calculate k from the formula k = 
QR
PR

g	 Newton/meter.

Observation: Mass of the pan =

#�/
��
��

#�/
��
��
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Calculations: Statical experiment
The restoring force per unit extension of the spring

k =
mg

l
 = ...... Newton/meter

A graph is plotted between the load and scale readings described in point (7) in the
procedure. From graph

PR = .....
QR = .....

\ k = 
QR
PR

g	  = ....... Newton/meter

Result: The restoring force per unit extension of the spring = ..... Newton/meter
The mass of the spring = ..... gm

Sources of errors and precautions
1. The axis of the spiral spring must be vertical.
2. The scale should be set up vertically and should be arranged to give almost the maximum

extension allowed.
3. The pointer should move freely over the scale and should be just not in contact with it.
4. The spiral spring should not be stretched beyond elastic limit.
5. The load in the scale-pan should be placed gently and should be increased in equal steps.
6. While calculating the mean extension of the spring for a certain load, successive difference

between consecutive readings of the pointer on the scale should not be taken.

Procedure (dynamical experiment)
1. Load the pan. Displace the pan vertically downward through a small distance and release

it. The spring performs simple harmonic oscillations.
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2. With the help of stop watch, note down the time of a number of oscillation (say 20 or 30).
Now divide the total time by the number of oscillations to find the time period (time for
one oscillation) T1.

3. Increase the load in the pan to M2. As described above, find the time period T2 for this
load.

4. Repeat the experiment with different values of load.

5. Plot a graph between T2 and M. The slope is 
4 2


k
 and the intercept on the negative side

of the x-axis is m.

Observations: Measurement of periods T1 and T2 for the loads M1 and M2. Least count of stop-
watch = sec.
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Calculations: Restoring force per unit extension of the spring

k =
4 2

1 2

1
2

2
2


 ( )M M

T T

�
�

= ..... Newton/metre

Mass of the spiral spring m¢ = 3 1 2
2

2 1
2

1
2

2
2

M T M T

T T

�
�

L
N
MM

O
Q
PP

= .... gm

Result: The restoring force per unit extension of the spring as determined by dynamical
experiment = ........ Newton/m

The mass of spring = ........ gm

Sources of error and precautions
1. The spiral spring should oscillate vertically.
2. The amplitude of oscillation should be small.
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3. As in the expression for k and m¢ the periods T1 and T2 occur raised to the second power,
they should be accurately determined by timing a large number of oscillations correct
upto the value measurable with the stop-watch.

�
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To study the oscillations of a rubber band and a spring.

Apparatus used: Rubber bands (cycle tube), a pan, mounting arrangement, weight of 50 gm,
stop watch and spring.

Formula used: (1) For experimental verification of formula

�

�

�

�
 = �� �

	� �� �
�

�

��

� �

�� �

� � �

where T1 = Time period of a rubber band when subjected to a load m1g.
T2 = Time period of the same rubber when subjected to a load m2g.

��
�  = force constant of rubber band corresponding to equilibrium extension x0.

��
� �  = force constant of rubber band corresponding to equilibrium extension x¢0.

Here x0 and x¢0 are the equilibrium extensions corresponding to loads m1g and m2g.

(2) The entire potential energy U (joule) of the system is given by
U = Ub – mg · x

where Ub = potential energy of the rubber band or springs.
x = displacement from the equilibrium position due to a load mg.

– mg x = gravitational energy of mass m which is commonly taken as negative.

Procedure:
1. Set up the experimental arrangement as shown in figure 3.16 in such a way that when a

load is subjected to the rubber band, the pointer moves freely on metre scale. Remove the
load and note down the pointer’s reading on metre scale when rubber band is stationary.

2. Place a weight of 0.05 kg on the pan. Now the rubber band is stretched. Note down the
pointer reading on the meter scale.

3. Continue the process (2) of loading the rubber band in steps of 0.05 kg and noting the
extension within the elastic limit.

4. The reading of the pointer is also recorded by removing the weights in steps. If the
previous readings are almost repeated then the elastic limit has not exceeded. For a
particular weight, the mean of the corresponding readings gives the extension for that
weight.

5. Again place 0.05 kg in the pan and wait till the pointer is stationary. Now slightly pull
down the pan and release it. The pan oscillates vertically with amplitude decreasing
pretty quickly. Record the time of few oscillations with the help of sensitive stop watch.
Calculate the time period. Repeat the experiment for other loads to obtain the correspond-
ing time period.

6. Draw a graph between load and corresponding extension. The graph is shown in figure
3.17. Take different points on the curve and draw tangents. Obtain the values of Dm and



Elasticity 91

Dx for different tangents. Calculate the
force constant using the following for-
mula.

��
�  =

�� �
� �� ��

��

�
�

�

Record the extensions from graph and
corresponding force constants in the
table.

7. Calculate the time periods by using the
formula

T1 = 

�

�

�

�
�

�

and T2 =
�



�

�

�

�
�

�

Compare the experimental time peri-
ods with calculated time periods.

8. From load extension graph, consider
the area enclosed between the curve
and the extension axis for different load
increasing in regular steps. The areas
are shown in figure 3.18. The area gives
Ub corresponding to a particular
extension.

9. Calculate Um for mass = 100 g and obtain the value of U by the formula
 = Ub + Um

#�/
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10. Draw a graph in extension and the corresponding energies i.e. Ub, Um and U. The graph
is shown in Fig. 3.19.

11. Same procedure can be adopted in case of a spring.

Observations: (I) For load extension graph
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(II) For oscillations of the band

������ ������ ���
��� ������ *	�� *	������	�� -2��-)� !����� ���	��

	
��� ���	����	�
� ��� ��#���&��� ��
�	�
 ���� �%����

����������

�)

�)

�)

�)

#�/
��
�*



Elasticity 93

Calculations: From Graph

��
�  =

�� � �� �� ��
�

������
�

�
�

�

����  =
�

�� � �� �� �� �
�

������
�

�
�

�

T1 = 

�

�

�

�
�

�
 = ...... second

T2 =
�



�

�

�

�
�

�
 = second.

Results:
1. The force constant of rubber band is a function of extension a in elastic limit.

If the same experiment is performed with spring, then it is observed that the force
constant is independent of extension a within elastic limit.

2. From table (II), it is observed that the calculated time periods are the same as experimen-
tally observed time periods.

3. Ub, Um and U versus extension are drawn in the graphs.

Sources of error and precautions:
1. The rubber band should not be loaded beyond 8% of the load required for exceeding the

elastic limit.
2. Time period should be recorded with sensitive stop watch.
3. The experiment should also be performed by decreasing loads.
4. The experiment should be performed with a number of rubber bands.
5. Amplitude of oscillations should be small.
6. For graphs, smooth waves should be drawn.

�
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To determine Young’s Modulus, Modulus of rigidity and Poisson’s ratio of the material of a
given wire by Searle’s dynamical method.

Apparatus used: Two identical bars, given wire, stop watch, screw-gauge, vernier callipers,
balance, candle and match box.

Formula used: The Young’s Modulus (Y), modulus of rigidity (h) and Poisson’s ratio (s) are
given by the formula,

Y =


� �
�

� � �

� �
 Newton/meter2

h = 

� �
�

� � �

� �
 Newton/meter2
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s =
�
�
�
��

�

�
 – 1

Description of the apparatus: Two identical rods AB and CD of square or circular cross section
connected together at their middle points by the specimen wire, are suspended by two silk
fibres from a rigid support such that the plane passing through these rods and wire is horizon-
tal as shown in figure 3.20.

Theory: Two equal inertia bars AB and CD of
square section are joined at their centres by a
fairly short and moderately thin wire GG¢ of
the material whose elastic constants are to be
determined, and the system is suspended by
two parallel torsionless threads, so that in the
equilibrium position the bars may be parallel
to each other with the plane ABDC horizontal.
If the two bars be turned through equal angles
in opposite directions and be then set free, the
bars will execute flexural vibrations in a horizontal plane with the same period about their
supporting threads.

When the amplitude of vibration is small, the wire is only slightly bent and the distance
GG¢ between the ends of the wire measured along the straight line will never differ perceptibly
from the length of the wire so that the distance between the lower ends of the supporting
threads remains practically constant and hence the threads remain vertical during the oscilla-
tions of the bars, and there is thus no horizontal component of tensions in the threads acting
on the wire.

The mass of the wire is negligible compared with that of the bars so that the motion of G
and G¢ at right angles to GG¢ may be neglected. Further, since the horizontal displacement of
G and G¢ are very small compared with the lengths of the supporting threads, the vertical
motion of G and G¢ is also negligible. The centres of gravity of the bars, therefore, remain at
rest, and hence the action of the wire on either bar and vice versa is simply a couple which, by
symmetry must have a vertical axis. The moment of this couple called the “bending moment”
is the same at every point of the wire and thus the neutral filament of the wire is bent into a
circular arc.

If r is the radius of the arc, Y the Young’s modulus for the material of the wire and l the
geometrical moment of inertia of the area of cross-section of the wire about an axis through the
centroid of the area and perpendicular to the plane of bending, the bending moment is from

equation G = 
�
�

	�
 If l is the length of the wire and q the angle turned through by either bar,

� �
��
�

 and G = 
��
�

	�

�
 and if 

��
�





�
 is the angular acceleration of each bar towards its equilib-

rium position and K the moment of inertia of the bar about a vertical axis through its C.G., the

torque due to inertial reaction is 
��
�
�



�


�
 Hence equating the sum of these two torques to zero,

we get, from Newton’s third law, the equation

#�/
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�-



Elasticity 95

� ��
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�
 	�
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�
 = 0

or
� ��

�

�
�


 	�

��
�
 = 0

The motion of the bars is, therefore, simple harmonic and hence the period of the flexural
vibrations is given by

T1 = 
�
�

��

	�

whence y =

�
�
�

� ��

� �

If the radius of the wire be r, I = 
 ��

�
�  and hence

y =


� �
�

� ��

� �
...(1)

If the length and breadth (horizontal) of the bar be a and b respectively,

K = M 
� ��
� �� �

� �

��

 �

where M = mass of the bar.
Now the suspensions of the bars are removed and one of the bars is fixed horizontally on

a suitable support, while the other is suspended from a vertical wire. If the wire is twisted
through an angle and the bar allowed to execute torsional oscillations, the period of oscilla-
tions is given by

T2 = 
� �

�

where C is the restoring couple per unit radian twist due to torsional reaction of the wire and
is equal to ph r4/2l, where h is the modulus of rigidity for the material of the wire. Thus

C =

� 
�

� �

�
�

�

�

� �

� �

whence h = 

� �
�

� ��

� �
...(2)

Dividing Eq. (1) by Eq. (2), we get

	

�
 =

�
�
�
�

�

�
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Now Y = 2h (1 + s), where s is the Poisson’s ratio. Hence

s = �
�

�
�

	

or s = �
�
�
�
�

�
�

�

�

Procedure:
1. Weigh both the bars and find the Mass M of each bar.
2. The breadth ‘b’ of the cross bar is measured with the help of vernier callipers. If the rod is

of circular cross-section then measure its diameter D with vernier callipers.
3. Measure the length L of the bar with an ordinary meter scale.
4. Attach the experimental wire to the middle points of the bar and suspend the bars from

a rigid support with the help of equal threads such that the system is in a horizontal plane
Fig. 3.21(a).

5. Bring the two bars close together (through a small angle) with the help of a small loop of
the thread as shown in Fig. 3.21(b).

6. Burn the thread. Note the time period T1 in this case.
7. Clamp one bar rigidly in a horizontal position so that the other hangs by the wire Fig.

3.21(c). Rotate the free bar through a small angle and note the time period T2 for this case
also.

8. Measure the length l of the wire between the two bars with meter scale.
9. Measure the diameter of the experimental wire at a large number of points in a mutually

perpendicular directions by a screw gauge. Find r.

Observations: (A) Table for the determination of T1 and T2.
Least count of the stop-watch = ...... secs.

#�/
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(B) Mass of either of the AB or CD rod = ...... gms = ...... kg.
(C) Length of the either bar (L) = ...... cms.
(D) Table for the measurement of breadth of the given bar.

Least count of vernier callipers = 
	
������������������
�����
�������

���
������������������������������
�
 = ...... cm.

Zero error of vernier callipers = ± ...... cms.
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If the bars are of circular cross-section then the above table may be used to determine the
diameter D of the rod.

(E) Length (l) of wire = cms.
(F) Table for the measurement of diameter of the given wire.

Least count of screw gauge = �����

���
����������������������������
����
�
 = ...... cm.

Zero error of screw gauge = ± ...... cms.
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N.B.: Record the mass and dimensions of the second inertia bar also, if the two bars are not
exactly identical.

Calculations:

I =
�� �� �

��

� � �
 = ...... kg × m2 (for square cross-section bar)

I =
� �

�� ��

� 
�
� �

�� �� �
 = ...... kg × m2 (for circular bar)

(i) Y = 


� �
�

� ��

� �
 = ...... Newton/meter2

(ii) h = 


� �
�

� ��

� �
 = ...... Newton/meter2

(iii) s = �
�
�
�
�

�
�

�

�
 = ......

Results: The values of elastic constants for the material of the wire are
Y = ...... Newton/meter2

h = ...... Newton/meter2

and s = ......

Standards Results:
Y = ...... Newton/meter2

h = ...... Newton/meter2

and s = ......

Percentage errors:
Y = ...... %
h = ...... %

and s = ...... %

Precautions and sources of error:
1. Bars should oscillate in a horizontal plane.
2. The amplitude of oscillations should be small.
3. The two bars should be identical.



Elasticity 99

4. Length of the two threads should be same.
5. Radius of wire should be measured very accurately.

Theoretical error:

Y = � �� �

� � �
��
�

� �

��

�

��� � � �

� � 

�


 
 �� 	
� �
� �

Taking log and differentiating

	

	


 = �

� � � �
�

� � � �

�� ��

� � � � �� � 


� � � 
� � � �

    
� � � � �

� � � �� �
� � � �� � � �

Maximum possible error = ...... %
Similarly find it for h and s.

�
�- �+0���

To determine the value of the modulus of rigidity of the material of a given wire by a
dynamical method using Maxwell’s needle.

Apparatus used: Maxwell’s needle, screw gauge, given wire, meter scale, stop watch, physical
balance and weight box.

Formula used: The modulus of rigidity h of the material of the wire is given by

h =
�

� � �
� �

� � �

� �
� �� � � �

� � �


 �
�

 Newton/meter2

where l = length of the experimental wire
L = length of the brass tube
r = radius of the wire

MS = mass of each of the solid cylinder
MH = mass of each of the hollow cylinder

T1 = time period when solid cylinders are placed in the middle
T2 = time period when hollow cylinders are placed in the middle

Description of apparatus: Maxwell’s needle is shown in figure 3.22. It consists of a hollow
cylindrical brass tube of length L, suspended by a wire whose modulus of rigidity is to be
determined. The tube is open at both ends. The hollow tube is fitted with four brass cylinders,

two solids SS and two hollow HH, each having a length 
�

�
 and same radii. These cylinders are

inserted in the hollow tube symmetrically so that either solid cylinders SS are inside and
hollow HH outside or hollow one inside and solid cylinder outside. A mirror M is attached to
the wire for counting vibrations with lamp and scale arrangement.

Theory: Let the two hollow cylinders be placed in the middle and the solid ones at the two
ends of the tube and let the combination be slightly rotated in a horizontal plane and then
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released. The body will then execute S.H.M., about the wire as the axis and the period of
oscillation is given by

T1 =
��
�

�

 ...(1)

where I1 is the moment of inertia of combination about the wire as the axis and C the restoring
couple per unit twist due to torsional reaction.

Now let the positions of the hollow and solid cylinders be interchanged so that the solid
cylinder are now in the middle. Then, if I2 is the moment of inertia of the new combination
about the axis of rotation, the new period of oscillation is given by

T2 =
��
�

�

 ...(2)

Squaring equation (1) and (2) and subtracting eqn. (2) from eqn. (1), we get

T1
2 – T2

2 =
��

�



 (I1 – I2)

whence C =
�

� �
� �
� �

� � �� �

� �


 �
�

But from eq. C =
�

�

�

�


�
 where r is the radius and l the length of the wire

whose modulus of rigidity is h.

Hence
�

�

�

�


�
 =

�
� �

� �
� �

� � �� �

� �


 �
�

or h = � �
� � �

� �

� � �

� �

� � �

� � �


 �
�

...(3)

Now let m1 and m2 be the masses of each of the hollow and the solid cylinders respectively
and I0, I¢ and I≤ be the moments of inertia of the hollow tube, the hollow cylinder and the solid
cylinder respectively about a vertical axis passing through their middle points. Then, if L is the
length of the hollow tube,

#�/
��
��
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I1 = I0 + 2I¢ + 2m1 
�

�

�� �
� �� �  + 2I≤ + 2m2 

� 

�

�� �
� �� �

and I2 = I0 + 2I≤ + 2m2 
�

�

�� �
� �� �  + 2I¢ + 2m1 

� 

�

�� �
� �� �

Hence I1 – I2 = 2m2 
� � 

� �

� �� �� � � ��� �� � � �� � � �� �
 – 2m1 

� � 

� �

� �� �� � � ��� �� � � �� � � �� �
 = (m2 – m1) 

�

�

�

Putting this value of (I1 – I2) in equation (3) we get

h =
�

� �
� � �

� �

� � �

� �

� � � �

� � �


 �
�

This expression can be used to find the value of modulus of rigidity h of the material of the
suspension wire.

Procedure:
1. Suspend the Maxwell’s needle from the lower end of a thin and long wire of experimental

material and fix the upper end to a rigid support.
2. By slightly rotating the Maxwell’s needle about the wire in the horizontal plane, it is

allowed to perform torsional oscillations. Keep the solid cylinders inside. Start the stop
watch and simultaneously count the number of oscillations. In this way determine the
time period of 10 oscillations. Similarly, obtain time periods for 20, 30, 40 and 50 oscilla-
tions and evaluate the mean value of time period T1.

3. Interchange the positions of the cylinders (hollow cylinders inside) and find out the value
of the time period T2 for the system in this case. You will find that T2 > T1.

4. Measure the diameter of the wire at a large number of points in two mutually perpendicu-
lar directions at each point. Measure also the length l of the wire.

5. Using a meter scale, measure length L of the tube. Determine values of (MS – MH) with the
help of a physical balance.

Observations: (I) Table for the determination of T1 and T2.
 Least count of the stop watch = ...... secs.
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(II) Table for the determination of radius ‘r’ of the wire

Least count of screw gauge = �����

���
����������������������������
����
�
 = ...... cm

Zero error of screw gauge = ± ...... cm
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(III) Mean mass of a hollow cylinder MH = ...... kg.
(IV) Mean mass of solid cylinder MS = ...... kg.
(V) Length of the Maxwell’s needle L = ...... meter
(VI) Length of the wire l = ....... meter

Calculations: Modulus of rigidity h is calculated by using the following formula:

h =
�

! "
� � �

� �

� � �

� �

� � � �

� � �


 �
�

 Newton/meter2

Result: The modulus of rigidity of the material of the wire (.....) as found experimentally
= ...... Newton/meter2

Standard value: Standard Value of h for ...... = ...... Newton/meter2

 Percentage error = ..... %

Precautions and sources of error:
1. The two sets of cylinders should be exactly identical and the hollow tube should be

clamped exactly in the middle.
2. The Maxwell’s needle should always remain horizontal so that the moment of inertia of

the hollow tube about the axis of rotation remains unaltered throughout the whole
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experiment. Hence while placing the cylinders inside the tube, no portion of them should
be left projecting outside the hollow tube.

3. The motion of the Maxwell’s needle should be purely rotational in a horizontal plane. All
undesirable motions (up and down, or pendular) should be competely checked.

4. As in the expression for h the periods occur raised to the second power, they must be
carefully measured by timing a large number of oscillations with an accurate stop-watch

up to an accuracy of say, �
#

 of a second.

5. The wire should not be twisted beyond elastic limit otherwise the restoring couple due to
torsional reaction will not be proportional to value of the twist.

6. There should be no kinks in the wire. The wire should be fairly long and thin particularly
when the rigidity is high so that the restoring couple per unit twist due to torsional
reaction may be small and hence the period of oscillation of the Maxwell’s needle is large.

7. In the expression for h the radius occurs raised to the fourth power and is a very small
quantity usually of the order of 0.1 cm. Hence the diameter must be measured very
accurately. Readings should be taken at several points equally spaced along the wire and
two diameters at right angles to each other should be measured at each point, care being
taken not to compress the wire in taking the readings.

�
�� �+0���

To study the variation of moment of inertia of a system with the variation in the distribution
of mass and hence to verify the theorem of parallel axes.

Apparatus used: Maxwell’s needle apparatus with solid cylinders only and a stop watch or a
light aluminium channel about 1.5 metre in length and 5 cm in breadth fitted with a clamp at
the centre to suspend it horizontally by means of wire, two similar weights, stop watch and a
metre scale.

Formula used: The time period T of the torsional oscillations of the system is given by

T =
�

� ! !� �� � � � �

�

� �� �
 � �� �

where I0 = moment of inertia of hollow tube or suspension system.
IS = moment of inertia of solid cylinder or added weight about an axis passing through

their centre of gravity and perpendicular to their lengths.
mS = mass of each solid cylinder or each added weight

x = distance of each solid cylinder or each added weight from the axis of suspension.
C = torsional rigidity of suspension wire.

Squaring the above equation

T2 =
�

�
� ! !

�
� �� � � �

�


 � �� �� �  = 
� � �
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This equation is of the form y = mx + C. Therefore, if a graph is plotted between T2 and x2,
it should be a straight line.

Description of the apparatus: The main aim of this experiment is to show that how the
moment of inertia varies with the distribution of mass. The basic relation for this is I = ���� 

Two equal weights are symmetrically placed on this system. By varying their positions
relative to the axis of rotation, the moment of inertia of the system can be changed.

The Maxwell’s needle with two solid cylinders can be used for this purpose. The two
weights are symmetrically placed in the tube on either side of the axis of rotation and their
positions are noted on the scale engraved by the side of the groove on the hollow X tube as
shown in figure 3.24. The time period of the torsional oscillations is now determined. Now the
positions of these cylinders are changed in regular steps which cause the variation in distribu-
tion of mass. By measuring the time periods in each case, the moment of inertia of the system
is studied by the variation in the distribution of mass. For the successful performance of the
experiment, the moment of inertia of the suspension system should be much smaller than the
moment of inertia of the added weights so that a large difference in the time period may be
obtained by varying the position of the added weights. For this purpose a light aluminium
channel of about 1.5 metre in length and 5 cm in breadth may be used as shown in Figure (2).

Procedure:
1. As shown in Fig. 3.24(a), put the two solid cylinders

symmetrically on either side in the hollow tube of
Maxwell’s needle and note the distance x of their cen-
tre of gravity from the axis of rotation or

As shown in Fig. 3.24(b), put the two equal weights
on the aluminium channel symmetrically on either
side of axis of rotation and note the distances x of their
centre of gravity from the axis of rotation.

2. Rotate the suspension system slightly in the horizon-
tal plane and then release it gently. The system ex-
ecutes torsional oscillations about the suspension wire. #�/
��
��

��� �	�

#�/
��
��
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3. Note the time taken by 25–30 oscillations with the help of a stop watch and then divide the
total time by the number of oscillations to calculate the time period T.

4. Now displace both the cylinders or added weights by a known distance say 5 cm away
from the axis of rotation and determine the time period as discussed above.

5. Take at least 5 or 6 such observations at various values of x by displacing the weights in
regular steps of 5 cm.

6. Now plot a graph between x2 on x-axis and corresponding values of T2 on y-axis. The
graph is shown in figure 3.23.

Observations: Table for time period T and the distance x of the weight:

������ �	���
���������%$�	
��� *	������	��

���������"�	���������)	� )+ *+

��������	�
�)������ ��+� ����������	����	�
� *	�����!�
 *	������	�� ���
��	�� ���


 ����� *�3���0
����� ���	���*8

���

�� )))))) ))))))

�) )� )�
� �� )))))) )))))) )))))) ))))))

�� )))))) ))))))

��

�) )� )�
� ��

��

��

�) )� )�
� ��

��

��

�) )� )�
� ��

��

Result: Since the graph between T2 and x2 comes out to be a straight line, it verifies that the
basic theorem I = Smx2 from which theorem of parallel axes follows, is valid.
Sources of error & precautions:

1. The suspension wire should be free from kinks.
2. The suspension system should always be horizontal.
3. The two solid cylinders or added weights should be identical.
4. Oscillations should be purely rotational.
5. The suspension wire should not be twisted beyond elastic limits.
6. Periodic time should be noted carefully.

�
�� ,�,3,���

Q. 1. What do you understand by elasticity?
Ans. The property of the body by virtue of which it regains its original size and shape,

when the external forces are removed, is known as elasticity.
Q. 2. What are elastic and plastic bodies?
Ans. Bodies which regain their shape or size or both completely as soon as deforming

forces are removed are called perfectly elastic while if completely retain their deformed
form is known as perfectly plastic.
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Q. 3. What is meant by limit of elasticity?
Ans. If the stress be gradually increased, the strain too increases with it in accordance with

Hooke’s law until a point is reached at which the linear relationship between the two
just ceases and beyond which the strain increases much more rapidly than it is
warranted by the law. This value of the stress for which Hooke’s law just ceases to be
obeyed is called the elastic limit of the material of the body.

Q. 4. What do you mean by stress?
Ans. When a force acts on a body, internal forces opposing the former are developed. This

internal force tends to restore the body back to its original form, the restoring or
recovering force measured per unit area is called stress. Thus, if F be the force applied
normally to an area of cross-section a then stress = F/a.

Q. 5. What do you understand by strain?
Ans. Relative change produced in size or shape or both of body which is subjected to stress

is called strain. It is of three types: (i) Linear strain, (ii) volume strain and (iii) Shape
strain or Shearing strain.

Q. 6. Explain the all three types of strain.
Ans. (i) When a wire is subjected to a tension or compression, the resulting deformation

is a change in length and the strain is called linear strain.
(ii) If the pressure increments is applied to a body in such a way that the resulting

deformation is in volume, without change in shape, the strain is called volume
strain.

(iii) When tangential stresses act on the faces of the body in such a way that the
shape is changed, of course volume remaining the same, the strain is called
shearing strain.

Q. 7. How do you differentiate between stress or pressure?
Ans. Though both of them are defined as force per unit area, they carry different meanings.

By pressure we mean an external force which necessarily acts normal to the surface,
while in stress we take the internal restoring force produced in a body due to the
elastic reaction, which do not always act normal to the surface.

Q. 8. What is Hooke’s law?
Ans. This law states that within elastic limit, the stress is proportional to strain i.e., stress/

strain = a constant, called modulus of elasticity.
Q. 9. How many types of moduli of elasticity do you know?
Ans. There are three types of moduli of elasticity: (i) Young’s modulus (ii) Bulk modulus

(iii) Modulus of rigidity,
Q. 10. What are the units and dimensions of modulus of elasticity?

Ans. The dimensional formula for modulus of elasticity is ML–1T–2 and its units in MKS
and CGS systems are newton/metre2 and dyne/cm2 respectively.

Q. 11. Define Young’s modulus?
Ans. It is defined as the ratio of longitudinal stress to the longitudinal strain within the

elastic limits.

Y =
longitudinal stress
longitudinal strain
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Q. 12. Define Bulk modulus?
Ans. The ratio of normal stress to volume strain within elastic limit is called as Bulk

modulus?

K = normal stress
volume strain

Q. 13. Define modulus of rigidity?
Ans. It is defined as the ratio of tangential stress to shearing strain within elastic limits and

is denoted by h.
Q. 14. What is compressibility?

Ans. The ratio of volume strain and normal stress is called compressibility

K =
normal stress
volume strain

;
L
NM

 K is also referred to as incompressibility of the material of the

body and 
1
K

 is called its compressibility O
QP .

Q. 15. What is the effect of temperature on elastic moduli?
Ans. In general value of elastic moduli decreases with rise in temperature.

Q. 16. Do you know any material whose elasticity increases with decrease of tempera-
ture?

Ans. Rubber is such a substance.
Q. 17. Do you know any material whose elasticity is little affected by temperature?

Ans. Some nickel steel alloys e.g. elinvar.
Q. 18. How does the elastic limit of a metal change by drawing, hammering and anneal-

ing it?
Ans. Drawing and hammering tend to diminish the elastic limit. Annealing tends to

increase the elastic limit.
Q. 19. What is the practical use of the knowledge of elastic moduli?

Ans. This enables to calculate the stress and strain that a body of given size can bear. This
helps in designing of the body.

Q. 20. How do you explain the meaning of the terms (i) limit of proportionality, (ii) elastic
limit, (iii) yield point, (iv) breaking stress and (v) tensile strength?

Ans. (i) Limit of proportionality. Limit upto which extension of wire is proportional to
the deforming force. Beyond it, Hooke’s law is not obeyed.

(ii) Elastic limit. The limit beyond which the body does not regain completely its
original form even after removal of deforming force. It is very close to limit of
proportionality.

(iii) Yield Point. It is the point beyond which increase in the length is very large even
for small increase in the load, and the wire appears to flow.

(iv) Breaking stress. The maximum stress developed in the wire just before it breaks.
(v) Tensile strength. Breaking stress for wire of unit cross-section.

Q. 21. What is elastic after effect?
Ans. Some bodies do not regain their original form instantly after the removal of the

deforming force, e.g., glass. The delay in recovering the original condition after the
deforming force has been withdrawn is known as ‘elastic after effect.’
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Q. 22. Which substances are exception to above behaviour and to what use are they put?
Ans. Quartz, phosphor-bronze and silver are a few materials which are exception to above

behaviour and are extensively used as suspension fibres in many instruments like
electrometers, galvanometers, etc.

Q. 23. What precaution is taken in experiments to guard against this error?
Ans. We wait for some time after removal of each load so that body recovers its original

conditions completely. For metals not much time is required for this recovery.
Q. 24. What do you understand by elastic fatigue?

Ans. When the wire is vibrating continuously for some days, the rate at which the vibra-
tions die away is much greater than when the wire was fresh. The wire is said to be
‘tired’ or fatigued’ and finds it difficult to vibrate. This is called elastic ‘fatigue.’

Q. 25. What is the effect of impurity on elasticity?
Ans. The addition of impurity may increase or decrease the elasticity of material. When a

little carbon is added to molten iron, steel is produced which is more elastic than pure
iron. While addition of 2% of potassium to gold increases its elasticity many times.

Q. 26. What is elastic hysteresis?
Ans. When a material specimen is subjected to rapid cyclic variations of mechanical strains,

the sample is not able to keep pace with the external force. The phenomenon is called
elastic hysteresis.

Q. 27. What is Poisson’s ratio? What are its units and dimensions?
Ans. Within the elastic limits, the ratio of the lateral strain to the logitudinal strain is called

Poisson’s ratio.

s = Lateral strain
Longitudinal strain

It has no unit.
Q. 28. Are there any limits to Poissons ratio value?

Ans. Yes, it lies between –1 and 
1
2

.

Q. 29. The value of s s s s s is 
1
2

 for a material? What inference can you draw about this

material?
Ans. It is incompressible.

Q. 30. What is the significance of negative value of Poisson’s ratio?
Ans. This means that when a stretching force is applied to a body of that material, it will

produce increase in length as well as increase in the perpendicular direction. No
known substance shows this behaviour.

Q. 31. Can the method used for determination of Poisson’s ratio for rubber be used for
glass also?

Ans. No, because in case of glass extension will be extremely small.
Q. 32. What do you mean by a beam?

Ans. A bar of uniform cross-section (circular or rectangular) whose length is much greater
as compared to thickness is called a beam.

Q. 33. What are longitudinal filament?
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Ans. A rectangular beam may be supposed as made up of a number of thin plane layers
parallel to each other. Further, each layer may be considered to be a collection of thin
fibres lying parallel to the length of beam. These fibres are called longitudinal filaments.

Q. 34. What is a neutral surface?
Ans. There is a plane in the beam in which the filaments remain unchanged in length when

equal and opposite couples are applied at the ends of the beam. The plane is called a
neutral plane or neutral surface.

Q. 35. In this experiment, the beam is simply bent, not extended. How is the bending of
the beam related, with Young’s modulus of the beam?

Ans. When the beam is depressed, it becomes curved. There is elongation of fibres of beam
on convex side and contraction on concave side. The longitudinal stress and strain
come in picture.

Q. 36. How will the value of Y change with a change in length, breadth or thickness of the
beam?

Ans. Y remains the same because it is constant for a material.
Q. 37. What do you understand by geometrical moment of inertia?

Ans. Geometrical moment of inertia = dA◊K2 where dA = area of cross section & K = radius
of gyration.

Q. 38. What is bending moment?
Ans. The moment of balancing couple (internal couple) formed by the forces of tension

and compression at a section of bent beam is called as bending moment. Bending

moment = 
YI

R
g . Here Y = Young’s modulus, Ig = geometrical moment of inertia and

R = radius of curvature of arc.
Q. 39. Do all the filaments other than those lying in the neutral surface suffer equal

change in length?
Ans. The extensions and compressions increase progressively as we proceed away from

the axis on either side, so that they are the maximum in the uppermost and the
lowermost layers of the beam respectively.

Q. 40. What do you mean by Flexural rigidity?
Ans. The quantity YI is called the ‘flexural rigidity’. It measures the resistance of the beam

to bending and is quantitatively defined as the external bending moment required to
produce unit radius of curvature of the arc into which the neutral axis is bent.

Q. 41. What is a cantilever.
Ans. If the beam be fixed only at one end and loaded at the other, it is called a cantilever.

Q. 42. How does the curvature change along its length?
Ans. Its upper surface becoming slightly convex and the lower one concave.

Q. 43. In the experiment with the beam supported at ends and loaded in the middle, how
is the principle of cantilever involved?

Ans. It behaves like a two cantilever.
Q. 44. Why do you measure the length between the two knife edges instead of its full

length?
Ans. Before and after the knife edges it is assumed that the portion is inside the clamp so

that we apply the principle of cantilever.
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Q. 45. Does the weight of the beam not contribute to the depression at the centre? If yes,
why have you not taken it into account?

Ans. Yes, it does. This is ignored because in the experiment we calculate the depression
due to different weights. Hence the depression due to the weight of the beam is
automatically cancelled.

Q. 46. What precaution do you take in placing the beam on knife edges?
Ans. It should be placed in such a way that the knife edges are perpendicular to its length.

The beam should rest symmetrically on the knife edges so that equal portions project
outside the knife edges. This ensures equal reaction at each knife edge as has been
assumed in the theory.

Q. 47. You have kept the beam on the knife edges. Can you keep it with its breadth
vertical.

Ans. In that case depression will be very small, because the breadth will now become the

thickness of the beam and the depression d µ 
1
3a

.

Q. 48. What is the practical use of this information?
Ans. It is utilized in the construction of girders and rails. Their depth is made much larger

as compared to their breadth. These can, therefore, bear much load without bending
too much.

Q. 49. Girders are usually of I shape. Why are they not of uniform cross-section?
Ans. In girders filament of upper half are compressed while those of lower half are ex-

tended. Since the compression and extension are maximum near the surface, the
stresses on the end filaments are also maximum. Hence the top and bottom are
thicker than the central portion. This saves a great deal of material without sacrificing
the strength of the girder.

Q. 50. Which of the quantities ‘b’ or ‘d’ should be measured more accurately and why?
Ans. The depth of the bar should be measured very carefully since its magnitude is small

and it occurs in the expression of ‘y’ in the power of three. An inaccuracy in the
measurement of the depth will produce the greatest proportional error in y.

Q. 51. What type of beam will you select for your experiment?
Ans. Moderately long and fairly thin.

Q. 52. Why do you select such a beam?
Ans. For two reasons: (i) the depression will be large which can be measured more accu-

rately and (ii) in bending of beam shearing stress is also produced in addition to the
longitudinal one and it produces its own depression. This depression will be negli-
gible only when the beam is long and thin.

Q. 53. How do you ensure that in your experiment the elastic limit is not exceeded?
Ans. The consistency in the readings of depressions both for increasing load and decreas-

ing load indicates that in the experiment the elastic limit is not exceeded.
Q. 54. Does the weight of the bar have any effect?

Ans. The weight of the beam leads to an ‘effective load’ different from m. However, since
the depression due to a load is calculated by subtracting the zero-load readings the
weight of the bar does not affect the result.
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Q. 55. How do you produce shearing in a rod or wire?
Ans. The upper end of the experimental rod is clamped while the lower end is subjected

to a couple. Now each cross-section of rod is twisted about the rod. The angle of twist
for any cross-section of the rod being proportional to its distance from fixed end.
Thus the material particles of the rod are relatively displaced with respect to the
particles in adjoining layer and the rod is sheared.

Q. 56. What is the angle of twist and how does this angle vary?
Ans. When one end of the rod is clamped and a couple is applied at other end, each circular

cross section is rotated about the axis of the rod through certain angle. This angle is
called the angle of shear.

Q. 57. What is the difference between the angle of twist and the angle of shear? How are
these angles related?

Ans. f = 
x
l
�

, where l is the length of the rod and x being the radius of co-axial cylinder

under consideration.
Q. 58. What are the values of twisting couple and restoring couple?

Ans. Twisting couple is equal to Mgd, where M = mass placed at each pan and ‘d’ being the
diameter of cylinder.

Restoring couple = 
� �r
l

4

2
.

Q. 59. What is the condition of equilibrium in ‘hhhhh’ experiment?

Ans. Mgd = 

� �r

l

4

2
Q. 60. What do you mean by torsional rigidity of a wire?

Ans. This is defined as restoring couple per unit radian twist i.e.,

C = 
�r
l

4

2
Q. 61. Do you prefer to use an apparatus provided with a cylinder of larger or smaller

radius?
Ans. We shall prefer to take a cylinder of larger radius because twisting couple will be

greater.
Q. 62. On what factors does the twist produced in the wire for a given twisting couple

depend?
Ans. It depends upon the torsional rigidity of the wire. Smaller the rigidity, greater is the

twist and vice-versa. Now c = 
�r
l

4

2
.  Hence twist will depend upon length, radius

and material of the wire.
Q. 63. Why it is called a statical method?

Ans. This is called a statical method because all observations are taken when all parts of
apparatus are stationary.

Q. 64. In vertical apparatus why are levelling screws provided at the base?
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Ans. These screws are used to adjust the apparatus such that the experimental wire passes
through the centres of the graduated scales to avoid the error due to eccentricity.

Q. 65. Why do you read both the ends of the pointer?
Ans. This eliminates the error due to any eccentricity left even after above adjustment.

Q. 66. Why is the value of h h h h h for a thinner wire slightly higher than that for a thicker wire
of the same material?

Ans. The wires are drawn by squeezing the molten metal through holes (dies), hence the
outer layers are necessarily tougher than the inner ones. Therefore the value of h for
a thinner wire is slightly higher than for a thicker wire of the same material.

Q. 67. Why do you measure the radius of wire so accurately?
Ans. Because it occur in fourth power in the formula.

Q. 68. Will the value of modulus of rigidity be the same for thin and thick wires of the
same material?

Ans. For a given material, the value should be the same. But we know that wires are made
by drawing the metal through a hole. The outer surfaces become harder than inner
core. Thus the rigidity of a fine wire will be greater than thick wire.

Q. 69. When the modulus of rigidity can be determined by statical method, what is the
necessity of dynamical method.

Ans. The statical method is suitable for thick rods while dynamical method is suitable for
thin wires.

Q. 70. What is a torsional pendulum?
Ans. A body suspended from a rigid support by means of a long and thin elastic wire is

called torsional pendulum.
Q. 71. Why it is called a torsional pendulum?

Ans. As it performs torsional oscillations, hence it is called a torsional pendulum.
Q. 72. What are various relationship between elastic constants?

Ans. Y = 2 1� �( )� , Y = 3k (1 – 2s)

s = 3 2
6 2

k
k
�
�

�
�

, Y = 9
3

�
�

k
k�

Q. 73. What is the unit of Poisson’s ratio?
Ans. It has no unit because it is a ratio.

Q. 74. When do you measure the diameter of the tube?
Ans. We measure the diameter of tube at no load position.

Q. 75. Can you not calculate the change in volume by knowing the longitudinal exten-
sion?

Ans. No, the contraction in diameter should also be known.
Q. 76. If a graph is plotted between change in volume and change in length, what kind

of curve will you get?
Ans. It gives a straight line.

Q. 77. Can you use this method for determining s s s s s for glass?
Ans. No, in case of glass the extension produced is so small that it can not be measured.

Q. 78. Which method do you suggest for glass?
Ans. Cornu’s method.
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Q. 79. What is a flywheel?
Ans. It is a large size heavy wheel mounted on a long axle supported on ball bearing.

Q. 80. Why the mass of a flywheel is concentrated at rim?
Ans. This increases the radius of gyration and hence the moment of inertia of the flywheel.

Q. 81. What is the practical utility of a flywheel?
Ans. It is used in stationary engines to ensure a uniform motion of the machine coupled to

the engine.
Q. 82. Is flywheel used in mobile engines also?

Ans. No, it is not needed in mobile engines, because the heavy body of vehicle itself serves
the purpose of flywheel.

Q. 83. How and why does the flywheel start rotating?
Ans. When a weight is hanged near the axle, it has certain amount of potential energy.

After realising it, its potential energy is converted into kinetic energy of its own
motion, into kinetic energy of rotating of flywheel and in overcoming the force of
friction between the axle and ball bearings.

\ mgh = 1
2

1
2

22 2
1mv I n F� �� 
 .

Q. 84. Why the flywheel continues its revolutions even after the cord has slipped off the
axle.

Ans. It continues its revolutions due to its large moment of inertia.
Q. 85. Then, why does it stop after a very short time?

Ans. The energy of the flywheel is dissipated in overcoming the friction at the ball bear-
ings.

Q. 86. What is the purpose of finding n2?
Ans. The friction offered by the ball bearings is very small but it is not negligible. To

account for the work done by weight against friction, the number of revolutions
made by flywheel after the weight is detached should be found.

Q. 87. Can you use a thin wire instead of a string?
Ans. No, we cannot use a wire because metals are pliable and so when the wire unwinds

itself, some amount of work will also be done in straightening the wire.
Q. 88. Why do you keep the loop slipped over the peg loose?

Ans. We keep the loop slipped over the peg loose so that it may get detached as soon as the
string unwinds itself and does not rewind in opposite direction.

Q. 89. What is the harm if the thread overlaps in winding round the axle.
Ans. In this case the couple acting on the wheel will not be uniform and hence the flywheel

will not rotate with uniform acceleration.
Q. 90. What is a spiral spring?

Ans. A long metallic wire in the form of a regular helix of given radius is called a spiral
spring.

Q. 91. What types of springs do you know?
Ans. There are two types of springs: (i) Flat and (ii) non-flat. When the plane of the wire is

perpendicular to the axis of the cylinder, it is flat and when the plane of wire makes
certain angle with the axis of cylinder, it is non flat.

Q. 92. What is the effective mass of a spring?
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Ans. In calculations total energy of the spring, we have a quantity M
m�F

HG
I
KJ3

 where M is the

mass suspended and m, the mass of the spring. The factor 
m
3

F
HG

I
KJ  is called the effective

mass of the spring.
Q. 93. What do you understand by restoring force per unit extension of a spiral spring?

Ans. This is defined as the elastic reaction produced in the spring per unit extension which
tends to restore it back to its initial conditions.

Q. 94. How does the restoring force change with length and radius of spiral spring?
Ans. This is inversely proportional to the total length of wire and inversely proportional to

the square of radius of coil.
Q. 95. How the knowledge of restoring force per unit extension is of practical value?

Ans. By the knowledge of restoring force per unit extension, we can calculate the correct
mass and size of the spring when it is subjected to a particular force.

Q. 96. How are Y and hhhhh involved in this method?
Ans. First of all the wire is placed horizontally between two bars. When the bars are

allowed to vibrate, the experimental wire bent into an arc. Thus the outer filaments,
are elongated while inner ones are contracted. In this way, Y comes into play. Sec-
ondly, when one bar oscillates like a torsional pendulum, the experimental wire is
twisted and h comes into play.

Q. 97. Is the nature of vibrations the same in the second part of the experiment as in the
first part?

Ans. No, in the second case, the vibrations are torsional vibrations.
Q. 98. Should the moment of inertia of the two bars be exactly equal?

Ans. Yes, if the two bars are of different moment of inertia, then their mean value should
be used.

Q. 99. Do you prefer to use heavier or lighter bars in this experiment?
Ans. We shall prefer heavier bars because they have large moment of inertia. This in-

creases the time period.
Q. 100. Can you not use thin wires in place of threads?

Ans. No, because during oscillations of two bars, the wires will also be twisted and their
torsional reaction will affect the result.

Q. 101. From which place to which place do you measure the length of wire and why?
Ans. We measure the length of the wire from centre of gravity of one bar to the centre of

gravity of the other because it is length of the wire which is bent or twisted.
Q. 102. Is there any restriction on the amplitude of vibration in both part of experiments?

Ans. When the two rods vibrate together, the amplitude of vibration should be small so
that the supporting threads remain vertical and there is no horizontal component of
tension in the threads. In case of torsional oscillations there is no restriction on the
amplitude of oscillations but the wires should not be twisted beyond elastic limits.

Q. 103. Why do the bars begin oscillating when the thread tied to them is burnt? Do they
perform S.H.M.?

Ans. When the wire is bent into circular arc and the thread is burnt, the wire tries to come
back to its original position due to elastic reaction. In doing so it acquires kinetic
energy. Due to this energy the wire overshoots the initial position and becomes
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curved in another direction. The process is repeated and the bar begins to oscillate.
Yes, the rod performs simple harmonic motion.

Q. 104. What do you mean by Poisson’s ratio?
Ans. Within the elastic limits, the ratio of the lateral strain to the longitudinal strain is

called Poisson’s ratio.

s =
�
��
�����
��

���$������
�����
��

Q. 105. What is the principle of Maxwell needle experiment?
Ans. When the Maxwell’s needle is given a small angular displacement and released, it

starts oscillating. The periodic time of the needle is related with the elasticity of the
wire.

Q. 106. On what factors does the periodic time depend?
Ans. It depends upon (i) moment of inertia of the needle about wire, and (ii) length, radius

and material of wire.
Q. 107. What would be the change in periodic time when (i) I is doubled, (ii) l is doubled

and (iii) r is doubled.

Ans. We know that T = 2p �

�
 where C = 

�

%
�

�

�


�
 hence

(i) T increases to ��

(ii) T increases to ��

(iii) T decreases to ��
�

Q. 108. Does the time period change, by changing the position of hollow and solid cylin-
ders? Why.

Ans. Yes, the distribution of mass is changed about the axis of rotation and hence the
moment of inertia of the needle is changed.

Q. 109. When you change neither the mass of the needle nor the axis of rotation, why does
the period change?

Ans. We known that time period depends upon the moment of inertia of oscillating body
while the moment of inertia depends upon the distribution of mass besides the total
mass and axis of rotation.

Q. 110. Will you prefer to use a long and thin wire or a short and thin wire?
Ans. We shall prefer to use a long and thin wire so that C will be small and periodic time

will be greater.
Q. 111. Will the value of modulus of rigidity be the same for thin and thick wires of the

same material?
Ans. For a given material, the value should be the same. But we know that wires are made

by drawing the metal through a hole. The outer surface becomes harder than inner
core. Thus the rigidity of a fine wire will be greater than thick wire.

Q. 112. When the modulus of rigidity can be determined by statical method, what is the
necessity of dynamical method?

Ans. The statical method is suitable for thick rods while dynamical method is suitable for
thin wires.
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Q. 113. How the moment of inertia of a system can be changed?
Ans. The moment of inertia of a system can be changed by varying the distribution of

mass.
Q. 114. Which apparatus you are using for this purpose?

Ans. We are using Maxwell’s needle for this purpose.
Q. 115. How do you vary the distribution of mass here?

Ans. By changing the positions of two weights symmetrically inside the tube.
Q. 116. What will be the effect on time period of the system by varying the distribution of

mass?
Ans. The time period T increases as x increases.

Q. 117. Can you verify the theorem of parallel axes with this experiment?
Ans. Yes, if a graph is plotted between T2 and x2, it comes out to be a straight line. This

verifies the theorem of parallel axes.
Q. 118. What type of motion is performed by the needle?

Ans. The needle performs the simple harmonic motion.
Q. 119. Should the amplitude of vibration be small here?

Ans. It is not necessary because the couple due to torsional reaction is proportional to the
angle of twist. Of course, the amplitude should not be so large that the elastic limit is
crossed as the wire is thin and long.

�.������

Q. 1. What do you mean by shearing of body?
Q. 2. How many types of stresses do you know? How will you produce these stresses?
Q. 3. How do you measure the depression at the middle point of the beam?
Q. 4. Why do you load and unload the beam in small steps and gently?
Q. 5. What is meant by modulus of rigidity?
Q. 6. What are shearing stress and strains and what are their units and dimensions?
Q. 7. What is the nature of stress in the case of ‘h’.
Q. 8. How and where do you apply tangential stress in this case?
Q. 9. What is the principal of the statical experiment?

Q. 10. What is the value of the restoring couple?
Q. 11. Why do you take readings with increasing and decreasing couples?
Q. 12. What is Poisson’s ratio?
Q. 13. What is the value of s for homogeneous and isotropic materials.
Q. 14. How can you find out the Poisson’s ratio for rubber.
Q. 15. Why should you wait for about 5 min, after each addition or removal of a load before

taking observation.
Q. 16. Is there any limit to the load placed on the hanger.
Q. 17. Why should there be no air bubble inside the tube?
Q. 18. Why should the spiral spring be suspended exactly vertically?
Q. 19. Why should the extension of the string be small.
Q. 20. Why should the amplitude of oscillation of the spring be small?
Q. 21. Do you get the same value of restoring force per unit extension of the spring from the

statical and dynamical experiments. If not, why?
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Q. 22. How can you determine the mass of the spring?
Q. 23. What is Maxwell’s needle?
Q. 24. How do you measure h with Maxwell’s needle?
Q. 25. Which is better: an ordinary pointer or a telescope and scale method of observing

oscillations?
Q. 26. Can you improve the pointer method to be nearly as good?
Q. 27. What is parallax and how can you best remove it?
Q. 28. Is it necessary that the oscillations should have small amplitude, if not, why?
Q. 29. Why do you measure the diameter so accurately?
Q. 30. Why should the needle be kept horizontal throughout the experiment?
Q. 31. Why does the needle oscillate when released after twisting the wire?
Q. 32. Which is better, statical or dynamical method?
Q. 33. Do you get the same value for h from the statical and dynamical methods? If not,

why?
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Earth attracts all bodies on or near its surface towards its centre due to its gravitational field.
On account of this force of attraction bodies falling freely experience a constant acceleration
towards earth’s centre. This acceleration does not depend upon the nature, shape, size and
mass of the body. It is called the acceleration due to gravity and is represented by ‘g’. It is also
defined as the force of attraction exerted by the earth on a body of unit mass. Its value changes
from place to place on the earth’s surface, being minimum at equator and maximum at poles.
As we go above or below the earth’s surface its value decreases. Its average value is taken as
9.81 m.s–2 at sea level and 45º latitude. In M.K.S. system its unit is ms–2 and its dimensions are
[LT–2].

���  �������!�����

A motion which repeats itself over and over again after regularly recurring intervals of time,
called its time-period, is referred to as a periodic motion.

If a particle, undergoing periodic motion, covers the same path back and forth about a
mean position, it is said to be executing on oscillatory (or vibratory) motion or an oscillation
(or a vibration). Such a motion is not only periodic but also bounded, i.e., the displacement of
the particle on either side of its mean position remains confined within a well-defined limit.

��" #�! ���$��!�����!�����

A particle may be said to execute a simple harmonic motion if its acceleration is proportional
to its displacement from its equilibrium position, or any other fixed point in its path, and is
always directed towards it.

Thus, if F be the force acting on the particle and x, its displacement from its mean or
equilibrium position, we have F = – cx where c is a positive constant, called the force constant.

Now, in accordance with Newton’s second law of motion, F = ma. So that, substituting –cx

for F and 
d x

dt

2

2  for acceleration a, we have

–cx = m
d x
dt

2

2   or  
d x
dt

c
m

x
2

2 0� �

This equation is called the differential equation of motion of a simple harmonic oscillator
or a simple harmonic motion, because by solving it we can find out how the displacement of
the particle depends upon time and thus know the correct nature of the motion of the particle.
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To solve the equation, we may put it in the form 
d x
dt

c
m

x
2

2 � � FHG
I
KJ ,  the negative sign, as we

know indicating that the acceleration is directed oppositely to displacement x.

Putting 
c
m
� �2 ,  where w is the angular velocity of the particle, the equation takes the form

d x

dt

2

2  = –w2x = –mx ...(1)

where m is a constant, equal to w2. Or, since 
d x
dt

2

2  = –m if x = 1, we may define m as the

acceleration per unit displacement of the particle.

Multiplying both sides of the equation by 2
dx
dt

, we have

2
2

2
dx
dt

d x
dt

 = –w2 ◊ 2x 
dx
dt

,

integrating which with respect to t, we have

dx
dt

F
HG

I
KJ

2

 = –w2x2 + A ...(2)

where A is a constant of integration.
Since at the maximum displacement (or amplitude) a of the oscillator (or the oscillation),

the velocity 
dx
dt

 = 0, we have

0 = –w2a2 + A, hence, A = w2a2

Substituting this value of A in relation (2), therefore, we have

dx
dt

F
HG

I
KJ

2

 = –w2x2 + w2a2 = w2 (a2 – x2),

Hence, the velocity of the particle at any instant t, is given by

dx
dt

 = � a x2 2� ...(3)

Putting equation (3) as 
dx

a x
dt

2 2�
� �  and integrating again with respect to t, we have

sin�1 x
a

 = wt + f

or x = a sin (wt + f) ...(4)

This gives the displacement of the particle at an instant t in terms of its amplitude ‘a’ and
its total phase (wt + f), made up of the phase angle wt f is called the initial phase, phase
constant or the epoch of the particle, usually denoted by the letter e. This initial phase or epoch
arises because of our starting to count time, not from the instant that the particle is in some
standard position, like its mean position or one of its extreme positions, but from the instant
when it is anywhere else in between.
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Thus, if we start counting time when the particle is in its mean position, i.e., when x = 0 at
t = 0, we have f = 0 and, therefore,

x = a sin wt
And, if we start counting time when the particle is in one of its extreme positions, i.e., when

x = a at t = 0, we have a = a sin(0 + f) = a sin f, i.e., sin f = 1 or f = 
�
2

. So that, x = a tsin � ��F
HG

I
KJ2

=

a cos wt. Thus, a simple harmonic motion may be expressed either in terms of a sine or a cosine
function. The time-period of the particle,

T = 2� displacement
acceleration

Since T is quite independent of both a and f, it is clear that the oscillations of the particle
are isochronous, i.e., take the same time irrespective of the values of a and f.

The number of oscillations (or vibrations) made by the particle per second is called its
frequency of oscillation or, simply, its frequency, usually denoted by the letter n. Thus, fre-
quency is the reciprocal of the time-period, i.e.,

n =
1

2
1

2T
c
m

� ��
� �

Since w is the angle described by the particle per second, it is also referred to as the angular
frequency of the particle.
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P.E. at displacement x is given by �  = 
1
2

1
2

1
2

2 2 2m x m
c
m

x cx� � F
HG

I
KJ �

The maximum value of the potential energy is thus at x = a is �  = 
1
2

2ca

K.E. of the particle at displacement x = 
1
2

1
2

2 2 2 2 2m a x c a x� ( ) ( )� � �

The maximum value of K.E. is at x = 0 and is also equal to = 
1
2

1
2

2 2 2m a ca� �

Total energy of the particle at displacement x i.e., E = K.E. + P.E.

=
1
2

1
2

1
2

1
2

2 2 2 2 2 2 2 2m a x m x m a ca� � �( )� � � �

Maximum value of K.E. = maximum value of P.E. = total energy E = 
1
2

1
2

2 2 2m a ca� � .

Average K.E. of the particle = 
m a

ca
�2 2

2

4
1
4

�

Average P.E. of the particle = 1
4

2 2m a�  = 
1
4

2ca  = half of the total energy.



Acceleration Due to Gravity 121

��& �$��#�! ��� �����!

The simple pendulum is a heavy point mass suspended by a weightless inextensible and
flexible string fixed to a rigid support. But these conditions defines merely an ideal simple
pendulum which is difficult to realize in practice. In laboratory
instead of a heavy point mass we use a heavy metallic spherical
bob tied to a fine thread. The bob is taken spherical in shape be-
cause the position of its centre of gravity can be precisely defined.
The length (l) of the pendulum being measured from the point of
suspension to the centre of mass of the bob. In Fig. 4.1, let S be the
point of suspension of the pendulum and O, the mean or equilib-
rium position of the bob. On taking the bob a little to one side and
then gently releasing it, the pendulum starts oscillating about its
mean position, as indicated by the dotted lines. At any given in-
stant, let the displacement of the pendulum from its mean position
SO into the position SA be q. Then, the weight mg of the bob, acting
vertically downwards, exerts a torque or a moment –mgl sin q
about the point of suspension, tending to bring it back to its mean
position, the negative sign of the torque indicating that it is oppositely directed to the displace-
ment (q).

If 
d
dt

2

2
�

 be the acceleration of the bob, towards O, and I, its M.I. about the point of suspen-

sion (S), the moment of the force or the torque acting on the bob is also equal to I
d
dt

2

2
�

. We,

therefore, have

I
d
dt

2

2
�  = – mgl sinq

Now, expanding sin q into a power series, in accordance with Maclaurin’s theorem, we

have sin q = � � �� �
3 5

3 5! !
.... if, therefore, q be small, i.e., if the amplitude of oscillation be small,

we may neglect all other terms except the first and take sin q = q, so that

I
d
dt

2

2
�  = – mglq

d
dt

2

2
�  = � mgl

I
�.

or, since M.I. of the bob (or the point mass) about the point of suspension (S) is ml2, we have

d
dt

2

2
�  =

� � � � ��mgl

ml

g
l2 � � –

where 
g
l
� �,  the acceleration per unit displacement.
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The acceleration of the bob is thus proportional to its angular displacement q and is
directed towards its mean position O. The pendulum thus executes a simple harmonic motion
and its time-period is, therefore, given by

T = 2
1

2
1

2� � �
�
� �

g
l

l
g

The displacement here being angular, instead of linear, it is obviously an example of an
angular simple harmonic motion. It is also evident from above expression that the graph

between l and T2 will be a straight line with a slope equal to 
4 2�

g
.
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Though simple pendulum method is the simplest and straightforward method for determina-
tion of ‘g’, it suffers from several defects:

(i) The conditions defining an ideal simple pendulum are never realizable in practice.
(ii) The oscillations in practice have a finite amplitude i.e., the angle of swing is not vanish-

ingly small.
(iii) The motion of the bob is not purely translational. It also possesses a rotatory motion

about the point of suspension.
(iv) The suspension thread has a finite mass and hence a definite moment of inertia about

point of suspension.
(v) The suspension thread is not inextensible and flexible. Hence it slackens when the limits

of swing are reached. Thus effective length of the pendulum does not remain constant
during the swing.

(vi) Finite size of the bob, yielding of the support and the damping due to air drag also need
proper corrections.

(vii) The bob also has a relative motion with respect to the string at the extremities of its
amplitude on either side.

Most of the defects are either absent or much smaller in the case of a rigid or compound
pendulum.

��, �$����! ���� �����!

Also called a physical pendulum or a rigid pendulum, a compound pendulum is just a rigid
body, of whatever shape, capable of oscillating about a horizontal axis passing through it.

The point in which the vertical plane passing through the c.g. of the pendulum meets the
axis of rotation is called its point or centre of suspension and the distance between the point of
suspension and the c.g. of the pendulum measures the length of the pendulum.

Thus figure shows a vertical section of a rigid body or a compound pendulum, free to
rotate about a horizontal axis passing through the point or centre of suspension S. In its normal
position of rest, its c.g., G, naturally lies vertically below S, the distance S and G giving the
length l of the pendulum.
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Let the pendulum be given a small angular displacement q into the
dotted position shown, so that its c.g. takes up the new position G¢ where
SG¢ = l. The weight of the pendulum, mg, acting vertically downwards at
G¢ and its reaction at the point of suspension S constitute a couple (or a
torque), tending to bring the pendulum back into its original position.

Moment of this restoring couple = – mgl sin q, the negative sign indi-
cating that the couple is oppositely directed to the displacement q. If I be
the moment of inertia of the pendulum about the axis of suspension

(through S) and 
d
dt

2

2
�

,  its angular acceleration, the couple is also equal to

I
d
dt

2

2
�

.  So that, we have

I
d
dt

2

2
�  = � mgl sin �

‘Again, sin q = � � �� �
3 5

3 5! !
....... ,  so that, if q be small, sin� ��  and, therefore,

I
d
dt

mgl
2

2
� �� � ,  d

dt

mgl
I

2

2
� �� � FHG

I
KJ  = – mq, where 

mgl
I

� �,  the acceleration per unit displace-

ment.
The pendulum thus executes a simple harmonic motion and its time-period is given by

T = 2
1

2
1

2� � �
�
� �( )mgl

I

I
mgl

Now, if I0 be the moment of inertia of the pendulum about an axis through its c.g., G,
parallel to the axis through S, we have, from the theorem of parallel axes, I = I0 + ml2. And if
k be the radius of gyration of the pendulum about this axis through G, we have I0 = mk2. So that,
I = mk2 + ml2 = m(k2 + l2).

\ T = 2 2 2
2 2 2 2

2

� � �m k l
mgl

k l
gl

k
l

l

g
( )� � � �

�

Thus, the time-period of the pendulum is the same as that of a simple pendulum of length

L = 
k
l

l
2

�
F
HG

I
KJ  or 

k l
l

2 2�
. This length L is, therefore, called the length of an equivalent simple

pendulum or the reduced length of the compound pendulum.
Since k2 is always greater than zero, the length of the equivalent simple pendulum (L) is

always greater than l, the length of the compound pendulum.

%	'�����
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A point O on the other side of the C.G. (G) of the pendulum in a line with

SG and at a distance 
k
l

2

 from G is called the centre of oscillation of the

pendulum and a horizontal axis passing through it, parallel to the axis of
suspension (through S) is called the axis of oscillation of the pendulum.

Now, GO = 
k
l

2
 and SG = l. So that, SO = SG + GO = l + k

l

2
 = L, the

length of the equivalent simple pendulum, i.e., the distance between the
centres of suspension and oscillation is equal to the length of the equiva-
lent simple pendulum or the reduced length (L) of the pendulum and we,
therefore, have

T = 2� L
g

��. ������$�����*�������%�������#��%�#�# ��#���

����#���������

If we put k
l

l
2
� 	 ,  we have L = l

k
l

l l� � � 	
2

 and, therefore,

T = 2�
l l

g

� 	b g

If how we invert the pendulum, so that it oscillates about the axis of oscillation through O,
its time period, T¢, say, is given by

T¢ = 2
2 2

� ( )k l
l g
� 	
	

Since 
k
l

l
2
� 	 , we have k2 = ll¢.

Substituting ll¢ for k2 in the expression for T¢, therefore, we have

T¢ = 2 2
2

� �( )
,

ll l
l g

l l
g

T
	 � 	
	

� � 	F
HG

I
KJ �

i.e. the same as the time-period about the axis of suspension.
Thus, the centres of suspension and oscillation are interchangeable or reciprocal to each

other, i.e., the time-period of the pendulum is the same about either.
There are two other points on either side of G, about which the time-period of the pendu-

lum is the same as about S and O. For, if with G as centre and radii equal to l and 
k
l

2

%	'����"
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respectively, we draw two circles so as to cut SG produced in S and O¢ above, and at O and S¢

below G, as shown in figure, we have SG = GS¢ = l and GO¢ = GO = k
l

2
 = l¢

\ O¢S¢ = GS¢ + GO = l + k
l

2
= l + l¢ = SO.

Thus, there are four points in all, viz. S, O, S¢ and O¢, collinear with the c.g. of the pendulum
(G) about which its time-period is the same.

���/ !�0�!�!����!���!�!���!�1 ������%��

��! ����  �����!

For the time-period of a compound pendulum, we have the relation

T = 2
2 2

� ( )k l
lg
�

squaring which, we have

T2 =
4 2 2 2� ( )k l

lg
�

 = 
4 42 2 2 2 2� �

g
k l

l g
k
l

l
�F

HG
I
KJ � �

F
HG

I
KJ

Differentiating with respect to l, we have

2T
dT
dl

 =
4

1
2 2

2
�
g

k
l

� �
F
HG

I
KJ

a relation showing the variation of T with length (l) of the pendulum.

Clearly, T will be a maximum or a minimum when 
dT
dl

i e� 0, . . ,  when l2 = k2 or l = ± k or

when l = k, because the negative value of k is simply meaningless.

Since 
d T
dl

2

2  comes out to be positive, it is clear that T is a minimum when l = k, i.e., the time-

period of a compound pendulum is the minimum when its length is equal to its radius of
gyration about the axis through its c.g., And the value of this minimum time-period will be

Tmin = 2
2 2

� ( )k k
kg
�

 = 2 2� k g

If l = 0 or •, T = • or a maximum. Ignoring l = • as absurd, we thus find that the time-
period of a compound pendulum is the maximum when length is zero, i.e., when the axis of
suspension passes through its c.g. or the c.g. itself is the point of suspension.
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(i) The errors due to finite weight of string and its extensibility are eliminated.
(ii) The uncertainty in the motion of the bob is absent.

(iii) Due to larger mass of the body, viscous forces due to air have negligible effect.
(iv) The errors due to finite amplitude of swing and yielding of the support can be deter-

mined and corrections applied for them.
(v) The equivalent length of the simple pendulum in this case can be determined more

accurately as the position of centre of suspension is known and that of the centre of
oscillation is determined graphically.

���� ����!���������%��$���������%��

From the interchangeability of the points of suspension and oscillation it would appear that
the easiest method of determining the value of ‘g’ at a place would be to locate two points on
either side of the C.G. of the pendulum about which the time-period of the pendulum is the
same. These points would then correspond to the centres of suspension and oscillation of the
pendulum and the distance between them would give L, the length of the equivalent simple
pendulum. So that, if T be the time-period of the pendulum about either of these, we shall have

T = 2� L
g

, and, therefore, g = 4 2

2
� L
T

.

���" �*2���

To determine the value of ‘g’, and the moment of inertia of a bar about C.G. by means of a bar
pendulum.

Apparatus: A bar pendulum, steel knife edge, support for the knife edge, a stop watch,
telescope and a meter scale.

Description of the apparatus: The bar pendulum consists of a uniform rectangular long metal
bar having several holes drilled along its length so that the line of holes passes through the
centre of gravity. Any desired hole may be slipped on to a fixed horizontal knife edge and the
bar can be made to oscillate about it in a vertical plane. The
knife edge is a piece of hard steel grounded to have a sharp
edge. The knife edge rests on two glass plates one on each side
placed on a rigid support. The knife edge is therefore horizon-
tal and the bar swings regularly without twisting.

Theory: In this experiment a bar is allowed to oscillate about
horizontal knife edge passing through successive holes from
one end to the other end. Time period is determined for each
case. A graph is then plotted with distance of knife edge from
one end of the bar on x-axis and the corresponding time pe-
riod on y-axis. A graph of the type shown in figure and con-
sisting of two symmetrical branches is obtained. %	'����&
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The time period is maximum at points A and B. The distance between these points is
double the radius of gyration k of the bar about a parallel axis through the C.G. of the bar.
These points are symmetrically situated on either side of centre of gravity of the bar. Their
middle point gives the position of C.G. of the bar. In this case the equivalent length of simple
pendulum is L = 2k and the time period is given by

Tmin = 2
2

2� �k
g

AB
g

�

Any line drawn parallel to distance axis cuts the graph at four points P, Q, R and S, about
which the time periods are equal. Pairs P, S and Q, R are symmetrically situated on either side
of the C.G. of the bar. If P(or S) is taken as point of suspension R (or Q) becomes the point of
oscillation. The equivalent length of simple pendulum L, then equals the distance PR or QS. If
PG = GS = l1 and QG = GR = l2, then time-period about these points is given by

T= 2 1 2� l l
g
�

Thus knowing l1 + l2 = PR = QS and T we can find the value of ‘g’.
It may be noted that l1 and l2 are related as

l2 =
k
l

2

1

Thus the radius of gyration of the bar about a
parallel axis through its centre of gravity is obtained

k = l l PG GR QG GS1 2
 � 
 � 

Now, instead of calculating the value of g as

above, a better method, suggested by Ferguson in
the year 1928, is to plot lT2 along the axis of x and l2

along the axis of y, which, from the relation l2 + k2 =

lT
g

2

24�
F
HG

I
KJ

 must give a straight line graph, as shown

in figure.

The slope of the curve is 
g

4 2�
, from where the value of g may be easily obtained. Further,

the intercept of the curve on the axis of y-gives –k2 and thus the values of both g and k can be
obtained at once.

Procedure
1. Ensure that the knife edge, if fixed, is horizontal otherwise the frame on which movable

knife edge is to be rested is horizontal.
2. Find the mass of the bar.
3. Suspend the bar about the knife edge from the hole nearest to one end. Displace the bar

slightly to one side in vertical plane and release to put it into oscillations. With the help of

%	'����(
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a stop watch find the time for 50 oscillations and hence determine the period of oscilla-
tions.

4. Repeat above procedure by suspending bar from successive holes. Beyond the C.G. the
bar will turn upside down. Continue till last hole at the other end is reached.

5. Measure the distance from one fixed end to those points in successive holes where the
knife edge supports the bar.

6. Plot a graph with distances of knife-edge from one end on x-axis and corresponding time
period on y-axis. A curve of the type shown in Fig. 4.5 is obtained.

7. Measure the value 2k = AB from the graph and Tmin and hence calculate the value of ‘g’.
Alternately choose certain value of T and find (l1 + l2) the corresponding mean equivalent
length of simple pendulum and hence calculate the value of g. This procedure may be
repeated to find mean value of ‘g’.

8. Plot the curve lT2 against l2 (Fig. 4.6). Calculate ‘g’ and ‘k’ and compare the results found
in above.

Observations: 1. Mass of the bar =
2. Measurement of periodic time and distance of point of support:

����� �����	�
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	���������� ����	 ���� ��������	 ����	�����

���	���

��

��

��

��

��

��	
�
����������������
����������������������
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3. Measurement of T, l1, l2 from the graph :

����� ����	��� l� l� l	�	l�	 	l� !�	�	l�l�
���	������ ���	������ ���	������

��

��

��

Calculation: (i) From graph AB = 2k = ........ cm
Minimum time period Tmin = ....... sec

Since Tmin = 2� AB
g

g = 4 2

2
�

T
AB

min


  = cm/sec2

(ii) From graph T = sec.

PS = ....... cm, \ l1 = 1
2

PS � .... cm
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QR = ..... cm, \ l2 = 1
2

QR � .... cm

Thus, mean L = l1 + l2 = ..... cm

Hence g =
4 2

2
�

T
L  = ..... cm/sec2

Repeat the calculation for two or three different values of T and calculate the mean value
of g.

(iii) From graph, for a chosen value of T,

PS = ...... cm \ l1 = 1
2

PS  = ...... cm

QR = ...... cm \ l2 = 
1
2

QR  = ..... cm

\ k = � � ������ ��� �� �
Repeat this calculation for 2 or 3 different values of T and calculate mean value of radius

of gyration.

Result: The value of ‘g’ at ..... is = ....... cm/sec2

Value of ‘g’ from graph =
Value of k from graph =
Moment of Inertia of the bar =

Standard result: The value of g at ....... = ........

Percentage error: ..........%

Sources of error and precautions
1. The knife edge is made horizontal.
2. If the knife edge is not perfectly horizontal the bar may be twisted while swinging.
3. The motion of bar should be strictly in a vertical plane.
4. Time period should be noted only after all types of irregular motions subside.
5. The amplitude of swing should be small (4º – 5º). So that the condition sin q = q assumed

in the derivation of formula remains valid.
6. The time period of oscillation should be determined by measuring time for a large num-

ber of oscillations with an accurate stop watch.
7. The graph should be drawn smoothly.
8. All distances should be measured and plotted from one end of the rod.

Theoretical error: g is given by the formula

g = 4 2

2
� L
T

Taking log and differentiating

�g
g

 =
� �L
L

T
T

� �2
.......

Maximum possible error = ........ %
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Correct way of plotting graph in period of oscillation T and hole distance: The centre of
gravity of the bar is to be at the centre of bar, it is necessary that distribution of mass in the bar
should be uniform all along its length. A small non-uniformity will, however, shift the position
of C.G. from centre of bar. It is, therefore, always preferred to measure the distance of holes
from one end of the bar instead of measuring from its centre and then plot a graph as shown
in figure.

%	'����,

At a particular time period T1, a horizontal line is drawn giving four points of intersection
with the curve about which time period is same.

From graph AC = BD = l
k
l

L� �
2

.

Centre of AD will point C.G. of bar

we can also find L = 
( )AC BD�

2
.

Drawback: A drawback of the method is that it being well high impossible to pin-point the
position of the c.g. of the bar or the pendulum (as, in fact, of any other body), the distances
measured from it are not vary accurate. Any error due to this is, however, eliminated automati-
cally as the graph is smoothed out into the form of a straight line.

Superiority of a compound pendulum over a simple pendulum: The main points of the
superiority of a compound pendulum over a simple pendulum are the following:

1. Unlike the ideal simple pendulum, a compound pendulum is easily realisable in actual
practice.

2. It oscillates as a whole and there is no lag like that between the bob and the string in the
case of a simple pendulum.

3. The length to be measured is clearly defined. In the case of a simple pendulum, the point
of suspension and the C.G. of the bob, the distance between which gives the length of the
pendulum, are both more or less indefinite points, so that the distance between them, i.e.,
l, cannot be measured accurately.

4. On account of its large mass, and hence a large moment of inertia, it continues to oscillate
for a longer time, thus enabling the time for a large number of oscillations to be noted and
its time-period calculated more accurately.
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A simple or a compound pendulum oscillating with large amplitude is a familiar example of
an anharmonic oscillator. The oscillations are simple harmonic only if the angular amplitude
q be infinitely small i.e., when in the expansion of sin q into a power series all other terms
except the first are negligibly small.

If q be appreciably large, so that the second term �3

3

F
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I
KJ

 in the power series can not be

neglected. Hence, time-period of the simple pendulum, i.e.,

T = 2 2
1

16
1
2�

�
� �� �
F
HG

I
KJgl

Putting 2� l
g

,  the time-period when the amplitude is small, equal to T0, we have

T = T0 1
16
1

2
�

F
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I
KJ

�

Similarly, for a compound pendulum, we shall obtain

T = 2 1
16

1
2

� �L
g

�
F
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I
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or T = 2 1
16

2

2
1
2
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k
l

l

g
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Since 2

2
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k
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 is the time-period T0 for oscillations of small amplitude, we have

T = T0
1

2
1

16
�

F
HG

I
KJ

�
,

indicating that the time-period increases with amplitude.
Since the amplitude of the pendulum in both cases does not remain constant but goes on

progressively decreasing from q1 in the beginning to, say, q2 at the end, we may take q1q2 in
place of q1

2. So that, in either case,

T = T0
1 21
16

�F
HG

I
KJ

� �
.

Now, what we actually observe is T. The correct value of the time period (i.e., if the
amplitude be small) is, therefore, given by

T0 =
T

T
1

16

1
161 2

1 2

�F
H
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K
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I
KJ� �
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To determine the value of acceleration due to gravity at a place, by means of Kater’s reversible
pendulum.

Apparatus used: A Kater’s pendulum, a stop watch, a telescope and Sharp knife edges.

Formula used: The value of ‘g’ can be calculated with the help of the following formula:

g =
�

� � � �
� � � �

� � � �

�

� � � �
� � � �

�
 �� ��� �� �� �

 = 
�

� �
� �

� �

�

� �
� �

�
 ��
� ��� �

neglecting 
� �

� �

� �

� �
� �

 ��
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where T1 = time period about one knife edge
T2 = time period about the other knife edge
l1 = distance of one knife edge from centre of

gravity of the pendulum
l2 = distance of the other knife edge from the

centre of gravity of the pendulum.
(l1 + l2) = distance between two knife edges.

Description of apparatus: A Kater’s pendulum is a com-
pound pendulum in the form of a long rod, having two
knife edges K1 and K2 fixed near the ends facing each other
but lying on opposite sides of the centre of gravity. The
position of the centre of gravity of the bar can be altered by
shifting the weights M and m upwards or downwards, which
can be slided and fixed at any point. The smaller weight m,
having a micrometer screw arrangement is used for the
finer adjustment of the final position of centre of gravity.
The centre of gravity lies un-symmetrically between K1 and
K2 due to the weight w, fixed at one end. Kater’s pendulum
is shown in Fig. 4.8.

Theory: Kater’s pendulm is a compound pendulum of spe-
cial design. For such a pendulum, if it is possible to get two
parallel axes of suspension on either side of the centre of
gravity (C.G.) about which the periods of oscillation of the
pendulum are the same, then the distance between those
axes will be the length L of the equivalent simple pendu-
lum. If T is the equal periodic time then

T =
�

�

�
� ��	
��

� �
�

� �

�� � ...(1)
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According to Bessel, an accurate determination of g does not require the tedious process of
making the two periods exactly the same. It is sufficient if the two periods are made nearly
equal.

If T1 and T2 represent two nearly equal periods about the axes of suspension, and l1 and l2
represent respectively the distances of the two axes of suspension from the C.G. of the pendu-
lum then

T1 =
� �
�

�

�
� �
� �
��  and T2 = 

� �
�

�

�
� �
� �
�� ...(2)

where k is the radius of gyration of the pendulum about an axis passing through its C.G.
From Eq. (2), we get

l1gT1
2 = � � �

�� � �� �� �  and l2gT2
2 = � � �

�� � �� �� �
On subtraction we obtain

g (l1T1
2 – l2T2

2) = � � �
� �� � �� �� �

or,
��
�
�

 =
� � � � � �

� � � � � � � �
� �

� � � �� �

�

�

� � � � � � � �
� � � �� �

 �� � �� �� �� �� � �
...(3)

Equation (3) is the working formula of the experiment and shows that by measuring l1 and
l2 and finding the periods T1 and T2, the acceleration due to gravity g can be determined.

If T1 and T2 are very nearly equal and there is a considerable difference between l1 and l2
i.e., the CG is not nearly midway between the knife edges, (which is an essential feature of the
Kater’s pendulum) the second term will be very small compared with the first. Hence an
approximate knowledge of (l1 – l2) will be sufficient and so it need not be measured very
accurately.

Procedure:
1. Place one of the knife edges of the pendulum on a rigid support so that the metallic

cylinder is in the downward direction. Draw a vertical sharp mark along the length of the
pendulum and focus the sharp mark through a low power telescope by keeping it at a
distance in front of the pendulum. Allow the pendulum to oscillate through a very small
amplitude and observe the oscillations through the telescope.

2. Measure the time taken for a small number of oscillations (say 20) by means of a precision
stop watch.
Now, place the pendulum on the second knife-edge, and after allowing it to oscillate
measure the time taken for the same number of oscillations. The times in the two cases
may be widely different.

3. Shift the position of the weight M in one direction and measure again the times for the
same number of oscillations as before when the pendulum oscillates first about the knife-
edge K1 and then about the knife-edge K2. If the shift of the weight M increases the
difference in the times of oscillations about the two knife-edges then shift the position of
the weight M in the opposite direction. Otherwise shift the weight M in the same direction
by a small amount and repeat operation (2).

4. The shifting of the weight M and the repetition of operation (2) are to be continued till the
two times are nearly equal.
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5. Repeat the process now with more number of oscillations (say, 10, 20, etc). Until the time
for 50 oscillations about the two knife-edges are very nearly equal. Note these two very
nearly equal times.
While observing times for more than 20 oscillations, the equality of the two times is to be
approached by finer adjustments attached with the weight m and shifting it precisely.

6. Measure the time for 50 oscillations about each knife-edge three times and then calculate
the mean time for 50 oscillations about each of the knife-edges. From these, determine the
time periods T1 and T2 about the knife-edges.

7. Now place the pendulum horizontally on a sharp wedge which is mounted on a horizon-
tal table to locate the C.G. of the pendulum. Mark the position of the C.G. and measure the
distances of the knife-edges, i.e., l1 and l2 from the C.G. by a metre scale.

8. Substituting the values of l1, l2, T1 and T2 in Eq. (3) calculate g.

Observations:
1. Preliminary record of times of oscillations during adjustment of positions of the weights.
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2. Determination of final time periods T1 and T2
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3. Determination of the distances l1 and l2:

���	�
	�"��#����� �������	�
	+� ,���	 l� �������	�
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4. Calculation of g:

��	���� ��	���� l�	���� l�	���� (	 ���0����


���	��"��	� 
���	��"��	� 
���	��"��	1 
���	��"��	1 
���	23�	�1�

Result: The value of acceleration due to gravity at ...... = ...... m/sec2.

Standard Result: The value of g at ...... = ...... m/sec2.

Percentage error: ......

Precautions and sources of error:
1. The amplitude of oscillation must be kept very small so that the motion is truly simple

harmonic.
2. The knife-edges must be horizontal and parallel to each other so that the oscillations are

confined in a vertical plane and the pendulum remains in a stable position.
3. To save time, preliminary observations of the times of oscillations should be made with a

smaller number of oscillations. As the difference between the periods decreases, the
number of oscillations observed should be increased.

4. Correction for the finite arc of swing of the pendulum may be included by measuring the
half angles of the swing in radians (a1, a2) at the start and at the end respectively, and

using the formula � �
 ��

��
� �

� �� �� �� �� �  where T0 is the correct period and T is the observed

period.
5. For greater accuracy, measure the time period by the methods of coincidence.
6. A very accurate stop-watch should be used for timing the oscillations and it must give

results correct to one-tenth of a second.
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Q. 1. What do you mean by gravity?
Ans. The property of the earth by virtue of which it attracts the bodies towards its centre, is

known as gravity.
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Q. 2. What is gravitation?
Ans. Every particle of the universe attracts another particle by a force which is directly

proportional to the product of the masses and inversely proportional to the square of
the distance between them.

F a m1m2; F a 
1
2r

\ F a 
m m

r
1 2

2

Q. 3. What is acceleration due to gravity? How is it defined?
Ans. Acceleration due to gravity is numerically equal to the force of attraction with which

a unit mass is attracted by the earth towards its centre.
Q. 4. What are the units and dimensions of ‘g’?
Ans. The units and dimensions of accelerations due to gravity are cm per sec2 and LT–2

respectively.
Q. 5. What is meant by G? How are G and g related?
Ans. G is Universal gravitational constant and is equal to the force of attraction between two

unit masses placed unit distance apart. g = G
M
R2

 where M is the mass of the earth and

R is its radius.
Q. 6. Why does the value of ‘g’ change at the surface of the earth?
Ans. This is for two reasons:

(i) the earth is not a perfect sphere its diameter at poles is about 21 km shorter than

that at the equator, which means R will change in the relation g = G
M
R2  and

(ii) earth is spinning about its own axis. Therefore bodies on its surface move on
circular path. A part of gravitational force is used up in providing necessary
centripetal force and hence effective force of gravity is decreased, decreasing the
value of ‘g’.

Q. 7. How does the value of g vary at different places and at different distances from the
surface of the earth.

Ans. (i) The value of g decreases with altitude.
(ii) The value of g decreases as we go below the surface of earth.

(iii) g is greatest at poles and least at equator.
Q. 8. What is the value of g at the earth’s centre?
Ans. The value of g at earth’s centre is zero.
Q. 9. What is the use of the knowledge of the value of ‘g’.
Ans. Its knowledge is quite important in geophysical prospecting of mineral deposits inside

the earth. It is also required in many theoretical calculations.
Q. 10. What is a simple pendulum?

Ans. A simple pendulum is just a heavy particle, suspended from one end of an inextensible,
weightless string whose other end is fixed to a rigid support.

Q. 11. What is a compound pendulum?
Ans. A compound pendulum is a rigid body, capable of oscillating freely about a horizontal

axis passing through it (not through its centre of gravity) in a vertical plane.
Q. 12. Suppose a clear hole is bored through the centre of the earth and a ball is dropped

in it, what will happen to the ball?
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Ans. The ball will execute simple harmonic motion about centre of the earth.
Q. 13. What are the centres of suspension and oscillation?

Ans. Centre of suspension. It is a point where the horizontal axes of rotation intersects the
vertical section of the pendulum taken through centre of gravity.
Centre of Oscillation. This is another point, on other side of centre of gravity at a

distance 
k
l

2

 from it and lying in the plane of oscillation. k being radius of gyration and

l, the distance of centre of suspension from centre of gravity.
Q. 14. For how many points in a compound pendulum the time period is the same?

Ans. The time period about centre of suspension and centre of oscillation is the same. By
reversing the pendulum, we have two more points (centre of suspension and oscilla-
tion) about which the time period is same. In this way, there are four points collinear
with C.G. about which time period is same. Two points lie on one side of C.G. and two
on another side of C.G.

Q. 15. How does the time period of oscillation of a compound pendulum depend upon the
distance of the centre of suspension from the centre of gravity?

Ans. The time period is infinite at centre of gravity. It decreases rapidly and becomes
minimum when the distance is equal to radius of gyration. At still greater distances the
period again increases.

Q. 16. What do you mean by an equivalent simple pendulum?
Ans. This is a simple pendulum of such a length that its periodic time is same as that of a

compound pendulum.
Q. 17. What is the length of equivalent simple pendulum?

Ans. We know that T = 2

2

� �
k
l

l

g
L
g

�
� �  where L = k

l
l

2

� , known as length of equiva-

lent simple pendulum.
Q. 18. What will be the period of oscillation of a compound pendulum if centre of suspen-

sion coincides with the centre of gravity?
Ans. No oscillations are possible. Time period may be taken as infinite in this case.

Q. 19. What will be the form of l2 vs T2l graph and why?

Ans. It will be a straight line, since T l
g

l
g

k2
2

2
2

24 4� �� �
 which is of the form y = mx + c.

Q. 20. How will you find the values of ‘g’ and k from the graph?

Ans. Slope of this graph will be tan q = 4 2�
g

from which ‘g’ can be calculated. The -ve

intercept on l2 -axis will give the value of k2, square root of which will be the value
of k.

Q. 21. Why are the knife edges kept horizontal?
Ans. So that bar may oscillate in a vertical plane and may not slip off.

Q. 22. How much should be the amplitude of vibration?
Ans. The amplitude of vibration should not be large because in the deduction of the theory

it has been assumed that sin q = q



138 Practical Physics

Q. 23. There is another method to determine g superior than compound pendulum?
Ans. Yes, Kater’s reversible pendulum.

Q. 24. When does the minimum period of a compound pendulum occur?
Ans. The time period of a compound pendulum becomes a minimum when the distance of

the centre of suspension from its C.G. equals the radius of gyration of the pendulum
about an axis passing through the C.G., the axis being parallel to the axis of rotation.

Q. 25. What is Kater’s reversible pendulum?
Ans. This is improved form of compound pendulum. It consists of a long rod having two

fixed knife edges, a heavy bob and two weights which can be moved and fixed at
desired places.

Q. 26. What is the principle involved in this method?
Ans. If the two points (points of suspension and oscillation) opposite to C.G. are found, then

the distance between them will be equal to the length of equivalent simple pendulum.
Now the value of g can easily be calculated by using the formula

T = �
�
�

�

Q. 27. Is it necessary to adjust the time periods about the two knife edges to exact equal?
Ans. No, it is a very tedious job. It is sufficient to make them nearly equal but the formula

should be modified accordingly.
Q. 28. Which formula will you use when two periods are nearly equal?

Ans. g =
�

� � � �
� � � �

� � � �

�

� � � �
� � � �

�
 �� ��� �� �� �

Q. 29. What are the functions of weights M and m?
Ans. The two weights are used to make the time periods equal about the two knife edges.

Q. 30. Why is one weight larger than the other?
Ans. The time period is roughly adjusted by larger weight and then for the finer adjustment

smaller weight is used.
Q. 31. Does this pendulum give more accurate value of g than bar pendulum?

Ans. Yes.
Q. 32. Is it necessary to determine the position of C.G.?

Ans. If time period about two points is same, then there is no necessity of determining the
position of C.G.

Q. 33. How does this experiment give accurate result?
Ans. The working formula of this experiment contains two terms: the denominator of the

first term (l1 + l2) is the distance between the two knife-edges, which can be measured
accurately. The denominator of the second term (l1 – l2) however requires that the
position of the C.G. be determined accurately which in practice involves certain inac-
curacy. But since the numerator of this term, i.e. T1

2 – T2
2, is very small the contribution

of error due to l1 – l2 is very small.
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Q. 1. What are the drawbacks of a simple pendulum which have been overcome in a com-
pound pendulum?

Q. 2. What is second’s pendulum?
Q. 3. Does the time period of a simple pendulum depend upon the size and material of the

bob and its temperature.
Q. 4. How are these points related?
Q. 5. When will it be maximum or minimum.
Q. 6. What do you mean by radius of gyration?
Q. 7. How will you determine the value of radius of gyration of the compound pendulum

and the portion of its centre of gravity by plotting a graph between T and l?
Q. 8. What will happen to the time period if a small weight is added to lower end of the bar?
Q. 9. Why is the amplitude of oscillations kept small?

Q. 10. Is it essential that (i) the bar be symmetrical (ii) uniform (iii) the holes be in a line (iv)
this line should pass through C.G.?
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When a small quantity of water is poured on a clean glass plate, it spreads in all directions in
the form of a thin film. But when a small quantity of mercury is poured on the glass plate, it
takes the form of a spherical drop. Similarly, if a small quantity of water is poured on a greasy
glass plate, it also takes the form of small globules like mercury. This shows that the behaviour
of liquids is controlled not only by gravitational force (weight) but some other force also acts
upon it which depends upon the nature of the surfaces in contact. If the weight of the liquid
is negligible then its shape is perfectly spherical. For example rain drops and soap bubbles are
perfectly spherical. We know that for a given volume, the surface area of a sphere is least.
Hence we may say that the free surface of a liquid has a tendency to contract to a minimum
possible area.

The free surface of a liquid behaves as if it is in a state of
tension and has a natural tendency to contract and occupy
minimum surface area. The behaviour is like that of a
stretched elastic or rubber membrane with an important
difference that whereas the tension in a membrane increases
with stretching the tension in a liquid surface is indepen-
dent of extension in the area. This property of the liquid is
known as surface tension. Various experiments suggest that
the surface film exerts a force perpendicular to any line
drawn on the surface tangential to it. The surface tension of
a liquid can be defined in the following way.

��� ������
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Let an imaginary line AB be drawn in any direction in a liquid surface. The surface on either
side of this line exerts a pulling force on the surface on the other side. This force lies in the plane
of the surface and is at right angles to the line AB. The magnitude of this force per unit length
of AB is taken as a measure of the surface tension of the liquid. Thus if F be the total force acting
on either side of the line AB of length l, than the surface tension is given by

T = F
l

.

���	���
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If l = 1 then T = F. Hence, the surface tension of a liquid is defined as the force per unit
length in the plane of the liquid surface, acting at right angles on either side of an imaginary
line drawn in that surface. Its unit is ‘newton/meter’ and the dimensions are MT–2.

The value of the surface tension of a liquid depends on the temperature of the liquid, as
well as on the medium on the other side of the surface. It decreases with rise in temperature
and becomes zero at the critical temperature. For small range of temperature the decrease in
surface tension of a liquid is almost linear with rise of temperature.

The value of surface tension for a given liquid also depends upon the medium on outer
side of the surface. If the medium is not stated, it is supposed to be air.

��� �������	 ������

Consider a soap film formed in a rectangular framework of wire PQRS with a horizontal
weightless wire AB free to move forward or backward. Due to surface tension the wire AB is
pulled towards the film. This force acts perpendicular to AB and tangential to the film. To keep
AB in equilibrium a force F has to be applied as shown in figure. If T is the surface tension of
the film, then according to definition.

���	���

(i) the film pulls the wire by a force 2l × T because the film has two surfaces and l is the
length of wire AB. Thus for equilibrium

2l × T = F

or T =
F
l2

if 2l = 1, T = F
Now suppose that keeping the temperature constant the wire AB is pulled slowly to A¢B¢

through a distance x. In this way the film is stretched by area DA = 2lx and work done in this
process is

\ W = Fx
Hence W = Fx = 2lxT = DA × T
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or T =
W

A�

if DA = 1, then T = W

The work done in stretching the surface is stored as the potential energy of the surface so
created. When the surface is stretched its temperature falls and it therefore, takes up heat from
surrounding to restore its original temperature. If H is the amount of heat energy absorbed per
unit area of the new surface, the total or intrinsic energy E per unit area of the surface is given
by

E = T + H
The mechanical part of energy which is numerically equal to surface tension T is also

called free surface energy. The surface tension of a liquid is also very sensitive to the presence
of even small quantities of impurities on the surface. The surface tension of pure liquid is
greater than that of solution but there is no simple law for its variation with concentration.
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Laplace explained the surface tension on the basis of molecular theory. The molecules do not
attract or repel each other when at large distances. But they attract when at short distances. The
force of attraction is said to be cohesive when it is effective between molecules of the same
type. But the force of attraction between molecules of different types is called adhesive force.
The greatest distance upto which molecules can attract each other is called the molecular range
or the range of molecular attraction. It is of the order of 10–7 cm. If we draw a sphere of radius
equal to molecular range with a molecule as centre, then this molecule attracts only all those
molecules which fall inside this sphere. This sphere is called the sphere of influence or the
sphere of molecular attraction.

When a molecule is well inside the liquid it is attracted in all directions with equal force
and resultant force, on it is zero and it behaves like a free molecule. If the molecule is very close
to the surface of liquid, its sphere of influence is partly inside the liquid and partly outside.
Therefore the number of liquid molecules pulling it below is greater than the number of those
in the vapour attracting it up. Such molecules ex-
perience a net force towards the interior of the
liquid and perpendicular to the surface. The mol-
ecules which are situated at the surface experience
a maximum downward force due to molecular
attraction. The liquid layer between two planes
FF¢ and SS¢ having thickness equal to molecular
range is called the surface film. When the surface
area of a liquid is increased, more molecules of the
liquid are to be brought to surface. While passing
through surface film each molecule experiences a net inward force due to cohesion. Mechani-
cal work has to be done to overcome this force. This work is stored in the surface molecules in
the form of potential energy. Thus potential energy of molecules in surface film is greater than
that in the interior of the liquid. It is a fundamental property of every mechanical system to
acquire a stable equilibrium in a state in which its potential energy is minimum. Therefore, to

���	���
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minimize their potential energy the molecules have a tendency to go into the interior of the
liquid as a result of which the surface has a tendency to contract and acquire a minimum area.
This tendency is exhibited as surface tension.

The potential energy of the molecules in the unit area of the surface film equals the surface
energy.
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When a liquid is brought in contact with a solid surface, the surface of the liquid becomes
curved near the place of contact. The nature of the curvature (concave or convex) depends
upon the relative magnitudes of the cohesive force between the liquid molecules and the
adhesive force between the molecules of the liquid and those of the solid.

In Fig. 5.4(a), water is shown to be in contact with the wall of a glass tube. Let us consider
a molecule A on the water surface near the glass. This molecule is acted upon by two forces of
attraction:

(i) The resultant adhesive force P, which acts on A due to the attraction of glass molecules
near A. Its direction is perpendicular to the surface of the glass.

(ii) The resultant cohesive force Q, which acts on A due to the attraction of neighbouring
water molecules. It acts towards the interior of water.

���	�� 

The adhesive force between water molecules and glass molecules is greater than the
cohesive force between the molecules of water. Hence, the force P is greater than the force Q.
Their resultant R will be directed outward from water. In Fig. 5.4(b), mercury is shown to be
in contact with the wall of a glass tube. The cohesive force between the molecules of mercury
is far greater than the adhesive force between the mercury molecules and the glass molecules.
Hence, in this case, the force Q will be much greater than the force P and their resultant will be
directed towards the interior of mercury.

��' ���"�	��	���
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When the free surface of a liquid comes in contact of a solid, it becomes curved near the place
of contact. The angle inside the liquid between the tangent to the solid surface and the tangent
to the liquid surface at the point of contact is called the angle of contact for that pair of solid
and liquid.
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The angle of contact for those liquids which wet the solid is acute. For ordinary water and
glass it is about 8º. The liquids which do not wet the solid have obtuse angle of contact. For
mercury and glass the angle of contact is 135º. In Fig. 5.5(a) and (b) are shown the angles of
contact q for water-glass and mercury-glass.

The angle of contact for water and silver is 90º. Hence in a silver vessel the surface of water
at the edges also remains horizontal.

��( �)����	��	$�������	��	���*��	�������	��	"�%���

The free surface of a liquid is always a horizontal plane. If we consider any molecule on such
a surface the resultant force due to surface tension is zero as in Fig. 5.6(a). On the other hand
if the surface tension acts normally to the surface towards the concave side. Thus for convex
meniscus the resultant is directed normally inwards towards the interior of the liquid while for
concave meniscus this resultant force is directed normally outwards. As a result of these forces
the curved surface has a tendency to contract and become plane. Consequently to maintain a
curved liquid surface in equilibrium, there must exist an excess of pressure on the concave side
compared to the convex side, which of itself would produce an expansion of the surface.

���	��'

Hence we conclude that there exists an excess of pressure on the concave side of the
surface. If the principal radii of curvature of the surface are R1 and R2 respectively the magni-
tude of this excess of pressure on concave side is given by

p = T
R R
1 1

1 2
�

F
HG

I
KJ

(i) Spherical surface: For spherical surfaces like a liquid drop or air bubble in a liquid there
is only one surface and the two principal radii of curvature are equal (R1 = R2 = R) and
we have,

���	���
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p = 2T
R

But in case of a soap bubble or other spherical films we have two surfaces hence

p = 4T
R

(ii) Cylindrical surface: In this case one principal radius of curvature is infinite. Therefore

p = T
R

For cylindrical film since there are two surfaces hence

p = 2T
R
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When a glass capillary tube open at both ends is dipped vertically in water, the water rises up
in the tube to a certain height above the water level outside the tube. The narrower the tube,
the higher is the rise of water Fig. 5.7(a). On the other hand, if the tube is dipped in mercury,
the mercury is depressed below the outside level Fig. 5.7(b). The phenomenon of rise or
depression of liquid in a capillary tube is called capillarity. The liquids which wet glass (for
which the angle of contact is acute) rise up in capillary tube, while those which do not wet glass
(for which the angle of contact is obtuse) are depressed down in the capillary.

���	��(

Explanation: The phenomenon of capillarity arises due to the surface tension of liquids. When
a capillary tube is dipped in water, the water meniscus inside the tube is concave. The pressure

just below the meniscus is less than the pressure just above it by 
2T
R

, where T is the surface

tension of water and R is the radius of curvature of the meniscus. The pressure on the surface
of water is atmospheric pressure P. The pressure just below the ‘plane’ surface of water outside

the tube is also P, but that just below the meniscus inside the tube is P
T
R

�
2  Fig. 5.8(a). We
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know that pressure at all points in the same level of water must be the same. Therefore, to

make up the deficiency of pressure, 
2T
R

, below the meniscus, water begins to flow from

outside into the tube. The rising of water in the capillary stops at a certain height ‘h’ Fig. 5.8(b).

In this position the pressure of the water-column of height ‘h’ becomes equal to 2T
R

, that is

hrg = 2T
R

 where r is the density of water and ‘g’ is the acceleration due to gravity. If r be the

radius of the capillary tube and q the angle of contact of water-glass, then the radius of

curvature R of the meniscus is given by R = 
r

cos �
 Fig. 5.8(c).
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\ hrg = 2T
r

cos�

h =
2T

r g
cos �
�

This shows that as r decreases, h increases, that is, narrower the tube, greater is the height
to which the liquid rises in the tube.
Rising of liquid in a capillary tube of insufficient length: Suppose a liquid of density r and
surface tension T rises in a capillary tube to a height ‘h’ then

hrg = 2T
R

Where R is the radius of curvature of the liquid meniscus in the tube. From this we may
write

hR = 2T
g�

 = constant (for a given liquid)
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When the length of the tube is greater than h, the liquid rises in the tube to a height so as
to satisfy the above equation. But if the length of the tube is less than h, then the liquid rises up
to the top of the tube and then spreads out until its radius of curvature R increases to R¢, such
that

h¢R¢ = hR
T

g
�

2 cos �
�

 = const.

It is clear that liquid cannot emerge in the form of a fountain form the upper end of a short
capillary tube.

On the other hand if the capillary is not vertical, the liquid rises in the tube to occupy
length l such that the vertical height h, of the liquid is still the same as demanded by the
formula.

If a tube of non-uniform bore or of any cross-section may be used the rise depends upon
the cross-section at the position of the meniscus. If the bore is not circular, the formula for

capillary rise is not as simple as Eq. h
T

r g
�

F
HG

I
KJ

2 cos �
�

.
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To find the SURFACE TENSION of a liquid (water) by the method of CAPILLARY RISE.

Apparatus used: A capillary tube, petridish with stand, a plane glass strip, a pin, a clamp
stand, traveling microscope, reading lens and some plasticine.

Formula used: The surface tension of a liquid is given by the formula.

T = r h
r

g�F
HG

I
KJ3

2�  Newton/meter

Where r = radius of the capillary tube at the liquid meniscus
h = height of the liquid in the capillary tube above the free surface of liquid in the

petridish
r = density of water (r = 1.00 × 103 Kg/m3 for water)

Theory: When glass is dipped into a liquid like water, it becomes wet. When a clean fine bore
glass capillary is dipped into such a liquid it is found to rise in it, until the top of the column
of water is at a vertical height ‘h’ above the free surface of the liquid outside the capillary. The
reason for this rise is the surface tension, which is due to the attractive forces between the
molecules of the liquid. Such forces called cohesive forces try to make the surface of the liquid
as small as possible. This is why a drop of liquid is of spherical shape.

Since the surface tension tries to reduce the surface of a liquid we can define it as follows.
If an imaginary line of unit length is drawn on the surface of a liquid, then the force on one side
of the line in a direction, which is perpendicular to the line and tangential to the surface, is
called SURFACE TENSION.

When the liquid is in contact with the glass then on the line of contact the cohesive forces
(or surface tension) try to pull the liquid molecules towards the liquid surface and the adhe-
sive forces i.e. the forces between the molecules of the glass and the liquid try to pull the liquid
molecules towards the glass surface. Equilibrium results when the two forces balance each
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other. Such equilibrium arises after the water has risen in the capillary to a height of ‘h’. This
column has weight equal to mg where m is the mass of the water in the column. This balances
the upward force due to the surface tension which can be calculated as follows:

The length of the line of contact in the capillary between the surface of the water and the
glass is 2pr where ‘r’ is the radius of the capillary. As seen from Fig. 5.9, the surface tension T
acts in the direction shown and q is called the angle of contact. The upward component of T is
given by T cos q and therefore, recalling that T is the force per unit length, we get the total
upward force equal to 2prTcosq. This must balance the weight mg and we have

mg = 2prT cos q
For water-glass contact, q = 0° and so cos q = 1
Therefore, mg = 2prT ...(1)
Now m = rV ...(2)
Where r is the density of the liquid and V is the Volume of the column of water
Since radius of the capillary is ‘r’

V = pr2h + volume in meniscus (See Fig. 5.9).
and the volume of liquid in the meniscus = volume of cylinder radius ‘r’ & height ‘r’ – volume
of hemisphere of radius ‘r’

i.e. volume in meniscus = � �r r3 32
3

� FHG
I
KJ

=
1
3

3F
HG

I
KJ �r

Therefore, V = � �r h r2 31
3

� FHG
I
KJ

= �r h
r2

3
�F

HG
I
KJ ...(3)

Substituting the value of V from Eq. (3) in Eq. (2) we obtain

m = ��r h
r2

3
�F

HG
I
KJ

and so, Eq. (1) becomes

2prT = ��r h
r

g2

3
�F

HG
I
KJ

or T = 1
2 3
�gr h

r
�F

HG
I
KJ

For water in C.G.S. units, r = 1 and we finally obtain the formula for a glass capillary
dipping in water to be

T = 1
2 3

gr h
r

�F
HG

I
KJ  in C.G.S. units, i.e. dynes/c.m. at......°c
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Where r = radius of the capillary tube at the liquid meniscus, h = height of the liquid in
the capillary tube above the free surface of liquid in the beaker.

Procedure:
1. Mount the capillary on the glass strip using the plasticine and clamp the glass strip so that

the capillary is vertical. Pass the pin through the hole in the clamp and secure it so that the
tip of the pin is close to the capillary and slightly above its lower end.

2. Fill the petridish with water and place it on the adustable stand just below the capillary
and the tip of the pin. Then raise the stand till the capillary dips into the water and the
surface of the water just touches the tip of the pin. Observing can ensure that the tip of the
pin and its image in the water surface just touch one
another. The apparatus will now be in the position
as shown in Fig. 5.10.

3. Level the base of the traveling microscope, so that
the upright is vertical. Find the least count of the
traveling microscope and the room temperature.

4. Place the microscope in a horizontal position so that
its objective is close to the capillary. Focus the
crosswire and then move the entire microscope until
the capillary is in focus. Now raise (or lower) the
microscope until the meniscus is seen. The inverted
image (with the curved position above) will be seen
in the microscope.

5. Move the microscope and ensure that both the me-
niscus and the tip of the pin can be seen within the
range of the vertical scale.

6. Place the horizontal crosswire so that it is tangential to the meniscus and take the reading
on the vertical scale. Repeat it four times.

7. Carefully lower and remove the petridish without disturbing the capillary or the pin.
Lower the microscope until it is in front of the tip of the pin. Refocus if necessary, Now
take five readings for the tip of the needle, which gives the position where the surface of
the water had been earlier. Thus the difference between the readings for the meniscus and
the tip of the needle gives the height of the column of water ‘h’.

8. The temperature of the liquid is measured and its density r at
this temperature is noted from the table of constants.

9. To find the radius of the capillary ‘r’ remove the capillary and
the glass strip from the clamp and cut at the point where the
meniscus. Place then horizontally so that the tip of the capil-
lary points into the objective of the microscope. Now find the
capillary internal diameter by placing the crosswire tangent
in turn to opposite sides of the capillary. The position is as
shown in Fig. 5.11. The horizontal and vertical diameters
must each be determined ten times. This reduces error due to
the small value of the diameter and the possibility of an elliptic cross section.

10. The experiment is repeated for different capillary tubes.
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Observations: Room temperature = _ _ _ _°C
1. Least count of the traveling microscope = =
2. Reading for the height of the column of water ‘h’
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Mean value of ‘h’ = c.m.
3. Reading for diameter of capillary
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Radius of the capillary ‘r’ = c.m.

Result:
Surface tension of water at temperature _ _ _ _ °C

= dynes/cm = × N/m

Precautions:
1. The water surface and the capillary must be clean since the surface tension is affected by

contamination.
2. Capillary tube must be vertical.
3. Capillary tube should be clean and dry.
4. Capillary tube should be of uniform bore.
5. Since the capillary may be conical in shape, so it would be better to break the capillary at

the site of the meniscus and find the diameter at that point. However, this is not permitted
in our laboratory.

6. The diameter of the tube must be measured very accurately in two perpendicular directions
at the point upto which liquid rises.
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Theoretical error:

T = r h
r g gD
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Where D is the diameter of capillary tube.
Taking log and differentiating,
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To determine the surface tension of a liquid (water) by Jaeger’s method.

Apparatus used: Jaeger’s apparatus, a glass tube of about 5 mm diameter, a microscope, a
scale, beaker, thermometer.

Formula used: The surface tension T of the liquid is given by the formula

T = �� ��
�

��
� �� � �  Newton/meter

where r = radius of the orifice of the capillary tube
g = acceleration due to gravity

H = maximum reading of the manometer just before the air bubble breaks away.
r1 = density of the liquid in the manometer
h = depth of the tip of the capillary tube below the surface of the experimental liquid.
r = density of the experimental liquid.

(For water r = 1.00 × 103 Kg/m3).

Description of apparatus: The apparatus consists of a Woulf’s bottle W fitted in one mouth
with a bottle B containing water through a stop-cock K. The other mouth is joined to a
manometer M and vertical tube BC as shown in Fig. 5.13. The end C of the tube is drawn into
a fine capillary with its cut smooth. For practical purpose, a separate tube C drawn out into a
fine jet is connected to the manometer by means of a short piece of Indian rubber J. The end C
is kept in the experimental liquid at a known depth of a few cms. The liquid contained in the
manometer is of low density in order to keep the difference in the level of liquid in the two
limbs of M quite large for a given pressure difference.

Theory: Let the capillary tube be dipped in the liquid, the latter will rise in it and the shape of
the meniscus will be approximately spherical. If air is forced into the glass tube by dropping
water from the funnel (or burette) into the Woulf’s bottle, the surface of the liquid in the
capillary tube is pressed downwards and as the pressure of air inside the tube increases the
liquid surface goes on sinking lower and lower until finally a hemispherical bubble of radius
r equal to that of the orifice of the capillary tube protrudes into the liquid below, the pressure
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inside the bubble being greater than that outside by

p =
��
�

...(1)

where T is the surface tension of the liquid.
Suppose that the bubble is formed at the end of a narrow tube of radius r at a depth h1 in

the liquid and that the bubble breaks away when its radius is equal to the radius of the tube.
The pressure outside the bubble is P + h1r1g, where P is the atmospheric pressure and g is the
acceleration due to gravity. If the pressure inside the bubble is measured by an open-tube
manometer containing a liquid of density r2 then the inside pressure is given by P + h2r2g,
where h2 represents the difference in heights of the liquid in the two arms of the manometer at
the moment the bubble breaks away. Therefore the excess pressure p inside the bubble is p =
(P + h2r2g) – (P + h1r1g) = g (h2r2 – h1r1).

Hence the surface tension T of the liquid is

T = � � � �� �
�

��
� �� � � ...(2)

In deriving the expression (2) we have assumed that the bubble breaks away when its
radius becomes equal to that of the tube. This assumption is not quite correct and so the above
expression for T is inaccurate. The correct expression for T is given by

T = � � � �
�

� � � �
�
� � � � �� � � ...(3)

where f (r) is an unknown quantity having the same dimension as r. This is Jaeger’s formula
and is also the working formula of the present experiment. Here f (r) is first obtained from the
given value of the surface tension of water at room temperature using Eq. (3). With this value
of f (r), the surface tension of water at other temperatures are determined.

If the quantities on the right-hand side of Eq. (3) are expressed in the CGS System of Units,
T is obtained in dyne/cm.

Procedure
1. Take a clean glass tube having one end into a fine jet. Hang this tube vertically inside the

experimental liquid (water) from the tube B with the help of Indian rubber joint J.
2. Before proceeding with experiment the apparatus is made air tight.
3. Now the liquid in the tube BC stands at a certain level higher than that in the outer vessel.

The stop cock K is opened slightly so that water slowly falls into the bottle W and forces
an equal volume of air into the tube BC. The liquid in the tube BC, therefore, slowly goes
down and forms a bubble at the end C. A difference of pressure between inside and
outside of apparatus is at once set up which is shown by the manometer.

4. The radius of bubble gradually decreases as the inside pressure increases till it reaches the
minimum value. At this stage the shape of the bubble is nearly that of a hemisphere of the
radius r equal to the radius of the opening at C.

5. The difference in the level of the liquid in the two limbs of the manometer is now
maximum, say, H and is noted. The bubble now becomes unstable since a small increase
in the radius decreases the internal pressure necessary to produce equilibrium. As the
external pressure is constant, there can be no more equilibrium state and hence the bubble
breaks away.
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6. With the help of scale, measure the depth of the orifice below the level of water.
7. Repeat the whole process, fixing the orifice C at different depths below the surface of

water in the beaker.
8. The radius of end C is found by a microscope.

Observations: (I) Table for the measurement of H and h
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(II) Temperature of water = ...... C°
(III) Table for the measurement of diameter of orifice.

Least count of the microscope = ���	
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Calculations: T  = � �
�

��
� �� r1 = r = 100 × 103 kg/m3, for water being in beaker

and manometer
= ...... Newton/meter

Result: The surface tension of water at ...... °C = ...... dyne/cm.
Standard value ...... °C = ......
Error = ......

Graphical method: Draw a graph as shown in Fig. 5.12.

The expression T = � �
�

��
� ��  can be put in the form H = h + 

��
��

 which represents a

straight line y = mx + C and hence on plotting H on y–axis and h on x-axis a straight line will



154 Practical Physics

be obtained, the intersection of

which with y-axis will be 
�

�
�
��

From graph 
��
��

 = OB

or T =
�

��
��	

= ...... Newton/meter

Sources of error and precautions
1. There should be no leakage in

the apparatus. It is distinctly
advantageous to have the ap-
paratus in one piece avoiding
the use of rubber joints.

2. The manometer should contain xylol so that the height H may be large, the density of
xylol is less than that of water.

3. To damp the oscillations of the liquid in the manometer, its open end may be drawn out
to a capillary tube.

4. Diameter of the capillary tube must be measured only at the orifice dipping in the liquid.
5. The orifice of the capillary tube should be circular and very small, about 0.3 mm in

diameter, so that the maximum pressure in a bubble may occur when it is hemispherical.
6. While measuring the diameter of the orifice of the capillary tube, several observations of

mutually perpendicular diameters should be taken. This reduces the error due to elliptic-
ity of the cross-section to minimum.

���	����

���	����
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7. In the case of a micrometer microscope error due to backlash should be avoided while
taking observations for diameter.

8. The capillary tube should be clean. All traces of grease must be carefully removed as they
are fatal to surface tension experiments.

9. As the surface tension of a liquid depends upon its temperature, the temperature of the
experimental liquid should be recorded.

10. The bubbles should be formed singly and slowly, say at the rate of one in about ten
seconds.

���� *�*�0*���

Q. 1. What do you understand by the phenomenon of surface tension?
Ans. The free surface of a liquid behaves as if it were in a state of tension having a natural

tendency to contract like a stretched rubber membrane. This tension or pull in the
surface of a liquid is called surface tension.

Q. 2. How do you define surface tension?
Ans. When a straight line of length unity is drawn on the liquid surface, the portions of the

surface on both sides of the line tend to draw away from each other with a force which
is perpendicular to the line and tangential to the liquid surface. This force is called
surface tension.

Q. 3. What are the units and dimensions of surface tension?
Ans. The C.G.S units of surface tension is dyne/cm and its S.I. unit is Newton/m.
Q. 4. What do you mean by ‘cohesive’ and ‘adhesive forces’?
Ans. The force of attraction between the molecules of the same substance is known as cohe-

sive force while the force of attraction between the molecules of different substances is
known as adhesive force.

Q. 5. What do you mean by surface energy of a liquid?
Ans. Whenever a liquid surface is enlarged isothermally, certain amount of work is done

which is stored in the form of potential energy of the surface molecule. The excess of
potential energy per unit area of the molecules in the surface is called surface energy.

Q. 6. What do you mean by angle of contact?
Ans. The angle between the tangent of the liquid surface at the point of contact and solid

surface inside the liquid is known as angle of contact between the solid and the liquid.
Q. 7. What is the value of angle of contact of (i) water and glass, and (ii) mercury and

glass?
Ans. (i) 8° and (ii) 135°
Q. 8. What is the effect of temperature on surface tension?
Ans. It decreases with rise in temperature and becomes zero at the boiling point of the

liquid.
Q. 9. What is the effect of impurities on surface tension?
Ans. The soluble impurities generally increases the surface tension of a liquid while con-

tamination of a liquid surface by impurities (dust, grease etc) decreases the surface
tension.

Q. 10. Do you think that surface tension depends only upon the nature of the liquid?
Ans. No, this also depends upon the nature of surrounding medium.
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Q. 11. Why does water rise in the capillary tube?
Ans. The vertical component of the surface tension acting all along the circle of contact with

the tube (2prTcos q) pulls the water up.
Q. 12. How far does the water rise?

Ans. The water in the capillary tube rise only upto a height till the vertical component of
surface tension is balanced by weight of water column in capillary.

Q. 13. On what factors the rise of water depend?
Ans. It depends upon: (i) surface tension of water (ii) Angle of contact and (iii) Radius of the

tube.
Q. 14. Is it that the liquid always rises in a capillary?

Ans. No, the level of mercury in a capillary tube will be depressed.
Q. 15. How will the rise be affected by (a) using capillary of non-uniform bore, (b) chang-

ing radius of the capillary (c) change in shape of the bore.
Ans. (a) No effect since the rise of liquid in the capillary depends upon the radius of the

tube at the position of the meniscus. Theoretically there is no difficulty if we use a
conical capillary.

(b) The capillary exent is inversely proportional to the radius, hence change in radius
will affect the height of liquid column.

(c) No effect.
Q. 16. In the experiment of capillary rise where do you measure the radius of the tube and

why?
Ans. The radius is measured at the position of the meniscus because the force of surface

tension balancing the water column corresponds to this radius. If the capillary is of
uniform bore, then r can be measured at the end.

Q. 17. Will water rise to the same height if we use capillaries of the same radius but of
different materials?

Ans. Since surface tension of a liquid depends upon the surface in contact, therefore, in
capillaries of different materials, the rise of water will be different.

Q. 18. In your formula for calculating the value of surface tension you have added 
r
3

 to
the observed height ‘h’. Why have you done so?

Ans. In the experiment ‘h’ is measured from free surface of water to the lowest point of the
meniscus. To take into account the weight of the liquid above this point. We add this

correcting factor 
r
3

.
Q. 19. What will be the effect of inclining the tube?

Ans. The vertical height of column will be the same. If l is the length of column. a the angle
that capillary makes with vertical and h the vertical height, l cos a = h.

Q. 20. What happens when a tube of insufficient height is dipped in a liquid? Does the
liquid over-flow, How is the equilibrium established in this case?

Ans. No, the liquid will not over-flow. The liquid rises to the top of the tube, slightly spreads
itself there and adjusts its radius of curvature to a new value R¢ such that R¢l = Rh
where l is the length of the tube of insufficient height, R its radius and h the height
of column as demanded by formula. In this case R¢ > R and meniscus becomes less
concave.

Q. 21. How will the rise of liquid in a capillary tube be affected if its diameter is halved?
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Ans. The height to which the liquid rises, will be doubled.
Q. 22. Why do you measure the diameter in two mutually perpendicular directions?

Ans. This minimises the error due to ellipticity of the bore of the capillary.
Q. 23. Why should the capillary be kept vertical while measuring capillary ascent?

Ans. If the tube is not kept vertical the meniscus will become elliptical and the present
formula will not hold.

Q. 24. Should the top of the capillary tube be open or closed?
Ans. It should be open.

Q. 25. Is there any harm if the top of the capillary is closed?
Ans. The rise of water will not be completed as the air above water presses it.

Q. 26. What may be the possible reason if quite low value of surface tension is obtained
by this method?

Ans. It may be due to contamination of the capillary with grease or oil.
Q. 27. How can you test that the tube and the water are not contaminated?

Ans. The lower end of the capillary is dipped to a sufficient depth inside water. The water
rises in the capillary. The capillary is then raised up. If water falls rapidly as the tube is
raised, this shows that water and capillary tube are not contaminated.

Q. 28. For what type of liquids is this method suitable?
Ans. Which wet the walls of the tube and for which the angle of contact is zero.

Q. 29. Can you study the variation of surface tension with temperature by this method?
Ans. No, as the temperature of liquid at the meniscus can not be determined with the re-

quired accuracy.
Q. 30. What type of capillary tube will you choose for this experiment?

Ans. A capillary of small circular bore should be chosen.
Q. 31. Water wets glass but mercury does not why?

Ans. The cohesive forces between the water molecules are less than the adhesive forces
between the molecules of water and the glass. On the other hand, the cohesive forces
between the mercury molecules are larger than the adhesive forces existing between
the molecules of the mercury and the glass. That is why water wets glass but mercury
does not.

Q. 32. What is the principle underlying Jaeger’s method?
Ans. This method is based on the fact that there is always an excess of pressure inside a

spherical air bubble formed in a liquid. The excess of pressure P = 
��
�

 where T is

surface tension of liquid and r is the radius of the bubble.
Q. 33. Does the excess of pressure depend upon the depth of the orifice, below the surface

of experimental liquid?
Ans. No, it depends upon the surface tension of the liquid and radius of bubble.

Q. 34. After breaking, does the size of the bubble remain same as it is near the surface of
the liquid.

Ans. No, the size goes on increasing because hydrostatic pressure goes on decreasing as
bubble comes near the surface.

Q. 35. Do you think that the radius of the bubble, as considered here, is always equal to
the radius of the orifice?

Ans. No, this is only true when the radius of the orifice of capillary tube is very small.
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Q. 36. What should be the rate of formation of bubbles?
Ans. The rate of formation of bubble should be very slow, i.e., one bubble per ten second.

Q. 37. What type of capillary will you choose for this experiment?
Ans. We should use a capillary of small circular bore.

Q. 38. What is the harm if the tube is of larger radius?
Ans. When the tube is of large radius the excess of pressure inside the bubble will be small

and cannot be measured with same degree of accuracy.
Q. 39. Will there be any change in the manometer reading if the depth of the capillary tube

below the surface of liquid is increased?
Ans. Yes, it will increase.

Q. 40. At what position of the levels should the reading be noted?
Ans. The reading should be taken when the manometer shows the greatest difference of

pressure because at this moment the bubble breaks.
Q. 41. Can you study the variation of surface tension with temperature with this appara-

tus?
Ans. Yes, the experimental liquid is first heated and filled in bottle. Now the manometer

readings are taken at different temperatures.
Q. 42. Mention some phenomena based on ‘surface tension’.

Ans. (i) Calming of waves of oil, (ii) floating of thin iron needle on water, (iii) gyration of
camphor on water, etc.

Q. 43. Why is Xylol used as a manometric liquid in preference to water?
Ans. The density of Xylol is lower than that of water. This gives a larger difference of levels

in the two limbs of the manometer tube.
Q. 44. Why is the open end of the manometer drawn out into a capillary?

Ans. To minimise the oscillations of the manometric liquid due to surface tension.
Q. 45. At what temperature surface tension is zero.

Ans. At critical temperature.

�)������

Q. 1. Why does liquid surface behave like a stretched rubber membrane?
Q. 2. Do you know any other form of the definition of surface tension?
Q. 3. How do you say that work is done in enlarging the surface area of a film?
Q. 4. Distinguish between surface tension and surface energy?
Q. 5. Mercury does not stick to the finger but water does, explain it?
Q. 6. What is the shape of a liquid surface when it is in contact with a solid?
Q. 7. When will the meniscus be convex or concave and why?
Q. 8. Is there any practical use of the property of surface tension?
Q. 9. Can’t you use a wider glass tube instead of a capillary tube? if not why?

Q. 10. How do you explain the shape of meniscus of a liquid in the capillary tube?
Q. 11. Why is it difficult to introduce mercury in a capillary tube?
Q. 12. How do you measure the radius at the meniscus?
Q. 13. How will you clean the capillary tube?
Q. 14. Why is the pressure inside an air-bubble greater than that outside it.
Q. 15. Why does the apparatus be in one piece.
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Q. 16. Why does the liquid in the manometer rise and fall during the formation and breaking
away of the bubble?

Q. 17. How can you damp the oscillations of liquid in the manometer?
Q. 18. How will you make sure that the bubbles are being formed at the same depth?
Q. 19. Why should the bubbles be formed singly and slowly? How will you accomplish this

adjustment?
Q. 20. In measuring the diameter of the tube, why do you take readings along two mutually

perpendicular diameters?
Q. 21. What are the advantages of this method?
Q. 22. How can variation of surface tension with temperature be studied with the help of this

apparatus?
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An ideal liquid is one which has the following two properties:

(i) Zero compressibility: An ideal liquid is incompressible, that is, on pressing the liquid
there is no change in its volume (or density). Most of the liquids may be considered
approximately incompressible, because on pressing them the change in their volume is
negligible. For example, on pressing water by one atmospheric pressure its volume
changes only by a fraction of 0.000048.

(ii) Zero viscosity: An ideal liquid is non-viscous, that is, when there is a relative motion
between different layers of the liquid then there is no tangential frictional-force in
between the layers. In actual practice, however, there is some viscosity in all liquids
(and gases). It is less in gases; but larger in liquids.

�	� ����������� ����

When a liquid flows such that each particle passing a certain point follows the same path as the
preceding particles which passed the same point, the flow is said to be ‘stream-lined’ and the
path is called a ‘stream-line’. The tangent drawn at any point on the stream-line gives the
direction of the velocity of the liquid at that point. Clearly, two stream-lines cannot intersect
each other, if they would do so then there will be two directions of the velocity of the liquid at
the point of intersection which is impossible.

The important property of a stream-line is that the velocity of the liquid can be different at
different points of the stream line, but at a particular point the velocity remains constant. In
Figure 6.1; A, B and C are three points on the same stream-line of a flowing liquid. All those
particles of the liquid which pass through A, also pass through B
and C. The velocities of the liquid at these points are v1, v2 and v3,
that is, different. But at one and the same point, such as A, the
velocity is always v1 whichever be the particle of the liquid at this
point. The same is true for B and C also.

�	� ��������������������� 

It states that, when an incompressible and non viscous liquid flows in stream-lined motion
through a tube of non-uniform cross-section, then the product of the area of cross-section and
the velocity of flow is same at every point in the tube.

��!	��	
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Let us consider a liquid flowing in stream-lined
motion through a non-uniform tube XY. Let A1 and
A2 be the cross-sectional areas of the tube and v1 and
v2 the velocities of flow at X and Y respectively. Let r
be the density of the liquid.

The liquid entering the tube at X-covers a distance
v1 in 1 second. Thus the volume of the liquid entering
at the end X in 1 second

= A1 × v1
\ mass of the liquid entering at the end X in 1

second = rA1v1
Similarly, mass of the liquid coming out from the end Y in 1 second = rA2v2
But the liquid which enters at one end must leave at the other. Hence both these masses are

equal, that is,
rA1v1 = rA2v2

A1v1 = A2v2

Av = constant

Thus, at every place in the tube the product of the
area of cross-section of the tube and the velocity of
flow of the liquid is a constant. Therefore, the veloc-
ity of the liquid is smaller in the wider parts of the
tube and larger in the narrower parts figure 6.3.

�	" ��# ������������#�������

There are following three types of energies in a flowing liquid.

(i) Pressure Energy. If P is the pressure on an area A of a liquid, and the liquid moves
through a distance l due to this pressure, then

pressure energy of liquid = work done = force × distance
= pressure × area × distance = P × A × l

The volume of the liquid is A × l (area × distance).

\ pressure energy per unit volume of the liquid = 
P A l

A l
P

� �

�
�

(ii) Kinetic Energy. If a liquid of mass m and volume V is flowing with velocity v, then its

kinetic energy is 
1
2

 mv2.

\ Kinetic energy per unit volume of the liquid = 
1
2

1
2

2 2m
V

v vF
HG

I
KJ � �

where r is the density of the liquid.
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(iii) Potential Energy. If a liquid of mass m is at a height h from the surface of the earth, then
its potential energy is mgh.

\ potential energy per unit volume of the liquid = 
m
V

gh ghF
HG

I
KJ � �
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When an incompressible and non-viscous liquid (or gas) flows in stream-lined motion from
one place to another, then at every point of its path the total energy per unit volume (pressure
energy + kinetic energy + potential energy) is constant. That is

P v gh� �
1
2

2� �  = constant

Thus, Bernoulli’s theorem is in one way the principle of conservation of energy for a flow-
ing liquid (or gas). In this equation the dimensions of each term are the same as of pressure.

P + rgh is called static pressure and 
1
2

2�v  is called ‘dynamic pressure’.

�	� ������ ��������(

Let a vessel be filled with a liquid upto a height H and let there be an orifice at a depth h below
the free surface of the liquid. The pressure at the free surface of the liquid and also at the orifice
is atmospheric, and so there will be no effect of atmospheric pressure on the flow of liquid from
the orifice. The liquid on the free surface has no kinetic energy, but only potential energy, while
the liquid coming out of the orifice has both the kinetic and
potential energies.

Let P be the atmospheric pressure, r the density of the liq-
uid and v the velocity of efflux of the liquid coming out from
the orifice. According to Bernoulli’s theorem, the sum of the
pressure and the total energy per unit volume of the liquid must
be the same at the surface of the liquid and at every point of the
orifice. Thus

P gH� �0 �  = P v g H h� � �
1
2

2� � ( )

1
2

2�v  = rgh

v = 2gh

This formula was first established in 1644 by Torricelli and is called ‘Torricelli’s theorem’.
If a body is dropped freely (u = 0) from a height h, then from the third equation of motion,

v2 = 2gh, we have
v = 2gh

Clearly, the velocity of the liquid falling from a height h is 2gh . Hence the velocity of
efflux of a liquid from an orifice is equal to that velocity which the liquid acquires in falling
freely from the free surface of the liquid upto the orifice.

��!	��	"
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After emerging from the orifice the liquid adopts parabolic path. If it takes t second in

falling through a vertical distance (H – h), then according to equation s = 
1
2

2at ,  we have

( )H h�  =
1
2

2gt

\ t = 2 ( )H h g�

Since there is no acceleration in the horizontal direction, the horizontal velocity remains
constant, the horizontal distance covered by the liquid is

x = horizontal velocity × time
= v × t

= 2
2

gh
H h

g
�

�( )

= 2 h H h( )�

This formula shows that whether the orifice in the vessel is at a depth ‘h’ or at a depth
(H – h) from the free surface of the liquid, the emerging liquid will fall at the same distance i.e.
the range x of the liquid will remain the same.

Now, h (H – h) will be maximum when h = H – h  i.e. h = 
H
2

Hence the maximum range of the liquid is given by

xmax = 2
2 2
H

H
H

HF
HG

I
KJ � �F

HG
I
KJ �

Therefore, when the orifice is exactly in the middle of the wall of the vessel, the stream of
the liquid will fall at a maximum distance (equal to the height of the liquid in the vessel).

�	) �������� 

When a solid body slides over another solid body, a frictional force begins to act between them.
The force opposes the relative motion of the bodies. Similarly, when a layer of a liquid slides
over another layer of the same liquid, a frictional-force acts between them which opposes the
relative motion between the layers. The force is called ‘internal frictional-force’.

Suppose a liquid is flowing in streamlined motion on a fixed horizontal surface AB. The
layer of the liquid which is in contact with the surface is at rest, while the velocity of other
layers increases with distance from the fixed surface. In the figure,
the lengths of the arrow represent the increasing velocity of the
layers. Thus there is a relative motion between adjacent layers of
the liquid. Let us consider three parallel layers a, b and c. Their
velocities are in the increasing order. The layer a tends to retard the
layer b, while b tends to retard c. Thus each layer tends to decrease
the velocity of the layer above it. Similarly , each layer tends to
increase the velocity of the layer below it. This means that in

��!	��	$
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between any two layers of the liquid, internal tangential forces act which try to destroy the
relative motion between the layers. These forces are called viscous forces. If the flow of the
liquid is to be maintained, an external force must be applied to overcome the dragging viscous
forces. In the absence of the external force, the viscous forces would soon bring the liquid to
rest. The property of the liquid by virtue of which it opposes the relative motion between its
adjacent layers is known as ‘viscosity’.

The property of viscosity is seen in the following examples.

(i) A stirred liquid, when left, comes to rest on account of viscosity. Thicker liquids like
honey, coaltar, glycerine, etc have a larger viscosity than thinner ones like water. If we
pour coaltar and water on to a table, the coaltar will stop soon while the water will flow
upto quite a larger distance.

(ii) If we pour water and honey in separate funnels, water comes out readily from the hole
in the funnel while honey takes enough time to do so. This is because honey is much
more viscous than water. As honey tends to flow down under gravity, the relative
motion between its layers is opposed strongly.

(iii) We can walk fast in air, but not in water.
(iv) The cloud particles fall down very slowly because of the viscosity of air and hence

appear floating in the sky. Viscosity comes into play only when there is a relative motion
between the layers of the same material. This is why it does not act in solids.

�	* ��������� ������ 

When a liquid flows in a tube, the viscous forces oppose the flow of the liquid. Hence a pres-
sure difference is applied between the ends of the tube which maintains the flow of the liquid.
If all particles of the liquid passing through a particular point in the tube move along the same
path, the flow of the liquid is called ‘stream-lined flow’. This occurs only when the velocity of
flow of the liquid is below a certain limiting value called ‘critical velocity’. When the velocity
of flow exceeds the critical velocity, the flow is no longer stream-lined but becomes turbulent.
In this type of flow, the motion of the liquid becomes zig-zag and eddy-currents are developed
in it.

Reynold proved that the critical velocity for a liquid flowing in a tube is vc = k
a
�

�
 where r

is density, h is viscosity of the liquid, a is radius of the tube and k is ‘Reynold’s number’
(whose value for a narrow tube and for water is about 1000). When the velocity of flow of the
liquid is less than the critical velocity, then the flow of the liq-
uid is controlled by the viscosity, the density having no effect
on it. But when the velocity of flow is larger than the critical
velocity, then the flow is mainly governed by the density, the
effect of viscosity becoming less important. It is because of this
reason that when a volcano erupts, then the lava coming out of it flows speedly inspite of
being very thick (of large viscosity).
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Suppose a liquid is flowing in stream-lined motion on a horizontal surface OX. The liquid
layer in contact with the surface is at rest while the velocity of other layers increases with
increasing distance from the surface OX. The highest layer flows with maximum velocity. Let
us consider two parallel layers  PQ and RS at distances z and z + dz from OX. Let vx and vx + dvx
be their velocities in the direction OX. Thus the change in velocity in a perpendicular distance
dz is dvx. That is, the rate of change of velocity with distance perpendicular to the direction of

flow is 
dv
dz

x . This is called ‘velocity gradient.’

Now let us consider a liquid layer of Area A at a height
z above OX. The layer of the liquid immediately above it
tends to accelerate it with a tangential viscous force F, while
the layer immediately below it tends to retard it backward
with the same tangential viscous force F. According to New-
ton, the viscous force F acting between two layers of a liq-
uid flowing in stream-lined motion depends upon two fac-
tors:

(i) It is directly proportional to the contact-area A of the layer (F a A).

(ii) It is directly proportional to the velocity-gradient 
dv
dz

x  between the layers F
dv
dz

� xF
HG

I
KJ .

Combining both these laws, we have,

F a A
dv
dz

x

F = ± �A
dv
dz

x

Where h is a constant called ‘coefficient of viscosity’ of the liquid. In this formula if A = 1

and dv
dz

x � 1,the h = ±F. Thus, the coefficient of viscosity of a liquid is defined as the viscous

force per unit area of contact between two layers having a unit velocity gradient between
them.

In the above formula, ± sign indicate that the force F between two layers is a mutual-
interaction force. On the layer A, the layer above it exerts a force in the forward direction while
the layer below it exerts an equal force in the backward direction.
Dimensions and unit of coefficient of viscosity: From the above formula, we have

h = F

A
dv
dz

xF
H

I
K

\ dimensions of h =
MLT

L
LT

L

MLT

L T
ML T

�

�

�

�
� �

L
NM

O
QP
� �

2

2
1

2

2 1
1 1

Its unit is kg/(meter-second)
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The viscosity of liquids decreases with rise in temperature. On the other hand, the viscosity of
gases increases with rise in temperature.

�	

 ��������&�� �������

Poiseuille obtained a formula for the rate of flow of a liquid through a narrow horizontal tube
of uniform cross-section under a constant pressure difference between the ends of the tube
under the following assumptions:

(i) The flow of liquid is stream-lined and the stream-lines are parallel to the axis of the tube.
(ii) There is no radial flow of the liquid i.e. the pressure over any cross-section of the tube

is constant.
(iii) The liquid in contact with the walls of the tube is at rest (no slip).

These conditions require that the pressure difference across the tube should be small and
the tube must be of narrow bore (so that vertical hydrostatic pressure may be neglected).
These assumptions also ensure that at the same distance from the axis the velocity of flow is
the same.

Let the length of the tube be L and the radius of bore be R. Now, consider a cylindrical
layer of liquid coaxial with the tube having internal and external radii r and r + dr respectively
(Fig. 6.7).

Let v be the velocity of flow at this layer and 
dv
dr

 the velocity gradient here. The area of this

layer is A = 2prL. Now the liquid inside this cylindrical layer is moving faster than the liquid
outside it, hence according to Newton’s law of viscous drag, the viscous drag on this layer of
liquid will be

F = � � �A
dv
dr

rL
dv
dr

� � 2

The viscous drag on a layer at distance r + dr from the axis will be

F
dF
dr

dr� 	

Therefore, if we consider the cylindrical layer of liquid between radii r and r + dr its inner
surface is pulled forward by a force F while the outer surface is dragged backward by a force

F
dF
dr

dr�  the resultant dragging force on this cylindrical shell is F
dF
dr

dr F�F
HG

I
KJ �  = dF

dr
dr	
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In steady flow the velocity of the shell is constant, this means that the viscous drag must
be balanced by the driving force due to pressure P across the ends of the tube. This driving
force on the shell will be

= Area of cross-section of shell × pressure
= 2pr dr P

Hence for steady flow 
dF
dr

dr	  = 2pr dr P

or
d
dr

r L
dv
dr

dr�FHG
I
KJ2� �  = 2pr dr P

Since pressure P is constant, independent of r, integrating above equation under the condi-

tion that at r = 0, 
dv
dr

� 0,  we get

2� �rL
dv
dr

= � �r P2

or dv = �
P
L

r dr
2 �

Integrating this equation we get

v = � �
P
L

r
c

2 2

2

�

Where c is constant of integration, the initial condition to determine it is that at r = R,
v = 0, so that

0 = � 	 �
P
L

R
c

2 2

2

�

or c =
P
L

R
4

2

�

Hence v =
P
L

R r
4

2 2

�
�e j

This gives the distribution of velocity of flow of liquid in steady state at any distance r
from the axis of the tube. The profile of velocity distribution is parabola Fig. 6.8 with vertex on
the axis of the tube, which advances onward.

The velocity of flow cannot be measured conveniently, hence we determine the rate of
flow of liquid through entire cross-section of the tube. The volume of liquid flowing per sec-
ond through the cylindrical shell of radii r and r + dr considered above is

dQ = 2pr dr v

= 2
4

2 2�
�

rdr
P
L

R r� �e j
The rate of flow of liquid through entire cross-section of the tube is obtained by integrat-

ing this expression between the limits r = 0 to r = R. Thus.
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Q = dQ
P

L
r R r dr

P
L

R r rR R

� � � �
L
NM

O
QPzz 2

4
2
4 2 4

2 2

0

2 2 4

0

�
�

�
�

( )

= 2
4 2 4 8

4 4 4�

�

�

�

P
L

R R PR
L

�
L
NM

O
QP
�

Thus knowing the rate of flow of liquid through the capillary tube under pressure P and
all the other quantities we can calculate the value of h, the coefficient of viscosity of the liquid.

The Poiseuille’s formula determined above has the following limitations:

(i) It is true for stream-line flows only. Therefore, the velocity of flow should be below the
critical velocity which is inversely proportional to the radius of the tube. Thus the
formula is valid only for capillary tubes and not for the tubes of wider bore.

(ii) The formula holds only for small pressure differences applied across the tube. In this
case the flow of liquid is slow and kinetic energy is small. Hence the force due to
pressure difference is almost completely used up in overcoming the viscous drag.

Usually a portion 
Q d

R

2

2 4�
,  where d is the density of liquid, is used up in providing kinetic

energy to the following liquid. Thus actual driving pressure is only P
Q d

R
~

2

2 2�
 and the

liquid emerges out at the outlet end with appreciable velocity and does not just trickle
out.

(iii) The flow is accelerated near the entrance and becomes steady only after a certain
distance from the inlet end. This error can be corrected by taking the length of tube as
(L + 1.64R) instead of L. Hence tubes of longer length will give better results.

(iv) The formula does not hold for gases.

�	
� ���-&���������������������#���������#�%����

When a small body is allowed to move through a viscous fluid, the layers of the fluid in contact
with the body move with the velocity of the moving body, while those at large distance from
it are at rest. Thus the motion of a body through the fluid creates relative motion between
different layers of the fluid near it. Viscous forces are developed which oppose the relative
motion between different layers of the fluid and hence the medium opposes the motion of the
body. This opposing force increases with the velocity of the body. Stoke has shown that for a
small sphere of radius r moving slowly with velocity v through a homogeneous fluid of
infinite extension, the viscous retarding force is given by

F = 6phrv
Where h is the coefficient of viscosity of the fluid.
It is to be noted that an equilibrium is established when this viscous drag on the body is

balanced by driving force. In that case net force on the body becomes zero and it starts moving
with constant velocity called its terminal velocity.

Calculation of terminal velocity: Let us consider a small ball, whose radius is r and density is
r, falling freely in a liquid (or gas), whose density is s and coefficient of viscosity h. When it
attains a terminal velocity v, it is subjected to two forces.
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(i) effective force acting downward = V (r – s) g = 4
3

3� � 
r g( )�

(ii) viscous force acting upward = 6ph rv

\ Since the ball is moving with a constant velocity v i.e., there is no
acceleration in it, the net force acting on it must be zero. That is

6ph rv =
4
3

3� � 
r g( )�

v = 2
9

2r
g

( )� 


�

�

Thus terminal velocity of the ball is directly proportional to the square of its radius.

�	
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(i) Temperature: The coefficient of viscosity of liquids decreases rapidly with rise in tem-
perature. The effect is so marked that it would be practically meaningless to state the
value of viscosity of a liquid without mentioning the temperature.

On the other hand, in case of gases, the viscosity increases with the rise in tempera-
ture. This can be explained on the basis of the kinetic theory of gases.

(ii) Pressure: The coefficient of viscosity of liquids, in general, increases with increase of
pressure. However, in case of water there is a decrease in viscosity for the first two
hundred atmospheric pressure. The increase of viscosity with pressure is much more in
case of very viscous liquids than in case of fairly mobile liquids. The coefficient of
viscosity of all gases increases with increase of pressure. At moderate pressures the
coefficient of viscosity is independent of pressure. At low pressure it is proportional to
pressure. At very high pressure, the coefficient of viscosity of gases increases with
increase with pressure.

(iii) Impurity: The viscosity of a liquid is also sensitive to impurities. For solutions in some
cases the coefficient of viscosity is less than that of the pure solvent while in other cases
it is greater. There is no set rule for this change. In case of mixtures the coefficient of
viscosity is generally less than the arithmetic mean of the coefficients of viscosity of the
components of the mixture.

�	
" �%.��

Determination of the viscosity of water by method of capillary flow. [Poiseuilles method]

Apparatus used: Capillary tube fitted on a board with a manometer and side tubes, constant
level reservoir, measuring cylinder, a stopwatch traveling microscope.

Formula used: The coefficient of viscosity h of a liquid is given by the formula.

h = �

�

PR4

8 �
= 
� �( )h g

Q
R

8
4 kg/(m - sec) or poise

Where R = radius of the capillary tube
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Q = volume of water collected per second
= length of the capillary tube

r = density of liquid (r = 1 × 103 kg / m3 for water)
 h = difference of levels in manometer

Description of the apparatus: The apparatus used
is shown in the Fig. 6.11. Water from the constant
level reservoir flows to the union X; thence through
a capillary tube of known length of a graduated jar.
From the unions X and Y two pieces of rubber tub-
ing make connections to the manometer. The dif-
ference of the levels E and F gives the value of the
pressure difference between the ends of the capil-
lary tube K.

Manipulations:
1. Arrange the flow of water in such a way that the emergent water is a slow trickle or a

succession of drops. This is done to ensure streamlined motion.

��!	��	
,
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2. When every thing is steady, collect water for two minutes in the graduated jar. Note the
quantity collected. From this find Q, the amount of water passing per second.

3. Find the difference in the level of the water in the manometer and from this calculate ‘P’.
4. Vary the flow of the water slightly by raising or lowering the reservoir and when every

thing is steady, repeat (2) and (3). Thus make 5 sets of Q and P. Take the mean of 
P
Q

.

5. Measure the length ‘l’ of the tube K and also internal diameter of the sample provided.

6. Draw a graph between h and Q and find the value of h
Q
F
HG

I
KJ  from the graph.
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Observation: Length of the tube =

��� ���� �	
����	������ � ���	����� �������� ���

�	� ��������� �	

������������� ��������� �������  ������� ����!"
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Mean of h
Q

 =

Diameter of capillary: Take mean of the ten different sets of readings (each set consists of
diameters perpendicular to each other).

��� �$	��%	���
� ������� �������
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Radius of capillary =

Result: The coefficient of viscosity of water at = °C =
Standard value h = poise
Percentage error = %

Precautions:
1. The tube should be placed horizontally to avoid the effect of gravity.
2. The diameter should be measure very accurately.
3. The difference of the pressure should be kept constant during the time of one set of the

observation.
4. The ratio of flow through the capillary should be very small.
5. There should be no air bubble in the apparatus.
6. The pressure difference should be kept small to obtain stream line motion.
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Theoretical error:

h = ��g
d

ht

Q8
2

4F
H

I
K �

�
Where Q¢ in the volume of water collected in t sec, and d is diameter of the capillary
Taking log and differentiating.

�

�
 = 4    d

d
h
h

t
t

l
l

Q
Q

� � � �
�

�

Maximum permissible error = %
From graph h =

�	
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The value of the coefficient of viscosity of liquids like glycerine, water and of air is conve-
niently determined by means of a rotating cylinder. The apparatus consists of two coaxial
metal cylinders. The outer cylinder is clamped on a turn-table which may be rotated with
constant angular velocity by means of an electric motor. The inner cylinder is suspended
coaxially with the outer cylinder by a phosphor-bronze suspension which carries a mirror to
measure the angle of rotation of the inner cylinder by means of telescope and scale arrange-
ment. The space between the inner and outer cylinders is filled with the experimental liquid.
When the outer cylinder is set into rotation with constant angular velocity, a couple G is
transmitted to the inner cylinder due to the intervening liquid. The couple rotates the inner
cylinder through such an angle that the torsional restoring couple just balances the turning
moment G due to the liquid.

Let R1 and R2 be the radii of the inner and the outer cylinder respectively and the inner
cylinder be submerged to a length l. If w0 be the angular velocity of the outer cylinder, then the
layer in contact with it moves with the same velocity whereas the layer in contact with the
inner cylinder is at rest. Thus a relative motion is created between the different layers of the
liquid and hence of forces of viscosity are called into play.

Consider a cylindrical layer at a distance r from the axis of rotation, moving with an
angular velocity w, then its linear velocity is

v = rw
Let the angular velocity of rotation increase by dw across the

cylindrical shell between radii r and r + dr as shown in the Fig.
6.12. Then across the cylindrical shell.

Velocity gradient = dv
dr

 = d
dr

r r
d
dr

� �
�a f � �

Since the first term w on the right-hand side of this equation
represents the angular velocity which the layer would have if
the fluid were rotating like a rigid body, it is evident that the
velocity gradient responsible for producing viscous drag on the

layer under reference is r
d
dr
�

. ��!	��	
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According to Newtons law the viscous forces acting tangentially at the surface of the
cylindrical shell of liquid is

F = –h2prl ◊ r ◊ d
dr
�  = – 2phl ◊ r2 ◊ d

dr
�

Taking the moment of this force about the central axis we get

G = F ◊ r = –2phl ◊ r2 ◊ d
dr
� ◊ r

= – 2phl ◊ r3 ◊ d
dr
�

When the steady state is reached this couple G is constant throughout the liquid and must
be equal in magnitude and opposite in sense to the steady external couple acting on the inner
cylinder due to twist in the suspension wire.

The above equation can be written as

G
dr
r3  = 2phldw

Integrating the above equation we have

Gz dr
r3  = 2phldw

or –
G
r

B
2 2 �  = 2phl.w

where B is a constant of integration. To evaluate B the condition of motion r = R1, w = 0 may be
applied. This gives

B =
G
R2 1

Whence

� �
G
r

G
R2 2 1

2
 = 2plh◊ w

We know also that r = R2 and w = w0, then

G
R

G
R2 21

2
2
2�  = 2phl · w0

\ G = 4phw0 · 
R R

R R
l1

2
2
2

2
2

1
2e j
	

The restoring couple offered by the suspension fibre = qC
where C is the couple per unit radian twist.

In the equilibrium position the two couples balance each other hence

G = C ◊ q
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or 4 0 1
2

2
2

2
2

1
2

�� �l R R

R R�e j
 = C ◊ q

In the above discussion we have not taken into account the torque on the base of the inner
cylinder. To correct for this couple, the cylinder is submerged in the liquid for two different
lengths. If f(b) be the unknown couple over the base of the inner cylinder, then

G =
4 0 1

2
2
2

2
2

1
2

�� �l R R

R R�e j
 + f(b)

Let l1 and l2 be the two lengths of the inner cylinder in the liquid and q1 and q2 the steady
deflections produced. Then

�
� � �

�

�

�

�

�

�

�

�� �� � �

� ��e j
 + f(b) = Cq1 ...(1)

and
�

� � �

�

�

�

�

�

�

�

�� �� � �

� ��e j
 + f(b) = Cq2 ...(2)

Subtracting (2) from (1) we have

�
� �

�

�

�

� �

�

�

�

�

��� � � � �

� �

�

�

b g
e j

 = C ◊ (q1 – q2)

whence h =
C R R

R R l l

2
2

1
2

1 2

0 1
2

2
2

1 24

� �

�

e jb g
b g
� �

��
...(3)

To determine C, the torque per unit radian twist due to torsional reaction in the suspension
wire, a hollow metal disc D is provided whose moment of inertia r1 about the axis of rotation
can be calculated from a knowledge of its mass and dimensions. This inner cylinder is allowed
to oscillate torsionally in air first alone and then with the disc placed centrally upon it. If T0 and
T1 be the periods of oscillation in the two cases respectively and I0 the moment of inertia of the
cylinder about the axis of rotation, we have

T0 = 2p 
I
C
0

and T1= 2p 
I I

C
0 1�

From the above two equations we get

C =
4 2

1

1
2

0
2

� I

T T�
...(4)

Substituting this value of C in equation (3) we have
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h =
4 2

1

1
2

0
2

� I

T T�
 ¥ 

� �

� � � �

�

�

�

�

� �

� �

�

�

�

� �
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� �

�

e j b g
b g
� �

��
...(5)

=
� � �

�

I

T T

R R

R R l l
1

1
2

0
2

2
2

1
2

1 2

0 1
2

2
2

1 2�
	

� �

�

( ) ( )

( )

If the mass of the disc placed over the cylinder be m and a and b its internal and external
radii,

I1 =
m a b( )2 2
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Substituting this value of I1 in above equation, we get
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Knowing all the factors on the right hand side of this equation, h can be calculated.
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To determine the coefficient of viscosity of water by rotating cylinder method.
Apparatus required: Rotating cylinder arrangement, stop watch, lamp and scale arrange-
ment, meter scale and water, vernier callipers.
Formula used: The coefficient of viscosity h is given by

h =
I b a

T T a b l l

2 1 2
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 Poise

where
I2 = moment of inertia of an annular metallic disc.
f1 = deflection produced due to a length l1 of water.
f2 = deflection produced due to a length l2 of water.
 a = radius of inner cylinder.
 b = radius of outer cylinder.

 T1 = time period of inner cylinder alone
 T2 = time period of inner cylinder with an annular disc placed on it.
 w0 = angular velocity of the cylinder.

Description of apparatus: The apparatus consists mainly of a revolving table T, upon which
is carried the outer cylinder B which can be easily clamped in a position coaxial with the
spindle. The spindle can be rotated from 20 to 60 r.p.m by a small motor. The inner cylinder A
is suspended in the fluid by means of a long and thin wire and carries a small plane mirror m.
The steady twist produced in the wire when the outer cylinder is rotated at a constant speed
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is read by means of a telescope and scale arrangement. A hollow metal disc D usually of the
same external diameter as that of the inner cylinder is also provided with the apparatus. An
additional inner cylinder of the same diameter but of a different length is also supplied with
the apparatus.

Theory: The viscosity is given by

h =
m a b
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Procedure:
1. Set up the lamp and scale arrangement and adjust the position of the spot on the zero of

the scale.
2. Fill up the space between the outer cylinder and inner cylinder with a length l1 of water

column with the help of a burette.
3. Take the initial reading of the counter. Start the electric motor and simultaneously a stop

watch. For a certain time, note down the total number of revolutions with the help of
counter and thus calculate the angular velocity. After some time when the spot becomes
stationary, note down its position on the scale.

4. Change the length of water say to a height l2 and repeat procedure (3). Note down the
deflected position of the spot in this case also.

5. Find out the time period of the suspended system alone as well as by putting a metal disc
of same radius on it.

6. Note down the distance of lamp and scale arrangement from the mirror m.
7. Find out the diameter of inner as well as outer cylinder.
8. Note down the mass and radius of metal disc.

Observation: Diameter of the inner cylinder = ..................... meter
\ radius of the inner cylinder a = ..................... meter
Diameter of the outer cylinder = ..................... meter
\ radius of the outer cylinder b = ..................... meter
Mass of the disc M = ..................... Kg
Radius of the disc R = ..................... meter
Distance of the scale from mirror = ..................... meter

Determination of time periods T1 and T2:
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Determination of angular velocity wwwww0:
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Table for fffff1 and fffff2:
 Distance of scale from mirror D = .................... meter
 water length l1 = .................... meter
 water length l2 = .................... meter
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Calculations:
 I2 = MR2 = -------kgxm2

h =
I b a

l l T T a b
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= ................ Poise

Result: The Coefficient of viscosity of water as determined by rotating cylinder apparatus at
............... ºC = ............... Poise

Standard value at ............... ºC = ............... Poise
Percentage error = ...............

Precautions and sources of error:
1. At one cross-section measure the diameter of the two cylinders along two perpendicular

directions. Repeat the measurement in the same cross-section and at different cross-
sections. Then find the mean value of R1 and R2. The inner and the outer diameters of the
annular ring should be similarly measured.

2. The axis of the outer cylinder should be made vertical with the help of the plumb line and
levelling screens.

3. If the axis of the outer cylinder does not coincide with the axis of the inner cylinder, the
distance between the two cylinders will not remain the same and as such as error is liable
to be introduced. Whether the two axes are coincident or not, can be tested in the following
manner. A thin rod smeared with powder is laid horizontally attached to the suspension
of the inner cylinder such that it protrudes beyond the rim of the outer cylinder and is in
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contact with the rim. The outer cylinder is then rotated by hand. If the thin rod is touched
by the outer cylinder only at one mark, the axes of the two cylinders are coincident. If the
thin rod is touched by the outer cylinder at a number of points as examined with the help
of marks made by it on the powdered thin rod, the axes of the two cylinders are not
coincident. For making the two axes coincident, move the whole arrangement which
carries the outer cylinder suitably and test again with the help of the thin rod.

4. The inner cylinder should be suspended by a long and thin wire so that the value of q is
appreciable.

5. It must be very carefully noted that when water is poured in between the two cylinders,
the inner cylinder does not float in it, if it does, it may be necessary to use a heavy annular
ring placed over the inner cylinder to submerge it into water. T0 should be determined
with this composite arrangement, of course with air between the cylinders. T1 is then
determined by placing another annular ring of know mass and dimensions.

6. T0 and T1 should be carefully determined by timing a large number of oscillations with a
stop watch reading upto 1/5th of a second .

7. The speed of rotation should be constant to obtain steady deflection of the inner cylinder
and should be such that the motion of the liquid (water) between the two cylinders is
stream-line.
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Q. 1. What do you mean by viscosity?
Ans. The property of a liquid by virtue of which it opposes the relative motion between its

different layers is known as viscosity.
Q. 2. Is there any effect of temperature on the coefficient of viscosity of liquids?
Ans. The coefficient of viscosity decreases with rise in temperature.
Q. 3. What is the effect of pressure on coefficient of viscosity?
Ans. The coefficient of viscosity increases with rise of pressure.
Q. 4. What is meant by coefficient of viscosity?
Ans. The coefficient of viscosity is defined as the viscous force acting per unit area between

two adjacent layers moving with unit velocity gradient.
Q. 5. What is stream line motion?
Ans. When a liquid flows through a tube in such a manner that each molecule of the fluid

travels regularly along the same path as its preceeding molecule, the motion is said to
be stream line.

Q. 6. What is turbulent flow?
Ans. Beyond critical velocity, the paths and velocities of the liquid change continuously

and haphazardly then the flow is called turbulent flow.
Q. 7. Does the flow of a liquid depend only on its viscosity?
Ans. For velocities well below the critical velocity, the rate of flow is governed by the vis-

cosity and is independent of density. For higher velocities, however, it depends to a far
greater extent on the density than on the viscosity.

Q. 8. On what factors does the rate of flow of a liquid through a capillary tube depend?
Ans. It depends upon (i) pressure difference p, (ii) radius of capillary tube ‘r’, (iii) length of

capillary tube ‘l’, and viscosity of the liquid.
Q. 9. In Poiseuille’s method what overcomes the viscous force?
Ans. The constant pressure difference at the two ends of the tube.

Q. 10. Why should the pressure difference across the tube be constant?
Ans. Otherwise rate of flow will change while taking observations.

Q. 11. Should the liquid leave the capillary in a trickle? If so, why?
Ans. Yes, in that case the velocity of flow will be small and the liquid will flow in stream-

line. For this pressure difference across the tube should be small.
Q. 12. Why do you not connect the capillary tube directly to the tap?

Ans. Because (i) the pressure difference will be large (ii) the pressure difference will not
remain constant and (iii) it will not be possible to change the pressure difference for
different sets of observation.

Q. 13. Why do you take a narrow and long capillary tube in the Poiseuille’s method?
Ans. Because, the critical velocity of liquid for stream-line flow is inversely proportional to

the radius of tube for a narrow tube the critical velocity will be large and hence the
flow can be kept stream-line even for larger pressure differences. Further, in Poiseuille’s

formula Q
l

�
1  i.e., for given pressure difference rate of flow is inversely proportional

to length of the tube. Hence for longer tubes rate of flow will be small and within
stream line limits.
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Q. 14. What is the harm if we take a short and wide tube and keep the rate of flow quite
small?

Ans. The rate of flow of water will be quite large even for a small pressure difference and
the motion will not be stream line.

Q. 15. Why do you keep the capillary tube horizontal?
Ans. So that the flow of water is not affected by gravity.

Q. 16. Why should the capillary tube be of uniform bore?
Ans. If it is not so the flow will not be stream line due to introduction of radial component

of velocity at change in cross-sectional area.
Q. 17. Does the flow of liquid depend only on its viscosity?

Ans. For velocities below critical velocity, the rate of flow is governed by viscosity and is
independent of density. However, for higher velocities, the rate of flow depend to a
greater extent on density rather than viscosity.

Q. 18. How can the uniformity of tube be tested?
Ans. By introducing a column of mercury in the tube and measuring the length which it

occupies in various parts of the tube. If the bore is uniform, the length of mercury
thread will be the same throughout.

Q. 19. Is the velocity of the liquids through the tube same everywhere?
Ans. No, it is maximum along axis and decreases towards the wall of the tube. The velocity

profile is parabolic.
Q. 20. Can you use this apparatus to determine the viscosity of a gas?

Ans. No.
Q. 21. Can Poiseuille’s method be used for determining the viscosity of glycerine?

Ans. No, glycerine is very viscous. This method is suitable only for mobile liquids.
Q. 22. What is Stoke’s law and what are its limitations?

Ans. According to Stoke’s law, for a body of radius a, moving through a fluid of
viscosity h with a velocity v, the viscous drag is given by

F = 6 phav
This law holds for an infinite extent of a viscous fluid. In general, in experiments this
condition is not satisfied due to finite dimensions of the container. In that case the
following two corrections are applied to the terminal velocity.

(i) Ladenburg correction: This is for wall-effect and the corrected terminal velocity
is given by

v• = V
a

R
1

2 4
�F

HG
I
KJ

.

Where R is the radius of the container and V the observed terminal velocity.
(ii) Correction for end-effect: Due to finite height of liquid column.

v• = V
a

h
1

1 33
�F

HG
I
KJ

.

Where h is the total height of the liquid column.
Q. 23. What is the value of coefficient of viscosity of air?

Ans. The value of coefficient of viscosity of air at 20°C is 18.1 × 105 poise.
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Q. 24. Why the tiny rain drops appear to us to be floating about as clouds?
Ans. The tiny drops of water have a radius as small as 0.001 cm and their terminal velocity,

as they fall through air (h = 0.00018) comes to about 1.2 cm/sec. Hence they appear to
us to be floating about as clouds.

Q. 25. For what substances rotating cylinder method can be used?
Ans. This method can be used for liquids and air.

Q. 26. What is the material of suspension wire?
Ans. The material of suspension wire is phosphor bronze. A fine brass or constantan wire

may also be used.
Q. 27. Why is the inner cylinder rotated when only the outer one is rotated by electric

motor?
Ans. The inner cylinder experiences a couple due to viscous drag of the substance filled

between them.
Q. 28. How the inner cylinder comes to rest?

Ans. When the couple due to viscous drag is equal to the torsional restoring couple pro-
duced in suspension wire, the inner cylinder comes to rest.

Q. 29. Is there any affect of couple on the base of inner cylinder?
Ans. The base of the inner cylinder is affected by the viscous couple but the affect is elimi-

nated by taking another set with different lengths.
Q. 30. How does the viscous drag come into play?

Ans. The layers of the fluid which are in contact with the outer cylinder move with greater
angular velocity than the layers towards the inner cylinder. So the viscous drag comes
into play.

Q. 31. How do you find the angular velocity of outer cylinder?

Ans. w = 
2�N

T
, where N = total number of revolutions made by outer cylinder in time T.

Q. 32. What is value of coefficient of viscosity of air?
Ans. The value of coefficient of viscosity of air at 20º C is 18.1 × 10 5� poise.

(����

Q. 1. What is this properly due to?
Q. 2. What are units and dimensions of coefficient of viscosity?
Q. 3. What is the distinction between viscosity and coefficient of viscosity?
Q. 4. What do you mean by ‘velocity gradient’? What are its units and dimensions?
Q. 5. What do you mean by critical velocity and on what factors does it depend?
Q. 6. What is constant level tank? Explain its working?
Q. 7. What are the conditions on which the validity of Poiseuille’s formula rests and how

can they be fulfilled in practice?
Q. 8. Which is the most important quantity to be measured in the experiment and why?
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A string means a wire or a fibre which has a uniform diameter and is perfectly flexible i.e.
which has no rigidity. In practice, a thin wire fulfills these requirements approximately.

The speed of transverse wave in a flexible stretched string  depends upon the tension in
the string and the mass per unit length of the string. Mathematically, the speed v is given by

v = T
m

Where T is the tension in the string and m is the mass per unit length of the string (not the
mass of the whole string).

If r be the radius of the string and d the density of the material of the string, then
m = volume per unit length × density = pr2 × 1 × d = pr2d

Then the speed of transverse wave is

v =
T
r d�

2
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When a wire clamped to rigid supports at its ends is plucked in the middle, transverse pro-
gressive waves travel towards each end of the wire. The speed of these waves is

v = T
m

...(i)

Where T is the tension in the wire and m is the mass per unit length of the wire. These
waves are reflected at the ends of the wire. By the superposition of the incident and the re-
flected waves, transverse stationary waves are set up in the wire. Since the ends of the wire are
clamped, there is a node N at each end and a antinode A in the middle (Fig. 7.1).

We know that the distance between two consecutive nodes

is 
�

2
,  where l is wavelength. Hence if l be the length of the wire

between the clamped ends, then

l =
�

2
��������
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or l = 2l

If n be the frequency of vibration of the wire, then n = v
�

 = v
l2

Substituting the value of v from Eq. (i) we have n = 
1
2l

T
m

F
HG

I
KJ ...(ii)

This is the frequency of the note emitted by the wire.
It is seen from Eq. (ii) that the frequency of the sound emitted from a stretched string can

be changed in two ways by changing the length of the string or by changing the tension in the
string. In sitar and violin the frequencies of the notes are adjusted by tightening or loosening
the pegs of the wires.
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When a stretched wire is plucked in the middle, the wire usually vibrates in a single segment
Fig. 7.2(a). At the ends of the wire are nodes (N) and is the middle an antinode (A). In this
condition, the node emitted from the wire is called the “fundamental tone”. If l be the length of
the wire, and l1 be the wavelength in this case, then

l =
�1

2
or l1 = 2l

If n1 be the frequency of vibration of the wire and v the speed of the wave in the wire, then

n1 =
v v

l l
T
m�1 2

1
2

� �

This is the fundamental frequency of the wire.
We can make the wire vibrate in more than one segment. If we touch the middle-point of

the wire by a feather, and pluck it at one-fourth of its length from an end, then the wire vi-
brates in two segments Fig. 7.2(b). In this case, in addition at the ends of the wire, there will be
a node (N) at the middle-point also, and in between these three nodes there will be two antin-
odes (A). Therefore, if l2 be the wavelength in this case, then

l = � � �2 2 2

2 2
2

2
� �

or l2 =
2
2
l

If the frequency of the wire be now n2, then

n2 =
v v

l l
T
m

n
�2

1
2
2

2
2

2� � �

that is, in this case the frequency of the tone emitted from wire is twice the frequency of the
fundamental tone. This tone is called the ‘first overtone’.

Similarly, if the wire vibrates in three segments Fig. 7.2(c) and the wavelength in this case
be l3, then
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l = � � � �3 3 3 3

2 2 2
3

2
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or l3 =
2
3
l

If the frequency of the wire be n3, then

n3 =
v v

l l
T
m

n
�3

1
3
2

3
2

3� � �

that is, in this case the frequency of the emitted tone is three times the frequency of the
fundamental tone. This tone is called ‘second overtone’.

Similarly, if the wire is made to vibrate in four, five .......... segments then still higher over-
tones can be produced. If the wire vibrates in p segments, then its frequency is given by

n = p
l

T
m2

Thus, the frequencies of the fundamental tone and the overtones of a stretched string have
the following relationship:

n1 : n2 : n3 : ...... = 1 : 2 : 3 : ......
These frequencies are in a harmonic series. Hence these tones are also called ‘harmonics’.

The fundamental tone (n1) is the first harmonic, the first overtone (n2) is the second harmonic,
the second overtone (n3) is the third harmonic etc. The tones of frequencies n1, n3, n5 ..... are the
odd harmonics and the tones of frequencies n2, n4, n6....... are the ‘even harmonics’. Clearly, a
stretched string gives both even and odd harmonics.

��������

��! ���
�
�

It is the simplest apparatus for demonstrating the vibrations of a stretched string. It consists of
a hollow wooden box about 1 meter long which is called the ‘sound board’. A thin wire is
stretched over the sound-board. One end of the wire is fastened to a
peg A at the edge of the sound-board and the other end passes over a
frictionless pulley P and carries a hanger upon which weights can be
placed. These weights produce tension in the wire and press it against
two bridges B1 and B2. One of these bridges is fixed and the other is
movable. The vibrating length of the wire can be changed by changing
the position of the movable bridges. The wall of the sound-board contains holes so that the air
inside the sound-board remains in contact with the air outside. When the wire vibrates, then
these vibrations reach (through the bridges) the upper surface of the sound-board and the air
inside it. Along with it, the air outside the sound-board also begins to vibrate and a loud
sound is heard.

��������
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When the sonometer wire is plucked at its middle-point, it vibrates in its fundamental

mode with a natural frequency ‘n’ is given by n = 1
2l

T
m

.

Here l is the length of the wire between the bridges, T is the tension in the wire and m is the
mass per unit length of the wire. If r be the radius of the wire, d the density of the material of
the wire and M the mass of the weights suspended from the wire, then

m = pr2 d and T= Mg

\ n = 1
2 2l

Mg

r d�
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To determine the frequency of A.C. mains by using a sonometer and a horse-shoe magnet.
Apparatus: A sonometer, a step-down transformer, a choke, weights, a meter scale and a scale
pan, a horse-shoe magnet, a wire of non-magnetic material (brass or copper wire), a physical
balance, a weight-box.
Formula used: The frequency of A.C. mains is given by the following formula.

n = 1
2l

T
m

Where l = length of the sonometer wire between the two bridges when it is thrown into
resonant vibrations.

T = tension applied to the wire.
m = mass per unit length of the wire.

Description of apparatus: A sonometer consists of a wooden box AB about 1 metre long. It
also carries a wire of uniform cross-section and made of non-magnetic material  usually brass.
One end of this wire is fixed to a peg at one end of the box. This wire after passing over a
pulley at the other end of the box carries a hanger at the other end. Tension is produced in the
wire by placing suitable load on this hanger. There are three knife-edge-bridges over the box.
Two of them are fixed near the ends of the box while the third one, can be slided along the
length of the wire supporting it (Some times only two knife-edge-bridges is provided in this
case, one is fixed and other is slide to get maximum vibration). Its position can be read on a
scale fitted along the length of the wire. The vibrations of the wire alone can not produce
audible sound. But the sound box helps in making this sound louder. When wire vibrates,
these vibrations are communicated to the box and the enclosed air in it. Since the box has a
large surface and volume it produces sufficient vibrations in air to make it audible.

A permanent horse-shoe magnet is mounted vertically in the middle of the wire with wire
passing between its poles. The magnet produces a magnetic field in the horizontal plane and
perpendicular to the length of the wire. When the alternating current from mains after being
stepped down to 6 or 9 volt is passed through the wire, it begins to vibrate in vertical plane. By
adjusting the position of the bridge resonance can be obtained.

Theory: When transverse waves are excited in a stretched wire the bridges act as rigid reflec-
tors of these waves. As a result of this the length of the wire between two bridges becomes a
bound medium with waves reflected at both ends. Thus stationary waves are formed with
bridges as nodes. Therefore in the fundamental mode, when wire vibrates in one loop, we have



186 Practical Physics

�

2
 = l

Where l is the distance between bridges and l is the wave-length of transverse waves
through the string. We know that if the, elastic forces are negligible compared to tension, the
velocity of transverse waves in the string is given by

v = T
m

where T is the tension and m is mass per unit length of the wire. Therefore, the natural fre-
quency (fundamental mode) of the wire is given by

n = v
l

T
m�

�
1
2

The frequency of the wire can be changed by varying tension T, or length l.
Now when the wire carrying current is placed in a magnetic field perpendicular to its

length, the wire experiences a magnetic force whose direction is perpendicular to both the
wire as well as the direction of the magnetic field. Thus due to orientations of field and wire,
the wire in this case experiences a force in the vertical direction with the sense given by Fleming’s
left hand rule. Since in the experiment alternating current is being passed through the wire, it
will experience an upward force in one half cycle and downward force in next half cycle. Thus
the wire gets impulses alternately in opposite directions at the frequency of the current, and
consequently it begins to execute forced transverse vibrations with the frequency f of the alter-
nating current. Now if the distance between bridges is so adjusted that the natural
frequency of vibrations ‘n’ of the wire becomes equal to that of the alternating current,
resonance will take place, and the wire will begin to vibrate with large amplitude. In this case
f = n. Hence

f = n = 1
2l

T
m

From this the frequency of A.C. mains can be calculated.

Procedure:
1. Arrange the apparatus as shown in Fig. 7.3.
2. Put some weights on the pan and the magnet on the board between the bridges in such a

position as to produce magnetic field at right angles to the wire.
3. Connect the primary of the step-down transformer to A.C. mains.
4. Now vary the position of the bridges slowly and symmetrically with respect to the

magnet till a stage is reached when the wire vibrates with maximum amplitude. This is
the position of resonance. Measure the distance between bridges. Repeat this step 3 or 4
times to find mean value of l.

5. Repeat above steps with load on the hanger increasing in steps of 100 gm till maximum
allowable limit is reached. Corresponding to each load find mean l.

6. Repeat the experiment with load decreased in the same steps in which it was increased.
7. From readings with increasing and decreasing load find mean value of l corresponding to

each load.
8. Weigh the specimen wire, measure its length and hence calculate its linear density.
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Observations:
1. Measurement of ‘T’ and ‘l‘

Mass of the pan =
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2. Measurement of ‘m’—
(i) Mass of the specimen wire =          gm

(ii) Length of the specimen wire =           cm

Calculations: Linear density of the wire m =          gm/cm

f = 1
2l

T
m

Results: Frequency of the AC mains is found to be =          cycles/sec or Hertz.
Standard value = 50 Hz
Percentage error = ...... %

Precautions and sources of error:
1. The wire from which the pan is suspended should not be in contact with any surface.
2. Use choke to limit the current or wire may burn out.
3. The wire may be uniform and free from kinks and joints.

�������!
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4. The magnetic field should be at center of vibrating loop and must be perpendicular to the
length of the wire.

5. The material of the sonometer wire should be non magnetic.
6. The bridges used should give sharp edges to get the well defined nodes.
7. The weights should be removed from the wire otherwise the wire may develop elastic

fatigue.
8. In order that the tension in the cord may be exactly equal to the weight suspended, there

should be no friction at the pulley.
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To determine the frequency of A.C. mains or of an electric vibrator, by Melde’s experiment,
using:

(i) Transverse arrangement
(ii) Longitudinal arrangement

Apparatus used: Electric vibrator, thread and pulley, chemical balance and metre scale.

Formula used:
(i) For the transverse arrangement, the frequency n of the fork is given by

n = 1
2

1
2l

T
m l

Mg
m

�

Where l = length of the thread in the fundamental vibration.
T = tension applied to thread.

M = total mass suspended.
m = mass per unit length of thread.

(ii) For the longitudinal arrangement, the frequency of electric vibrator is given by

n = 1 1
l

T
m l

Mg
m

�

Where the symbols have usual meaning.

Description of the apparatus: An electric vibrator consists of a solenoid whose coil is con-
nected to A.C. mains. The circuit includes a high resistance in the form of an electric bulb as
shown in Fig. 7.5. A soft iron rod AB is placed along the axis of the solenoid, clamped near the
end A with two screws X and Y while the end B is free to move. The rod is placed between the
pole pieces of a permanent magnet NS. One end of the thread is attached to the end B and the
other passes over a frictionless pulley
and carries a weight.

When an alternating current is
passed in the coil of the solenoid, it pro-
duces an alternating magnetic field
along the axis. The rod AB gets
magnetised with its polarity changing
with the same frequency as that of the alternating current. The rod AB vibrates n times per
second due to interaction of the magnetised rod with the permanent magnet.
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Procedure: Transverse arrangement
1. Take a uniform thread and attach its one end to the point B of the rod and the other to a

light pan by passing it over a frictionless pulley.
2. Connect the A.C. mains as shown in Fig. 7.4.
3. Place the vibrator in the transverse position.
4. The vibrations of maximum amplitude are obtained either by adding weights to the pan

slowly in steps or by puting some mass M in the pan and adjusting the length of the thread
by moving the vibrator.

5. Note the number of loops p formed in the length L of the thread. This gives the value of

l as l = L
p

.

6. Repeat the above procedure for different loops.

Longitudinal arrangement: In this case the vibrator is adjusted such that the motion of the rod
is in the same direction as the length of the thread. The procedure remaining the same as
described in case of transverse arrangement.

Observations:
1. Mass of the pan =

Mass of the thread =
Length of the thread =

2. Transverse arrangement.
Table for the determination of T and l.
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3. Longitudinal arrangement.
Table for the determination of T and l.
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Calculations: Mass per unit length of thread m = Mass
Length

 = ......

In transverse arrangement.

n =
1
2

1
2l

T
m l

Mg
m

�  = ...... cycles/sec.

Similarly calculate n from the other sets of observations.
Mean n = ...... cycles/sec.

In longitudinal arrangement

n =
1
l

Mg
m

= ...... cycles/sec.
Similarly calculate n from the other set of observations.

Mean n = ...... cycles/sec.

Result: The frequency of A.C. mains, using.
1. Transverse arrangement = ...... cycles/sec.
2. Longitudinal arrangement = ...... cycles/sec.

Standard result: Frequency of A.C. mains = ...... cycles/sec.
Percentage error = ...... %

Sources of error and precautions:
1. Pulley should be frictionless.
2. The thread should be then, uniform and inextensible.
3. Weight of the scale pan should be added.
4. The loops formed in the thread should appear stationary.
5. Do not put too much load in the pan.
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Q. 1. What type of vibrations are produced in the sonometer wire and the surrounding
air?

Ans. In the wire transverse vibrations are produced and in the surrounding air longitudinal
progressive waves are produced.

Q. 2. How are stationary waves produced in the wire?
Ans. The transverse waves produced in sonometer wire are reflected from the bridges. The

two waves superpose over each other and stationary waves are produced.
Q. 3. What do you understand by resonance?
Ans. In case of forced or maintained vibrations, when the frequencies of driver and driven

are same then amplitude of vibration of driven becomes large. This phenomenon is
called resonance.

Q. 4. Is there any difference between frequency and pitch?
Ans. Frequency is the number of vibrations made by the source in one second while pitch is

the physical characteristics of sound which depends upon its frequency.
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Q. 5. On what factors does the sharpness or flatness of resonance depend?
Ans. It depends only on natural frequency.
Q. 6. What are the positions of nodes and antinodes on sonometer wire?
Ans. Nodes at the bridges and antinodes at the middle between the two knife bridges.
Q. 7. On what factor does the frequency of vibration of a sonometer wire depend?
Ans. The frequency of the wire can be changed by varying tension T, or length l.
Q. 8. What are the laws of vibrations of strings?

Ans. Strings vibrates according to n = 1
2l

T
m

Q. 9. What are the requisites of sonometer wire?
Ans. The wire (i) should have uniform linear density m, (ii) should not change in length

during vibration and (iii) should be flexible. A steel or brass wire serves the purpose
best.

Q. 10. What is the function of the sonometer board?
Ans. The board is hollow and contains air inside. When the vibrations of wire take place,

the energy of vibrations is communicated to the board and from there to the enclosed
air. Due to the forced vibrations of this large mass of air loudness of sound is increased.
The holes drilled on the sides of the board establish the communication of inside air
with external air.

Q. 11. Why are bridges provided on the board?
Ans. The bridges limit the length of vibrating wire. Reflection of transverse waves on the

string takes place from these bridges and the stationary waves are formed.
Q. 12. How does the friction affect the result?

Ans. Friction reduces the tension applied to the wire i.e. the tension in wire becomes less
than the load suspended from the hanger as a result the calculated values are higher
than the actual frequency.

Q. 13. In sonometer experiment is the resonance sharp or flat?
Ans. It is sharp. A slight displacement of bridges causes a considerable fall in amplitude of

vibration.
Q. 14. What do you mean by A.C. mains?

Ans. An electric current that reverses its direction with a constant frequency ( f ). If a graph
of the current against time has the form of a sine wave, the current is said to be sinusoi-
dal.

Q. 15. What do you mean by frequency of A.C. mains?
Ans. A current which changes its direction of flow i.e. continuously varying from zero to a

maximum value and then again to zero and also reversing its direction at fixed inter-
val of time.

Q. 16. What is the frequency of your A.C. mains? What does it represent?
Ans. The number of times the current changes its direction in each second is called the

frequency of A.C. mains. It’s value is 50 cycles per second.
Q. 17. Does direct current also have any frequency?

Ans. No, it does not change its direction.
Q. 18. In case of non-magnetic wire why does it vibrate? When does the wire resonate?

Ans. It vibrates according to Fleming left hand rule.
Q. 19. Can a rubber string be used in place of wire?
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Ans. No, the rubber string will not continue vibrating long because it is not sufficiently
rigid.

Q. 20. Why should the magnet be placed with its poles in a line perpendicular to the length
of wire ?

Ans. To fulfil the condition for vibration according to Fleming left hand rule.
Q. 21. Why do you use a transformer here? Can’t you apply the A.C. directly.

Ans. The transformer is used to step down the A.C. voltage to a small value of about 6-9
volts. This ensures that no high current flows through the sonometer wire and heats it
up. The A.C. mains is not directly connected to the wire as it is dangerous for human
body, and may also cause a high current to flow through the wire.

Q. 22. What is the construction of your transformer?
Ans. A device for transferring electrical energy from one alternating current circuit to an-

other with a change of voltage, current, phase, or impedance. It consists of a primary
winding of Np turns magnetically linked by a ferromagnetic core or by proximity to

the secondary winding of Ns turns. The turns ratio 
N
N

s

p
 is approximately equal to 

V
V

s

p

and to 
I

I
p

s

, where Vp  and Ip are the voltage and current fed to the primary winding and

Vs and Is are the voltage and current induced in the secondary winding assuming that
there are no power losses in the core.

Q. 23. In above experiment can’t we use an iron wire?
Ans. We can’t use an iron wire because in this case wire is attracted by magnet and hence

wire does not vibrate.
Q. 24. In this experiment will the frequency of sonometer wire change by changing the

distance between the bridges.
Ans. No, the frequency of vibration of the sonomater wire will not change by changing the

distance between the bridges because the wire is executing forced vibrations with the
frequency of the mains.

Q. 25. Then, what is actually changing when the distance between bridges is changed.
Ans. The natural frequency of the wire.

Q. 26. What is the principle, according to which the wire begins to vibrate, when the alter-
nating current is passed through it?

Ans. When a current carrying wire is placed in a magnetic field, it experiences a mechanical
force (given by Fleming’s left hand rule) which is perpendicular to the direction of
current and magnetic field both.

Q. 27. What is Fleming’s left hand rule?
Ans. According to this rule if the thumb and the first two fingers of the left hand are ar-

ranged mutually perpendicular to each other, and the first finger points in the direc-
tion of magnetic field, the second in the direction of current then the thumb indicates
the direction of mechanical force.

Q. 28. What do you understand by linear density of wire?
Ans. Mass per unit length is called the linear density of wire.

Q. 29. Why a choke is used?
Ans. To avoid the heating of the wire.

Q. 30. What are the losses in the transformer.
Ans. Eddy current loss, hysteresis losses in the wire, heating losses in the coils themselves.
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Q. 31. Why a special type (horse-shoe type) of magnet is used?
Ans. In this type of magnet the magnetic field is radial.

Q. 32. How does the rod vibrate?
Ans. When alternating current is passed through the solenoid, the iron rod is magnetised

such that one end is north pole while other end is south pole. When the direction of
current is changed, the polarity of rod is also changed. Due to the interaction of this
rod with magnetic field of permanent horse-shoe magnet, the rod is alternately pulled
to right or left and thus begins to vibrate with frequency of A.C. mains.

Q. 33. What type of vibrations does the rod execute?
Ans. The vibrations are forced vibrations. The rod execute transverse stationary vibrations

of the same frequency as that of A.C.
Q. 34. Can you use a brass rod instead of soft iron rod?

Ans. No, because it is non-magnetic.
Q. 35. How is it that by determining the frequency of the rod, you come to know the fre-

quency of A.C. mains?
Ans. Here the rod vibrates with the frequency of A.C. mains.

Q. 36. What is the construction of an electric vibrator?
Ans. It consists of a solenoid in which alternating current is passed. To avoid the heating

effect in the coil of solenoid, an electric bulb is connected in series. A rod passes through
the solenoid whose one end is fixed while the other is placed in pole pieces of perma-
nent horse shoe magnet.

Q. 37. What are resonant vibrations?
Ans. If the natural frequency of a body coincides with the frequency of the driving force, the

former vibrates with a large amplitude. Now the vibrations are called as resonant
vibrations.

Q. 38. When does resonance occur?
Ans. When the natural frequency of the rod becomes equal to the frequency of AC mains,

resonance occurs.
Q. 39. How do you change the frequency of the rod?

Ans. We can change the frequency of the rod by changing the vibrating lengths of rod out-
side the clamps.

Q. 40. Can’t we send direct current through solenoid?
Ans. No. In this case the ends of the rod will become permanently either N or S pole and

will be pulled to one side.


&
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Q. 1. What is the cause of variation of current in case of A.C.?
Q. 2. For securing resonance, where do you put the magnet and why?
Q. 3. Does a transformer also change the frequency of A.C.? If not, why?
Q. 4. What is the chief source of error in this experiment?
Q. 5. In case of iron wire which arrangement do you use?
Q. 6. Why do you halve the frequency of the wire to obtain the frequency of A.C. mains in

this case?
Q. 7. What is the elastic fatigue and elastic limit and how they are related in the experiment.
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A heating coil is mounted axially along a horizontal glass tube. This glass tube is further
surrounded by a glass jacket to minimise convection of heat. The coil is made of manganin or
nichrome. Small length brass tubes are jointed to the two ends of the glass tube by sealing wax.
The ends of the heating coil are brought out for external electrical connection by means of two
screws. The free ends of the brass tubes are connected with hollow iron bases which have three
extra openings i.e. two vertical and one horizontal. The horizontal openings are used for inlet
and outlet of water. In one of the vertical openings on both ends of the glass tube a thermom-
eter is inserted through rubber stopper. The other vertical opening on both sides are used to
remove any air bubble which might have crept in while flowing water from the tank.

The water reservoir is a small metal vessel having  three openings at the bottom. One of the
openings is connected to the tap, the middle one to the sink, and the other to the inlet end of
the Callender-and-Barnes calorimeter. The height of the reservoir is adjusted and water is
allowed to flow through the tube at a constant pressure.

The outlet end of the calorimeter is connected to a small glass tube having a nozzel at the
free end by means of a rubber tube. The rate of flow of water from the nozzle is controlled by
means of the reservoir attached to the input end. The temperature of the inlet and outlet water
are given by the respective thermometers. T1 and T2.

Theory: When a steady electric current flows through the heating coil and a steady flow of
water is maintained through the tube, the temperatures at all parts of the apparatus become
steady. Under such steady-state conditions, the amount of electrical energy supplied during a
known time interval is consumed in heating the amount of water which flows through the

�
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tube during the same interval and a small amount of heat is lost by radiation etc., to the
surroundings during that interval.

Let the current flowing through the heating coil = I1 amps
the potential difference between the ends of the coil = V1 volts
the rate of flow of water through the tube = m1 gm/sec
the temperature of the inlet water = q1°C
the temperature of the outlet water = q2°C

and the mean specific heat of water between the = s
temperatures t1 and t2

Therefore, we can write

V I
J
1 1  = m1s (q2 – q1) + h1 ...(1)

Where J is the mechanical equivalent of heat (also called Joule’s equivalent) and h1 is the
amount of thermal leakage per second from the surface of the tube due to radiation etc.

If V1, I1, and m1 are changed to V2,  I2, and m2 while keeping the temperature rise unaltered,
then for the same surrounding temperature we can write

V I
J

2 2  = m2s (q2 – q1) + h2 ...(2)

Subtracting Eq. (1) from Eq.(2), we obtain

V I V I

J
2 2 1 1�

 = s (m2 – m1) (q2 – q1) + (h2 – h1)

For all practical purposes, we may consider h1 = h2

J =
V I V I

s m m
2 2 1 1

2 1 2 1

�
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Thus, by measuring V1, V2, I1, I2, m1, m2, q1 and q2, and knowing s, J can be determined in
Joules/Calorie.
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To determine the Mechanical Equivalent of heat (J) by the Callender and Barnes method.

Apparatus used: A Callender and Barne’s calorimeter, AC mains with a step down trans-
former, an AC Ammeter and an AC Voltmeter, switch, a rheostat, a stop watch, a measuring jar
and 2 thermometers.

Formula used: J = (E2C2 – E1 C1)/(m1 – m2) (q2 – q1) s for water S = 1.0 Cal/gm °C.

Procedure:
1. Connect the apparatus as shown in the Fig. 8.2.
2. Adjust the tap and the water reservoir till the rate of flow of water through the tube is

about (one) c.c per second.



196 Practical Physics

3. Switch on the current and regulate the rheostat so that the current passing is about 2
amperes.

4. As soon as the temperature of the heated water going out becomes steady. Note the
temperature of the two thermometers. Note the ammeter and the voltmeter readings.

5. Measure the rate of flow of water at this moment with the help of measuring Jar.
6. Change the rate of flow of water by varying the height of the reservoir and vary the

electric current until the two thermometers again indicate their previous readings. Note
the new readings of the ammeter and the voltmeter and measure the new rate of flow of
water.

Observation:
Temperature of the cold water (inlet end ) = q1 _ _ _ _ _ºC
Temperature of the hot water (exit end ) = q2 = _ _ _ _ _ ºC
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Result: The value of J is found to be = ergs/cal. (C.G.S. units)
= Joule/cal. (M.K. S. units)

Precautions:
1. The rate of  flow of water in the tube should be uniform. To ensure this a number of

measurements for the rate of out flow of water should be made.
2. Heating of the water should be uniform throughout tube.
3. Thermometers should be very sensitive.
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Q. 1. Define mechanical equivalent of heat?
Ans. The mechanical equivalent of heat is defined as the amount of work done in order to

produce a unit calorie of heat.
Q. 2. Why do you call it by the letter J?
Ans. It is represented by J, which is the first letter in the name Joule. James Prescot Joule was

the first to determine the value of the ratio of work done to the heat produced.
Q. 3. What are the units of J?
Ans. In the C.G.S system, the units of J are ergs/calorie.
Q. 4. What is standard value of J?
Ans. It is 4.1852 × 107 erg per calorie or 4.1852 J/cal.
Q. 5. What is meant by mechanical equivalent of heat?
Ans. The mechanical equivalent of heat J is defined as the constant ratio between mechani-

cal work done ‘W’ and corresponding heat produced ‘H’ i.e., J = W/H.
Q. 6. Why is the heating coil taken in the form of helical form?
Ans. Because greater surface area is exposed to water and it keeps water stirred.
Q. 7. Why should a constant level water tank be used?
Ans. If a constant level water tank is not used for steady flow of water, a steady difference

of temperature between the thermometers will not be obtained.
Q. 8. What is Joule’s law on Heating Effects of Currents?
Ans. The quantity of heat H produced due to a current C in a conductor is directly propor-

tional to (i) the square of the current (ii) the resistance R and (iii) the time t sec. Thus

H =
VCt

J
= 

C Rt
J

2

Q. 9. In what units are current and voltage used in it?
Ans. The current and voltage have been taken in electromagnetic units.

Q. 10. How do you convert these into practical units?
Ans. The practical unit of voltage is a volt such that 1 volt = 108 e.m.u. of potential differ-

ence. The practical unit of current is an ampere such that 1 ampere = 
1

10
 e.m.u. of

current. Thus the heat produced, H = 
Vct

J
� 107  = C Rt2

4 18.
 = .24C2 Rt

Q. 11. How much work is done in heating by means of currents?
Ans. If a current of C amperes passes in a conductor whose ends are maintained at a

potential difference of V volts, then in t secs the amount of work done.
W = VCt ×107 ergs

Q. 12. Why is this work done when current passes through a conductor?
Ans. When a potential difference is applied across a conductor, than the electric current is

due to a flow of electrons in the interatomic space of the conductor. These electrons
experience resistance to their motion in that space and so work has to be done against
this resistance. This work done appears as heat.

Q. 13. Upon what factors does the work done depend?
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Ans. The work done depends upon the following factors:
(i) The number of electrons flowing, i.e., the strength of the current in the conductor.

(ii) The resistance of the conductor.
(iii) The time for which the current flows in the conductor.

Q. 14. Does the heating effect depend upon the direction of current?
Ans. The heating effect of current does not depend upon the direction of current because it

is proportional to the square of the current.
Q. 15. Will the heating effect be different for direct and alternating currents?

Ans. No, the effect is the same with both types of currents because it does not depend upon
the direction of current.

Q. 16. What is the heating coil made of?
Ans. The heating coil is made of some resistance wire such as nichrome, constantan or

manganin.
Q. 17. Can you give an idea of the resistance of the heater coil?

Ans. The resistance of the heater coil can be calculated by ohm’s law by dividing any
voltmeter reading with the ammeter reading.

Q. 18. Should the resistance be high or low?
Ans. The resistance of heater coil should be low so that it may take up a large current and

the heating may be large, because H µ C2.
Q. 19. Why is the water not electrolyzed if the naked heating coil is placed in the water?

Ans. Water is a poor conductor of electricity and so all the current passes through the coil
and not through water. Thus the water is not electrolyzed.

If ordinary water be used and the potential difference used be more than eight volts,
some electrolysis may take place.

Q. 20. Why do you use a step down transformer while using AC?
Ans. A step down transformer is used in order that the apparatus may be used safely

without any danger of getting a shock.
Q. 21. Can this apparatus be used for any other purpose?

Ans. Originally this was designed for the study of variation of specific heat with tempera-
ture. It can also be used for determining the specific heat of air at constant pressure and
of mercury or any other liquid.

Q. 22. What important precaution are taken by you?
Ans. 1. Water should flow at a constant pressure and its motion should be slow and

continuous.
2. The rate of flow of water and the two temperatures should be noted only when the

steady state has been reached.
3. The current is switched on after the tube is filled up with water.
4. The difference of temperature should be maintained at about 5ºC and sensitive

thermometers should be used.
5. The sets of observations are taken for different currents for the same difference of

temperature.
Q. 23. What other methods of determining J do you know? Discuss their relative merits

and demerits?
Ans. ‘J’ by Searle’s Friction Cone method.

Q. 24. What would happen if the flow of water is not steady?
Ans. The difference of temperature will not remain steady.
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Seebeck discovered the thermoelectric effect. To study this effect, two wires of different mate-
rials say copper and iron are joined at their ends so as to form two junctions. A sensitive
galvanometer is included in the circuit as shown in Figure 9.1. This arrangement is called a
Cu-Fe thermocouple. When one junction of the thermocouple is kept hot and the other cold,
the galvanometer gives deflection indicating the production of current in the arrangement.
The current so produced is called thermoelectric currents.

The continuous flow of current in the thermocouple
indicates that there must be a source of e.m.f. in the cir-
cuit, which is causing the flow of current. This e.m.f is
called thermoelectric e.m.f. It is found that for a tempera-
ture difference of 100ºC between the hot and cold junc-
tion, thermo e.m.f. produced in Cu-Fe thermocouple is
0.0013V and in case of Sb-Bi thermocouple, the thermo
e.m.f. produced is 0.008V.

This phenomenon of production of electricity with the help of heat is called thermoelec-
tricity and this effect is called thermoelectric effect or Seebeck effect.

Thus, the phenomenon of production of e.m.f. causing an electric current to flow in a
thermocouple when its two junctions are kept at different temperature, is known as Seebeck
effect.
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In a conductor, there are always free electrons. In any conductor, the number of free electrons
per unit volume (electron density) depends upon its nature. In general, the electron density
increases with rise in temperature.

When two metallic wires of different materials are joined at their ends to form a thermo-
couple, electrons from a metal having greater electron density diffuse into the other with lower
value of electron density. Due to this, a small potential difference is established across the
junction of the two metals. The potential difference so established is called contact potential
and its value depends upon the temperature of the junction for the two given metal obviously,
if the two junctions are at the same temperature, the contact potentials at the two junctions will
be equal. As the contact potentials at the two junctions tend to send current in opposite
directions, no current flows through the thermocouple.
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However, if one of the two junctions is heated, more diffusion of electrons takes place at
the hot junction and the contact potential becomes more than that at the cold junction. Hence,
when the two junctions of a thermocouple are at different temperature, a net e.m.f. called
thermo e.m.f. is produced.

It may be pointed out that Seebeck effect is revers-
ible. If we connect a cell in the circuit so as that it sends
current in a direction opposite to that due to Seebeck
effect Figure 9.2, then it is observed that heat is rejected at
the hot junction and absorbed at the cold junction i.e. the
hot junction will start becoming hotter, while the cold
junction still colder.

A thermo couple also acts like a heat engine. It constantly absorbs heat at the hot junction,
rejects a part at the cold junction and the remaining part is converted into electrical energy,
which sends current through that thermocouple.
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The magnitude and direction of the thermo e.m.f. developed in a thermocouple depends upon
the following two factors.
(i) Nature of the metals forming the thermocouple: For the experimental investigations,
Seebeck arranged a number of metals in the form of a series called thermoelectric series. Some
of the metals forming this series are as below:

Sb, Fe, Zn, Ag, Au, Mo, Cr, Sn, Pb, Hg, Mn, Cu, Pt, Co, Ni and Bi.
If a thermocouple is formed with wires of any two metals from this series, the direction of

current will be from a metal occurring earlier in this series to a metal occurring later in the
series through the cold junction. Therefore, in copper-iron (Cu-Fe) thermocouple, the current
will flow from iron to copper through cold junction or Copper to Iron through the hot junction.
In antimony-bismuth (Sb-Bi) thermocouple, the current flows from antimony to bismuth
through the cold junction.

The thermo e.m.f. for a difference of temperature equal to 100ºC is about 0.0013V for Cu-
Fe thermocouple and about 0.008V for Sb-Bi thermocouple. As a rule, more the metals are
separated in the series, the greater will be the thermo e.m.f.
(ii) The temperature difference between the two junctions of the thermocouple: To study the
effect of difference of temperature between the two junctions, consider a Cu-Fe thermocouple.
Its one junction is kept hot by immersing in oil bath and
heated with burner.

The other junction is kept cold by immersing it in
pounded ice. The temperature of the hot junction can be
measured by the thermometer T placed in the hot oil
bath.

As the temperature of the hot junction is increased
by keeping the temperature of the cold junction con-
stant at 0ºC, the deflection in the galvanometer goes on
increasing. The deflection in the galvanometer is directly proportional to the thermoelectric
current and hence the thermo e.m.f. The graph between thermo e.m.f. and the temperature of
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hot junction is found to be parabolic in shape as
shown in Figure.

As the temperature of hot junction is further
increased, a stage comes, when the thermo e.m.f.
becomes maximum.

The temperature of hot junction at which the
thermo e.m.f. produced in the thermocouple
becomes maximum, is called neutral tempera-
ture. For a given thermocouple, neutral tempera-
ture has a fixed value. It does not depend upon
the temperature of cold junction of the thermo-
couple. It is denoted by qn. For copper-iron ther-
mocouple, neutral temperature is 270ºC.

The temperature of the hot junction, at which
the direction of the thermo e.m.f. reverses, is
called the temperature of inversion. It is denoted
by qi.

The temperature of inversion is as much above the neutral temperature as the neutral
temperature is above the temperature of the cold junction. Then, if qc is temperature of the cold
junction, then

qn – qc = qi – qn

or qn =
� �i c�

2
and qi = 2 qn – qc

Thus, the netural temperature is the mean of the temperature of inversion � i and tempera-
ture of the cold junction qc, but is independent of qi and qc. For Cu-Fe thermocouple qn = 270ºC.
If cold junction is at 0°C, then it follows that qi = 540ºC.

If the temperature of cold junction is 0ºC, the graph between the temperature of hot
junction and thermo e.m.f. is found to satisfy the equation of the parabola.

E = aq + bq2

Where a and b are constants called thermoelectric constants. q represents the temperature
difference between the hot and cold junctions.

��! "���������

Let us consider a bismuth-copper (Bi-Cu) thermocouple. Due
to Seebeck effect, in such a thermocouple, thermo electric
current flows from copper to bismuth through cold junction.
Heat is absorbed at hot junction and is evolved at cold
junction.

Peltier discovered that whenever two dissimilar metals are connected at a point, an elec-
tromotive force (e.m.f.) exists across the junction. Thus, out of the two metals, one is at higher
potential than the other. This e.m.f. is found to vary with the change in temperature of the
junction.

In the Bi-Cu thermocouple, copper is at higher potential as compared to bismuth. Thus,
the Bi-Cu thermocouple appears as if two cells are connected across the two junctions, with

�������!
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their positive terminals to the ends of copper wires. Further, this contact e.m.f. of the cell across
the hot junction is greater than that across the cold junction. The net e.m.f. causes the current
to flow from copper to bismuth through the hot junction. At the hot junction, as the current
flows from Bi to Cu i.e. from lower potential to higher potential, energy will be needed for this
purpose. For this reason, in a thermocouple, heat is absorbed at the hot end. On the other hand,
energy is given out in the form of heat at the cold junction, as here the current flows from
higher to lower potential.

This absorption or evolution of heat at a junction of two dissimilar metals, when current
is passed, is known as Peltier effect.

It is also a reversible phenomenon. If the direction of flow of current is reversed, then at a
junction heat will be evolved, if earlier heat was absorbed there and vice-versa.

��# "����� ���������$ppppp%

The amount of heat energy absorbed or evolved per second at a junction, when a unit current
is passed through it, is known as Peltier Coefficient. It is denoted by p.

Suppose cold junction is at temperature T and hot junction at T + dT. If dE is the thermo
e.m.f. produced, then it is found that

�

T
 =

dE
dT

Here, 
dE
dT

 is rate of change of thermo e.m.f. with temperature. It is called thermoelectric

power. It is also known as Seebeck coefficient. If S is Seebeck Coefficient, then

S =
dE
dT

Thus �

T
 =

dE
dT

 = S

��& ����'��('� ����

Thomson found that in a Copper wire whose one end is hot and the other kept cold, if current
is passed from hotter end to colder end, then heat is evolved along the length of the copper
wire. In case, current is passed from colder end to the hotter end, then heat is absorbed along
the length of the Copper wire, The explanation lies in the fact that in case of Copper wire, the
hot end is at higher potential and the cold end is at lower potential. When current flows from
hotter to colder end i.e. from higher to lower potential, the energy is given out in the form of
heat. On the other hand, when current is passed from colder to hotter end i.e. from lower to
higher potential, the energy is required and it leads to absorption of the heat energy.

In case of bismuth, the effect is just reverse i.e. heat is evolved along the length of bismuth
wire, when current is passed from colder to hotter end and heat is absorbed, when current is
passed from hotter to colder end. It is because, in case of bismuth, the hot end is at lower
potential and cold end is at higher potential.
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This absorption or evolution of heat along the length of a wire, when current is passed
through a wire whose one end is hot and other is kept cold, is known as Thomson effect.
Thomson effect is also a reversible phenomenon. The substances which behave like Copper are
said to have positive Thomson effect. Such other substances are antimony, silver, zinc, etc. On
the other hand, substances such as cobalt, iron, platinum, etc. which behave like bismuth are
said to have negative Thomson effect.

��) ����'��� ���������

The amount of heat energy absorbed or evolved per second between two points of a conductor
having a unit temperature difference, when a unit current is passed, is known as Thomson
Coefficient for the material of a conductor. It is denoted by s.

Thomson coefficient of the material of a conductor is found by forming its thermocouples
with a lead wire (Thomson Coefficient of lead is zero). It can be proved that Thomson Coeffi-
cient of the material of conductor is given by

s = –T d E
dT

2

2

Now, Seebeck coefficient is given by

S = dE
dT

\ dS
dt

 = d E
dT

2

2

Thus s = –T d E
dT

2

2
 = –T 

dS
dT

F
HG

I
KJ
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Principle: For a given small difference in temperature of two junctions of a thermocouple,
Bi-Sb thermocouple produces a comparatively large e.m.f. and it can be used to detect the heat
radiation. When, a number of such thermocouples are connected in series, the arrangement
becomes very much sensitive to detect heat radiation as the thermo e.m.f.’s of the thermo-
couples get added.

A series combination of a large number of Bi-Sb thermocouples is enclosed in a funnel or
horn-shaped vessel.

The junction A of each thermocouple is coated with lamp black while the junction B of each
thermocouple is well polished and covered with insulating material. The extreme ends of the
arrangement are connected to the terminals T1 and T2, across which a sensitive galvanometer
is connected.

Such an arrangement known as thermopile is shown in Fig. 9.6.
When heat radiations fall on the funnel shaped end of the thermopiles, the set of junction

B coated with lamp black absorbs the heat radiation. As a result, the temperature of set of
junction B relative to junctions A get raised and thermo e.m.f. is developed in each thermocouple.
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The thermoelectric current flows in the same
direction (from Sb to Bi through cold
junction) in all the thermocouples.
Therefore, a large current flowing through
the circuit produces deflection in the
galvanometer, which indicates the existence
of heat radiation.

The thermoelectric effect has the fol-
lowing important applications:

1. A thermocouple is preferred and used to
measure temperatures in industries and
laboratories. One junction is kept cold at
known temperature and other junction is
placed in contact with the object, whose temperature is to be measured. The temperature is
calculated from the measured value of the thermo e.m.f. The thermocouple is preferred to
measure temperature for the following reasons:

(a) Since the junction is very small, it absorbs only a very small heat and therefore it does not
change the temperature of the object.

(b) It quickly attains the temperature of the object.
(c) The accuracy in the measurement of temperature is very high. It is because the measure-

ments are made of electrical quantities.

The type of the thermocouple to be used is determined by the range of measurement of the
temperature. Different types of thermocouples used in different ranges of temperature are
given below:

Thermocouple Temperature range
Copper-gold and Iron alloy 1 K to 50 K
Copper-constantan 50 K to 400 K
Platinum-platinum rhodium alloy 1500 K to 2000 K.

2. To detect heat radiation: A thermopile is a combination of large number of thermocouples
in series. It can be used to detect the heat radiation and to note the small difference or the
variation in temperatures.

3. Thermoelectric refrigerator: If a current is passed through a thermocouple, then due to
Peltier effect, heat is removed at one junction and is absorbed at other junction. In case, if on
the whole, heat is removed, then the thermocouple acts as a thermoelectric refrigerator. The
advantage is that it has, no compressor. No doubt, the cooling effect produced is much low as
compared to that in the case of conventional refrigerators. A thermoelectric refrigerator is
used, when the region to be cooled is very small and the noise is not acceptable. The thermo-
couple used as a thermoelectric refrigerator should have following three characteristics:

(a) It should have low resistivity, otherwise, loss of energy in the form of heat will be large.
(b) It should have low thermal conductivity. It will help in maintaining large temperature

difference between the two junctions.
(c) It should produce high thermopower.

�������&
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4. Thermoelectric generator: Thermocouples can be used to generate thermoelectrical power
in remote areas. It may be done by heating one junction in a flame and exposing the other
junction to air. The thermo e.m.f. developed has been used to power radio receivers, etc.

��� �+,��

To calibrate a thermocouple and to find out the melting point of naphthalene.

Apparatus used: One thermocouple apparatus as shown in the Fig. 9.7, a galvanometer, two
thermometers, key, Naphthalene, stop watch and heater or gas burner, glass test tube, stand
and clamp.

Description of apparatus and theory: The apparatus as shown in the diagram consists of two
junctions A and B of copper and constantan. These are placed in the test tubes which them-
selves are placed in the baths B1 and B2. One of them is kept at room temperature are measured
by thermometers T1 and T2.

When a difference of temperature is produced between two junctions an E.M.F. is set up
which produces a deflection in the galvanometer. This deflection is proportional to the differ-
ence of temperature between the two junctions. Thus by plotting a graph with known differ-
ence of temperature and known deflections we can find out an unknown temperature by
noting its deflection and finding out the corresponding temperature from the graph.

Manipulations:
1. Set the apparatus as shown in the diagram.
2. Put junction A in cold water and note tem-

perature T1.
3. Put junction B in cold water and heat the wa-

ter.
4. Start observations from the room temperature

and take galvanometer readings at intervals
of 4ºC – 5ºC and go up to the boiling point of
water. To keep the temperature constant for
some time, remove the flame at the time of
taking observation and keep on a stirring
the water.

5. Plot a graph with deflection as ordinate
and temperature as abscissa. The graph,
in general, should be a parabola
(Fig. 9.8(a)) but within a short range of
temperature as in the present case (0ºC –
90ºC or 100ºC), the graph will be straight
line Fig. 9.8(b). The straight line actually
is the straight portion of the parabola.
This graph can be used to determine any unknown temperature (within this range).

6. Pour the naphthalene bits into the test tube and immerse the end B of the thermocouple
in it keeping the test tube immersed in hot water in a water bath.

�������)
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7. Find out the deflection when the naphthalene melts and also when it solidifies again. The
deflection should be read at the intervals of 30 seconds. When the naphthalene is about to
melt or solidify, the deflection will remain constant during melting and solidification.
Note the value of constant deflection.

8. Find out from the previous graph, the value of temperature corresponding to the deflec-
tion. This is the melting point of naphthalene.

Observation:
Temperature of the cold junction = _ _ _ _ºC
Initial reading of galvanometer   =
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9.

10.

11.

12.

13.

14.

15.

16.

The temperature of melting naphthalene corresponding to this deflection from the
graph =

Result: The melting point of the Naphthalene =

Standard value: The melting point of Naphthalene =
Percentage error =

Precautions:
1. The reading of galvanometer should be taken carefully.
2. The hot junction should be carefully dipped in naphthalene.
3. Do not inhale naphthalene vapor, as it may be harmful.
4. The ends of connecting wires should be properly cleaned.
5. The wires forming thermocouple should be in contact with each other at the junction only.
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Q. 1. On what factors does the direction of thermo electric current depends?
Ans. It depends upon the nature of metals in contact.
Q. 2. What is the direction of current in case of copper-iron and antimony-bismuth couple?
Ans. For copper-iron couple-current flows from copper to iron at hot junction. For anti-

mony-bismuth couple the current flow at cold junction from antimony to bismuth.
Q. 3. What is thermo-couple?
Ans. A thermo couple is a circuit formed by joining two dissimilar metals. Its junctions are

kept at different temperature.
Q. 4. What is neutral temperature?
Ans. The neutral temperature is the temperature at which thermoelectric e.m.f. is

maximum.
Q. 5. How does the temperature of inversion vary?
Ans. The temperature of inversion for a given couple at hot junction is as much above the

neutral temperature as the temperature of cold junction is below it.
Q. 6. What is thermoelectric effect?
Ans. When two junctions of different metals are kept at different temperatures, then an emf

produced in the circuit gives rise to a current in the circuit. It is called Seebeck effect.
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Q. 7. Is the neutral temperature same for all thermocouples?
Ans. No, it is different for different thermocouples.
Q. 8. What is temperature of inversion?
Ans. The temperature at which thermoelectric emf changes its sign, is called temperature of

inversion.
Q. 9. How temperature of inversion qqqqqi is related to neutral temperature qqqqqn?
Ans. qqqqqn – qqqqqc = qqqqqi – qqqqqn

Q. 10. What is calibration curve?
Ans. A curve showing the variation of thermoelectric emf with temperature, is known as

calibration curve.
Q. 11. What is Peltier effect?
Ans. When current is passed through the junction of two different metals, one junction is

heated while other is cooled.
Q. 12. How thermo emf is generated?

Ans. The concentration of electrons at the interface of two metals is different. The electrons
from higher concentration interface, are transferred to lower concentration interface.
Thus a constant potential difference is developed when one junction is hot and other
is cold. The contact potential is higher at hot junction than that of cold junction, and so
thermo emf is generated.

Q. 13. What is Thomson effect?
Ans. Whenever the different parts of the same metal are at different temperature an emf is

developed in it. This is called Thomson effect.
Q. 14. What is Seebeck effect?

Ans. When two wires of different metals are joined at their ends and a temperature differ-
ence is maintained between the junctions, a current will flow in the circuit. This is
known as Seebeck effect.

Q. 15. What is Peltier effect?
Ans. When a battery is inserted in a thermocouple circuit whose two junctions are initially

at the same temperature, one of the junctions will became hot and the other cold. This
phenomenon is known as Peltier effect.

Q. 16. Explain the existence of an emf at the junction of two metals.
Ans. When two different metals are joined at their ends the free electrons of one metal will

flow to the other because the electron density of the two metals is different. As a result
of the electron flow, one metal becomes positive with respect to the other and a
potential difference is created at the junction. The magnitude of this potential differ-
ence, referred to as the contact potential difference, increases with temperature.

Q. 17. Explain the difference between Joule effect and Peltier effect.
Ans. In the case of Joule effect, the generated heat is proportional to the square of the current

and is, therefore, independent of the direction of the current. Peltier effect, on the other
hand, produces heating or cooling at a junction that is proportional to the current.
Thus, a junction which is heated by a current will be cooled when the direction of the
current is reversed.

Q. 18. How is a thermocouple constructed? Name some pairs of metals that are generally
used for the construction of thermocouples.
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Ans. To construct a thermocouple, say copper-constantan, one piece of constantan wire and
two pieces of copper wires are taken. After cleaning the ends with emery paper, one
end of each of the copper wires are spot-welded with the ends of the constantan wire
forming two junctions of the thermocouple. Copper-constantan, copper-iron, plati-
num-rhodium etc. are the pairs of metals which are used for thermocouples.

Q. 19. Practical applications of thermocouples.
Ans. (i) To measure the temperature at a point.

(ii) To measure radiant heat.
Q. 20. Can you use an ordinary voltmeter to measure the thermo-emf?

Ans. No, because the emf is in the millivolt range.
Q. 21. What is the general nature of the thermo e.m.f. vs temperature curve? What is the

nature of the curve that you have obtained?
Ans. Parabola. We obtain a straight line, because the temperature of the hot junction is much

removed from the neutral temperature of the couple. That is, we obtain the straight
portion of the parabola.

Q. 22. What is thermo-electric power? What is its value at 60ºC for the copper-constantan
thermocouple?

Ans. It is defined as the increase in thermo emf. of a thermocouple at a particular tempera-
ture of the hot junction per unit degree rise in temperature of the hot junction. For a

copper-constantan thermocouple 
dE
dT

 at 60ºC is about 40 mv per ºC.

Q. 23. Why does the null point remain constant during melting or freezing of the solid?
Ans. During melting or freezing the temperature does not change. This gives a constant null

point reading.
Q. 24. What is the value of the thermo-electric power at the neutral temperature?

Ans. Zero.
Q. 25. How will the emf change if the temperature of the hot junction be increased beyond

the neutral temperature?
Ans. The emf will decrease with increase of temperature and at a temperature, called the

temperature of inversion, the e.m.f. will be reduced to zero. After the inversion tem-
perature the polarity of thermo-emf will reverse.

Q. 26. What is the difference between heat and temperature?
Ans. The quantity of thermal energy present in a body is called ‘heat’ whereas the degree of

hotness of a body is given by temperature.
Q. 27. Can you explain it on the kinetic theory?

Ans. The total kinetic energy possessed by all molecules of a body gives us the idea of ‘heat’
while the average kinetic energy possessed by a molecule gives us the ‘temperature’ of

the body. It is given by 
1
2

2mC  where m is the mass and C  is the average velocity of the

molecule.
Q. 28. How can you measure heat and temperature?

Ans. Heat is measured by the product of mass, specific heat and the temperature of the
body. Temperature is measured by instruments called thermometers.

Q. 29. What types of thermometers do you know?
Ans. Mecury thermometer: These can be used for temperatures from –40ºC to 359ºC the

freezing and boiling points of mercury.
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Alcohol thermometers: These gives the maximum and minimum temperatures of the
day and are used in meteorological departments.
Gas thermometers: They can be used from –260ºC to 1600ºC and are used to standardize
the mercury thermometers.
Platinum resistance thermometers have the range from –200ºC to 1200ºC approxi-
mately.
Thermo-couples are also used to measure temperatures in the range –200ºC to 1700ºC.
Optical pyrometers are used to measure high temperatures from about 600ºC to 6000ºC.

Q. 30. Define specific heat?
Ans. It is defined as the ratio of the quantity of heat required to raise the temperature of a

given mass of a substance to the quantity of heat required by the same amount of water
to raise its temperature by the same amount.

Q. 31. What is a calorie?
Ans. It is the amount of heat in C.G.S. units required to raise the temperature of one gram

of water from 14.5ºC to 15.5ºC.
Q. 32. Name the metals forming the thermoelectric series.

Ans. The following metals form the thermoelectric series:
Sb, Fe, Zn, Ag, Au, Mo, Cr, Sn, Pb, Hg, Mn, Cu, Co, Ni and Bi.

Q. 33. How does the thermoelectric series enable us to know the direction of flow of
current in a thermocouple?

Ans. In the thermocouple formed of the two metals from the thermoelectric series, the
current flows from the metal occurring earlier in the series to the metal occurring latter
in the series through the cold junction.

Q. 34. Give the direction of thermo electric current: (i) at the cold junction of Cu-Bi (ii) at
the hot junction of Fe-Cu (iii) at the cold junction of platinum-lead thermocouple.

Ans. (i) From Cu to Bi, (ii) from Cu to Fe, (ii) From lead to platinum.
Q. 35. How does the thermo e.m.f. vary with the temperature of the hot junction?

Ans. The thermo e.m.f. increases with increase in temperature of hot junction, till the tem-
perature becomes equal to be neutral temperature of the hot junction. As the tempera-
ture is increased beyond the neutral temperature, thermo e.m.f. starts decreasing.

Q. 36. Write the expression connecting the thermoelectric e.m.f. of a thermocouple with
the temperature difference of its cold and hot junctions.

Ans. The relation between thermo e.m.f. (E) and temperature difference (q) between the
cold and the hot junction is given as

E = aq + bq2

Q. 37. Name a few metals, which have (i) positive Thomson coefficient and (ii) negative
Thomson coefficient.

Ans. (i) For copper, antimony, silver and Zinc, Thomson coefficient is positive
(ii) For iron, cobalt, bismuth and platinum, Thomson coefficient is negative.

Q. 38. What is the cause of production of thermo e.m.f. in the thermocouple?
Ans. In a thermocouple, heat is absorbed at the hot junction, while it is rejected at the cold

junction. The production of thermo e.m.f. in a thermocouple is the result of conserva-
tion of the net heat absorbed in the thermocouple into electric energy. In other words,
the thermoelectric effect obeys the law of conservation of energy.

Q. 39. Heat is produced at a junction of two metals, when a current passes through. When
the direction of current is reversed, heat is absorbed at the junction (i.e. the junction
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gets cooler) Is the usual formula (I2R = Power dissipated as heat) applicable for this
situation. If not why not?

Ans. No, the formula is not applicable to the situation, when on reversing the direction of
current, the heat is absorbed at the hot junction. It is because Joule’s heating effect of
current and reversible Seebeck effect are different from each other.

Q. 40. How does thermoelectric series help to predict the direction of flow of current in a
thermocouple?

Ans. It helps to know the direction in which current will flow, when a thermocouple is
formed with the wires of any two metals in the series. The direction of current will be
from a metal occurring earlier in this series to the metal occurring latter in the series
through the cold junction.

Q. 41. Why do we generally prefer Sb-Bi thermocouple?
Ans. The metals Sb and Bi are at the two extreme ends of the thermoelectric series and hence

for the given temperature of cold and hot junctions, the thermo e.m.f. produced is
maximum. It is because more the metals are separated in the series, the greater will be
the thermo-e.m.f. produced.

Q. 42. What is a thermopile?
Ans. It is a combination of a large number of thermocouples in series. As such, it is able to

detect the heat radiation and to note the small variation or difference in temperature.
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Light rays travel in straight lines in a homogeneous medium. But whenever a light ray passes
from one transparent medium to another, it deviates from its original path at the interface of
the two media. In the second medium the ray either bends towards the normal to the interface
or away from the normal. The bending of the light-ray from its path in passing from one
medium to the other medium is called ‘refraction’ of light. If the refracted ray bends towards
the normal relative to the incident ray, then the second medium is said to be ‘denser’ than the
first medium Fig. 10.1(a). But if the refracted ray bends away from the normal, then the second
medium is said to be ‘rarer’ than the first medium Fig. 10.1(b).

The refraction of light takes place according to the following two laws known as the ‘laws
of refraction’:

1. The incident ray, the refracted ray and the normal to the interface at the incident point all
lie in the same plane.

2. For any two media and for light of a given colour (wavelength), the ratio of the sine of the
angle of incidence to the sine of the angle of refraction is a constant.

If the angle of incidence is i and the angle of refraction is r, then

sin
sin

i
r

 = constant

�
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This law is called the ‘Snell’s law’ and the constant is called the refractive index of the
second medium with respect to the first medium.

If the first medium be represented by 1 and second by 2, then the refractive index is
represented by 1n2. Thus

sin
sin

i
r

 = 1n2

If the path of light be reversed, then by the principle of reversibility of light, we have

sin
sin

r
i

 = 2n1

Where 2n1 is the refractive index of medium 1 with respect to medium 2. From the above
two expressions, we have

1n2 × 2n1 = 1

or 1n2 =
1

2 1n

If there are three media 1, 2, 3, then
1n2 × 2n3 × 3n1 = 1

If medium 1 is air, medium 2 is water and medium 3 is glass, then
anw × wng × gna = 1

or wng = 1

a w g an n�
 = a g

a w

n

n

Refraction of light occurs because the speed of light is different in different media.
According to Huygen’s principle, when a wavefront passes from one medium into an-

other, the speed of the secondary wavelets orginating from the wavefront changes in the
second medium. As result, the (refracted) wavefront in the second medium bends with respect
to the (incident) wavefront in the first medium. If the incident and the refracted wavefronts are
inclined at angles i and r respectively with the interfrace of the two media, then

sin
sin

i
r

 = v
v

1

2

Where v1 and v2 are the speeds of the wavelets in the first and second media respectively.
But sin i/sin r = 1n2 (snell’s law)

\ 1n2 =
v
v

1

2

 = 
speed of light in the first medium

speed of light in the second medium

If these speeds are equal then both the wavefronts would have been mutually parallel
(i = r) and light would have not been bent.

If the incident wavefront be parallel to the interface of the two media (i = 0), then the
refracted wavefront will also be parallel to the interface (r = 0).

In the process of refraction the speed, the wavelength and the intensity of light change,
while the frequency of light remains unchanged. The intensity changes because alongwith
refraction there is also a partial reflection and an absorption of light.



214 Practical Physics

��� ��������������!���"��#$

A prism is a homogeneous, transparent medium such as glass enclosed by two plane surfaces
inclined at an angle. These surfaces are called the ‘refracting surfaces’ and the angle between
them is called the refracting angle‘ or the ‘angle of prism’. The section cut by a plane perpen-
dicular to the refracting surfaces is called the ‘principal section’ of the prism. Let ABC be the
principal section of a glass prism. The angle A is the refracting angle of the prism. Let a
monochromatic ray of light PQ be incident on the face AB. This ray is refracted towards the
normal NQE and travels in the prism along QR. The refracted ray QR bends away from the
normal MRE at AC and emerges along RS into the air. Thus PQRS is the path of the light ray
passing through the prism. Let i be the angle of incidence and r the angle of refraction at AB;
and r¢ the angle of incidence and i¢ the angle of emergence at AC. Let d be the angle between
the incident ray PQ produced forward and the emergent ray RS produced backward. d is
called the ‘angle of deviation’.
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For a given prism, the angle of deviation depends upon the angle of incidence of the light-ray
falling on the prism. If a light-ray is allowed to fall on the prism at different angles of incidence
(but not less than 30°) then for each angle of incidence the angle of deviation will be different.
If we determine experimentally the angles of deviation corresponding to different angles of
incidence and then plot i against d, then we shall get a curve as
shown in Fig. 10.3. It is seen from the curve that as the angle of
incidence i increases, the angle of deviation first decreases,
becomes minimum for a particular angle of incidence and then
again increases. Thus, for one, and only one particular angle of
incidence the prism produces minimum deviation. The mini-
mum angle of deviation is represented by dm. In the position of
minimum deviation, the angle of incidence i and  the angle of
emergence i¢ are equal.

In Fig. 10.2, for the ray PQRS, the angle of incidence is i and the angle of emergence is i¢.
Let the angle of deviation d be minimum, i.e., d = dm. If the path of the ray is reversed (SRQP),
then the angle of incidence will be i¢ and the angle of emergence will i and d will still be
minimum. Thus d is minimum for two angles of incidence i¢ and i. But d can be minimum only
for one angle of incidence. Therefore, it is clear that

i = i¢
Let n be the refractive index of glass with respect to air. Applying snell’s law for the

refraction of light at the points Q and R, we have

n = sin
sin

i
r

 = sin
sin

�

�

i
r

Therefore, if i¢ = i, then r¢ = r. Thus in the position of minimum deviation –AQR and –ARQ
are equal. Hence if the angles of the base of the prism are equal, then in the position of
minimum deviation, the light passes in the prism parallel to the base.

�
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In D QDR, we have
d = –DQR + –DRQ

= ( i – r) + (i¢ – r¢)
= (i + i¢) – (r + r¢) ...(1)

In the quadrilateral AQER, –AQE and –ARE are right angles. Hence the sum of the angles
A and E is 180º.

A + E = 180º
In D QER r + r¢ + E = 180º
From these two equations, we have

r + r¢ = A ...(2)

Substituting this value of r + r¢ in Eq (1), we have
d = i + i¢ – A ...(3)

If the prism is in the position of minimum deviation, then
i¢ = i, r¢ = r, d = dm

Hence from the equations (2) and (3), we have
2r = A or r = A/2

and dm = 2i – A or i = (A + dm)/2

By Snell’s law, n = sin
sin

i
r

Substituting the value of i and r, we get

n = sin A A�F
HG

I
KJ

�m

2 2
sin

Thus, knowing the angle of minimum deviation and the angle of prism, the refractive
index of the material of the prism can be calculated.
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If the prism is thin (i.e. its angle A is nearly 5º or less), dm will also be small and we can put.

sin 
A � �m

2
 =

A � �m

2
 and sin A

2
 = A

2

\ n =
( )

/
A

A
� �m 2

2

or dm = (n – 1) A

It is clear from this expression that the deviation produced by a thin prism depends only
upon the refractive index n of the material of the prism and the angle A of the prism. It does
not depend upon the angle of incidence.

�
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When a ray of light passes from a denser medium to a rarer medium (from glass to air), it
bends away from the normal at the interface of the two media, that is, the angle of refraction
is greater than the angle of incidence. On increasing the angle of incidence, the angle of
refraction increases (Snell’s law) and for a particular angle of incidence the angle of refraction
becomes 90º, that is, the refracted ray grazes along the interface. This angle of incidence is
called the ‘critical angle’ for the interface. Thus, the critical angle is the angle of incidence in the
denser medium for which the angle of refraction in the rarer medium is 90º. Its value depends
upon the two media and the colour of light. For glass-air interface, the critical angle for the
visible mean light is about 42º.

If  the rarer medium be represented by 1 and the denser medium by 2, then by Snell’s law,
the refractive index of the rarer medium with respect to the denser medium is given by

2n1 =
sin

sin º
C

90
 = sin C

But 2n1 = 1

1 2n
, where 1n2 is the refractive index of the denser medium with respect to the

rarer medium.

Therefore,
1

1 2n
 = sin C

or 1n2 =
1

sinC

Total internal reflection: When  the  angle of incidence in the denser medium is increased even
very slightly beyond the critical angle, then the ray of light is reflected back completely into
the denser medium in accordance to the laws of reflections. This phenomenon is called the
‘total internal reflection’, total because the whole of the light is reflected back into the denser
medium.
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White light is a mixture of lights of different colours. When a beam of white light falls on a
prism, it splits into the rays of its constituents colours. This phenomenon is called the ‘disper-
sion’ of light. The reason for the dispersion is that in a material medium the light rays of
different colours travel with different speeds although in vacuum (or air) rays of all colours
travel with the same speed (3 × 108 m/sec). Hence the refractive index  n of a material is
different for different colour of light. In glass, the speed of violet light is minimum while that
of red light is maximum. Therefore, the refractive index of glass is maximum for the violet light
and minimum for the red light (nV > nR). Hence according to the formula dm = (n – 1) A, the
angle of deviation for the violet light will be greater than the angle of deviation for the red
light. When white light enters a prism, then rays of different colours emerge in different
directions. The ray of violet colour bends maximum towards  the base of the prism, while the

�
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ray of red colour bends least (Fig. 10.5). Thus,
white light splits into its constituent colours.
This is ‘dispersion’.

The angle between the emergent rays of
any two colours is called ‘angular dispersion’
between those colours. For example, the angle
q in Fig. 10.5 is the angular dispersion be-
tween red and violet rays. If dR and dV be the
angles of (minimum) deviation for the red and
the violet rays respectively, then the angular
dispersion between them is

q = dV – dR

Let nR and nV be the refractive indices of the material of the prism for the red and the violet
rays respectively and A the angle of the prism. Then for a thin prism, we have

dR = (nR – 1) A and dV = (nV – 1) A.
\ angular dispersion

q = (dV – dR)
= (nV –1) A – (nR – 1) A = (nV – nR) A.
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When white light passes through a thin prism, the ratio of the angular dispersion between the
violet and red emergent rays and the deviation suffered by a mean ray (ray of yellow colour)
is called the ‘dispersive power’ of the material of the prism. It is denoted by w.

Let nV, nR and nY be the refractive indices of the material of the prism for the violet, red and
yellow lights respectively and A the angle of the prism. Then the angular dispersion between
the violet and the red rays is given by

dV – dR = (nV – nR)A,
and the angle of deviation for the yellow ray is given by

dY = (nY – 1) A.

\ dispersive power w = � �

�
v R

Y

�   = n n

n
v R

Y

A

A
�

�

b g
( )1

w = n n
n
V R

Y

�

� 1

Our eye is most sensitive to that part of the spectrum which lies between the F line (sky-
green) and the C line (red) of hydrogen, the mean refractive index for this part is nearly equal
to the refractive index for the D line (yellow) of sodium. Hence, for the dispersive power, the
following formula is internationally accepted:

w = n n
n
F c

D

�

� 1

�
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Here F and C are respectively the sky-green and the red lines of hydrogen spectrum and
D is the yellow line of sodium spectrum. The wavelengths of these lines are respectively
1861Aº, 6563Aº and 5893Aº. (1Aº = 10–10 meter)

Thus, the dispersive power depends only upon the material of the prism, not upon refract-
ing angle of the prism. Greater is its value for a material, larger is the span of the spectrum
formed by the prism made of that material. Dispersive power flint-glass is more than that of
crown-glass.
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When a beam of white light coming from a slit S passes through a prism, it splits up into its
constituent colours and form a colour band from red to violet on a screen. This colour band is
called ‘spectrum’. In this spectrum, the different colours are not distinctly separated, but
mutually overlap. Such a spectrum is
an ‘impure spectrum’. The reason for
the impure spectrum is that the beam
of light contains a large number of
rays and each ray produces it own
spectrum.

In Fig. 10.6, the rays 1 and 2 form
their spectra R1V1 and R2V2
respectively which overlap, as shown.
Clearly, the upper and lower edges of
the composite spectrum are red and
violet respectively, but in the middle
part the colours are mixed.

When all the colours in a spectrum are distinctly separated and there is no-overlapping of
colours anywhere, then the spectrum is a ‘pure spectrum’. In practice, following conditions
should be satisfied to obtain a pure spectrum.

(i) The slit should be narrow: Then only a few rays will fall on the prism and overlapping of
colours will be reduced.

(ii) The rays falling on the prism should be parallel. Then all the rays will be incident on the
prism at the same angle and rays of the same colour emerging from the prism will be
parallel to one another which may be focussed at one point.

(iii) The rays emerging from the prism should be focussed on the screen by an achromatic
convex lens. Then the rays of different colours will be focussed on the screen at different
points.

(iv) The prism should be placed in minimum-deviation position with respect to the mean
ray and the refracting edge of the prism should be parallel to the slit. Then the focussing
of different colours at different points will be sharpest.

An arrangement for obtaining a pure spectrum is shown in Fig. 10.7.
S is a narrow slit illuminated by a white-light source placed behind it. The slit is placed at

the focus of an achromatic convex lens L1. Thus, the rays diverging from the slit are rendered
parallel by the lens L1 which is called the ‘Collimating lens’. These parallel rays fall on a prism.

�
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(placed in the position of minimum de-
viation) at the same angle of incidence.
The prism splits these rays into their con-
stituent colours. The rays of the same
colour are deviated through the same
angle and emerge parallel to one another.
All these rays are received by another
achromatic convex lens L2 which focuses
rays of different colours at different point
on a screen placed at the focus of L2. For
example, all red rays are focussed at point R and all violet rays at point V. The rays of
intermediate colours are focussed between R and V. Thus a pure spectrum is obtained on the
screen.

All requirements for obtaining a pure spectrum are fulfilled in spectrometer.
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Determination of the dispersive power of a prism.

Apparatus: A spectrometer, a glass prism, a neon lamp, reading lamp and a magnifying lens.

Formula used: The despersive power of the medium of the prism is given by

w = � �

�
b r

y

�

� 1

Where mb and mr are the refractive indices of the medium for blue and red lines respectively
and my refers to the refractive index for the D yellow line of sodium and may be written as:

my =
� �b r�

2
The refractive indices mb and mr can be determined by using the formulae:

mr =
sin ( )

sin
A

A
r� � 2
2

,  mb = 
sin( )

sin /
A

A
b� � 2
2

Where A is the angle of the prism and db and dr are the angles of minimum deviation for
the blue and red respectively.
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Manipulations:
1. Determine the vernier constant of the spectrometer.
2. Turn the telescope towards some brightly illuminated white background and move the

eyepiece in or out till the cross-wire is sharply focused.
3. Switch on the neon lamp.
4. Bring the telescope and collimator in the same straight

line and move the lamp right and left and up and
down and fix its position when the illumination of
the slit is maximum.

5. If the image of the slit is not bisected by the horizontal
cross-wire in the telescope, adjust the leveling screws
of the telescope or collimator till the slit is bisected.

6. Place the prism in the centre of the small prism table
in such a way that one of its refracting face is at right
angle to the line joining two of the levelling screws on
the small prism table.

Optical Leveling:
7. Turn the table till the edge of the prism is opposite to the middle of the collimator lens. The

image of slit will now be reflected from each of the two faces.
8. First get the image of the slit from that face of the prism, which has been kept at right

angles to the line joining the two leveling screws on the prism table. If it is not bisected by
the horizontal cross-wire it should be made to do so by adjusting either of the two screws.
This is done to ensure that the faces of the prism are vertical.

9. Now view the slit through the telescope, as it is reflected from the other face of the prism.
If it is not bisected, adjust the third screw. This operation makes the edge of the prism
vertical and parallel to the slit.

10. The prism table is thus leveled and the two faces of the prism are made vertical.
11. Turn the prism table till the beam of parallel light from the collimator enters the prism at

one face and emerges from the other. Now the refractive image of the slit will be seen. The
prism table is moved in a direction to increase the angle of incidence. As we increase the
angle of incidence, the refractive ray will move in a particular direction. At one particular
angle of incidence, the refractive ray will cease to move. This gives the position of mini-
mum deviation for the prism. If the prism is moved still further, the refractive ray will
begin to move in opposite direction. Turn the telescope a little to one side of the image and
fix it. It is evident that there are now two positions of the prism, one on each side of that
of minimum deviation, which will bring the image of the line again into view in the center
of the field of the telescope.

12. The prism is first turned to the position where the angle of incidence is greater than that
corresponding to minimum deviation. The telescope is now focused while looking at the
spectrum through the telescope.

13. Now rotate the prism table in the opposite direction till the image is again visible through
the telescope.

14. Focus the collimator.
15. Turn the prism table again so as to increase the angle of incidence till the refracted rays

after going out of the field of view are again visible.
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16. Focus the telescope.
17. Again rotate the prism table so as to decrease the angle of incidence and when the image

reappears focus the collimator.
18. If all the above operations have been performed correctly, you will find that the refracted

image will always be in sharp focus, no matter in which direction the prism is turned. This
is known as Schuster’s method of focusing the telescope and collimator.

19. Find the angle of the prism.
20. Find the angle of minimum deviation for bright red and greenish blue line of the neon

spectrum.

Observations:
1. Vernier constant of the spectrometer =
2. Readings for the angle of the prism ‘A’
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Mean A =

3. Readings for the angle of minimum deviation
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Mean: dm (red) = dr =, dm (Blue) = db =

Calculation:

mr =
sin

sin
r( )/

/
A

A
� � 2

2
 =

mb =
sin

sin
b( )/

/
A

A
� � 2

2
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my =
� �r � b

2
 =

w = � �
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Result: The dispersive power of the medium of the prism is found to be =

Precaution:
1. Use the neon tube sparingly.
2. The axis of the telescope and collimator must be perpendicular to the axis of rotation of

the prism table. The three axis should meet at a point.
3. The optical surfaces of the prism should not be touched by hand and should be cleaned

by tissue paper only.

����� &�&�2&���

Q. 1.  What do you mean by interference of light?
Ans. When the two waves superimpose over each other, resultant intensity is modified. The

modification in the distribution of intensity in the region of superposition is called
interference.

Q. 2. What is refractive index?
Ans. The ratio of the sine of the angle of incidence to the sine of angle of refraction is

constant of any two media, i.e.,

sin
sin

i
r

 = m

a constant known as refractive index.
Q. 3. Is it essential in your experiment to place the prism in the minimum deviation

position? If so, why?
Ans. Yes, it is essential because we obtain a bright and distinct spectrum and magnification

is unity i.e. the distance of the object and image from the prism is same. The rays of
different colours after refraction diverge from the same points for various colours.

Q. 4. Will the angle of minimum deviation change, if the prism is immersed in water?
Ans. Yes, the refractive index of glass in water is less than air hence angle of minimum

deviation becomes less.
Q. 5. Does the angle of minimum deviation vary with the colour of light?
Ans. Yes, it is minimum for red and maximum for violet colour.
Q. 6. Does the deviation not depend upon the length of the base of the prism?
Ans. No, it is independent of the length of the base. By increasing the length of base,

resolving power is increased.
Q. 7. What do you mean by pure spectrum?
Ans. A spectrum in which there is no overlaping of colours is known as pure spectrum. Each

colour occupies a separate and distinct position.
Q. 8. Can you determine the refractive index of a liquid by this method?
Ans. Yes, the experimental liquid is filled in a hollow glass prism.
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Q. 9. How refractive index vary with wavelengths?
Ans. Higher is the wavelength, smaller is the refractive index.

Q. 10. What is the relationship between deviation and wavelength?
Ans. Higher is deviation, smaller is wavelength i.e. deviation for violet colour is most but

wavelength is least.
Q. 11. Which source of light are you using? Is it a monochromatic source of light?
Ans. Neon lamp or mercury lamp. It is not a monochromatic source of light. The monochro-

matic source contains only one wavelength.
Q. 12. Can you not use a monochromatic source (sodium lamp)?

Ans. Yes, we can use a sodium lamp but it will give only yellow lines and not the full
specturm.

Q. 13. What is an eyepiece?
Ans. Eyepiece is a magnifier designed to give more perfect image than obtained by a single

lens.
Q. 14. Which eyepiece is used in the telescope of a spectrometer?

Ans. Ramsden’s eyepiece.
Q. 15. What is the construction of Ramsden’s eyepiece?

Ans. It consists of two plano-convex lenses each of focal length f separated by a distance
equal to 2f/3.

Q. 16. What is the construction of Huygen’s eyepiece?
Ans. It consists of two plano-convex lenses one having focal length 3f and other with focal

length f and separated at distance 2f.
Q. 17. What are chromatic and spherical abberration?

Ans. The image of white object formed by a lens is coloured and blurred. This defect is
known as chromatic abberration. The failure or inability of the lens to form a point
image of a axial point object is called spherical abberration.

Q. 18. How these two defects can be minimised?
Ans. The chromatic aberration can be minimised by taking the separation between two

lenses d f f� �1 2 2b g/ .
The spherical aberration can be minimised by taking the separation as the difference
of two focal lengths d = (f1 – f2)/2.

Q. 19. What is the main reason for which Ramsden’s eyepiece is used with a
spectrometer?

Ans. In this eyepiece, the cross wire is outside the eyepiece and hence mechanical adjust-
ment and measurements are possible.

Q. 20. What is a telescope? What is its construction?
Ans. It is an instrument designed to produce a magnified and distinct image of very distinct

object. It consists of a convex lens and eyepiece placed coaxially in a brass tube. The
lens towards the object is called objective. This is of wide aperture and long focal-
length. Observations are made by eyepiece. This is fitted in a separate tube which can
slide in main tube.

Q. 21. What do you mean by dispersive power? Define it.
Ans. The dispersive power of a material is its ability to disperse the various components of

the incident light. For any two colours, it is defined as the ratio of angular dispersion
to the mean deviation, i.e.
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Q. 22. On what factors, the dispersive power depends?
Ans. It depends upon (i) material and (ii) wavelengths of colours.

Q. 23. Out of the prism of flint and crown glasses, which one will you prefer to use?
Ans. We shall prefer a prism of flint glass because it gives greater dispersion.

Q. 24. What is a normal spectrum?
Ans. A spectrum in which angular separation between two wavelengths is directly propor-

tional to difference of the wavelengths is called a normal spectrum.
Q. 25. Do you think that a prismatic spectrum a normal one?

Ans. No.
Q. 26. Can you find out the dispersive power of a prism with sodium light?

Ans. No, this is a monochromatic source of light.
Q. 27. How many types of spectra you know?

Ans. There are two main types of spectra: (i) emission spectra and (ii) absorption spectra.
Q. 28. What type of spectra do you expect to get from (i) an incandescent filament lamp (ii)

sun light (iii) mecury lamp?
Ans. (i) continuous spectrum, (ii) band spectrum and (iii) Line spectrum.

Q. 29. What is difference between a telescope and microscope?
Ans. Telescope is used to see the magnified image of a distinct object. Its objective has large

aperture and large focal-length. The microscope is used to see the magnified image of
very near object. Its objective has small focal-length and aperture.

Q. 30. Without touching can you differentiate between microscope and telescope?
Ans. The objective of microscope has small aperture while the telescope has a large aper-

ture.
Q. 31. What is that which you are adjusting in focussing the collimator and telescope for

parallel rays?
Ans. In case of collimator, we adjust the distance between collimating lens and slit while in

case of telescope the distance between cross wires from the objective lens is adjusted.
Q. 32. What are these distances equal to when both the adjustments are complete.

Ans. The slit becomes at the focus of collimating lens in collimator and cross wires become
at the focus of objective lens in telescope.

Q. 33. How can telescope and collimator be adjusted together?
Ans. (i) the prism is set in minimum deviation for yellow colour.

(ii) Prism is rotated towards telescope and telescope is adjusted to get a well defined
spectrum.

(iii) Now the prism is rotated towards collimator and the collimator is adjusted to get
well defined spectrum.

(iv) The process is repeated till the spectrum is well focussed. This is known as
Schuster’s method.

Q. 34. Why do you, often, use sodium lamp in the laboratory?
Ans. Sodium lamp is a convenient source of monochromatic light.

Q. 35. Do you know any other monochromatic source of light?
Ans. Red line of cadmium is also monochromatic source.

Q. 36. Why are two verniers provided with it?
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Ans. Because one vernier will not give the correct value of the angle of rotation due to
eccentricity of the divided circles with respect to the axis of the instruments. Two
verniers eliminates this error.

Q. 37. Why are the lines drawn on the prism table?
Ans. With the help of these lines we can place the prism on the table in any particular

manner. For example, when we measure the angle of the prism, we keep the prism
such that it is at the centre of the table and one of its faces perpendicular to the line
joining two of the levelling screws.

Q. 38. Why are the concentric circles drawn on the prism table?
Ans. These help us in placing the prism on the table such that axis of rotation of the table

passes through the centre of the circumscribing circle of the prism.
Q. 39. Why is it necessary to place the prism on the table with the help of lines or circles?

Ans. Because, this minimises the error due to lack of parallism of the incident light.
Q. 40. What conclusion will you draw if the spectrum becomes rapidly worse in this

process?
Ans. This means that the adjustments of the collimator and the telescope are being done in

the wrong order.
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Q. 1. What is critical angle?
Q. 2. Why do you measure 2q and not q?
Q. 3. What is a spectrometer?
Q. 4. What are the requisites of a good spectrometer?
Q. 5. Explain the working of its essential mechanical and optical parts.
Q. 6. Why is the slit not permanently fixed at the focus of the collimating lens?
Q. 7. Has the aperture of the collimating lens anything to do with the brightness of the

spectrum?
Q. 8. Explain the working of the slit.
Q. 9. Why are lines drawn on the prism table?

Q. 10.  Why is it provided with levelling screws and why is the spectrometer not provided
with these?

Q. 11.  Explain the use of the three levelling screws in the adjustment of the prism table.
Q. 12. What is the function of the clamping and the tangent screw attached to the prism

table?
Q. 13. How do you focus the telescope for parallel rays?
Q. 14. Explain the various methods used for this adjustment.
Q. 15. Why is the telescope not permanently focussed for infinity?
Q. 16. How do you level the prism table?
Q. 17. Can a spirit level be used for this adjustment?
Q. 18. What mechanical adjustments should the spectrometer be tested for before making

any optical adjustments?
Q. 19. What is the difference between the readings of the two verniers?
Q. 20. Explain the difference between a spectrometer, a spectroscope and a spectrograph.
Q. 21. Why does light undergo dispersion when passed through a prism?
Q. 22. Explain Schuster’s method.
Q. 23. What is the theory of Schuster’s method?
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The phenomenon of interference of light has proved the validity of the wave theory of light.
Thomas Young successfully demonstrated his experiment on interference of light in 1802.
When two or  more wave trains act simultaneously on any particle in a medium, the displace-
ment of the particle at any instant is due to the superposition of all the wave trains. Also, after
the superposition, at the region of cross over, the wave trains emerge as if they have not
interfered at all. Each wave train retains its individual characteristics. Each wave train behaves
as if others are absent. This principle was explained by Huygens in 1678.

From the principle of superposition of waves we know that when two wave trains arrive
simultaneously at a point, the resultant vibrations have  an amplitude different from the sum
of the contributions by the two waves acting separately. This modification of amplitude
obtained by superposition of two waves in known as interference. It is a characteristic of the
wave motion. If the two waves arrive at the point in the same phase, the resulting amplitude
is large, and if they arrive in opposite phase resulting amplitude is very small, zero if the two
amplitude are equal. The former is called the constructive interference while the latter, the
destructive interference. Light also exhibits the phenomenon of interference.
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The essential conditions for observing a sustained and good interference pattern are:

1. The two sources of light must be coherent, i.e., they should have a constant phase
difference not changing with time.

2. The two wave-trains must have the same frequency i.e. the two sources must be mono-
chromatic.

3. The two-light wave-trains must be transmitting in the same direction or make a very
small angle with each other.

4. For good contrast the amplitudes should be equal or nearly equal.
5. For interference of polarised waves, they must be in the same state of polarisation.

���� ��������	 �������

The intensity at any point depends upon the phase difference between the two waves arriving
at that point, which in turn depends upon
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(a) The phase difference between the sources themselves, and
(b) The geometrical arrangement which determines the path difference D between the two

sources and the point under consideration.

It is clear that the phase difference at a point due to path difference does not change with
time as it depends upon the geometrical arrangement of the experiment. Hence to achieve the
condition that the total phase difference at the point under consideration may not change with
time, the phase difference between the sources themselves should not change with time. Two
such sources, whose phase difference does not change with time are known as coherent
sources. The condition of coherent sources is the basic condition for obtaining a sustained (i.e.,
not changing with time) pattern of interference.

If the phase difference between the sources does not vary from time to time, then the
brightness or darkness at different points in space is determined by the geometry of the
experimental arrangement alone and does not change with time. If, however, the phase differ-
ence between the two sources varies with time, than intensity at each observed point will also
vary with time. We shall than observe only time average of intensity and this will be the same
at all points of observation. It may be noted that at any given instant fringes are still formed
but their positions change rapidly with time due to change of phase relation between the
sources; and hence the fringes are blurred out to uniform intensity. Therefore, it is important
for observing a sustained interference pattern with light that the phase relation between the
two sources does not change with time i.e., the sources are coherent.

In the emission of light a huge number of atoms are participating and the emission from
each atom is also randomly changing phase from time to time. It is, therefore, impossible to
have two independent sources having fixed phase relation. Even two different portions of the
same source will not have a fixed phase relation. The only alternative is to get ‘photo copies’
from the single source. These can be obtained by various methods. In that case whatever
change of phase takes place in the source, also take place in these ‘copies’, so that the difference
of phase does not change with time.

In practice two coherent source are realized from a single source by the following
methods.

1. A real narrow source and its virtual image produced by reflection as in Lloyd’s single
mirror.

2. Two virtual images of the same source produced by reflection as in Fresnel’s double
mirror.

3. Two virtual images of the same source produced by refraction as in Fresnel’s biprism.
4. Two real images of the same source produced by refraction as in Billet’s split lens.
5. By dividing the amplitude of a portion of the wave-front into two parts by reflection or

refraction or both. This type of interference is produced in Newton’s rings, Michelson’s
interferometer etc.

���� �� ��	����������	 ��	� ��	����������

If the path difference between the two waves is l, the phase difference = 2p
Suppose for a path difference x, the phase difference is d.
For a path difference l, the phase difference = 2p
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\ For path difference x, the phase difference = 2�
�

x

Phase difference d = 2�
�

x  = 2�
�

 × path difference

Analytical Treatment of Interference: Consider a narrow slit S illuminated with monochro-
matic source emitting waves of wave length l. Let A and B be two parallel t slits lying very
close to each other and equidistant from the source S. The waves arriving at A and B will be in
phase. On emergence from the slits A and B, the waves proceed as if they have started from A
and B. To find the intensity at any point P on the screen XY placed parallel to A and B, let the
general equation of the wave reaching P from A be

y1 = a sin
2�
�

vt

where y1 is the displacement of particle from its mean position at any
time t, v the velocity of propagation of the wave of wave length l and a
the amplitude.

If y2 be the displacement of the wave reaching P from B and x the
path-difference with respect to the first wave from A, then general equa-
tion of the second wave is given by

y2 = a sin 
2�
�

 (vt + x)

When the two waves superimpose, the resultant displacement Y is given by

Y = y1 + y2 = a sin 
2�
�

vt
 + a sin 

2�
�

 (vt + x)

Using the relation

sin A + sin B = 2 sin 
A B�

2
 cos 

A B�
2

 to simplify, we get

Y = 2a cos 
2

2
�

�

xF
HG

I
KJ   sin 

2�
�

 vt
x

�
F
HG

I
KJ2

This is the equation of a simple harmonic vibration of amplitude

A = 2a cos 
2

2
�

�

xF
HG

I
KJ  = 2a cos 

�

�
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I
KJ

For the amplitude to be minimum

cos �
�

x  = 0  or  �
�

x  = 
�

2
, 

3
2
�

 ... (2n + 1) 
�

2

or x = (2n + 1)
�

2
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This shows that the intensity is minimum when the path  difference between the two wave
trains is equal to an odd multiple of half a wave length.

For the amplitude to be maximum

cos �
�

x
 = 1  or  �

�

x  = 0, p, 2p, ... pn

or x = nl
Thus the intensity is maximum if the path-difference between the two wave trains is an

even multiple of half a wave length.
The amplitude of the resultant wave can be written as

A = 2a cos 
�

2
where d is the phase-difference between the two waves reaching P at any instant, as the phase-
difference for a path-difference l is 2p and hence the phase-difference for a path difference x is

d = 2 2�

�

�

�
x �  × path–difference

\ Intensity, I = A2 = 4a2 cos2 
�

2

Hence the intensity is proportional to cos2 �

2
.

Special Cases:
(i) When the phase difference d = 0, 2p, 2(2p), ... n(2p), or the path difference x = 0, l, 2l,

. . . nl
I = 4a2

Intensity is maximum when the phase difference is a whole number multiple of 2p or
the path difference is a whole number multiple of wavelength.

(ii) When the phase difference, d = p, 3p, ... (2n + 1) p, or the path difference

x = 
� � �

2
3
2 2

, , ,
�

 ... (2n + 1) 
�

2
.

I = 0
Intensity is minimum when the path difference is an odd number multiple of half wave-
length.

Energy Distribution: It is found that the intensity at bright points is 4a2 and at dark points it
is zero. According to the   law of conservation of energy, the energy cannot be destroyed. Here
also the energy is not destroyed but only transferred
from the points of minimum intensity to the points of
maximum intensity. For, at bright points, the intensity
due to the two waves should be 2a2 but actually it is 4a2.
As shown in Fig. 11.2 the  intensity varies from 0 to 4a2,
and the average is still 2a2. It is equal to the uniform
intensity 2a2 which will be present in the absence of the
interference phenomenon due to the two waves.

���	����
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Therefore, the formation of interference fringes is in accordance with the law of conservation
of energy.

���! �����"	��	 ������������	�������

Consider a narrow monochromatic source S and two pinholes A and B, equidistant from S. A
and B act as two coherent sources separated by a distance d. Let a screen be placed at a distance
D from the coherent sources. The point C on the screen is equidistant from A and B. Therefore,
the path difference between the two waves is zero. Thus, the point C has maximum intensity.
Consider a point P at a distance x from C, The waves reach at the point P from A and B.

Here PQ = x – d
2

, PR = x + d
2

(BP)2 – (AP)2 = D x
d

D x
d2

2
2

2

2 2
� �
F
HG

I
KJ

L
N
MM

O
Q
PP
� � �

F
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I
KJ

L
N
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PP

  

= 2xd

BP – AP = 2xd
BP AP�

But BP = AP = D (approximately)

\ Path difference = BP – AP = 
2
2
xd
D

 = xd
D

Phase difference = 2�
�

xd
D

F
HG

I
KJ

(i) Bright fringes: If the path difference is a whole number multiple of wavelength l, the point
P is bright

\ xd
D

 = nl

where n = 0, 1, 2, 3, ...

or x =
n D

d
�

This equation gives the distances of the bright fringes from the point C. At C, the path
difference is zero and a bright fringe is formed

when n = 1, x1 = 
�D
d

n = 2, x2 = 
2�D

d
.......... ..........

���	����
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xn =
n D

d
�

Therefore the distance between any two consecutive bright fringes.

x2 – x1 =
2� � �D

d
D
d

D
d

– �

(ii) Dark fringes: If the path difference is an odd number multiple of half wavelength, the point
P is dark.

xd
D

 = (2n + 1) �

2
 where n = 0, 1, 2, 3, ...

or x =
( )2 1

2
n D

d
� �

This equation gives the distances of the dark fringes from the point C.

when n = 0, x0 = �D
d2

n = 1, x1 = 
3
2
�D
d

.......... ..........

and xn = ( )2 1
2

n D
d

� �

The distance between any two consecutive dark fringes.

x2 – x1 =
5
2
�D
d

 – 3
2
�D
d

 = 
�D
d

This shows that the distance between  two consecutive dark or consecutive bright fringes
is equal. This distance is known as the fringe-width.

If D and d are constants, then the fringe-width b µ l.
Hence fringes produced by light of shorter wavelengths will be narrow as compared to

those produced by longer wavelengths.
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When a ray of light is reflected at the surface of a medium which is
optically denser than the medium through which the ray is travel-

ling, a change of phase equal to p or a path difference 
�

2
 is intro-

duced. When reflection takes place at the surface of a rarer medium,
no change in phase or path-difference takes place.

Let PQ be the surface separating the denser medium  below it
from the rarer medium above it as shown in Fig. 11.4. A ray of light
AB of amplitude a incident on this surface is partly reflected along BC and partly refracted into

���	����
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the denser medium along BD. If r is the coefficient of reflection at the surface of a denser
medium, i.e., the fraction of the incident light which is reflected, then

Amplitude of the ray BC = ar
If ‘t’ is the coefficient of transmission from the rarer into the denser medium i.e.,  the

fraction of the incident light transmitted, then
Amplitude of the refracted ray BD = at if there is no absorption of light, then

ar + at = a
or r + t = 1

If the reflected and the refracted rays are reversed the resultant should have the same
amplitude ‘a’ as that of the incident ray.

When CB is reversed it is partly reflected along BA and partly refracted along BE.
The amplitude of the refracted ray along BE = art
Similarly when the ray DB is reversed it is partly refracted along BA and partly reflected

along BE. IF r¢ is the coefficient of reflection at the surface of a rarer medium, then
Amplitude of the reflected ray along BE = atr¢
The two amplitudes along BA will combine together to produce the original amplitude,

only if the total amplitude along BE is zero.

\ art + ar¢t = 0

or r = –r¢
The negative sign shows that when one ray has a positive displacement the other has a

negative displacement. Hence the two rays, one  reflected on reaching a denser medium and
the other reflected on reaching a rarer medium, differ in phase by p from each other.

This explains the presence of a central dark spot in Newton’s rings and is also responsible
for the reversal of the condition of darkness and brightness produced in the reflected and
transmitted systems in colours of thin films and in the fringes produced by Lloyd’s single
mirror.

���( ������������	��	����	���&�

Newton and Hooke observed and developed the interference phenomenon due to multiple
reflections from the surface of thin transparent materials. Everyone is familiar with the beau-
tiful colours produced by a thin film of oil on the surface of water and also by the thin film of
a soap bubble. Hooke observed such colours in thin films of mica and similar thin transparent
plates. Newton was able to show the interference rings when a convex lens was placed on a
plane glass-plate. Youngs was able to explain the phenomenon on the basis of interference
between light reflected from the top and the bottom surface of a thin film. It has been observed
that  interference  in the case of thin films takes place due to (1) reflected  light and (2)
transmitted light.

���) ������������	���	��	���������	�����	*����	���&�+

Consider a transparent film of thickness ‘t’ and refractive index m. A ray SA incident on the
upper surface of the film is partly reflected along AT and partly refracted along AB. At B part
of it is reflected along BC and finally emerges out along CQ. The difference in path between the
two rays AT and CQ can be calculated. Draw CN normal to AT and AM normal to BC. The
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angle of incidence is i and the angle of refraction is r. Also produces
CB to meet AE produced at P. Here –APC = r.

The optical path difference
x = m (AB + BC) – AN

Here m =
sin
sin

i
r

 = AN
CM

\ AN = m ◊ CM
x = m (AB + BC)  – m ◊ CM

= m (AB + BC – CM) = m (PC – CM) = mPM

In the DAPM, cos r =
PM
AP

or PM = AP ◊ cos r = (AE + EP) cos r = 2t cos r.
� AE = EP = t
\ x = m ◊ PM = 2mt cos r ...(i)
This equation (i), in the case of reflected light does not represent the correct path difference

but only the apparent. It has been established on the basis of electromagnetic theory that, when
light is reflected from the surface of an optically denser medium (air-medium interface) a

phase change p equivalent to a path difference 
�

2
 occurs. Therefore, the correct path difference

in this case,

x = 2mt cos r – 
�

2
...(ii)

1. If the path difference x = nl  where n = 0, 1, 2, 3, 4 etc, constructive interference takes place
and the film appears bright.

\ 2 mt cos r – �
2

 = nl

or 2 mt cos r = (2n + 1)
�

2
...(iii)

2. If the path difference x = (2n +1 )
�

2
 where n = 0, 1, 2, ... etc., destructive interference takes

place and the film appears dark.

\ 2mt cos r – �
2

 = (2n + 1) 
�

2
or 2mt cos r = (n + 1) l

Here n is an integer only, therefore (n + 1) can also be taken as n.
\ 2mt cos r = nl

where n = 0, 1, 2, 3, 4, ... etc
It should be remembered that the interference patterns will not be perfect because the

intensities of the rays AT and CQ will not be the same and their amplitude are different. The
amplitudes will depend on the amount of light reflected and transmitted through the films. It
has been found that for normal incidence, about 4% of the incident light is reflected and 96%

���	���,
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is transmitted. Therefore, the intensity never vanishes
completely and perfectly dark fringes will not be
observed for the rays AT and CQ alone. But in the case
of multiple reflection, the intensity of the minima will
be zero.

Consider reflected rays 1, 2, 3 etc. as shown in Fig.
11.6. The amplitude of the incident ray is a. Let r be the
reflection coefficient, t the transmission coefficient from
rarer to denser medium and t¢ the transmission coeffi-
cient from denser to rarer medium.

The amplitudes of the reflected rays are: ar, a◊tr t ¢, atr3 t ¢, atr5 t¢, ... etc. The ray 1 is reflected
at the surface of a denser medium. It undergoes a phase change p. The rays 2, 3, 4 etc. are all
in phase but out of phase with ray 1 by p.

The resultant amplitude of 2, 3, 4 etc. is given by
A = atrt ¢ + atr3 t¢ + atr5 t¢ + ...

= att ¢ r [1 + r2 + r4 + ...]
As r is less than 1, the terms inside the brackets form a geometric series.

A = att ¢r 1
1 12 2�

L
N
MM

O
Q
PP
�

�

�

L
N
MM

O
Q
PPr

att r
r

According to the principle of reversibility
tt ¢ = 1 – r2

\ A =  
a r r

r
( )
( )
1
1

2

2
�

�
 = ar

Thus the resultant amplitude of 2, 3, 4, ... etc is equal in magnitude of the amplitude of ray
1 but out of phase with it. Therefore the minima of the reflected system will be of zero intensity.

����- ������������	���	��	�� ��&�����	�����	*����	���&�+

Consider a thin transparent film of thickness t and
refractive index m. A ray SA after refraction goes along
AB. At B it is partly reflected along BC and partly
refracted along BR. The ray BC after reflection at C,
finally emerges along DQ. Here at B and C reflection
takes place at the rarer medium (medium—air inter-
face). Therefore, no phase change occurs. Draw BM
normal to CD and DN normal to BR. The optical path
difference between DQ and BR is given by,

x = m (BC + CD) – BN

Also m =
sin
sin

i
r

 = BN
MD

  or  BN = m◊MD

In Fig. 11.7 –BPC = r and CP = BC = CD

���	���#
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\ BC + CD = PD
\ x = m (PD) – m (MD) = m (PD – MD) = mPM

In the D BPM, cos r =
PM
BP

  or  PM = BP ◊ cos r

But, BP = 2t
\ PM = 2t cos r
\ x = m◊PM = 2mt cos r

(i) for bright fringes, the path difference x = nl
\ 2mt cos r = nl
where n = 0, 1, 2, 3, ... etc.

(ii) For dark fringes, the path difference x = (2n + 1)
�

2
\ 2mt cos r =

( )2 1
2

n � �

where n = 0, 1, 2, ... etc.

In the case of transmitted light, the interference fringes obtained are less distinct because
the difference in amplitude between BR and DQ is very large. However, when the angle of
incidence is nearly 45º, the fringes are more distinct.
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When white light is incident on a thin film, the light which comes from any point from it will
not include the colour whose wavelength satisfies the equation 2mt cos r = nl, in the reflected
system. Therefore, the film will appear coloured and the colour will depend upon the thick-
ness and the angle of inclination. If r and t are constant, the colour will be uniform. In the case
of oil on water, different colours are seen because r and t vary.

1. If t and r are constant, the path-difference varies with m or the wavelength of light. White
light is composed of various colours, therefore, these colours will appear in the order
violet, blue etc, as the wave-length l increases.

2. If the angle of incidence changes, r also changes and hence the path-difference also
changes. If, therefore, we view the film in various directions, different colours will be seen
with white light.

3. When the thickness of the film varies, the film passes through various colours for the same
angle of incidence.

From what has been said it is clear that colours in the transmitted and the reflected systems
are complementary.

����� ������
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Non-reflecting glass surfaces can be prepared by depositing a thin layer or film of a transpar-
ent material. The refractive index of the material is so chosen that it has an intermediate value
between glass and air. The thickness of the film is so chosen that it introduces a path-difference
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of 
�

2
. For example the refractive index of magnesium fluoride is 1.38. This value is greater

than the refractive index of air and smaller than the refractive index of glass ( m = 1.5). The ray
AB   suffers reflection at B on the surface of a denser medium and proceeds along BC. A part
of it moves along BD and after suffering reflection again at the surface of a denser medium
(glass) emerges out along EF. Hence same phase-change occurs in both the rays at each
reflection.

The optical path-difference for normal incidence will be 2mt, where m is the refractive index
of the material of film and t its thickness. There will be destructive interference if


���	����

2mt = (2n – 1)
�

2
where n = 1, 2, 3, ...

For n = 1, 2mt = 
�

2
Hence the minimum thickness of the coating required for reflection at the centre of visible

spectrum (l = 5.5 × 10–5cm) for Mg F2 is given by

t = �

�4
 = 

5 5 10
4 1 38

5.
.

�

�

�

 = .996 ×10–5cm

It may be noted that some reflection does take place on both the longer and shorter
wavelength and reflected light has a purple colour. By coating the surface of a lens or prism the
over all reflection can be reduced from 4 to 5 per cent to a fraction less than one-per cent.

This method is highly useful in reducing loss of light by reflection in instruments like
periscope which has a number of air-glass surface.

����� ��������	�
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Interference fringes obtained in the case of Fresnel’s biprism inclined mirrors and Lloyd’s
single mirror were produced by two coherent sources. The source used is narrow. These
fringes can be obtained on the screen or can be viewed with an eyepiece. In the case of
interference in thin films, the narrow source limits the visibility of the film.
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Consider a thin film and a narrow source of
light at S. The ray 1 produces interference fringes
because 3 and 4 reach the eye whereas the ray 2
meets the surface at some different angle and is
reflected along 5 and 6. Here, 5 and 6 do not reach
the eye. Similarly we can take other rays incident at
different angles on the film surface which do not
reach the eye. Therefore, the portion A of the film is
visible and not the rest.

If an extended source of light is used, the ray 1 after reflection from the upper and the
lower surface of the film emerges as 3 and 4 which reach the eye. Also ray 2 from some other
point of the source after reflection from the upper and the lower surfaces of the film emerges
as 5 and 6 which also reach the eye. Therefore, in the case of such a source of light, the rays
incident at different angles on the film are accommodated by the eye and the field of view is
large. Due to this reason, to observe interference phenomenon in thin film, a broad source of
light is required. With a broad source of light, rays of light are incident at different angles and
the reflected parallel beams reach the eye or the microscope objective. Each such ray of light
has its origin at a different point on the source.
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Let ABC be a wedge-shaped film of refractive in-
dex m, having a very small angle at A, as shown in
Fig. 11.10. If a parallel beam of monochromatic light
is allowed to fall on the upper surface and the sur-
face is viewed by reflected light, then alternate dark
and bright fringes become visible.

Consider  a point P at a distance x1 from A
where the thickness of the film is t. When light is
incident normally the total path-difference between
the light reflected at R from the upper face AB and that reflected at P from the lower face AC

is 2mt + 
�

2
 as an additional path-difference of 

�

2
 is produced in the beam reflected from the

upper face AB at R where reflection takes place at the surface of a denser medium. The point
P will appear dark and a dark band will be observed across the wedge, if
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2mt + �
2

 = (2n + 1) �

2
  or  2mt = nl

The point P will appear bright and a bright band will be observed across the wedge, if

2mt + 
�

2
 = nl  or  2mt = (2n – 1)

�

2
If the nth dark fringe is formed at P, then

2mt = nl

But t
x1

 = q

or t = x1q
\ 2m ◊ x1q = nl ...(i)
Similarly for the (n + 1) the dark band, which is formed at Q at a distance x2 from A, we

have
2mx2q = (n + 1) l ...(ii)

Subtracting (i) from (ii), we have
2mq (x2 – x1) = l

or Fringe-width b = x2 – x1 = 
�

��2

Similarly if we consider two consecutive bright fringes the fringe width b will be the same.
A wedge-shaped air film can be obtained by inserting a thin piece of paper or hair between

two plane parallel plates.

For air film m = 1, and q = 
t
x

Where t is the thickness of the hair and x its distance from the edge where the two plates
touch each other.
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If the two surfaces OA and OB are perfectly plane,
the air-film gradually varies in thickness from O to
A. The fringes are of equal thickness because each
fringe is the locus of the points at which the thick-
ness of the film has a constant value. This is an
important application of the phenomenon of inter-
ference. If the fringes are not of equal thickness it
means the surfaces are not plane. The standard
method is to take an optically plane surface OA and
the surface to be tested OB. The fringes are observed
in the field of view and if they are of equal thickness the surface OB is plane. If not, the surface
OB is not plane. The surface OB is polished and the process is repeated. When the fringes
observed are of equal width, it means that the surface OB is plane.
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Circular interference fringes can be produced by enclosing a very thin film of air or any other
transparent medium of varying thickness between a plane glass plate and a convex lens of a
large radius of curvature. Such fringes were first obtained by Newton and are known as
Newton’s rings.

When a plane-convex lens of long focal length is placed on a plane glass plate, a thin film
of air is enclosed between the lower surface of the lens and the upper surface of the plate. The
thickness of the air film is very small at the point of contact and gradually increases from the
centre outwards. The fringes produced with
monochromatic light are circular. The fringes are
concentric circles, uniform in thickness and with
the point of contact as the centre. When viewed
with white light, the fringes are coloured. With
monochromatic light, bright and dark circular
fringes are produced in the air film.

S is a source of monochromatic light as shown
in Fig. 11.12. A horizontal beam of light falls on
the glass plate B at 45º. The glass plate B reflects
a part of the incident light towards the air film
enclosed by the lens L and the plane glass plate
G. The reflected beam from the air film is viewed
with a microscope, Interference takes place and
dark and bright circular fringes are produced.
This is due to the interference between the
light reflected from the lower surface of the
lens and the upper surface of the glass plate
G.

Theory:
(i) Newton’s rings by reflected light: Suppose the
radius of curvature of the lens is R and the air
film is of thickness t at a distance of OQ = r
from the point of contact O.

Here, interference is due to reflected light.
Therefore, for the bright rings

2mt cos q = (2n – 1) 
�

2
...(i)

where n = 1, 2, 3, ... etc.
Here, q is small, therefore

cos q = 1
For air, m = 1

2t = (2n – 1) 
�

2
...(ii)

For the dark rings
2mt cos q = nl
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or 2t = nl ...(iii)
where n = 0, 1, 2, 3, ...... etc.

In Fig. 11.13(b) EP × HE = OE × (2R – OE)
But EP = HE = r,  OE = PQ = t

and 2R – t = 2R  (Approximately)
r2 = 2R ◊ t

or t = r
R

2

2
Substituting the value of t in equations (ii) and (iii).

For bright rings r2 =
( )2 1

2
n R� �

r =
( )2 1

2
n R� �

For dark rings
r2 = nlR

r = n R�

when n = 0, the radius of the dark ring is zero and the radius of the bright ring is 
�R
2

.

Therefore, the centre is dark. Alternately, dark and bright rings are produced.

Result: The radius of the dark ring is proportional to

(i) n ,  (ii) �   and  (iii) R.
Similarly the radius of the bright ring is proportional to

(i) 
( )2 1

2
n �

,  (ii) �   and  (iii) R.

If D is the diameter of the dark ring

D = 2r = 2 n R�

For the central dark ring
n = 0

D = 2 n R�  = 0

This corresponds to the centre of the Newton’s rings.
While counting the order of the dark rings 1, 2, 3 etc, the central ring is not counted.
Therefore for the first dark ring

n = 1
D1 = 2 �R

For the second dark ring
n = 2

D2 = 2 2�R
and for the nth dark ring


���	�����
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Dn = 2 n R�
Take the case of 16th and 9th rings

D16 = 2 16 8� �R R�

D9 = 2 9 6� �R R�
The difference in diameters between the 16th and the 9th rings,

D16 – D9 = 8 6 2� � �R R R� �
Similarly the difference in the diameters between the fourth and first rings,

D4 – D1 = 2 4 2 2� � �R R R� �
Therefore, the fringe width decreases with the order of the fringe and the fringes get closer

with increase in their order.
For bright rings,

rn
2  = ( )2 1

2
n R� �

Dn
2  =

2 2 1
2

( )n R� �

rn =
( )2 1

2
n R� �

In above equation, substituting n = 1, 2, 3 (number of the ring) the radii of the first, second,
third etc., bright rings can be obtained directly.

����$ ������%�	����	��	����������	����

In the case of transmitted light, the interference fringes are produced such that for bright rings,
2mt cos q = nl

and for dark rings

2mt cos q = (2n – 1) 
�

2
Here, for air m =1, and cos q = 1
For bright rings 2t = nl

and for dark rings 2t = (2n – 1) 
�

2
Taking the value of t = r

R

2

2
,  where r is the radius of the ring and R the radius of curvature

of the lower surface of the lens, the radius for the bright and dark rings can be calculated.
For bright rings, r2 = nlR

For dark rings, r2 =
( )2 1

2
n R� �

where n = 1, 2, 3, ..., etc.
When n = 0, for bright rings r = 0
Therefore, in the case of Newton’s rings due to transmitted light, the central ring is bright

i.e. just opposite to the ring pattern due to reflected light.
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The arrangement used is shown earlier. In Figure S is a source of sodium light. A parallel beam
of light from the lens L1 is reflected by the glass plate B inclined at an angle of 45° to the
horizontal. L is a plano-convex lens of large focal length. Newton’s rings are viewed through
B by the travelling microscope M focussed on the air film. Circular bright and dark rings are
seen with the centre dark. With the help of a travelling microscope, measure the diameter of
the nth dark ring.

Suppose, the diameter of the nth ring = Dn
rn

2 = nlR

But rn =
Dn

2

\ Dnb g2

4
 = nlR

or Dn
2 = 4nlR ...(i)

Measure the diameter of the (n + m)th dark ring.

Let it be Dn + m \  
Dn+mb g2

4
 = (n + m) lR

or (Dn + m)2 = 4 (n + m) lR ...(ii)
Subtracting (i) from (ii)

(Dn + m)2 – (Dn)2 = 4mlR

l =
D D

mR
n+m nb g b g2 2

4
�

Hence, l can be calculated. Suppose the diameters of the 5th ring and the 15th ring are
determined. Then m = 15 – 5 = 10.

\ l =
D D

R
15

2
5

2

4 10
b g b g�

�

The radius of curvature of the lower surface of the lens is determined with the help of a
spherometer but more accurately it is determined by Boy’s method.

Hence the wavelength of a given monochromatic source of light can be determined.
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����&�	���'	�
	�	�(��	����	������%�	����

The experiment is performed when there is an air film between the plano-convex lens and the
optically plane glass plate. These are kept in a metal container C. The diameter of the nth and
the (n+m)th dark rings are determined with the help of a travelling microscope.

For air (Dn+m)2 = 4 (n + m) lR,  Dn
2 = 4nlR

D2
n+m – Dn

2 = 4 mlR ...(i)
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The liquid is poured in the container C without disturbing the arrangement. The air film
between the lower surface of the lens and the upper surface of the plate is replaced by the
liquid. The diameters of the nth ring and the (n+m)th ring are determined.

For the liquid, 2mt cos q = nl for dark rings

2mt = nl, But t = r
R

2

2

or 2
2

2�r
R

 = nl

or r2 = n R�
�

  But r = D
2

;

D2 =
4n R�
�

If �Dn is the diameter of the nth ring and D'n+m is the diameter of the (n + m)th ring

then (D'n+m)2 =
4 ( )

;
n m R� �

�
  (D'n)2 = 

4n R�
�

...(i)

or (D¢n+m)2 – (D¢n)2 = 4m R�
�

...(ii)

or m =
4

1 1 2
m R

D D

�

( ) ( )n m n� �
...(iii)

If m, l, R, D'n + m and D'n are known m can be calculated.
If l is not known then divide (iii) by (i) we get

m = ( ) ( )
( ) ( )
D D

D D
n m n

n m n

�
	

�
	

�

� � �

2

2
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The rings formed by reflected light have a dark centre when there is an air film between the
lens and the plane glass plate. At the centre, the two surfaces are just in contact but the two
interfering rays are reflected under different conditions due to which a path difference of half
a wavelength occurs (since one of the rays undergoes a phase change of p, when reflected from
the glass plate).

Consider a transparent liquid of refractive index m trapped
between the two surfaces in contact. The refractive index of the
material of the lens is m1 and that of the glass plate is m2 such
that m1 > m > m2. This is possible if a little oil of sassafaras is
placed between a convex lens of crown glass and a plate of flint
glass. The reflections in both the cases will be from denser to
rarer medium and the two interfering rays are reflected under
the same conditions. Therefore, in this case the central spot will
be bright.

The diameter of the nth bright ring.

Dn = 2
n R�
�

The central spot will also be bright, if m1 < m < m2, because a path difference of 
�

2
 takes place

at both the upper and the lower glass-liquid surfaces. Here again the two interfering beams are
reflected under similar conditions. In this case also the central spot is bright due to reflected
light.
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With monochromatic light, Newton’s rings are alternately dark and bright. The diameter of
the ring depends upon the wavelength of light used. When white light is used, the diameter
of the rings of the different colours will be different and coloured rings are observed. Only the
first few rings are clear and after that due to overlapping of the rings of different colours, the
rings cannot be viewed.

����� ����
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An interference filter is based on the principle of Fabry-Perot interferometer. It consists of an
optical system that will transmit nearly a monochromatic beam of light (covering a small
range of 50Å).

An interference filter consists of a thin transparent dielectric
e.g. magnesium fluoride. There are two glass plates on whose
surfaces semi-transparent silver films are deposited by evapora-
tion method. The dielectric is placed between the two glass plates.
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When a beam of light is incident normally on the filter, multiple reflections take place
within the film. The interference maxima for the transmitted beam will be governed by

2mt = nl
Here m is the refractive index of the dielectric and t is its thickness, and n is a whole number.

If mt = l, n will be equal to 2. For the value of n = 1, the maximum occurs for a wavelength of
2l. Here l and 2l represent a wide separation in the visible region.

In the case of an interference filter, when the thickness of the dielectric is reduced, the
transmitted wavelengths are more widely spaced. For an optical thickness (mt) of the dielectric
film of 5000 Å, the transmitted wavelengths for n = 1, 2, 3, etc are 10,000 Å, 5000 Å, 3333 Å.
These three wavelengths are widely spaced. Only 5000 Å is in the visible region. If there are
two maxima in the visible region one of them can be eliminated by using a coloured glass filter.
This may be the protecting glass of the dielectric itself.

Interference filters are better as compared to the coloured glass filters because in the case
of interference filters light is not absorbed and hence there is no overheating. Interference
filters are used in spectroscopic work for studying the spectra in a narrow range of wave-
lengths.

����� ����	


Measurement of wave length of sodium light by Newton’s Ring.

Apparatus used: A small wooden box open on the top and in front, fitted with a glass plate C
and lens D are placed at the bottom, a sodium lamp, a plano-convex lens and a travelling
microscope M, sodium lamp.

Formula used: The wave length l of light given by the formula.

l =
D D

P R
n p n� �
2 2

4
where Dn+p = diameter of (n + p)th ring

Dn = diameter of nth ring
P = an integer number (of the

rings)
R = radius of curvature of the

curved face of the plano-
convex lens.

Description of apparatus: The optical arrange-
ment for Newton’s ring is shown in Fig. 11.19.
Light from a monochromatic source (sodium light)
is allowed to fall on a convex lens through a broad
slit which renders it into a nearly parallel beam.
Now it falls on a glass plate inclined at an angle 45° to the vertical, thus the parallel beam is
reflected from the lower surface. Due to the air film formed by a glass plate and a plane-convex
lens of large radius of curvature, interference fringes are formed which are observed directly
through a travelling microscope. The rings are concentric circles.
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Theory: If a convex lens and a plane plate of glass are placed in contact with each other,
Newton’s ring are formed as a result of interference between two reflected rays from the
bottom and top of air film between glass plates and lens. Near the point of contact the
thickness of the air film will be very small in comparison with the wave length of light.
Consequently, the point of contact of lens and the plate will be surrounded by a circular black
spot, when viewed by a transmitted light. As the surface of the lens is a portion of a sphere the
thickness of the air film will be increasing from the point of contact towards the periphery of
the lens and will be uniform for all points on a circle, concentric with the point of contact. Thus
the central black spot shown by reflected light will be surrounded by a concentric bright rings
separated by dark rings.

In Fig. 11.20 COD represents a lens the convex surface of which is in contact with the plane
glass AB at O, Fig. 11.20 when viewed normally by reflected light the points C and D equidis-
tant from O will lie on a bright or a dark ring according as twice the distance DB (or CA) is
equal to an odd or even number of half wave-length of incident light. From O draw the
diameter OF of the circle of which the curved section of the lens is COD. Join CD cutting OF
in E let DB = CA = x1 and let Dn denote the diameter CD of the nth ring under observation. If
R is the radius of curvature of the lower surface of the lens, then we have

OE . EF = CF . ED
or, x1 (2R – x1) = (Dn/2)2

or, 2Rx1 – x1
2 = Dn

2/4
Since x1 is very small as compared to R, we have

x1
2 << 2Rx1

or, 2Rx1 = Dn
2/4

or, x1 = Dn
2/8R

For C and D to be situated on a bright ring, we have
2mx1 = (n + 1/2) l

or, 2Dn
2/8R = (n + 1/2) l [m = 1 for air]

or, Dn
2/4R = (n + 1/2) l ...(1)

When n has values 1, 2, 3, ...... etc, for the first, second, third, fourth etc rings respectively.
The above formula is sufficient to give the value of l, if D is measured by a traveling micro-
scope and R is given.

From the formula (1) we see that R and l (For a particular set up) are constant, thus
Dn

2 = 4R (n + 1/2) l
Dm

2 = 4R (m + 1/2) l
Hence if we draw curve with the square of the diameter as ordinate and the number of rings
as abscissa, the graph will be a straight line.

Dm
2 – Dn

2 = 4Rl (m – n)
l = (Dm

2 – Dn
2)/4R (m – n)

Thus the diameter of the mth and nth rings are to be found and substituted in the above
formula to get l.

Procedure:
1. Clean the surface of plano-convex lens and glass plate thoroughly.
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2. Place the plano-convex lens on the glass plate with its curved surface touching the plate
and put the combination in a wooden box.

3. Arrange a plane glass plate G at 45° to vertical and allow the parallel rays of sodium light
to fall on the thin glass plate lens combination.

4. Focus the eye-piece on the cross wire and adjust the position of microscope by rack and
pinion arrangement so that concentric rings are clearly seen in the field of view and
crosswire lies on the centre of central dark ring. Clamp the microscope.

5. Adjust one of the cross wires tangential to the rings and then move the microscope in the
horizontal direction with the help of slow motion screw towards one side (say left) of the
centre till the cross wire coincides tangentially in the middle of the 30th bright or dark ring.
Note down the reading of the microscope knowing least count of it.

6. Now move the microscope to the right, set it on every alternate second bright/dark ring
and note down the corresponding readings of the microscope till it reaches to the right
side (30th ring).

7. Determine the difference in the reading of microscope of the corresponding rings which
gives the diameter of the various rings.

8. Remove the plano-convex lens and determine the radius of curvature (if it is unknown).
9. Plot a graph (Fig. 11.21) between the square of diameter of ring on Y-axis and number of

rings on X-axis. A straight line is obtained. Take two points A and B on X-axis for any
value of p and find the corresponding value of D2

n and D2
n+p on Y-axis and hence deter-

mine the difference.
From graph D2

n+p – D2
n = CD and p = AB

Observations:
Venire constant of the microscope =
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Radius of curvature of given lens = 100 cm (say)

Result: The wave-length of sodium light =
Standard mean wavelength l = 5893 A.U.
Percentage error = %

Theoretical Error: In our case l = (D2
m – D2

n)/4 (m– n) R
Taking logarithm of both sides and differentiating

dl/l = d (D2
m – D2

n)/D2
m – D2

n + dR/R ���������
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=
2

2 2

D D D D

D D
R Rm m n n

m n

( ) ( )� �
�

�

�
�

l q

= ......
Maximum permissible error = %

Precautions:
1. The glass plate and the lens should be very clean before setting up the apparatus.
2. To avoid the error of backlash the readings of microscope should be taken while the

microscope is traveling in one direction only.
3. The lens used should be of large radius of curvature.
4. The source of light used should be an extended one.
5. Crosswire should be focussed on a bright ring tangentially.
6. Before measuring the diameters of rings, the range of the microscope should be properly

adjusted.
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Q. 1. What do you mean by interference of light?
Ans. When the two waves superimpose over each other, resultant intensity is modified. The

modification in the distribution of intensity in the region of superposition is called
interference.

Q. 2. What are interference fringes?
Ans. They are alternately bright and dark patches of light obtained in the region of super-

position of two wave trains of light.
Q. 3. Is there any loss of energy in interference phenomenon?
Ans. No, there is no loss of energy in interference phenomenon. Only redistribution of

energy takes place. The energy absent at dark places is actually present in bright
regions.

Q. 4. What is the physical significance of this phenomenon?
Ans. The phenomenon of interference of light has proved the validity of the wave theory of

light.
Q. 5. What are the essential conditions for observing the interference phenomenon in the

laboratory?
Ans. (i) The two sources should be coherent.

(ii) The two sources must emit waves of same wavelength and time period.
(iii) The sources should be monochromatic.
(iv) The amplitudes of the interfering waves should be equal or nearly equal.

Q. 6. What are the different classes of interference?
Ans. (i) Division of wavefront, the incident wavefront is divided into two parts by utilising

the phenomenon of reflection, refraction or diffraction.
(ii) Division of amplitude, the amplitude of incoming beam is divided into two parts

either by partial reflection or refraction.
Q. 7. What is the construction of sodium lamp?



Interference of Light 249

Ans. It consists of a U-shaped glass tube with two electrodes of tungsten coated with
barium oxide. The tube is filled with neon gas at a pressure of 10 mm of mercury and
some sodium pieces. This tube is enclosed in a vacuum jacket to avoid heat losses.

Q. 8. Why does the sodium lamp give out red light in the beginning?
Ans. First of all discharge passes through neon gas.
Q. 9. Why is the neon gas filled in it at all?
Ans. Initially, no discharge passes through sodium as its vapour pressure is low. First, the

discharge passes through neon. Now the temperature rises and sodium vaporises.
Now sodium gives its own characteristic yellow colour.

Q. 10. How are these rings formed?
Ans. When a plano-convex surface is placed on a glass plate, an air film of gradually

increasing thickness is formed between the two and monochromatic light is allowed to
fall normally on film and viewed in reflected light, alternate dark and bright rings are
observed. These are known as Newton’s ring.

Q. 11. Why are the rings circular?
Ans. These rings are loci of constant thickness of the air film and these loci being concentric

circle hence fringes are circular.
Q. 12. Why do you use in extended source of light here?

Ans. To view the whole air film, an extended source is necessary.
Q. 13. What may be the reason if the rings are not perfectly circular?

Ans. (i) The plate may not be optically flat.
(ii) The surface of the lens may not be the part of a perfect sphere and

(iii) The plate and the lens may not be perfectly clean.
Q. 14. In the Newton’s rings system, the fringes at the centre are quite broad, but they get

closer as we move outward why is it so?
Ans. This is due to the fact that the radii of dark rings are proportional to square root of

natural numbers while those of bright rings are proportional to square root of odd
natural numbers.

Q. 15. What are the factors which govern the radius of a ring?
Ans. The radius depends upon

(i) wavelength of light used.
(ii) refractive index ‘m’ of enclosed film.

(iii) radius of curvature R of convex lens.
Q. 16. What would be your observation in transmitted light?

Ans. Where we have bright fringe in the reflected light, we shall have a dark fringe in the
transmitted light and vice-versa. These two systems of fringes are complementary.

Q. 17. Do you get rings in the transmitted light?
Ans. Yes, in this case the colour of rings is complimentary of the reflected light.

Q. 18. Why is the centre of the ring dark?
Ans. Although at centre, the thickness of air film is zero but at the point of contact the two

interfering rays are opposite in phase and produce zero intensity.
Q. 19. Sometimes the centre is bright, why?

Ans. This happens when a dust particle comes between the two surfaces at the point of
contact.
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Q. 20. What will happen if the glass plate is silvered on its front surface?
Ans. The transmitted system of fringes will also be reflected and due to the superposition

of the reflected and transmitted (which is also reflected now) systems the uniform
illumination will result.

Q. 21. If by chance, you get a bright central spot in your experiment, will you proceed with
the experiment with the same system of fringes or will you reject them?

Ans. The system will not be rejected, but we will proceed on with measurement, because the
formula employed for the evaluation of l involves the difference of the squares of the
diameters of two rings and the order of fringe at the centre is immaterial.

Q. 22. What will happen when the sodium lamp is replaced by a white light source?
Ans. A few coloured fringes are observed near the centre. The violet colour will come first

as we proceed away from the centre.
Q. 23.  What will happen if a few drops of a transparent liquid are introduced between the

lens and the plate?
Ans. The fringes will contract, with diameter reduced by a factor of �.

Q. 24. Can you utilise this procedure for determining the refractive index of a liquid?
Ans. Yes.

Q. 25. Will there be any change in rings if light is obliquely incident?
Ans. The diameter of the rings will increase.

Q. 26. Why do you make the light fall on the convex lens normally?
Ans. The light is allowed to fall normally so that angles of incidence and reflection may be

zero so that cos q may be taken as unity.
Q. 27. In this experiment the rings are observed through the lens. Does it affect the obser-

vation of diameter?
Ans. Due to refraction through lens, the observed diameters will be different from their

actual values. To avoid this thin lens should be used.
Q. 28. How can you determine R?

Ans. This can be determined either by spherometer or by Boy’s method.
Q. 29. Can Newton’s rings be formed with the combination of convex and concave lens?

Ans. The plane glass plate is replaced by concave lens i.e. the convex lens is placed over the
concave lens.

Q. 30. What are the uses of Newton’s rings?
Ans.  (i) To determine l of light (monochromatic).

(ii) To determine m of a liquid.
(iii) To measure the radius of spherical surface.
(iv) To measure expansion coefficient of crystal.

���
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Q. 1. How do you explain their formation?
Q. 2. Why is it not possible to observe interference of light with two independent sources of

light?
Q. 3. What do you mean by coherent sources?
Q. 4. How are coherent sources produced?
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Q. 5. Why should the two sources be monochromatic?
Q. 6. Should the two sources be rigorously monochromatic or nearly so?
Q. 7. Should the two sources have exactly equal or nearly equal amplitudes?
Q. 8. Why is the experiment on ‘Newton’s rings’ so called?
Q. 9. Why are the Newton’s rings called the curves of equal thickness? Explain.

Q. 10. What do you mean by optically flat surface?
Q. 11. Why should the radius of the lens used in this experiment be large?
Q. 12. Are these fringe’s localised? If so where are they formed?
Q. 13. How can you get a bright spot at centre?
Q. 14. To what class of interference does the Newton’s rings experiment belong?
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Light is known to travel in straight lines. This is a direct inference from the formation of
shadows of opaque obstacle. However, it was discovered that with small sources, the shadow
of a small object is much larger than that given by geometrical construction and is surrounded
by fringes. This can be explained only if one  assumes that light travels in the form of waves
and bends round the  corners of an obstacle. This phenomenon of deviation of light from
rectilinear propagation and bending round the corners of an obstacle in known as diffraction.
This is an important phenomenon exhibited by waves. In the case of sound waves for which
wave-length is sufficiently large diffraction phenomenon can be easily observed. But in the
case of light, the wavelength is extremely small and a very careful setting and closer observa-
tion is required. The size of the obstacle should be of dimensions comparable with the wave
length of light. Careful experiments reveal that there is encroachment of light in the geometri-
cal shadow region of opaque obstacles. Further the intensity of illumination outside the
geometrical shadow region is not uniform but shows variation.

The essential difference between interference and diffraction of light is that, in interference
the resultant intensity at a point is the resultant of superposition of two wavefronts coming
from two  coherent sources, whereas in the diffraction phenomenon the resultant intensity at
a point is due to superposition of wavelets from two parts of a single wavefront.
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The phenomena of diffraction of light is divided into the following two classes depending
upon the position of source and the place of observation with respect to the diffracting
obstacle.
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In this class of diffraction the source of light, or the screen or both are usually at finite distance
from the obstacle. The wavefronts employed are spherical or cylindrical. They are treated by
construction of half-period zones. The diffraction patterns obtained under this class are very
faint, because in these the wavelets reaching any point of the screen from different parts of the
exposed wavefront are all in different phases and produce only a feeble resultant. On the
screen we get a pattern which is of the shape of the obstacle with some modifications due to
diffraction. Further the pattern is formed in a plane which is not focally conjugate to the plane
in which the source lies.
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In this class of diffraction the source and the screen are effectively at infinite distance from the
obstacle. The incident light is diffracted in various directions and that diffracted in a particular
direction is focussed on a screen by means of a convex lens. The illumination at the screen is
greater if the phases of these parallel rays happen to agree. It is not necessary to employ a plane
wavefront, we may even employ spherical or cylindrical wavefronts to obtain this class of
diffraction. In that case the essential condition is that the pattern must be observed in a plane
which is conjugate to the plane in which the source lies. In this class of diffraction the shape of
the source is reproduced in the pattern as modified by the diffracting aperture. The diffracting
aperture or obstacle do not come in the diffraction pattern.
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According to Fresnel, the resultant effect at an external point due to a wavefront will depend
on the factors discussed below:

In Fig. 12.1, S is a point source of monochromatic light and MN is a small aperture, XY is
the screen and SO is perpendicular to XY. MCN is the incident spherical wavefront due to the
point source S. To obtain the resultant effect at a point P on the
screen, Fresnel assumed that (1) a wavefront can be divided
into a large number of strips or zones called Fresnel's zones of
small area and the resultant effect at any point will depend on
the combined effect of all the secondary waves emanating
from the various zones; (2) the effect at a point due to any
particular zone will depend on the distance of the point from
the zone; (3) the effect at P will also depend on the obliquity of
the point with reference to the zone under consideration, e.g.,
due to the part of the wavefront at C, the effect will be maxi-
mum at O and decreases with increasing obliquity. It is maxi-
mum in a direction radially outwards from C and it decreases in the opposite direction. The
effect at a point due to obliquity factor is proportional to (1 + cos q) where – PCO = q.
Considering an elementary wavefront at C, the effect is maximum at O because q = 0 and cos
q = 1, Similarly, in a direction tangential to the primary wavefront at C (along CQ) the resultant
effect is one half of that along CO because q = 90∞ and cos 90∞ = 0. In this direction CS, the
resultant effect is zero since q = 180∞ and cos 180∞ = –1 and 1 + cos 180∞ = 1 – 1 = 0. This property
of the secondary waves eliminates one of the difficulties experienced with the simpler form of
Huygens principle viz., that if the secondary waves spread out in all directions from each point
on the primary wavefront, they should give a wave travelling forward as well as backward as
the amplitude at the rear of the wave is zero there will evidently be no back wave.

���# �����������"��"�$����������$��

ABCD is a plane wavefront perpendicular to the plane of the paper Fig. 12.2(a) and P is an
external point at a distance b perpendicular to ABCD. To find the resultant intensity at P due
to the wavefront ABCD, Fresnel’s method consists in dividing the wavefront into a number of
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half period elements or zones called Fresnel’s zones and to find the effect of all the zones at the
point P.

With P as centre and radii equal to b �
�

2
, b �

2
2
� , b �

3
2
�  etc. construct spheres which  will

cut out  circular areas of radii OM1, OM2, OM3, etc., on the wavefront. These circular zones are
called half-period zones or half period elements. Each zone differs from its neighbour by a

phase difference of p or a path difference of 
�

2
. Thus the secondary waves starting from the

point O and M1 and reaching P will have a phase difference of p or a path difference of �
2

. A

Fresnel half period zone with respect to an actual point P is a thin
annular zone (or a thin rectangular strip) of the primary wavefront
in which the secondary waves from any two corresponding points

of neighbouring zones differ in path by �
2

.

In Fig. 12.2(c), O is the pole of the wavefront XY with reference
to the extrnal point P. OP is perpendicular to XY. In Fig. 12.2(c) 1,
2, 3 etc. are the half period zones constructed on the primary
wavefront XY. OM1 is the radius of the first zone. OM2 is the
radius of the second zone and so on P is the point at which the
resultant intensity has to be calculated.

OP = b, OM1 = r1 OM2 = r2, OM3 = r3 etc.

and M1P = b + 
�

2
, M2B = b + 

�

�

�
, M3P = �

�

�  etc.

area of the first half period zone is
pOM1

2  = p [M1P
2 – OP2]
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2 2

2
2

2
 approximately ...(i)

(As l is small, l22222 term is negligible).
The radius of the first half period zone is

r1 = OM1 = b� ...(ii)
The radium of the second half period zone is

   OM2 = M P OP b b b2
2 2

1
2 2 2

1
2 2� � � � �� �a f  approximately

The area of the second half period zone is

= � � � � � �OM OM b b b2
2

1
2 2� � � �

Thus, the area of each half period zone is equal to pbl. Also the radii of the 1st, 2nd, 3rd etc.
half period zones are 1 2 3b b b� � �, ,  etc. Therefore, the radii are proportional to the square
roots of the natural numbers. However, it should be remembered that the area of the zones are
not constant but are dependent on (i) l the wave length of light and (ii) b, the distance of the
point from the wavefront. The area of the zone increases with increase in the wavelength of
light and with increase in the distance of the point P from the wavefront.

The effect at a point P will depend on (i) the distance of P from the wavefront, (ii) the area
of the zone, and (iii) the obliquity factor.

Here, the area of each zone is the same. The secondary waves reaching the point P are
continuously out of phase and is phase with reference to the central or the first half period
zone. Let m1, m2, m3 etc. represent the amplitudes of vibration of the ether particles at P due to
secondary waves from the 1st, 2nd, 3rd etc. half period zones. As we consider the zones
outwards from O, the obliquity increases and hence the quantities m1, m2, m3 etc. are of
continuously decreasing order. Thus, m1 is slightly greater than m2; m2 is slightly greater than
m3 and so on. Due to the phase difference of p between any two consecutive zones, if the
displacement of the ether particles due to odd numbered zones is in the positive direction,
then due to the even numbered zones the displacement will be in the negative direction at the
same instant. As the amplitude  are of gradually decreasing magnitude, the amplitude of
vibration at P due to any zone can be approximately taken as the mean of the amplitudes due
to the zones preceding and succeeding it. e.g.
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m2 =
m m1 3

2
�

The resultant amplitude at P at any instant is given by
A = m1 – m2 + m3 – m4...+ mn if n is odd.

(If n is even, the last quantity is –mn)

� A = m1

2
 + 

m
m

m m
m

m1
2

3 3
4

5

2 2 2 2
� �

L
NM

O
QP � � �

L
NM

O
QP � �

But m2 =
m m1 3

2 2
�   and  m4 = 

m m3 5

2 2
�

� A =
m m1

2 2
� n

� if  n is odd

and A =
m m

m1 1

2 2
� �

�n
n � if  n is even.

If the whole wavefront ABCD is unobstructed the number of half period zones that can be
constructed with reference to the point P is infinite i.e., n Æ •. As the amplitudes are of
gradually diminishing order, mn and mn–1 tend to be zero.

Therefore, the resultant amplitude at P due to the whole wavefront = A = m1

2
. The

intensity at a point is proportional to the square of the amplitude

� I µ
m 1

2

4
Thus, the intensity at P is only one-fourth of that due to the first half period zone alone

Here, only half the area of the first half period zone is effective in producing the illumination
at the point P. A small obstacle of the size of half the area of the first half period zone placed
at O will screen the effect of the whole wavefront and the intensity at P due to the rest of the
wavefront will be zero. While considering the rectilinear propagation of light the size of the
obstacle used is far greater than the area of the first half period zone and hence the bending
effect of light round corners (diffraction effects) cannot be noticed. In the case of sound waves,
the wavelengths are far greater than the wavelength of light and hence the area of the first half
period zone for a plane wavefront in sound is very large. If the effect of sound at a point
beyond as obstacle is to be shadowed, an obstacle of very large size has to be used to get no
sound effect. If the size of the obstacle placed in the path of light is comparable to the
wavelength of light, then it is possible to observe illumination in the region of the geometrical
shadow also. Thus, rectilinear propagation of light is only approximately true.

���% &����"���

A zone plate is a specially constructed screen such that light is obstructed from every alternate
zone. It can be designed so as to cut off light due to the even numbered zones or that due to
the odd numbered zones. The correctness of Fresnel's method is dividing a wavefront into half
period zones can be verified with its help.
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To Construct a zone plate, concentric circles are drawn on white paper such that the radii
are proportional to the square roots of the natural numbers. The odd numbered zones (i.e., 1st,
3rd, 5th etc) are covered with black ink and a reduced photograph is taken. The drawing
appears as shown in Fig. 12.4(b) the negative of the photograph will be as shown in Fig 12.4(a).
In the developed negative, the odd zones are transparent to incident light and the even zones
will cut off light.

If such a plate is held perpendicular to an incident beam of
light and a screen is moved on the other side to get the image,
it will be observed that maximum brightness is possible at
some position of the screen say b cm from the zone plate. XO
is the upper half of the incident plane wavefront. P is the point
at which the light intensity is to be considered. The distance of
the point P from the wavefront is b. OM1 (= r1), OM2 (= r2) etc.
are the radii of the zones,

r1 = b�  and  r2 = 2b�
Where l is the wavelength of light

rn = n b�  or  b = r
n

n
2

�

If the source is at a large distance from the zone plate, a bright spot will be obtained at P.
As the distance of the source is large, the incident wavefront can be taken as a plane one with
respect to the small area of the zone plate. The even numbered zones cut off the light and hence
the resultant amplitude at P = A = m1 + m3 + … etc.

In this case the focal length of the zone plate fn is given by

fn = b = r
n

n
2

�
� r bnn

2 � �

Thus, a zone plate has different foci for different wavelengths, the radius of the nth zone
increases with increasing value of l. It is very interesting to note that as the even numbered
zones are opaque, the intensity at P is much greater than that when the whole wavefront  is
exposed to the point P.

In the first case the resultant amplitude is given by
A = m1 + m3 + m5 + �mn  (n is odd)

When the whole wavefront is unobstructed the amplitude is given by
A = m1 – m2 + m3 – m4 + �  + mn

���������
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=
m1

2
. (if n is very large and n is odd).

If a parallel beam of white light is incident on the zone plate, different colours came to
focus at different points along the line OP. Thus, the function of a zone plate is similar to that
of a convex (converging) lens and a formula connecting the distance of the object and image
paints can be obtained for a zone plate also.

���' ������������&����"�������������������
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Let XY represent the section of the zone plate perpendicular to the plane of the paper. S is a
point source of light, P is the position of the screen for a bright image, a is the distance of the
source from the zone plate and b is the distance of the screen from the plate. OM1, OM2, OM3,
(r1, r2, r3) etc. are the radii of the 1st, 2nd, 3rd etc half period zones. The position of the screen

is such that from one zone to the next there is an increasing path difference of 
�

2
.

Thus, from Fig. 12.6,
SO + OP = a + b

SM1 + M1P = a + b + 
�

2
...(i)

SM2  + M2P = a + b + 
2
2
�

 and so on

From the D SM1O,

SM1
 = SO OM2

1
2

1
2�e j  = a r2

1
2

1
2�e j

Similarly from the D OM1P

M1P = OP OM2
1
2

1
2�e j

= b r2
1
2

1
2�e j
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Substituting the values of SM1 and M1P in eqn. (i)

a r b r2
1
2

1
2 2

1
2

1
2� � �e j e j  = a + b + 

�

2

a
r

a
b

r

b
1 11

2

2

1
2

1
2

2

1
2

�
F
HG

I
KJ � �

F
HG

I
KJ  = a + b + �

2

a
r

a
b

r
b

� � �1
2

1
2

2 2
 = a b� �

�

2
r

a b
1
2

2
1 1
�

F
HG

I
KJ  = �

2

r
a b1

2 1 1
�

F
HG

I
KJ  = l

Similarly for rn, i.e., the radius of the nth zone, the relation can be written as

r
a bn

2 1 1
�

F
HG

I
KJ  = nl

Applying the sign convention

or 1 1
b a
�  = n

r
�

n
2

 = 1
fn

...(ii)

fn = r
n

n
2

�

Equation (ii) is similar to the equation 
1 1 1
v u f
� �

F
HG

I
KJ  in the case of lenses with a and b as

the object and image distances and fn the focal length. Thus, a zone plate acts as a converging
lens. A zone plate has a number of foci which depend on the number of zones used as well as
the wavelength of light employed.
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Determination of the diameter of a wire by diffraction.

Apparatus used: Optical bench with accessories, sodium lamp, and Ramsden's eye- piece with
micrometer screw.

Formula used: d = 
D
W
�

 where W is fringe width, D is the diatance between the pin and the

screen, d is diameter of pin.

Theory: Consider a cylindrical-wave front WW¢ Fig. 12.7 of wavelength coming from a slit S,
normal to the plane of paper, falling on a narrow pin having a finite width or diameter AB =
d, the sides of the pin being parallel to the length of slit. On the screen MM¢, the geometrical
shadow region will be represented by PP¢.

The effect of inserting AB in the path of light is to screen of a few of the half period
elements. At a point K outside the geometrical shadow, the effect is given by the sum of
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resultant effects of the half period elements
in the upper half of the wave front above the
pole O¢, with respect to point K and those
elements which lie between O¢ and edge of
obstacle. If the obstacle is large the effect of
half period elements of the lower half of the
wave front WW¢ which are not obstructed by
wire, may be neglected. This is because of the
fact that these half period elements will be of
higher order.

If O¢A contains as even number of half period strips the point K will be comparatively
dark. If O¢A contains odd number of half period strips, the point K will be bright.

The diffraction patterns of the 2 sides of the geometrical shadow are thus similar to the
diffraction pattern outside the geometrical shadow of straight edge.

Next consider point K¢ inside the geometrical shadow region. At this point the displace-
ment is due to the two unobstructed halves of wave front.

The half-period elements in the upper half will combine into a resultant whose phase will
be in arrangement with the resultant phase of the half-period elements, lying near the edge A.
Similarly the half period elements or zones in lower half will combine into resultant phase.
These will be the same as the resultant phase of the half period elements lying near B.

The phase difference between the two resultants to Z is 
dx
D

 where D is the distance

between the pin and the screen and x = cz. Thus the point Z will be bright, if
dx
D

 = 2n
�

2
...(1)

and dark, if dx
D

 = (2n + 1) 
�

2
...(2)

where n is the integer.
These maxima and minima obtained  inside the geometrical shadow region resemble the

fringes observed in an interference experiment. They are not due to diffraction. The fact they
may be regarded as due to interference between the two narrow sources estimated at the edges
of the obstacle. The distance between two consecutive dark and bright fringes, are called the
fringe width W. It can be obtained with the help of eqn. (1) and eqn. (2).

Thus for n = 1 and n = 2, eqn. (1) gives bright fringes, as:

dx
D

1  = l ...(3)

dx
D

2  = 2l ...(4)

W = x2 – x1 = 
2� �D

d
D
d

�

or, W =
D
d
�

This eqn. can be used for determination of wavelength of light.
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Manipulations:
1. Level the optical bench with the help of spirit level and leveling screw.
2. Make the slit vertical with the help of plumb line.
3. Bring the slit, the eyepiece at the same height and in the same line. See that the planes of

the slit, the wire and eyepiece are transversely normal to the bench.
4. Focus the light by a lens on the slit.
5. Move the pin  wide way with the help of tangential screws and vary the slit width till

fringes are obtained and are seen through the eyepiece. The visibility will be best when
the slit and the pin are parallel to each other.

6. Adjust the line joining the pin and the cross wires parallel to the bed of optical bench. This
is accomplished when on moving the eyepiece along the bed of the optical bench, no
lateral shift is obtained.

7. In order to adjust the system for no lateral shift, the eyepiece is moved away from the
straight edge (pin). In this case the fringes will move to the right or left, but with the help
of the base screw provided with pin (wire) it is moved at right angle to the bench in a
direction to bring the fringes back to their original position,
Now move the eyepiece towards the wire and same adjustment is made with the help of
eyepiece.
Using the process again and again the lateral shift is removed.

8. Measure the fringe width and the diameter of the pin.
9. Repeat the experiment with 2 more values of D.

Observations:
1. For diameter of pin.

Least count of screw gauge =
Zero error of screw gauge =

�������� 	 
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Mean diameter of a wire =
Diameter corrected from zero error =

2. Bench Error: The distance between cross wire and pin:-
(a) As measured by bench rod =
(b) as measured by the bench scale =

The bench error =
3. Fringe Width:

Least count of Micrometer =
Observed distance between the cross wire and the pin =
Corrected distance between the cross wire and the pin =
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Fringe width W  =

Result: For sodium light (l = 5893 Å) diameter ‘d’ of a pin =
Actual diameter as measured by screw gauge =
Percentage error = ........%

Precautions:
1. The bench error is necessary therefore it should be found.
2. The straight pin should be parallel to the slit.
3. Make the slit as narrow as possible until the fringes are most clear.
4. The cross wire of the microscope should be well focused on the fringes.
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Experiments on interference and diffraction have shown that light is a form of wave motion.
These effects do not tell us about the type of wave motion i.e., whether the light waves are
longitudinal or transverse, or whether the vibrations are linear, circular or torsional.  The
phenomenon of polarization has helped to establish that light waves are transverse waves.

���� ��������������������������������

Let a rope AB be passed through two paral-
lel slits S1 and S2. The rope is attached to a
fixed point at B. Hold the end A and move
the rope up and down perpendicular to AB.
A wave emerges along CD and it is due to
transverse vibrations parallel to the slit S1.
The slit S2 allows the wave to pass through
it when it is parallel to S1. It is observed that the slit S2 does not allow the wave to pass through
it when it is at right angles to the slit S1.

����������� 

If the end A is moved in a circular manner, the rope will show circular motion up to the slit
S1. Beyond S1, it will show only linear vibrations parallel to the slit S1, because the slit S1 will
stop the other components. If S1 and S2 are at right angles to each other the rope will not show
any vibration beyond S2.

If longitudinal waves are set up by moving the rope forward and backward along the
string, the waves will pass through S1 and S2 irrespective of their position.

A similar phenomenon has been observed in light when it passes through a tourmaline
crystal. Let light from a source S fall on a tourmaline crystal A which is cut parallel to its axis.
The crystal A will act as the slit S1. The light is slightly coloured due to the natural colour of the
crystal. On rotating the crystal A, no remarkable change is noticed. Now place the crystal B
parallel to A.

1. Rotate both the crystals together so that their axes are always parallel. No change is
observed in the light coming out of B Fig. 13.2(a).

����������� 
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2. Keep the crystal A fixed and rotate the crystal B. The light transmitted through B becomes
dimmer and dimmer. When B is at right angles to A, no light emerges out of B Fig. 13.2 (b).

If the crystal B is further rotated, the intensity of light coming out of it gradually increases
and is maximum again when the two crystals are parallel.

This experiment shows conclusively that light is not propagated as longitudinal or com-
pressional waves. If we consider the propagation of light as a longitudinal wave motion then
no extinction of light should occur when the crystal B is rotated.

It is clear that after passing through the crystal A, the light waves vibrate only in one
direction. Therefore light coming out of the crystal A is said to be polarized because it has
acquired the property of one sidedness with regard to the direction of the rays.

This experiment proves that light waves are transverse waves, otherwise light coming out
of B could never be extinguished by simply rotating the crystal B.

���! ���������������������

When ordinary light is passed through a tourmaline crystal, the light is polarized and vibra-
tions are confined to only one direction perpendicular to the direction of propagation of light.
This is plane polarized light and it has acquired the property of one sidedness. The plane of
polarization is that plane in which no vibrations occur. The plane ABCD in Fig. 13.3 is the plane
of polarization. The vibrations occur at right angles to the plane of polarization and the plane
in which vibrations occur is known as plane of vibration. The plane EFGH in Fig. 13.3 is the
plane of vibration.

��������!
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In Fig. 13.4(a), the vibrations of the particles are represented parallel (arrow heads) and
perpendicular to the plane of the paper (dots).

In Fig. 13.4(b), the vibrations are shown only parallel to the plane of the paper.
In Fig. 13.4(c), the vibrations are represented  only perpendicular to the plane of the paper.
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Polarization of light by reflection from the
surface of glass was discovered by Malus in
1808. He found that polarized light is obtained
when ordinary light is reflected by a plane
sheet of glass. Consider the light incident
along the path AB on the glass surface Fig.
13.5. Light is reflected along BC. In the path of
BC, place a tourmaline crystal and rotate it
slowly. It will be observed that light is com-
pletely extinguished only at one particular
angle of incidence. This angle of incidence is equal to 57.5° for a glass surface and is known as
the polarizing angle. Similarly polarized light by reflection can be produced from water
surface also.

The production of polarized light by glass is explained as follows. The vibrations of the
incident light can be resolved into components parallel to the glass surface and perpendicular
to the glass surface. Light due to the components parallel to the glass surface is reflected
whereas light due to the components perpendicular to the glass surface is transmitted.

Thus, the light reflected by glass is plane polarized and can be detected by a tourmaline
crystal.
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In 1811, Brewster performed a number of experiments
to study the polarization of light by reflection at the
surfaces of different media.

He found that ordinary light is completely polar-
ized in the plane of incidence when it gets reflected
from a transparent medium at a particular angle
known as the angle of polarization.

He proved that the tangent of the angle of polar-
ization is numerically equal to the refractive index of
the medium. Moreover, the reflected and the refracted
rays are perpendicular to each other.
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Suppose, unpolarized light is incident at an angle equal to the polarizing angle on the glass
surface. It is reflected along BC and refracted along BD Fig. 13.6.

From Snell’s law

m = sin
sin

i
r

...(i)

From Brewster’s law

m = tan i = sin
cos

i
i

...(ii)

Comparing (i) and (ii)

cos i = sin r = cos
�

2
�F

HG
I
KJr

\ i = �

2
 – r  or  i + r = �

2

As  i + r = �
2

,  –CBD is also equal to 
�

2
. Therefore, the reflected and the refracted rays are

at right angles to each other.
From Brewster’s law, it is clear that for crown glass of refractive index 1.52, the value of i

is given by
i = tan–1 (1.52)  or i = 56.7°

However, 57° is an approximate value for the polarizing angle for ordinary glass. For a
refractive index of 1.7 the polarising angle is about 59.5°  i.e., the polarizing angle is not widely
different for different glasses.

As the refractive index of a substance varies with the wavelength of the incident light, the
polarizing angle will be different for light of different wavelengths. Therefore, polarization
will be complete only for light of a particular  wavelength at a time i.e. for monochromatic
light. It is clear that the light vibrating in the plane of incidence is not reflected along BC. In the
reflected beam the vibrations along BC cannot be observed, whereas vibrations at right angles
to the plane of incidence can contribute for the resultant intensity. Thus, we get plane polar-
ized light along BC. The refracted ray will have both the vibrations: (i) in the plane of incidence
and (ii) at right angles to the plane of incidence. But it is richer in vibrations in the plane of
incidence. Hence it is partially plane-polarized.
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One of the important applications of Brewster’s law and
Brewster’s angle is in the design of a glass window that enables
100% transmission of light. Such a type of window is used in
lasers and it is called a Brewster window. When an ordinary
beam of light is incident normally on a glass window, about 8%
of light is lost by reflection on its two surfaces and about 92%
intensity is transmitted. In the case of a gas laser filled with
mirrors outside the windows, light travels through the window
about a hundred times. In this way, the intensity of the final
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beam is about 3 × 10–4 because (0.92)100 ª 3 × 10–4. It means the transmitted beam has practically
no intensity.

To overcome this difficulty, the window is tilted so that the light beam is incident at
Brewster’s angle. After about hundred transmissions, the final beam will be plane polarized.
The light component vibrating at right angles to the plane of incidence is reflected. After about
100 reflections at the Brewster window, the transmitted beam will have 50% of the intensity of
the incident beam and it will be completely plane polarized. The net effect of this type of
arrangement in that half the amount of light intensity has been discarded and the other half is
completely retained Brewster’s windows are used in gas lasers.
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It is found that at a single glass surface or any similar transparent medium, only a small
fraction of the incident light is reflected.

For glass (m = 1.5) at the polarizing angle, 100% of the light vibrating parallel to the plane
of incidence is transmitted whereas for the perpendicular vibrations only 85% is transmitted
and 15% is reflected. Therefore, if we use a pile of plates and the beam of ordinary light is
incident at the polarizing angle on the pile of plates, some of the vibrations perpendicular to
the plane of incidence are reflected by the first plate and the rest are transmitted through it.
When this beam of light is reflected by the second plate, again some of the vibrations perpen-
dicular to the plane of incidence are reflected by it and the rest are transmitted. The process
continues and when the beam has traversed about 15 or 20 plates, the transmitted light is
completely free from the vibrations at right angles to the plane of incidence and is having
vibrations only in the plane of incidence. Thus, we
get plane-polarized light by refraction with the help
of a pile of plates, the vibrations being in the plane of
incidence as shown in Fig. 13.8.

The pile of plates consists of number of glass plates
(microscope cover slips) and are supported in a tube
of suitable size and are inclined at an angle of 32.5° to
the axis of the tube. A beam of monochromatic light is
allowed to fall on the pile of plates at the polarizing
angle. The transmitted light is polarized perpendicu-
lar to the plane of incidence and can be examined by a similar pile of plates which works as an
analyser.
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When a beam of light, polarized by reflection at one plane surface is allowed to fall on the
second plane surface at the polarizing angle the intensity of the twice reflected beam varies
with the angle between the planes of the two surfaces. In the Biot’s polariscope it was found
that the intensity of the twice reflected beam is maximum when the two planes are parallel and
zero when the two planes are at right angles to each other. The same is also true for the twice
transmitted beam from the polarizer and analyser. The law of Malus states that the intensity
of the polarized light transmitted through the analyser varies as the square of the cosine of the
angle between the plane of transmission of the analyser and the plane of the polarizer.
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The intensity I1 of the polarised light transmitted through the analyser is given by the
Malus Law

I1 = I cos2 q
where I is the original intensity and q is the angle between the planes of the polariser and the
analyser.
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To determine the polarizing angle for the glass prism surface and to determine the refrac-
tive index of the material using Brewster’s Law.

Apparatus: Spectrometer, sodium lamp, glass prism, a Polaroid with attachment etc.

Formula used: According to Brewster’s law
m = tan f

Where m = refractive index of the material of prism.
f = angle of polarization

Theory: Whenever light falls on a smooth surface a portion is reflected and the other is
refracted. The fraction reflected and refracted depend upon the surface material of the me-
dium and the angle of incidence. However, if the incident light is unpolarised both reflected
and refracted rays are partially polarized. Brewster in 1811 carried out a series of experiments
and concluded that for a particular angle of incidence, reflected light is completely polarized
in the plane of incidence and the refracted light is partial polarized with predominant vibra-
tion of electric vectors in the plane of incidence. This angle of incidence is known angle of
polarization or Brewster’s angle.

Further, when the angle of incidence is equal to the angle of polarization, the reflected and
refractive rays are mutually perpendicular to each other and therefore:

amg = sin i/sin r = sin f/sin (90∞ - f) = sin f/cos f = tan f
Where f is the angle of polarization. The relation m = tan f is known as Brewster’s Law.

Procedure:
1. Make the mechanical and optical adjustment of the spectrometer as mentioned in the

experiment of dispersive power. Attach the Polaroid attachment to the telescope objec-
tive.

2. Place the prism on the prism table such that one of the reflecting surface of prism passes
through the prism table’s center.

3. The prism table is rotated so that the light coming from the collimator is incident on the
face of the prism passing through the center. The telescope is adjusted to get the reflected
light on the cross wire. Polaroid attached with the telescope is then slowly rotated and the
variation of the intensity of the field of view is observed.

4. The angle of incidence is increased by slightly rotating the prism table. The position of the
telescope and Polaroid both are adjusted each time to get minimum intensity. The process
is repeated till the reflected light completely disappears for one particular adjustment.

5. The position of the telescope is noted on both the verniers of the circular scale.
6. Now remove the prism and set the telescope for the direct image of the slit and again note

the readings of the verniers.
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The full procedure 3rd, 4th and 5th is repeated in order to determine the position of the
telescope more accurately.

7. Calculate the angle.

Observations:
1. Vernier Constant of the spectrometer =
2. Readings for the determination of the angle of polarization:
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Mean q =

Calculation: Angle of polarization f = (90° – q/2) =
m = tan f =

Result:
1. The angle of polarization for air-glass interface is found to be =
2. Refractive index of the material is found to be =

Precautions:
1. The width of the slit should be narrow.
2. If it is not possible to obtain zero intensity position, then it should be adjusted for mini-

mum possible intensity.
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Certain crystalline materials have the property that a beam of light incident on them: (i) breaks
into two plane polarised beams with their planes of polarisation mutually perpendicuar, and
(ii) these two beams in general have different velocities in medium. The phenomenon is called
double refraction.

In Fig. 13.9 the incident ray AB of light breaks up into two refracted rays BO and BE. BO
is plane polarised in one plane, BE is also plane polarised but in a perpendicular plane. There
are obviously two refractive indices,

m1 =
sin
sin

,
i
r1

  m2 = sin
sin

i
r2

If the angle of incidence i is varies, snell’s law sin
sin

i
r

 = constant holds for one of the rays e.g.,

BO only. For the other ray this law does not generally hold. The ray BO which follows the laws
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of refraction is called ordinary (O) and for it
refractive index is constant, say equal to m0.
The other ray BE is called extra ordinary (E)
and for it refractive index me varies with
direction.

In doubly refracting crystals there is one
particular direction in which the ordinary
(O) and the extra ordinary (E) travel with
equal velocities. This direction is known as
optic axis. In the direction of optic axis the
refractive index of the crystal for both the
ordinary and the extra ordinary is the same
(each equal to m0). In this direction the crys-
tal will not exhibit double refraction. The
crystals in which there is only one such di-
rection are known as uniaxial crystals.

In directions more and more inclined to
the optic axis, the difference of velocities for
the ordinary and the extra-ordinary becomes
larger and larger. This difference is thus maximum in a plane perpendicular to the optic axis.
Crystals in which the extra-ordinary ray travels faster than the ordinary are called negative
crystal, reverse is the case for positive crystal. Calcite is negative crystal while quartz is
positive crystal. The extreme value of refractive index for E-ray (when it travels in the direction
of optic axis) is called me. It is to be noted carefully that the refractive index of the crystal for E-
ray has all values between m0 and me. The symbol me is reserved for the extreme (maximum or
minimum) value of refractive index for the extra ordinary (E) ray.

In a doubly refracting crystal a plane containing the optic axis and perpendicular to its
opposite faces is called its principal section. In case of a calcite crystal the principal section is
a parallelogram whose angles are 71° and 109°, as shown in Fig. 13.10(a). In Fig. 13.10(b) end
view of the principal section is shown. It is known that the vibrations in the ordinary are
perpendicular to the principal section and in the extra-ordinary they are in the principal
section of the crystal. The ordinary ray is, therefore, polarised in the principal section and the
extra-ordinary is polarised perpendicular to the principal section. If the principal section of the
crystal is also the plane of incidence, the ordinary vibrations can be represented by dots (.) and
the extra-ordinary vibrations by dashes (—).
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It is an optical device made from a calcite crystal and is used in many instruments to produce
and analyse the plane polarised light.

When light is passed through a doubly refracting crystal it
is split up into the O-ray and the E-ray. Both these rays are
plane polarised.One of these rays is cut off by total internal
reflection. This prism was designed by William Nicol and is
known as Nicol’s prism after his name.

Constructions: The nicol prism is constructed from a calcite
crystal whose length is nearly three times its width. The end
faces of the crystal are cut down so as to reduce the angles at B
and D from 71° in the principal section to a more acute angle of
68°. The crystal is then cut along the plane. A¢bc¢d perpendicu-
lar both to the principal section A¢B¢C¢D and the end faces such
that A¢C¢ makes an angle of 90° with the end faces A¢B and C’D
as shown in Figure.

The two cut surfaces are ground, polished optically flat and
then cemented together with Canada balsam, a transparent
cement so that the crystal is just as transparent as it was
previously to its having been sliced. The refractive index
of Canada blasam mb has a value which lies midway
between the refractive index of calcite mo for the O-ray
and me for the E-ray. The values of these for the sodium
light of mean wavelength l = 5893 Å are mo = 1.658; mb
= 1.55 and me = 1.486.

The sides of the prism are blackened to absorb the
totally reflected rays.

Action: If a ray of light SM is incident nearly parallel to BC¢ in the plane of the paper on the face
A¢B, it suffers double refraction and gives rise to

(i) the extraordinary beam ME, and
(ii) the ordinary beam MN.

The E-ray passes through along ME which is plane polarised and has vibrations in the
plane of the paper.

The O-ray which is also plane polarised suffers total internal reflection at the Canada
balsam layer for nearly normal incidence.

It is because canada balsam is optically more dense than calcite for the E-ray and less dense
for the O-ray. The E-ray is refracted through canada balsam and is transmitted but the O-ray
moving from a denser calcite medium to the rarer canada balsam medium is totally reflected
for angles of incidence greater than the critical angle. The value of critical angle for the
ordinary ray for calcite to Canada balsam

= sin–1 
1 550
1 658
.
.

F
HG

I
KJ  = 69.2°
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If the incident ray makes an angle much smaller than BMS with the surface A¢B the
ordinary ray will strike the balsam layer at an angle less than the critical angle and hence will
be transmitted.

If the incident ray makes an angle greater than BMS the extraordinary ray will become
more and more parallel to the optic axis A¢Y and hence its refractive index will become nearly
equal to that of calcite for the ordinary ray. This will then also suffer total internal reflection
like the ordinary ray. Hence no light will emerge out of the Nicol’s prism. A Nicol’s prism,
therefore, cannot be used for highly convergent or divergent beams. The angle between the
extreme rays of the incoming beam is limited to about 28.
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The Nicol’s prism can be used both as a polariser and an analyser.
When unpolarised beam of light is incident on a Nicol prism N1, the light emerging out of

it is plane polarised and has vibrations parallel to its principal section. If now this light is made
to pass through a second Nicol N2 the principal section of which is parallel to the principal
section of N1, the light vibrations in N2 are parallel to its principal section and hence are
completely transmitted as shown in Fig. 13.12(a). The intensity of the emergent beam is
maximum.

���������!�� 

Now if the Nicol N2 is rotated such that its principal section becomes perpendicular to that
of N1 as shown in Fig. 13.12(b), then the vibrations of incident light in N2 will be perpendicular
to the principal section of N2. These behave as O-vibrations for N2 and are thus totally reflected
and hence no light emerges from the second Nicol N2. In this position the two Nicols are said
to be crossed.

���������!�� 

When the Nicol N2 (analyser) is further rotated the two Nicols are again in parallel position
then in this position the E-ray is again transmitted through the Nicol N2.

The first Nicol polarises the light and is called the polariser. The second Nicol analyses the
polarised light and is called the analyser.
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The velocity of the extraordinary ray through a uniaxial crystal depends upon the direction of
the ray. Therefore, the refractive index for the extraordinary ray is different along different
directions. In the case of a negative crystal, the velocity of the extraordinary ray travelling
perpendicular to the direction of the optic axis is maximum and the refractive index is mini-
mum. This refractive index for the extraordinary ray is known as the principal refractive index
(me) and is defined as the ratio of the sine of the angle of incidence to the sine of the angle of
refraction when the refracted ray travels perpendicular to the direction of the optic axis. This
is also defined as the ratio of the velocity in vacuum to the maximum velocity of the extraor-
dinary ray.

me =
velocity of light in vacuum

velocity of the extraordinary ray in a direction
perpendicular to the optic axis

For a positive uniaxial crystal, the velocity of the extraordinary ray travelling perpendicu-
lar to the optic axis is minimum and the refractive index is maximum. Therefore, the principal
refractive index for the positive uniaxial crystal is the ratio of the velocity of light in vacuum
to the minimum velocity of the extraordinary ray.
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Let monochromatic light be incident on the Nicol prism N1. After passing through the nicol
prism N2, it is plane-polarized and is incident normally on a uniaxial doubly refracting crystal
P (calcite or quartz) whose faces have been cut parallel to the optic axis. The vibrations of the
plane-polarized light incident on the crystal are shown in Fig. 13.13(b).

The plane polarized light on entering the crystal is split up into two components, ordinary
and extraordinary. Both the rays, in this case, travel along the same direction but, with differ-
ent velocities. When the rays have travelled through the thickness d in the crystal, a phase
difference d is introduced between them.
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Theory: Suppose the amplitude of the incident plane polarized
light on the crystal is A and it makes an angle q with the optic axis.
Therefore, the amplitude of the ordinary ray vibrating along PO
is A sin q and the amplitude of the extraordinary ray vibrating
along PE is A cos q. Since a phase difference d is introduced
between the two rays, after passing through a thickness d of the
crystal, the rays after coming out of the crystal can be represented
in terms of two simple harmonic motions, at right angles to each
other and having a phase difference.

\ For the extraordinary ray,
x = A cos q · sin (wt + d)

For the ordinary ray,
y = A sin q · sin wt

Take A cos q = a,  and  A sin q = b
x = a sin (wt + d) ...(i)
y = b sin wt ...(ii)

From Eq. (ii) y
b

 = sin wt

and cos wt = 1
2

2�
y

b
x
a

 = sin wt cos d + cos wt sin d

= y
b

 cos d + 1
2

2� �
y

b
sin�

x
a

y
b

� cos�  = 1
2

2� �
y

b
sin�

Squaring and rearranging

x

a

y
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xy
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2

2

2

2

2
� � cos�  = sin2 d ...(iii)

This is the general equation of an ellipse.

Special cases:
1. When d = 0, sin d = 0 and cos d = 1.

From Equation (iii)
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This is the equation of a straight line. Therefore, the emergent light will be plane polarized.

2. when d = �
2

,  cos d = 0, sin d = 1

From Eq. (iii) x
a

y

b

2

2

2

2�  = 1

This represents the equation of a symmetrical ellipse. The emergent light in this case will
be elliptically polarized provided a π b.

3. when d = 
�

2
 and a = b

From Eq. (iii), x2 + y2 = a2

This represents the equation of circle of radius a. The emergent light will be circularly
polarized. Here the vibrations of the incident plane polarized light on the crystal make an
angle of 45° with the direction of the optic axis.

4. For d = �
4

 or 7
4
�

,  the shape of the ellipse will be as shown in Fig. 13.15.

5. For all other values of d, the nature of vibrations will be as shown in Fig. 13.15.
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It is a plate of doubly refracting uniaxial crystal of calcite or quartz of suitable thickness whose
refracting faces are cut parallel to the direction of the optic axis. The incident plane-polarized
light is perpendicular to its surface and the ordinary and the extraordinary rays travel along
the same direction with different velocities. If the thickness of the plate is t and the refractive
indices for the ordinary and the extraordinary rays are m0 and me respectively, then the path
difference introduced between the two rays is given by:

For negative crystals, path difference = (mo – me) t
For positive crystals, path difference = (me – mo) t

To produce a path difference of �
4

,  in calcite

(mo – me) t = �

4
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or t = �

� �4 ( )o e�

and in the case of quartz t = �

� �4 ( )e o�
If the plane-polarized light, whose plane of vibration is inclined at an angle of 45° to the

optic axis, is incident on a quarter wave plate, the emergent light is circularly polarized.
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This plate is also made from a doubly refracting uniaxial crystal of quartz or calcite with its
refracting faces cut parallel to the optic axis. The thickness of the plate is such that the ordinary

and the extraordinary rays have a path difference = 
�

2
 after passing through the crystal.

For negative crystals, path difference = (mo – me) t
For positive crystals, path difference = (me – mo) t

To produce a path difference of 
�

2
 in calcite

(mo – me) t =
�

2

or t =
�

� �2 o e–b g
and in the case of quartz

t = �

� �2 e o–b g
When plane-polarized light is incident on a half-wave plate such that it makes an angle of

45° with the optic axis, a path difference of 
�

2
 is introduced between the extraordinary and the

ordinary rays. The emergent light is plane-polarized and the direction of polarization of the
linear incident light is rotated through 90º. Thus, a half wave plate rotates the azimuth of a
beam of plane polarized light by 90º, provided the incident light makes an angle of 45º with the
optic axis of the half wave plate.
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1. Plane Polarized Light: A beam of monochromatic light is passed through a nicol prism.
While passing through the nicol prism, the beam is split up into extraordinary ray and
ordinary ray. The ordinary ray is totally internally reflected back at the Canada balsam layer,
while the extraordinary ray passes through the nicol prism. The emergent beam is plane
polarized.
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2. Circularly Polarized Light: To produce circularly polarized light, the two waves vibrating
at right angles to each other and having the same amplitude and time period should have

a phase difference of 
�

2
 or a path difference of 

�

4
. For this purpose, a parallel beam of

monochromatic light is allowed to fall on a nicol prism N1 (Fig. 13.16). The beam after passing
through the prism N1, is plane polarized. The nicol prism N2 is placed at some distance from
N1

  so that N1 and N2 are crossed. The field of view will be dark as viewed by the eye in this
position. A quarter wave plate P is mounted on a tube A.  The tube A can rotate about on the
outer fixed tube B introduced between the nicol prism N1 and N2. The plane polarized light
form N1 falls normally on P and the field of view may be bright. The quarter wave plate is
rotated until the field of view is dark. Keeping P fixed, A is rotated such that the mark S on P
coincides with zero mark on A. Afterwards, by rotating the quarter wave plate P, the mark S
is made to coincide with 45º mark on A.
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The quarter wave plate is in the desired position. In this case, the vibrations of the plane-
polarized light falling on the quarter wave plate make an angle of 45º with the direction of the
optic axis of the quarter wave plate. The polarized light is split up into two rectangular
components (ordinary and extraordinary) having equal amplitude and time period and on
coming out of the quarter wave plate, the beam is circularly polarized. If the nicol prism N2  is
rotated at this stage, the field of view is uniform in intensity similar to the ordinary light
passing through the nicol prism.

3. Ellipticall Polarized Light: To produce elliptically polarized light, the two waves vibrating
at right angles to each other and having unequal amplitudes should have a phase difference

of 
�

2
,  or a path difference of �

4
. The arrangement of Fig. 13.16 can be used for this purpose.

A parallel beam of monochromatic light is allowed to fall on the nicol prism N1. The prism N1
and N2 are crossed and the field of view is dark. A quarter wave plate is introduced between
N1 and N2 . The plane polarized light from the nicol prism N1 falls normally on the quarter
wave plate. The field of view is illuminated and the light coming out of the quarter wave plate
is elliptically polarized. (The only precaution in this case is that the vibrations of the plane-
polarized light falling on the quarter wave plate should not make an angle of 45º with the optic
axis, in which case, the light will be circularly polarized). When the nicol N2 is rotated, it is
observed that the intensity of illumination of the field of view varies between a maximum and
minimum. This is just similar to the case when a beam consisting of a mixture of plane-
polarized light and ordinary light is examined by a nicol prism.



278 Practical Physics

����* )���%�������������5�%��%,����$

��)��������%���$���������)���23�

����- ����%��� �%�����$

When a polarizer and an analyser are crossed, no light emerges out of the analyser. When a
quartz plate cut with its faces parallel to the optic axis is introduced between N1 and N2 such
that light falls normally upon the quartz plate, the light emerges out of  N2.

The quartz plate turns the plane of vibration. The plane polarized light enters the quartz
plate and its plane of vibration is gradually rotated as shown in Fig. 13.18. The amount of
rotation through which the plane of vibration is turned depends upon the thickness of the
quartz plate and the wavelength of light. The action of turning the plane of vibration occurs
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inside the body of the plate and not on its surface. This phenomenon or the property of rotating
the plane of vibration by certain crystals or substances is known as optical activity and the
substance is known as an optically active substance. It has been found that calcite does not
produce any change in the plane of vibration of the plane polarised light. Therefore, it is not
optically active.

Substances like sugar crystals, sugar solution, turpentine, sodium chlorate and cinnabar
are optically active. Some of the substances rotate the plane of vibration to the right and they
are called dextro-rotatory or right handed. Right handed rotation means that when the ob-
server is looking towards light travelling ‘towards him, the plane of vibration is rotated in a
clockwise direction. The substances that rotate the plane of vibration to the left (anti-clockwise
from the point of view  of the observer) are known as laevo-rotatory or left-handed.

It has been found that some quartz crystals are dextro-rotatory while others are laevo-
rotatory. One is the mirror image of the other in their orientation. The rotation of the plane of
vibration in a solution depends upon the concentration of the optically active substance in the
solution. This helps in finding the amount of cane sugar present in a sample of sugar solution.
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Liquid containing an optically active substance e.g., sugar solution, camphor in alcohol etc.
rotate the plane of the linearly polarized light. The angle through which the plane polarized
light is rotated depends upon (1) the thickness of the medium (2) concentration of the solution
or density of the active substance in the solvent. (3) Wavelength of light and (4) temperature.

The specific rotation is defined as the rotation produced by a decimeter (10 cm) long
column of the liquid containing 1 gram of the active substance in one cc of the solution.
Therefore

S�
t  =

10 �
lc

where S�
t , represents the specific rotation at temperature t°C for a wavelength l, q is the angle

of rotation, l is the length of the solution in cm. through which the plane polarised light passes
and c is the concentration of the active substance in g/cc in the solution. The angle through
which the plane of polarization is rotated by the optically active substance is determined with
the help of a polarimeter, when this instrument is used to determine the quantity of sugar in
a solution, it is known as a saccharimeter.
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It consists of two nicol prism N1 and N2.  Figure 13.19 N1 is a polarizer and N2 is an analyser.
Behind N1, there is a half wave plate of quartz Q which covers one half of the field of view,
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while the other half G is a glass plate. The glass plate G absorbs the same amount of light as the
quartz plate Q. T is a hollow glass tube having a large diameter at its middle portion. When
this tube is filled with the solution containing an optically active substance and closed at the
ends by cover-slips and metal covers, there will be no air bubbles in the path of light. The air
bubbles (if any) will appear at the upper portion of the wide bore T1 of the tube, light from a
monochromatic source S is incident on the converging lens L. After passing through N1, the
beam is plane polarized. One half of the beam passes through the quartz plate Q and the other
half passes through the glass plate G. Suppose the plane of vibration of the plane polarized
light incident on the half shade plate is along AB. Here AB makes an angle q with YY¢ (Fig.
13.20). On passing through the quartz plate Q, the beam is split up into ordinary and extraor-
dinary components which travel along the same direction but with different speeds and on

emergence a phase difference of p or a path difference of
�

2
 is introduced between them. The

vibration of the beam emerging out of quartz will be along CD
whereas the vibrations of the beam emerging out of the glass plate
will be along AB. If the analyser N2 has its principal plane or
section along YY¢ i.e., along the direction which bisects the angle
AOC, the amplitudes of light incident on the analyzer N2 from both
the halves (i.e., quartz half and glass half) will be equal. Therefore,
the field of view will be equally bright (Fig. 13.21(i)).

If the analyser N2 is rotated to the right of YY¢ , then the right
half will be brighter as compared to the left half (Figure ii) on the
other hand, if the analyser N2 is rotated to the
left of YY¢ ,  the left half is brighter as com-
pared to the right half (Figure iii).

Therefore, to find the specific rotation of
an optically active substance (say, sugar solu-
tion), the analyser N2 is set in the position for
equal brightness of the field of view, first with-
out the solution in the tube T. The readings of the verniers V1 and V2 are noted. When a tube
containing the solution of known concentration is placed, the vibrations from the quartz half
and the glass half are rotated. In the case of sugar solution, AB and CD are rotated in the
clockwise direction. Therefore, on the introduction of the tube containing the sugar solution,
the field of view is not equally bright. The analyser is rotated in the clockwise direction and is
brought to a position so that the whole field of view is equally bright. The new portions of the
verniers V1 and V2 on the circular scale are read. Thus, the angle through which the analyser
has been rotated gives the angle through which the plane of vibration of the incident beam has
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been rotated by the sugar solution. In the actual experiment, for
various concentration of the sugar solution, the corresponding
angles of rotation are determined. A graph is plotted between
concentration C and the angle of rotation q. The graph is a
straight line.

Then from the relation

S�
t  =

10 �
�c

the specific rotation of the optically active substance is
calculated.
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Instead of half shade plate, a biquartz plate is also used in polarimeters. It consists of two
semi-circular plates of quartz each of thickness 3.75 mm.
One half consists of right-handed optically active quartz,
while the other is left-handed optically active quartz. If
white light is used, yellow light is quenched by the
biquartz plate and both the halves will have the tint of
passage. This can be adjusted by rotating the analyser N2
to a particular position. When the analyser is rotated to
one side from this position, one half of the field of view
appears blue, while the other half appears red. If the
analyser is rotated in the opposite direction the first half
which was blue earlier appear red and the second half which was red earlier appears blue.
Therefore, by adjusting the particular position of the  analyser, the field of view appears
equally bright with tint of passage.
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Laurent’s polarimeter suffers from the defect that it can be used only for light of a particular
wavelength for which the half wave plate has been constructed. To overcome this difficulty,
Lippich constructed a polarimeter that can be used for light of any wavelength. The diagram
is shown in figure. It consists of two nicol prisms N1 and N2 (Fig. 13.24). Behind N1, there is a
nicol prism N3, that covers half the field of view. The nicols N1 and N3 have their planes of
vibration inclined at a small angle. Suppose the plane of vibration of N1 is along AB (Fig. 13.25)
and that of N3 is along CD. The angle between the two planes is q. When the analyser N2 is
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rotated such that the plane of vibration of N2 is along
AB, the left half will be more bright as compared to
the right half. If the analyser N2 has its plane of vibra-
tion along CD, the right half will be more bright as
compared to the left half. YY¢ is the bisector of the
angle AOC. Therefore, when the plane of vibration of
analyser N2 is along YY¢, the field of view is equally
illuminated. For a slight rotation of the analyser, ei-
ther to the right or to the left, the field of view appears
to be of unequal brightness. Therefore, by rotating N2,
the position for equal brightness of the field of view is
obtained. To determine the specific rotations of the
optically active substance, the procedure is the same
as discussed in spectic rotation.

Three-field System: In the improved form, Lippich po-
larimeter has a three-field system. The defect in the
two - field system is that if the eye is off the axis, even
for the position of equal brightness of the field of view, one side appears more bright as
compared to the other. Just behind N1, there are two nicol prisms N3 and N4 as shown in Fig.
13.26. The planes of vibration of N3 and N4 are parallel to each other and make a small angle
with the plane of vibration of N1. For a particular position of the analyser N2, the field has three
parts. The central portion is illuminated by light which has passed through N1 and N2, while
the other two portion, which are equally bright, are illuminated by light passing through N1,
N2, and one of the prisms N3 and N4.

���!� �#.�%�

To find the specific rotation of sugar solution by polarimeter.

Apparatus Used: Polarimeter, white light source, sugar, beakers, graduated jar, disc, weight
box, balance.

Formula Used: The specific rotation of the plane of polarization of sugar dissolved in water
can be determined by the following formula.

S = q/lc = qv/lm

��������!'
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Where q = rotation produced in degrees
� = length of the tube in decimeter

m = mass of sugar in gms dissolved in water
v = volume of sugar solution

Description of the Apparatus and Theory: Polarimeter in general consists of a source of light
a polarimeter and an analyzer provided with a graduated circular scale. Figure 13.27 repre-
sents the general optical arrangement of most polarimeters.

��������!*

S is a source of light, so placed that it is nearly at a focus of the lens L so that parallel pencil
of rays enters the Nicol Prism N1 which serves to polarize the beam of light passing through
it. The polarizing nicol is immediately followed by a Laurent half shade plate or a biquartz.
The other Nicol prism N2 analyses the transmitted beam and detects its plane of polarization
and is placed in front of a low power telescope. In between N1 and N2 is placed the tube T
containing the liquid under investigation. The tube is closed on both sides with metal caps.
When this tube is filled with solution containing an optically active substance, the air bubbles
if any will appear at the upper side of the wide portion of the tube. The light from N1 can pass
through N2 only if N2 is placed in exactly the same way as N1. In this case the Nicols are said
to be parallel. If however, N2 is turned from this position by a right angle no light from N1 can
pass through N2. In this position the Nicols are said to be crossed.

Certain substances like quartz, solution of sugar etc.possess the property of rotating the
plane of polarized light. When it passes through them. On inserting the active substance on
account of the rotation of plane of polarization, some light will pass through N2 even when it
is set in crossed position. It is found that rotation of N2 in one direction or the other will again
bring N2 into a plane in which light is once more stopped.

Thus we can get the amount of rotation by measuring the angle through which N2 has
turned.

Specific rotation is defined as the amount of rotation produced by one decimeter of the
solution divided by the weight of the dissolved substance in unit volume. Let W grams be
dissolved in 100 c.c. and suppose a length � cm. of liquid produces a rotation q.

[S]D
t = �

�

10
F
H

I
K  	  W

V
100
F
HG

I
KJ

=
10�
�

F
HG

I
KJ  	  

W
100
F
HG

I
KJ

= 1000 q/lw

Method:
1. Weigh sugar in a watch glass and dissolve the sugar in 100 c.c. Have distilled water.
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2. Clean the polarimeter tube and fill it with distilled water. See that there is no air bubble
in the tube when the end caps have been screwed.
Place the tube in its position inside the polarimeter.

3. Look through the analyser when it will be observed that two portions of the field of view
of the sensitive biquartz device are of different colors red and blue.

4. Rotate the analyser till the two portions of the field of view are of same intensity or acquire
tint of passage.

5. Take the reading of the analyzer on the circular scale. The settings of the analyzer should
be done by rotating the analyzer in the clock-wise as well as by rotating in the anti-
clockwise directions.

6. Remove the distilled water from the tube and fill it completely with the sugar solution
and again place it in the polarimeter. On looking through the analyzer the previous
setting would be disturbed. Adjust the analyzer again till the two portions of the field of
views acquire the gray tint shade. Take the reading of the analyzer.

7. Difference between the two settings of the analyzer (6) - (5) gives the value of the angle of
rotation.

8. Repeat the experiment with sugar solution of different concentrations.
9. Measure the length of the tube � and also note the room temperature.

Observation:
Room temperature = °C
Weight of the empty watch glass =
Weight of the watch glass + sugar =
Weight of the sugar employed =
Volume of the water taken =
Least count of the analyzer =
Length of the polarimeter tube =

Table for the Angle of Rotation: (1) For 1st solution.
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(2) For 2nd Solution: Same table as above
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Result: The specific rotation of sugar solution at =
Standard value =
Percentage = .........%

Theoretical Error:
S = q V/ l m

Taking log and differentiating, we get
dS/S = dq/q + dV/V + dl/l + dm/m

Maximum theoretical error =

Precaution:
1. The polarimeter tube should be well cleaned.
2. Care should be taken that there is no air bubble when the tube is filled with liquid.
3. Care should be taken in weighing sugar and measuring the quantity of water.
4. Note the temperature of the room and also the wavelength of the light used.
5. Start with a concentrated solution and then go on diluting by adding water to it.

���!" ����6��%�

Q. 1. What do you mean by polarisation?
Ans. The light which has acquired the property of one sideness is called a polarised light.
Q. 2. What information does it provide about light waves?
Ans. This gives that the light waves are transverse in nature.
Q. 3.  How will you distinguish between unpolarised and plane polarised light?
Ans. The unpolarised light is symmetrical about the direction of propagation while in case

of plane polarised light, there is lack of symmetry about the direction of propagation.
Q. 4. For what kind of light does this law hold.
Ans. It holds for completely plane polarised light.
Q. 5. In using a Nicol prism, light is made incident almost parallel to its oblong side.

What may happen if incident light is too much convergent or divergent?
Ans. Two things may happen in this case: (i) ordinary ray may be incident at Canada Balsam

layer at an angle less than the critical angle resulting in its transmission. (ii) the total
internal reflection of the extra-ordinary is also possible.

Q. 6. What is the plane of polarisation of plane polarised light obtained from a Nicol?
Ans. Light emerging from a Nicol is polarised at right angles to its principal section.
Q. 7. In which direction is the difference of refractive index for O and E-rays: (i) least, (ii)

greatest?
Ans. Their difference is least (zero) in the direction of optic axis and is greatest in a direction

perpendicular to it.
Q. 8. Is there any physical significance in taking mmmmm0 in a direction perpendicular to optic

axis?
Ans. In a plane perpendicular to optic axis, the extraordinary ray also obeys snell’s law of

refraction i.e., sin
sin

,
i
r

 �e  a constant for E-ray also.

Q. 9. What do you mean by polarised light?
Ans. The light which has acquired the property of one sideness is called a polarised light.

Q. 10. How does polarised light differ from ordinary light?
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Ans. The ordinary light is symmetrical about the direction of propagation while in case of
polarised light, there is lack of symmetry about the direction of propagation.

Q. 11. What does polarisation of light tell about the nature of light?
Ans. Light waves are transverse in nature.

Q. 12. Define plane of vibration and plane of polarisation.
Ans. The plane containing the direction of vibration as well as the direction of the propaga-

tion of light is called plane of vibration. On the other hand, the plane passing through
the direction of propagation and containing no vibration is called plane of polarisation.

Q. 13. What is phenomenon of double refraction?
Ans. When ordinary light is incident on a calcite or quartz crystal, it splits in two refracted

rays and this phenomenon is known as double refraction.
Q. 14. Define optic axis and principal section.

Ans. A line passing through any one of the blunt corners and making equal angles with
three faces which meet there is the direction of optic axis. A plane containing the optic
axis and perpendicular to two opposite faces is called the principal section.

Q. 15. What are uniaxial and biaxial crystals?
Ans. The crystals having one direction (optic axis) along which the two refracted rays travel

with the same velocity are called as uniaxial crystal. In biaxial crystals, there are two
optic axes.

Q. 16. What do you mean by optical activity, optical rotation and angle of rotation?
Ans. The property of rotating the plane of vibration of plane polarised light about its

direction of travel by some crystal is known as optical activity. This phenomenon is
known as optical rotation and the angle through which the plane of polarisation is
rotated is known as angle of rotation.

Q. 17. What is specific rotation?
Ans. The specific rotation of a substance at a particular temperature and for given wave-

length of light may be defined as the rotation produced by one decimeter length of its
solution when concentration is 1 gm per cc. Thus

specific rotation = �
lc

where q is angle of rotation in degrees, l the length of solution in decimeter and C the
concentration of solution in gm per c.c.

Q. 18. On which factors specific rotation depend?
Ans. On temperature and wavelength of light used.

Q. 19. Does angle of rotation and specific rotation depend on strength of sugar solution
and length of the tube?

Ans. Angle of rotation is proportional to length and concentration but specific rotation is
independent of these factors.

Q. 20. What is a polarimeter?
Ans. It is an instrument used for measuring the angle of rotation of the plane of polarisation

by an optically active substance.
Q. 21. What is the unit of specific rotation?

Ans. The unit of specific rotation is Degree/decimeter–gm–cc.
Q. 22. What do you mean by dextro and laevo-rotary substances?
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Ans. When the optically active substance rotates the plane of polarisation of light towards
right, it is called as right handed or dextro- rotatory. If the substance rotates the plane
of polarisation towards left, it is called as left handed or laevorotatory.

Q. 23. Name two different devices used with a polarimeter? What is the difference in their
construction?

Ans. (i) Half shade, (ii) Bi-quartz polarimeter. In half shade, one semi circular plate made is
of ordinary glass while the other is of calcite working as half wave plate In Bi-quartz
device, the two semi circular plates are made of right handed and left handed quartz
with thickness for which angle of rotation for yellow colour is 90º..

Q. 24. Which is better out of these two?
Ans. Bi-quartz because (i) It is convenient to arrange white light rather than monochromatic

light (ii) It is easy to judge accurately the contrast of colours rather than contrast of
intensity.

Q. 25. What is main difference in the working of two?
Ans. Half shade polarimeter is used with monochromatic light and in it two halves in eye

piece, appear of different intensity. Bi-quartz is used with white light and in it two
halves appear of different colours.

Q. 26. What are the main parts of polarimeter?
Ans. Two nicol prisms working as polariser and analyser and a glass tube between them.

Q. 27. Explain the construction and working of a Bi-quartz and half shade device.
Ans. In Bi-quartz, the two semi circular plates are of left handed and right handed quartz.

The thickness  is taken for which angle of rotation for yellow colour in 90º. White light
on entering through it is dispersed in different direction as q is different for different
colours. The observation is taken when two halves are of same colour.
In half shade device, one semi circular plate is of ordinary glass. While the other is of
calcite, working as half plate. The observation is taken when two halves are of equal
intensity.

Q. 28. What do you understand by dextro and laevo rotatory substances?
Ans. Some optical active substance rotate the plane of polarisation towards right (clock-

wise) while some towards left (anticlockwise). They are called dextro and laevo rota-
tory substances respectively.

Q. 29. What does polarisation ascertain about the nature of light?
Ans. Light waves are transverse in nature.

Q. 30. Can you find unknown concentration of sugar solution by polarimeter?
Ans. Yes

Q. 31. What is meant by Saccharimeter?
Ans. It is an apparatus used to find out unknown concentration of sugar solutions using

standard value of specific rotation.
Q. 32. Where is the half-shade plate fitted in the polarimeter?

Ans. This is fitted between the polarising Nicol and the polarimeter tube containing the
solution.

Q. 33. Is there any arrangement which can work with white light?
Ans. Yes, bi-quartz arrangement.

Q. 34. Can you find from your experiment, the direction of rotation of polarisation?
Ans. No
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Q. 35. How can you modify your present experiment to find the direction of rotation?
Ans. The apparatus is  modified in such a way that we can study the rotation produced by

two different lengths of the solution. When q is larger for longer lengths, then the
direction of rotation gives the direction of the plane of polarisation.

Q. 36. What will be the resultant if plane polarised light is passed through a number of
optically active solutions?

Ans. The resultant rotation will be algebraic sum of individual rotations produced by each
solution separately.

Q. 37. What is a polaroid?
Ans. This is a device to produce plane polarised light. It consists of ultra - microscopic

crystals of quinine iodo sulphate which are embedded in nitro - cellulose films in such
a way that their optic axes are parallel to each other.

Q. 38. What is the characteristic of a polaroid?
Ans. It absorbs the ordinary ray while allow the extraordinary rays pass through them.

�1��%���

Q. 1.  How will you produce plane polarised light by reflection?
Q. 2.  What is Brewster’s angle or polarising angle?
Q. 3.  How is it related to m?
Q. 4. Which are the vibrations totally suppressed in reflection at Brewster’s angle?
Q. 5. Are the other vibrations totally suppressed in the refracted beam?
Q. 6. What is Malus law?
Q. 7. What is double refraction?
Q. 8. What are the main characteristics of double refraction?
Q. 9. What are the various methods for obtaining one plane polarised beam out of the two

produced by double refraction?
Q. 10. What is dichroism?
Q. 11. What is a polaroid? What does it give you?
Q. 12. How can you use a polaroid as a polariser and as an analyser?
Q. 13. What is a Nicol prism?
Q. 14. What is it made of?
Q. 15. What is a calcite crystal?
Q. 16. What do you mean by principal section of a crystal?
Q. 17. What is optic axis?
Q. 18. Does double refraction take place in the direction of optic axis?
Q. 19. Is there only such direction as optic axis in all the doubly refracting crystals?
Q. 20. What do you mean by negative and positive crystals? Give example of each.
Q. 21. What is the basic principle of working of a Nicol?
Q. 22. Explain how a Nicol prism produces plane polarised light?
Q. 23. How can total internal reflection of the extra-ordinary take place?
Q. 24. When are two Nicols ‘parallel‘?
Q. 25. When are they crossed?
Q. 26. How will you distinguish between unpolarised, partially plane polarised and com-

pletely plane polarised light using a Nicol prism?
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Q. 27. Why are there two refractive incides for a doubly refracting crystal?
Q. 28. When the velocity of E-ray inside the crystal varies with its direction, then what you

mean by refractive index (me) for the extra-ordinary ray?
Q. 29. What is a quarter wave and half wave plate?
Q. 30. What does a quarter wave plate do?
Q. 31. How can you produce circularly and elliptically polarised light with a Nicol Prism and

a quarter wave plate?
Q. 32. What is the function of a half-wave plate?
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Due to diffraction, the image of a point object formed by an optical instrument has finite
dimensions. It consists of a diffraction pattern, a central maximum surrounded by alternate
dark and bright  rings. Two point objects, are resolvable by an optical instrument if their
diffraction pattern are sufficiently small or are far enough apart so that they can be distin-
guished  as separate image patterns. The resolving power of an optical instrument is defined
as its ability to produce separate and distinguishable images of two objects lying very close
together. The diffraction effects set a theoretical limit to the resolving power of any optical
instrument. The term resolving is used in two contexts.
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When the purpose is to see as separate two objects close together or when fine structure is seen
through a telescope or microscope. In the case of telescope (or eye), the resolving power is
defined as the smallest angle subtended at the objective of the telescope (or the eye) by two
point objects which can be seen just separate and distinguishable. Smaller is this angle, the
greater will be the resolving power of the instrument. For a microscope the resolving power is
defined as the linear separation which the two neighbouring point objects can have and yet be
observed as just separate and distinguishable when seen through the microscope.
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This term is used when the instrument such as prism or grating spectrometers are employed
for spectroscopic studies. The  purpose of these instruments is to disperse light emitted by a
source and to produce its spectrum. The chromatic resolving power of an instrument is its
ability to separate and distinguish between two spectral lines whose wavelengths are very
close. Smaller the wavelength interval at a particular wavelength that can be separated, the
greater is the resolving power. If a source emits two close wavelengths l and (l + dl), the

resolving power is mathematically defined as the ratio 
�

�d
  provided the wavelength interval

dl can just be separated at the wavelength l.
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Lord Rayleigh has set a criterion to decide as to how close the two diffraction patterns can
be brought together such that the two images can just be recognised as separate and
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distinguished from each other. The criterion is applicable to both the geometrical as well as
spectroscopic resolving powers. According to Rayleigh's criterion the two point sources are
just resolvable by an optical instrument when their distance apart is such that the central
maximum of the diffraction pattern of one source coincides in position with the first diffraction
maximum of the diffraction pattern of the other source. When applied to the resolution of
spectral lines, this principle is equivalent to the condition that for just resolution the angular
separation between  the principle maxima of the two spectral lines in a given order should be
equal to half angular width of either of the principal maximum. In this latter case, it is assumed
that the two spectral lines have equal intensities.

In Fig. 14.1(a), A and B are the central
maxima of the diffraction patterns of two spec-
tral lines of wavelengths l1 and l2. The differ-
ence in the angle of diffraction is large and the
two images can be seen as separate ones. The
angle of  diffraction corresponding to the cen-
tral maximum of the image B is greater than
the angle of diffraction corresponding to the
first minimum at the right of A. Hence the two
spectral lines will appear well resolved. In Fig.
14.1(b) the central maxima corresponding to
the wavelength l and l + dl are very close. The
angle of diffraction corresponding to the first
minimum of A is greater than the angle of dif-
fraction corresponding to the central maximum
of B. Thus, the two images overlap and they
cannot be distinguished as separate images. The resultant intensity curve gives a maximum  as
at C and the intensity of this maximum is higher than the individual intensities of A and B.
Thus when the spectrograph is turned from A to B, the intensity increases, becomes maximum
at C and then decreases. In this case, the two spectral lines are not resolved.

In Fig. 14.1(c), the position of the central maximum of A (wavelength l) coincides with the
position of the first minimum of B. (wavelength l + dl). Similarly, the position of the central
maximum of B coincides with the position of the first minimum of A. Further, the resultant
intensity   intensity curve shows a dip at C
i.e., in the middle of the central maxima of
A and B (Here, it is assumed that the two
spectral lines are of the same intensity). The
intensity at C is approximately 20% less
than that at A or B. If a spectrograph is
turned from the position corresponding to
the central image of A to the one corre-
sponding to the image of B, there is noticeable decrease in intensity between the two central
maxima. The spectral lines can be distinguished from one another and according to Rayleigh
they are said to be just resolved Rayleigh's condition can also be stated as follows. Two images
are said to be just resolved if the radius of the central disc of either pattern is equal to the
distance between the centers of the two patterns.

!	�������
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Let a be the diameter of the objective of the
telescope. Consider the incident ray of light from
two neighbouring points of a distant object. The
image of each point object is a Fraunhofer
diffraction pattern. Let P1 and P2 be the positions
of the central maxima of the two images.
According to Rayleigh, these two images are said
to be resolved if the position of the central
maximum of the second image coincides with the
first minimum of the first image and vice versa. The path difference between the secondary
waves travelling in the directions AP1 and BP1 is zero and hence they reinforce one another at
P1. Similarly, all the secondary waves from the corresponding points between A and B will
have zero path difference. Thus, P1 corresponds to the position of the central maximum of the
first image.

The secondary waves travelling in the directions AP2 and BP2 will meet at P2 on the screen.
Let the angle P2AP1 be dq. The path difference equal to BC.

From the D ABC
BC = AB sin dq

for small angles
BC = AB · dq = a · dq

If this path difference a · dq = l, the position of P2 corresponds to the first minimum of the
first image. But P2 is also the position of the central maximum of the second image. Thus,
Rayleigh's condition of resolution is satisfied if

a · dq = l

or dq = �

a
...(i)

The whole aperture AB can be considered to be made up of two halves AO and OB. The
path difference between the secondary waves from the corresponding points in the two halves

will be 
�

2
. All the secondary waves destructively interfere with one another and hence P2 will

be the first minimum of the first image. The equation dq = 
�

a
 holds good for rectangular

aperture. For circular aperture, this equation, according to Airy, can be written as

dq =
1 22. �

a
...(ii)

where l is the wavelength of light and a is the aperture of the telescope objective. The aperture
is equal to the diameter of the metal ring in which the objective lens is mounted. Here dq  refers
to the limit of resolution of the telescope. The reciprocal of  dq  measures the resolving power
of the  telescope.

\ 1
d�

 = a
1 22. �

...(iii)
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From Eq. (iii), it is clear that a telescope with large diameter of the objective has higher
resolving power, dq is equal to the angle subtended by the two distant object points at the
objective.

Thus resolving power of a telescope can be defined as the reciprocal of the angular
separation that two distant object points must have, so that their images will appear just
resolved according to Rayleigh's criterion.

If f is the focal length of the telescope objective, then

dq =
r
f

 = 
1 22. �

a

or r = 1 22. f
a
� ...(iv)

where r is the radius of the central bright image.
The diameter of the first dark ring is equal to the diameter of the central image. The central

bright disc is called the Airy's disc.
From equation (iv), if the focal length of the objective is small, the wavelength is small and

the aperture is large, then the radius of the central bright disc is small. The diffraction  patterns
will appear sharper and the angular separation between two just resolvable point objects will
be smaller. Correspondingly, the resolving power of the telescope will be higher.

Let two distant stars subtend an angle of one second of an arc at the objective of the
telescope.

1 second of an arc = 4.85 × 10–6 radian. Let the wavelength of light be 5500 Å. Then, the

diameter of the objective required for just resolution can be calculated from the equation

dq =
1 22. �

a

or a = 1 22. �

�d
 = 

1 22 5500 10

4 85 10

8

8

.

.

� �

�

�

�
 = 13.9 cm. (approximately)

The resolving power of a telescope increases with increase in the diameter of the objective.
With the increase in the diameter of the objective, the effect of spherical aberration becames
appreciable. So, in the case of large telescope objectives, the central portion of the objective is
covered with a stop so as to minimize the effect of spherical aberration. This, however, does
not affect the resolving power of the telescope.
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To determine the resolving power of telescope.

Apparatus Used: A telescope fitted with a variable width rectangular aperture to its objective,
a sodium lamp, three pair of slits a focusing lens, two mountings for the slit pair and the lens.

Formula Used: The theoretical and practical resolving power are given by theoretical resolv-
ing power = l/D and practical resolving power = u/x
Where l = mean wavelength of light employed.

D = width of the rectangular slit for just resolution of two objects
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x = separation between two objects.
u = distance of the objects from the objective of the telescope.

Theory: The resolving power of a telescope is defined as the inverse of the least angle sub-
tended at the objective by two distant point objectives (of equal brightness) which can just be
distinguished as separate in its focal plane.

Let the parallel ray of light from two distant objects subtend an angle  (q) at the telescope
objective AOB. The image of each point object is a fraunhoffer diffraction pattern consisting of
a central bright disc surrounded by concentric dark and bright rings due to circular aperture
of the objective. The diffraction patterns overlap each other and the two images will just be
resolved. According to Rayleigh's criterion, on the first minimum of one image coincide with
the central maximum of the other and vice versa.

According to theory the least resolvable angle q is given by l/D and the resolving power
of the telescope.

1/q = D/ l
The resolving power (experimentally) is also given by

1/q = 1/x/u = u/x
Where ‘x’ is the distance between the two line objects and ‘u’ is the distance from telescope

objective, if q is the angle when the two images are just resolved.

Method:
1. The focusing lens and a pair of slits are mounted on their respective stands. The slits are

made vertical with the help of a plumb line by using the screw attached to the stand.
2. Light from the sodium lamp is focused on the slits by means of the lens.
3. The axis of the telescope is made horizontal by means of spirit level and its height is so

adjusted that the images of the pair of slits are symmetrical with  respect to the cross point
of the cross wires. The inter adjustment can also be obtained by keeping the variable
aperture wide open and adjusting the telescope.

4. The images are brought into sharp focus by adjusting the telescope while keeping the
variable aperture wide open.

5. The width of the aperture is gradually reduced so that at first the two images appear out
and ultimately their separation vanishes. The width of the aperture at this critical position
may be measured by means of a micrometer screw or the readings are noted directly on
the vernier scale attached to the aperture. Reducing aperture further we note the reading
when the illumination (light) just disappears altogether. The difference of these two
readings gives width of the aperture required.

6. Now we begin with a closed aperture gradually increasing the width. We take the first
reading when the illumination just appears and then when the two images just appear to
be separated. The difference giving the width of the aperture is noted.

7. The operation 5 and 6 are repeated.
8. The operation 1 to 7 is repeated for the other two pairs of slits.
9. The distance between the slits (sources) and the objective of the telescope is measured by

means of measuring tape.

Observation:
1. Least count of the micrometer attached to the variable width aperture =
2. Minimum width of aperture for resolution D =
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3. Distance between the objective of the telescope and the slit sources (u) =
4. Wave length of the light employed =
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C.

Calculations:
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C.

Result: The resolving power of telescope as measured is nearly equal to the theoretical value.

Precautions:
1. The axis of telescope should be horizontal.
2. The screw attached to the variable width aperture should be handled gently. While

decreasing the width of the aperture we should stop at the point when illumination just
disappears. We should not tight the screw beyond this point. This should be the starting
point taking for readings for the increasing aperture.

3. Backlash error in the micrometer screw should be avoided.
4. The axis of the telescope should be at right angles to the plane containing the slits. The two

slits should appear equal in height.
5. Care should be taken that distance between the lens and the slit source is more than focal

length of lens (about 30 cm).

���) ����*����

Q. 1. What do you mean by resolving power of a telescope?
Ans. The resolving power of a telescope is defined as the reciprocal of the smallest angle

subtended at the objective by two distinct points which can be just seen as separate
through the telescope.

Q. 2. On what factors does the resolving power of a telescope depend?
Ans. The resolving power of a telescope is given by

 1
d�

= d
1 22. �
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Resolving power is directly proportional to d i.e., a telescope with large diameter of
objective has higher resolving power and inversely proportional to l.

Q. 3. Why are the telescopes fitted with objectives of large diameter ?
Ans. To increase the resolving power of telescope.
Q. 4. Does the resolving power of a telescope depend upon the focal length of its  objec-

tive?
Ans. No.
Q. 5. Does any thing depend on f?
Ans. Yes, Magnifying power increases with f.
Q. 6. Sometimes an observer gets a higher than the theoretically expected value of resolv-

ing power. How do you explain it?
Ans. It is because that Rayleigh criterion is itself quite arbitrary and skilful experimenters

can exceed the Rayleigh limit.
Q. 7. Define the magnifying power of the telescope.
Ans. The magnifying power of a telescope is defined as the ratio of angle subtended at the

eye by the final image and the angle subtended at the eye by object when viewed at its
actual distance.

Q. 8. What is Rayleigh criterion of resolution?
Ans. According to Rayleigh criterion, two point sources are resolvable by an optical instru-

ment when the central maximum in the diffraction pattern of one falls over the first
minimum in the diffraction pattern of the other and vice-versa.

Q. 9. What does the term 200 inch written on a telescope indicate?
Ans. This indicate that the diameter of the objective of the telescope is 200 inches.

�+������

Q. 1. What do you mean by resolving limit of a telescope?
Q. 2. What is the resolving power of the eye?
Q. 3. How does the minimum angle of resolution change by putting variable aperture

before the telescope objective?
Q. 4. Does the resolving power of a telescope depend upon the distance between the tele-

scope and the objects to be resolved?
Q. 5. Is it possible to attain the theoretical resolving power?
Q. 6. What will be the resolving power of this telescope?
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To determine the height of a tower by a Sextant.

Apparatus Used: A sextant and a measuring tape.

Formula Used: The height h of a tower is given by the following formula:
h = d /(cot q2 – cot q1)

Where d = distance between the two points of observation.
q2 = angular elevation of the tower from one point of observation.
q1 = angular elevation at a point distant ‘d’ from the previous point towards

the tower.

��	� ��������
��
��������

Sextant is an optical instrument as shown in Fig. 15.1 and is meant to measure angles. It
consists of a graduated circular arc about 60° having two radial fixed arms A and B. There is
another arm known as third moving arm C (index arm)
that moves over the circular graduated scale. It carries
a vernier scale V on one side and plane mirror M1 (index
glass) on the another side. This arm is fitted with clamp
and tangent screw, so that it can be adjusted in any
desired direction. The plane of the mirror M1 is
perpendicular to the plane of arc. A second mirror M2
called the horizon glass is fixed to the arm A whose
lower half is silvered while upper half is transparent.
The plane of this mirror is also perpendicular to the
circular arc. A telescope T  is fitted to the arm B with its
axis perpendicular to the horizon glass. The telescope
receives the direct rays through the transparent portion of M2 and twice reflected rays from M1
and M2.

��	� ���������
���
�����

The distant object is viewed  directly through the clean parts of mirrors M2 and then the
movable arm is so rotated that the mirror M1 and M2 become parallel. In this position the

�� 	���	�
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telescope  receives the rays from distant object in two paths as shown in Fig. 15.2. One set of
rays PM2 T through clear part of M2 and other  set of rays starting from R reflected from mirror
M1 and then  from the silvered portion of mirror M2 enter
the telescope. Now the zero of the main scale should
coincide with the zero of the vernier scale and if it is not
so then there is a zero error in the instrument, which
should be noted with proper sign.

In order to calculate the angle between two objects
situated in the direction M1R and M2P as  shown in Fig.
15.3, the movable arm containing mirror M1 is moved
such that the rays coming directly from P towards tele-
scope and rays coming through the paths RM1, M1 M2
and M2 T concide with each other. The angle RM1Q is the angle between the directions of the
two objects, which is twice the angle BM1 C. To facilitate this the circular scale is directly
marked as twice the actual degrees.

Theory: Suppose AB is the tower, the height
of which is to be measured. Make a mark B¢
on the tower at the height of your  eyes from
the ground.

Suppose at a point C (Fig. 15.4) the length
AB of the tower subtends an angle q at your
eyes and at some other point D at a distance d
from point C in the direction of BC, the angle
subtended at your eye is q2.

Since B¢D¢ = AB¢ cot q2
and B¢C¢ = AB¢ cot q1

 B¢D¢ – B¢C¢ = d
AB¢ (cot q2 – cot q1) = d

or AB¢ = d/(cot q2 – cot q1)
Hence the total height of the tower = AB¢ + BB¢

Adjustments:
1. The plane of the index glass M1 must be perpendicu-

lar to the plane of the arc. To test whether this adjust-
ment is complete set the radius bar to about the
middle of the arc. Then with the eyes near the index
glass look obliquely into the glass so as to set at the
same time part of the arc direct and part after reflec-
tion into the mirror. If the two positions of the arc
appear in the same plane the mirror is in adjustment.
If not, then the screws at the back of the mirror must be move till the adjustment is
complete.

2. The plane of the horizon glass must be perpendicular to the plane of the instrument.
Direct the instrument so as to view some small well-defined distant object and move the
radius arm till two images of the distant object appear in the field of view. If by adjusting

�� 	���	�

�� 	���	�
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the radius arm the two images are made to exactly coincide then the mirror M2 is parallel
to the mirror M1 and hence perpendicular to  the plane of the instrument. If turning the
radius arm will not bring the two images in to exact coincidence the screws at the back of
the mirror M2 must be adjusted till complete coincidence of the images can be secured.

3. The line of collimation of the telescope must be parallel to the plane of the instrument.
4. The zero of the scale is said to coincide with the position of the index arm when the two

mirrors are parallel. This adjustment is seldom exactly correct and hence the correction
(called the index correction), which has to be applied must be determined.

Manipulations:
1. Determine the least count of SEXTANT.
2. Make a mark B¢ on the tower AB at the height of your eye level from the ground.
3. Spread the tape towards the tower at some distance from it.
4. Determine the angle q1, standing at one end of the tape. Take the readings and find the

index correction.
5. Step back 20 feet along the tape and measure q2 and index correction.
6. Step back another 20 feet and measure q3 and index correction.
7. Measure the height of the mark B' on the tower from the ground.

Observations:
����������	
��
�

������� ��	
���������
��� ����� �����
��� ������
�
���������
��� �������� ���
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Height of the mark B¢  above the ground BB¢ =          meter

Calculations:
AB¢ = d/(cot q2 – cot q1)

Also AB¢ = d/(cot q3 – cot q2)

Result: The height of the tower is found to be =     meter.

Precautions and Sources of Error:
1. Before performing the experiment the adjustments should be made carefully.
2. Zero reading (index correction) must be found separately at different places.
3. The foot of the tower and two points of observations should be in a straight line.
4. To find out the actual height of the tower, the height of the chalk mark from the foot of

tower should be added.

��	! "�"�#"
�

Q. 1. Why this instrument is called a Sextant?
Ans. The circular scale of the instrument is one sixth of a circle i.e., an arc of 60°.
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Q. 2. Upon what principle does a sextant work?
Ans. This is based on the principle that when a plane mirror is rotated through an angle  q,

the reflected ray is turned though 2q.
Q. 3. Is the incident ray fixed here as mirror is rotated? then?
Ans. No, the incident ray is not fixed, but the reflected ray is fixed in this experiment. On

account of the reversibility of light path, the incident and reflected rays are inter-
changeable.

Q. 4. What is the relation between markings on the scale and the angle turned by the
index arm of the sextant?

Ans. The angle subtended by the object is twice the angle of rotation of the index glass
which is measured by the vernier. To obtain the angle of elevation of the object, the
value of angle obtained from arc scale should be doubled. To avoid the necessity of
doubling the reading each time, the instrument is made direct reading by marking the
graduations of the arc scale by double the actual numbers, thus the 60° arc scale is
marked as 130° scale.

Q. 5. Why are the two images formed when a sextant is directed towards some object?
Ans. One image is formed by the rays directly entering the telescope through the transpar-

ent portion of horizon glass and the second by those rays which enter the telescope
after reflections from index-glass and silvered portion of horizon glass.

Q. 6. What is the relative setting of M1 and M2 when the scale reads zero?
Ans. They are parallel to each other and perpendicular to the bed of the  instrument.
Q. 7. What do you mean by zero error of sextant?
Ans. When direct image of a distant object seen through transparent portion of the horizon

glass is made to coincide with the image formed by reflection at index and horizon
glass the two glasses are parallel. The reading of the index arm on the scale should be
zero, if it is not zero, then there is zero error.

Q. 8. What are these coloured glasses meant for?
Ans. These are used when measurement are made with sun or any other bright object.
Q. 9. What is the relative setting of M1 and M2 when the scale reads zero?
Ans. The two mirrors are parallel to each other and perpendicular to the bed of the appara-

tus.
Q. 10. What are other uses of sextant?

Ans. This is used by mariners to find latitude and longitude at a particular place during
their voyage.

Q. 11. What is meant by angular diameter qqqqq of the sun?
Ans. The angle subtended by sun's disc at the earth is called angular diameter q of the sun.

Q. 12. How the angular diameter of the sun is related to the actual diameter?
Ans. The actual diameter D of the sun is related to angular diameter q by the relation D =

xq, where x is the distance between earth and sun.

�����

Q. 1. What mechanical adjustments must be secured  in a sextant?
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Generally, carbon resistances used in radio network are provided in the laboratory. The value
of these resistances is read by means of a colour code printed on the outer casting as shown in
fig. 1. The numerical value associated with each colour is indicated in following table. The
colour bands are always read left to right from the end that has the bands closest to it, as shown
in fig. 1. The first and second bands represents the first and second significant digits, respec-
tively, of the resistance value and the third band is for the number of zeros that follow the
second digits. The fourth band represents the tolerance.
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For example, if a resistor as a colour band sequence : yellow, violet, orange and gold then
the resistance will be

1st band 2nd band 3rd band 4th band
Yellow Violet Orange Gold

4 7 103 ± 5%
= 47 × 103 W ± 5%

Now 5% of 47 × 103 W = 2.35 × 103W. Therefore, the resistance should be within the range
47 × 103 W ± 2.35 × 103 W, or between 44.65 × 103 W and 49.35 × 103 W
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