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1 INTRODUCTION

1 Introduction

1.1 Intended audience

These lecture notes outline a single semester course intended for upper division
undergraduates.

1.2 Major sources

The textbooks which I have consulted most frequently whilst developing course
material are:

Analytical mechanics, G.R. Fowles (Holt, Rinehart & Winston, New York NY,
1977).

Classical dynamics of particles and systems, 5th Edition, S.T. Thornton, and
J.B. Marion (Brooks/Cole—Thomson Learning, Belmont CA, 2004).

Analytical mechanics, G.R. Fowles, and G.L. Cassiday, 7th Edition (Brooks/Cole—
Thomson Learning, Belmont CA, 2005).

1.3 Scope of course

The scope of this course is indicated by its title, “Analytical Classical Dynamics”.
Taking the elements of the title in reverse order, “Dynamics” is the study of the
motions of the various objects in the world around us. A mathematical theory
of dynamics is an axiomatic system, ultimately based on a few fundamental laws,
which can be used to both understand and predict these motions. By “Classical”,
we understand that the theory of motion which we are going to use in our investi-
gation of dynamics is that first published by Isaac Newton in 1687. We now know
that this theory is only approximately true. The theory breaks down when the
velocities of the objects under investigation approach the speed of light, and must
be replaced by Einstein’s special theory of relativity. The theory also breaks down
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1 INTRODUCTION 1.4 Outline of course

on the atomic and subatomic scales, and must be replaced by quantum mechanics.
In this course, we shall neglect both relativistic and quantum effects entirely. It
follows that we must restrict our investigation to the motions of large (compared
to an atom) slow (compared to the speed of light) objects. Fortunately, however,
most of the motions which we observe in the world around us fall into this class.
Finally, by “Analytical”, we understand that we shall only consider those types of
motion whose governing differential equations can be solved via standard analytic
techniques. In practice, this means that the governing equations must be linear in
nature, since our ability to solve nonlinear differential equations analytically is very
limited. Fortunately, a wide range of the observed motions in the world around
us are governed, either exactly or approximately, by linear differential equations.
Unfortunately, there is one very interesting type of motion which is definitely not

governed by linear differential equations—namely, chaotic motion. It is impossible
to make a meaningful investigation of chaotic motion without resorting to numeri-

cal methods for solving the associated differential equations. Such methods lie well
beyond the scope of this course. Consequently, we shall not be discussing chaotic
motion.

1.4 Outline of course

This course is organized as follows. Section 2 is a review of those elements of
vector algebra and vector calculus which are needed in classical dynamics. Sec-
tion 3 discusses the fundamental aspects of Newton’s theory of motion. Section 4
investigates one-dimensional motion, including damped oscillatory motion. Sec-
tion 5 discusses multi-dimensional motion. Section 6 investigates the motions of
the Planets in the Solar System. Section 7 discusses two-body problems such as
scattering. Section 8 investigates motion in non-inertial reference frames. Section 9
discusses the rotation of rigid bodies. Section 10 investigates Lagrangian dynam-
ics. Section 11 is devoted to Hamiltonian dynamics. Finally, Sect. 12 investigates
coupled oscillations.
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2 VECTORS

2 Vectors

2.1 Introduction

In this section, we shall give a brief outline of those aspects of vector algebra and
vector calculus which are needed to investigate classical dynamics.

This section is largely based on my undergraduate lecture notes from a course
given by Dr. Stephen Gull at the University of Cambridge.

2.2 Vector algebra

P

Q

Figure 1:

In applied mathematics, physical quantities are (predominately) represented by
two distinct classes of objects. Some quantities, denoted scalars, are represented
by real numbers. Others, denoted vectors, are represented by directed line elements

in space: e.g.,
→
PQ (see Fig. 1). Note that line elements (and, therefore, vectors)

are movable, and do not carry intrinsic position information. In fact, vectors just
possess a magnitude and a direction, whereas scalars possess a magnitude but no
direction. By convention, vector quantities are denoted by bold-faced characters
(e.g., a) in typeset documents, and by underlined characters (e.g., a) in long-hand.
Vectors can be added together, but the same units must be used, just like in scalar

addition. Vector addition can be represented using a parallelogram:
→
PR=

→
PQ

+
→
QR (see Fig. 2). Suppose that a ≡

→
PQ≡

→
SR, b ≡

→
QR≡

→
PS, and c ≡

→
PR. It is

clear from Fig. 2 that vector addition is commutative: i.e., a + b = b + a. It can
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2 VECTORS 2.2 Vector algebra

b

Q

R

S

P

a

Figure 2:

also be shown that the associative law holds: i.e., a + (b + c) = (a + b) + c.

There are two approaches to vector analysis. The geometric approach is based
on line elements in space. The coordinate approach assumes that space is defined
by Cartesian coordinates, and uses these to characterize vectors. In physics, we
generally adopt the second approach, because it is far more convenient than the
first.

In the coordinate approach, a vector is denoted as the row matrix of its compo-
nents along each of the Cartesian axes (the x-, y-, and z-axes, say):

a ≡ (ax, ay, az). (2.1)

Here, ax is the x-coordinate of the “head” of the vector minus the x-coordinate of
its “tail.” If a ≡ (ax, ay, az) and b ≡ (bx, by, bz) then vector addition is defined

a + b ≡ (ax + bx, ay + by, az + bz). (2.2)

If a is a vector and n is a scalar then the product of a scalar and a vector is defined

n a ≡ (n ax, n ay, n az). (2.3)

It is clear that vector algebra is distributive with respect to scalar multiplication:
i.e., n (a + b) = n a + nb.
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2 VECTORS 2.2 Vector algebra

x

x’

y
y’

θ

Figure 3:

Unit vectors can be defined in the x-, y-, and z-directions as ex ≡ (1, 0, 0),
ey ≡ (0, 1, 0), and ez ≡ (0, 0, 1). Any vector can be written in terms of these unit
vectors:

a = ax ex + ay ey + az ez. (2.4)

In mathematical terminology, three vectors used in this manner form a basis of the
vector space. If the three vectors are mutually perpendicular then they are termed
orthogonal basis vectors. However, any set of three non-coplanar vectors can be
used as basis vectors.

Examples of vectors in physics are displacements from an origin,

r = (x, y, z), (2.5)

and velocities,

v =
dr

dt
= lim

δt→0

r(t+ δt) − r(t)

δt
. (2.6)

Suppose that we transform to a new orthogonal basis, the x′-, y′-, and z′-axes,
which are related to the x-, y-, and z-axes via a rotation through an angle θ

around the z-axis (see Fig. 3). In the new basis, the coordinates of the general
displacement r from the origin are (x′, y′, z′). These coordinates are related to the
previous coordinates via the transformation:

x′ = x cos θ + y sin θ, (2.7)

y′ = −x sin θ + y cos θ, (2.8)

z′ = z. (2.9)
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2 VECTORS 2.3 The scalar product

We do not need to change our notation for the displacement in the new basis. It
is still denoted r. The reason for this is that the magnitude and direction of r are
independent of the choice of basis vectors. The coordinates of r do depend on the
choice of basis vectors. However, they must depend in a very specific manner [i.e.,
Eqs. (2.7)–(2.9)] which preserves the magnitude and direction of r.

Since any vector can be represented as a displacement from an origin (this is
just a special case of a directed line element), it follows that the components of
a general vector a must transform under rotation through an angle θ about the
z-axis in an analogous manner to Eqs. (2.7)–(2.9). Thus,

ax′ = ax cos θ + ay sin θ, (2.10)

ay′ = −ax sin θ + ay cos θ, (2.11)

az′ = az, (2.12)

with similar transformation rules for rotation about the x- and y-axes. In the coor-
dinate approach, Eqs. (2.10)–(2.12) constitute the definition of a vector. The three
quantities (ax, ay, az) are the components of a vector provided that they transform
under rotation like Eqs. (2.10)–(2.12). Conversely, (ax, ay, az) cannot be the compo-
nents of a vector if they do not transform like Eqs. (2.10)–(2.12). Scalar quantities
are invariant under transformation. Thus, the individual components of a vector
(ax, say) are real numbers, but they are not scalars. Displacement vectors, and all
vectors derived from displacements, automatically satisfy Eqs. (2.10)–(2.12). There
are, however, other physical quantities which have both magnitude and direction,
but which are not obviously related to displacements. We need to check carefully
to see whether these quantities are vectors.

2.3 The scalar product

A scalar quantity is invariant under all possible rotational transformations. The
individual components of a vector are not scalars because they change under trans-
formation. Can we form a scalar out of some combination of the components of
one, or more, vectors? Suppose that we were to define the “ampersand” product,

a&b = ax by + ay bz + az bx = scalar number, (2.13)
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2 VECTORS 2.3 The scalar product

for general vectors a and b. Is a&b invariant under transformation, as must
be the case if it is a scalar number? Let us consider an example. Suppose that
a = (1, 0, 0) and b = (0, 1, 0). It is easily seen that a&b = 1. Let us now rotate
the basis through 45◦ about the z-axis. In the new basis, a = (1/

√
2, −1/

√
2, 0)

and b = (1/
√

2, 1/
√

2, 0), giving a&b = 1/2. Clearly, a&b is not invariant under
rotational transformation, so the above definition is a bad one.

Consider, now, the dot product or scalar product:

a · b = ax bx + ay by + az bz = scalar number. (2.14)

Let us rotate the basis though θ degrees about the z-axis. According to Eqs. (2.10)–
(2.12), in the new basis a · b takes the form

a · b = (ax cos θ + ay sin θ) (bx cos θ + by sin θ)

+(−ax sin θ + ay cos θ) (−bx sin θ + by cos θ) + az bz (2.15)

= ax bx + ay by + az bz.

Thus, a ·b is invariant under rotation about the z-axis. It can easily be shown that
it is also invariant under rotation about the x- and y-axes. Clearly, a · b is a true
scalar, so the above definition is a good one. Incidentally, a · b is the only simple
combination of the components of two vectors which transforms like a scalar. It is
easily shown that the dot product is commutative and distributive:

a · b = b · a,
a · (b + c) = a · b + a · c. (2.16)

The associative property is meaningless for the dot product, because we cannot
have (a · b) · c, since a · b is scalar.

We have shown that the dot product a · b is coordinate independent. But what
is the physical significance of this? Consider the special case where a = b. Clearly,

a · b = a 2
x + a 2

y + a 2
z = Length (OP )2, (2.17)

if a is the position vector of P relative to the origin O. So, the invariance of
a · a is equivalent to the invariance of the length, or magnitude, of vector a under
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2 VECTORS 2.3 The scalar product

transformation. The length of vector a is usually denoted |a| (“the modulus of a”)
or sometimes just a, so

a · a = |a|2 = a2. (2.18)

b − a

O
θ

A

B

.

b

a

Figure 4:

Let us now investigate the general case. The length squared of AB (see Fig. 4)
is

(b − a) · (b − a) = |a|2 + |b|2 − 2 a · b. (2.19)

However, according to the “cosine rule” of trigonometry,

(AB)2 = (OA)2 + (OB)2 − 2 (OA) (OB) cos θ, (2.20)

where (AB) denotes the length of side AB. It follows that

a · b = |a| |b| cos θ. (2.21)

Clearly, the invariance of a ·b under transformation is equivalent to the invariance
of the angle subtended between the two vectors. Note that if a · b = 0 then either
|a| = 0, |b| = 0, or the vectors a and b are perpendicular. The angle subtended
between two vectors can easily be obtained from the dot product:

cos θ =
a · b
|a| |b| . (2.22)

The work W performed by a constant force F moving an object through a
displacement r is the product of the magnitude of F times the displacement in the
direction of F. If the angle subtended between F and r is θ then

W = |F | (|r| cos θ) = F · r. (2.23)
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2 VECTORS 2.4 The vector product

The infinitesimal work dW done by a (possibly time-varying) force F which
moves an object through the infinitesimal displacement dr in the time interval dt
is dW = F · dr. Hence, the instantaneous rate at which the force does work on the
object, or the power P , takes the form

P =
dW

dt
= F · v, (2.24)

where v = dr/dt is the object’s instantaneous velocity.

2.4 The vector product

We have discovered how to construct a scalar from the components of two gen-
eral vectors a and b. Can we also construct a vector which is not just a linear
combination of a and b? Consider the following definition:

a xb = (ax bx, ay by, az bz). (2.25)

Is a xb a proper vector? Suppose that a = (1, 0, 0), b = (0, 1, 0). Clearly,
a xb = 0. However, if we rotate the basis through 45◦ about the z-axis then
a = (1/

√
2, −1/

√
2, 0), b = (1/

√
2, 1/

√
2, 0), and a xb = (1/2, −1/2, 0). Thus,

a xb does not transform like a vector, because its magnitude depends on the choice
of axes. So, above definition is a bad one.

Consider, now, the cross product or vector product:

a × b = (ay bz − az by, az bx − ax bz, ax by − ay bx) = c. (2.26)

Does this rather unlikely combination transform like a vector? Let us try rotating
the basis through θ degrees about the z-axis using Eqs. (2.10)–(2.12). In the new
basis,

cx′ = (−ax sin θ + ay cos θ) bz − az (−bx sin θ + by cos θ)

= (ay bz − az by) cos θ + (az bx − ax bz) sin θ

= cx cos θ + cy sin θ. (2.27)

Thus, the x-component of a × b transforms correctly. It can easily be shown that
the other components transform correctly as well. Thus, a × b is a proper vector.
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2 VECTORS 2.4 The vector product

a  b

θ
b

a index finger

middle finger

thumb

Figure 5:

Incidentally, a×b is the only simple combination of the components of two vectors
which transforms like a vector (which is non-coplanar with a and b). The cross
product is anticommutative,

a × b = −b × a, (2.28)

distributive,
a × (b + c) = a × b + a × c, (2.29)

but is not associative:
a × (b × c) 6= (a × b) × c. (2.30)

The cross product transforms like a vector, which means that it must have a
well-defined direction and magnitude. We can show that a× b is perpendicular to
both a and b. Consider a · a × b. If this is zero then the cross product must be
perpendicular to a. Now

a · a × b = ax (ay bz − az by) + ay (az bx − ax bz) + az (ax by − ay bx)

= 0. (2.31)

Therefore, a×b is perpendicular to a. Likewise, it can be demonstrated that a×b

is perpendicular to b. The vectors a, b, and a×b form a right-handed set, like the
unit vectors ex, ey, and ez. In fact, ex × ey = ez. This defines a unique direction
for a × b, which is obtained from the right-hand rule (see Fig. 5).
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2 VECTORS 2.4 The vector product

a
θ

b

Figure 6:

Let us now evaluate the magnitude of a × b. We have

(a × b)2 = (ay bz − az by)
2 + (az bx − ax bz)

2 + (ax bz − ay bx)
2

= (a 2
x + a 2

y + a 2
z ) (b 2

x + b 2
y + b 2

z ) − (ax bx + ay by + az bz)
2

= |a|2 |b|2 − (a · b)2

= |a|2 |b|2 − |a|2 |b|2 cos2 θ = |a|2 |b|2 sin2 θ. (2.32)

Thus,
|a × b| = |a| |b| sin θ. (2.33)

Clearly, a × a = 0 for any vector, since θ is always zero in this case. Also, if
a × b = 0 then either |a| = 0, |b| = 0, or b is parallel (or antiparallel) to a.

Consider the parallelogram defined by vectors a and b (see Fig. 6). The scalar
area is a b sin θ. By definition, the vector area has the magnitude of the scalar
area, and is normal to the plane of the parallelogram, which means that it is
perpendicular to both a and b. Clearly, the vector area is given by

S = a × b, (2.34)

with the sense obtained from the right-hand grip rule by rotating a on to b.

Suppose that a force F is applied at position r (see Fig. 7). The moment, or
torque, about the origin O is the product of the magnitude of the force and the
length of the lever arm OQ. Thus, the magnitude of the moment is |F | |r| sin θ.
The direction of the moment is conventionally the direction of the axis through
O about which the force tries to rotate objects, in the sense determined by the
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2 VECTORS 2.5 Rotation

F

P

O Q
r sinθ

θ

r

Figure 7:

right-hand grip rule. It follows that the vector moment is given by

M = r × F. (2.35)

The angular momentum, l, of a particle of linear momentum p and position
vector r about the origin is simply defined as the moment of its momentum about
the origin. Hence,

l = r × p. (2.36)

2.5 Rotation

Let us try to define a rotation vector θ whose magnitude is the angle of the rotation,
θ, and whose direction is the axis of the rotation, in the sense determined by the
right-hand grip rule. Is this a good vector? The short answer is, no. The problem
is that the addition of rotations is not commutative, whereas vector addition is
commuative. Figure 8 shows the effect of applying two successive 90◦ rotations,
one about x-axis, and the other about the z-axis, to a six-sided die. In the left-
hand case, the z-rotation is applied before the x-rotation, and vice versa in the
right-hand case. It can be seen that the die ends up in two completely different
states. Clearly, the z-rotation plus the x-rotation does not equal the x-rotation plus
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2 VECTORS 2.5 Rotation

z-axis x-axis

x-axis z-axis

y

z

x

Figure 8:

the z-rotation. This non-commuting algebra cannot be represented by vectors. So,
although rotations have a well-defined magnitude and direction, they are not vector
quantities.

But, this is not quite the end of the story. Suppose that we take a general vector
a and rotate it about the z-axis by a small angle δθz. This is equivalent to rotating
the basis about the z-axis by −δθz. According to Eqs. (2.10)–(2.12), we have

a′ ' a + δθz ez × a, (2.37)

where use has been made of the small angle expansions sin θ ' θ and cos θ ' 1.
The above equation can easily be generalized to allow small rotations about the x-
and y-axes by δθx and δθy, respectively. We find that

a′ ' a + δθ × a, (2.38)

where
δθ = δθx ex + δθy ey + δθz ez. (2.39)
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2 VECTORS 2.6 The scalar triple product

b

a

c

Figure 9:

Clearly, we can define a rotation vector δθ, but it only works for small angle
rotations (i.e., sufficiently small that the small angle expansions of sine and cosine
are good). According to the above equation, a small z-rotation plus a small x-
rotation is (approximately) equal to the two rotations applied in the opposite order.
The fact that infinitesimal rotation is a vector implies that angular velocity,

ω = lim
δt→0

δθ

δt
, (2.40)

must be a vector as well. Also, if a′ is interpreted as a(t+δt) in the above equation
then it is clear that the equation of motion of a vector precessing about the origin
with angular velocity ω is

da

dt
= ω × a. (2.41)

2.6 The scalar triple product

Consider three vectors a, b, and c. The scalar triple product is defined a · b × c.
Now, b× c is the vector area of the parallelogram defined by b and c. So, a ·b× c

is the scalar area of this parallelogram times the component of a in the direction
of its normal. It follows that a · b × c is the volume of the parallelepiped defined
by vectors a, b, and c (see Fig. 9). This volume is independent of how the triple
product is formed from a, b, and c, except that

a · b × c = −a · c × b. (2.42)
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2 VECTORS 2.7 The vector triple product

So, the “volume” is positive if a, b, and c form a right-handed set (i.e., if a lies
above the plane of b and c, in the sense determined from the right-hand grip rule by
rotating b onto c) and negative if they form a left-handed set. The triple product
is unchanged if the dot and cross product operators are interchanged:

a · b × c = a × b · c. (2.43)

The triple product is also invariant under any cyclic permutation of a, b, and c,

a · b × c = b · c × a = c · a × b, (2.44)

but any anti-cyclic permutation causes it to change sign,

a · b × c = −b · a × c. (2.45)

The scalar triple product is zero if any two of a, b, and c are parallel, or if a, b,
and c are co-planar.

If a, b, and c are non-coplanar, then any vector r can be written in terms of
them:

r = α a + β b + γ c. (2.46)

Forming the dot product of this equation with b × c, we then obtain

r · b × c = α a · b × c, (2.47)

so

α =
r · b × c

a · b × c
. (2.48)

Analogous expressions can be written for β and γ. The parameters α, β, and γ

are uniquely determined provided a · b× c 6= 0: i.e., provided that the three basis
vectors are not co-planar.

2.7 The vector triple product

For three vectors a, b, and c, the vector triple product is defined a × (b × c).
The brackets are important because a × (b × c) 6= (a × b) × c. In fact, it can be
demonstrated that

a × (b × c) ≡ (a · c)b − (a · b) c (2.49)
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2 VECTORS 2.8 Vector calculus

and
(a × b) × c ≡ (a · c)b − (b · c) a. (2.50)

Let us try to prove the first of the above theorems. The left-hand side and
the right-hand side are both proper vectors, so if we can prove this result in one
particular coordinate system then it must be true in general. Let us take convenient
axes such that the x-axis lies along b, and c lies in the x-y plane. It follows that
b = (bx, 0, 0), c = (cx, cy, 0), and a = (ax, ay, az). The vector b × c is directed
along the z-axis: b×c = (0, 0, bx cy). It follows that a×(b×c) lies in the x-y plane:
a× (b× c) = (ay bx cy, −ax bx cy, 0). This is the left-hand side of Eq. (2.49) in our
convenient coordinates. To evaluate the right-hand side, we need a·c = ax cx+ay cy
and a · b = ax bx. It follows that the right-hand side is

RHS = ( [ax cx + ay cy] bx, 0, 0) − (ax bx cx, ax bx cy, 0)

= (ay cy bx, −ax bx cy, 0) = LHS, (2.51)

which proves the theorem.

2.8 Vector calculus

Suppose that vector a varies with time, so that a = a(t). The time derivative of
the vector is defined

da

dt
= lim

δt→0





a(t+ δt) − a(t)

δt



 . (2.52)

When written out in component form this becomes

da

dt
=

(

dax
dt
,
day
dt
,
daz
dt

)

. (2.53)

Suppose that a is, in fact, the product of a scalar φ(t) and another vector b(t).
What now is the time derivative of a? We have

dax
dt

=
d

dt
(φ bx) =

dφ

dt
bx + φ

dbx
dt
, (2.54)

which implies that
da

dt
=
dφ

dt
b + φ

db

dt
. (2.55)
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2 VECTORS 2.9 Line integrals
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Figure 10:

It is easily demonstrated that

d

dt
(a · b) =

da

dt
· b + a · db

dt
. (2.56)

Likewise,
d

dt
(a × b) =

da

dt
× b + a × db

dt
. (2.57)

It can be seen that the laws of vector differentiation are analogous to those of
conventional calculus.

2.9 Line integrals

Consider a two-dimensional function f(x, y) which is defined for all x and y. What
is meant by the integral of f along a given curve from P to Q in the x-y plane? We
first draw out f as a function of length l along the path (see Fig. 10). The integral
is then simply given by

∫ Q

P
f(x, y) dl = Area under the curve. (2.58)

As an example of this, consider the integral of f(x, y) = x y between P and
Q along the two routes indicated in Fig. 11. Along route 1 we have x = y, so
dl =

√
2 dx. Thus,

∫ Q

P
x y dl =

∫ 1

0
x2

√
2 dx =

√
2

3
. (2.59)
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2 VECTORS 2.9 Line integrals

x

y
Q = (1, 1)

P = (0, 0)

2

2

1

Figure 11:

The integration along route 2 gives

∫ Q

P
x y dl =

∫ 1

0
x y dx

∣

∣

∣

∣

∣

y=0
+
∫ 1

0
x y dy

∣

∣

∣

∣

∣

x=1

= 0 +
∫ 1

0
y dy =

1

2
. (2.60)

Note that the integral depends on the route taken between the initial and final
points.

The most common type of line integral is that where the contributions from dx

and dy are evaluated separately, rather that through the path length dl:

∫ Q

P
[f(x, y) dx+ g(x, y) dy] . (2.61)

As an example of this, consider the integral

∫ Q

P

[

y3 dx+ x dy
]

(2.62)

along the two routes indicated in Fig. 12. Along route 1 we have x = y + 1 and
dx = dy, so

∫ Q

P
=
∫ 1

0

[

y3 dy + (y + 1) dy
]

=
7

4
. (2.63)

Along route 2,
∫ Q

P
=

∫ 2

1
y3 dx

∣

∣

∣

∣

∣

y=0
+
∫ 1

0
x dy

∣

∣

∣

∣

∣

x=2
= 2. (2.64)
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2 VECTORS 2.9 Line integrals

y
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Figure 12:

Again, the integral depends on the path of integration.

Suppose that we have a line integral which does not depend on the path of
integration. It follows that

∫ Q

P
(f dx+ g dy) = F (Q) − F (P ) (2.65)

for some function F . Given F (P ) for one point P in the x-y plane, then

F (Q) = F (P ) +
∫ Q

P
(f dx+ g dy) (2.66)

defines F (Q) for all other points in the plane. We can then draw a contour map of
F (x, y). The line integral between points P and Q is simply the change in height
in the contour map between these two points:

∫ Q

P
(f dx+ g dy) =

∫ Q

P
dF (x, y) = F (Q) − F (P ). (2.67)

Thus,
dF (x, y) = f(x, y) dx+ g(x, y) dy. (2.68)

For instance, if F = x y3 then dF = y3 dx+ 3 x y2 dy and
∫ Q

P

(

y3 dx+ 3 x y2 dy
)

=
[

x y3
]Q

P
(2.69)

is independent of the path of integration.

It is clear that there are two distinct types of line integral. Those which depend
only on their endpoints and not on the path of integration, and those which depend
both on their endpoints and the integration path.

20



2 VECTORS 2.10 Gradient

2.10 Gradient

A one-dimensional function f(x) has a gradient df/dx which is defined as the slope
of the tangent to the curve at x. We wish to extend this idea to cover scalar fields
in two and three dimensions.

x

y

P

θ

contours of h(x, y)

Figure 13:

Consider a two-dimensional scalar field h(x, y), which is (say) the height of a
hill. Let dl = (dx, dy) be an element of horizontal distance. Consider dh/dl,
where dh is the change in height after moving an infinitesimal distance dl. This
quantity is somewhat like the one-dimensional gradient, except that dh depends
on the direction of dl, as well as its magnitude. In the immediate vicinity of some
point P , the slope reduces to an inclined plane (see Fig. 13). The largest value of
dh/dl is straight up the slope. For any other direction

dh

dl
=

(

dh

dl

)

max
cos θ. (2.70)

Let us define a two-dimensional vector, gradh, called the gradient of h, whose
magnitude is (dh/dl)max, and whose direction is the direction up the steepest slope.
Because of the cos θ property, the component of gradh in any direction equals dh/dl
for that direction.

The component of dh/dl in the x-direction can be obtained by plotting out the
profile of h at constant y, and then finding the slope of the tangent to the curve
at given x. This quantity is known as the partial derivative of h with respect to
x at constant y, and is denoted (∂h/∂x)y. Likewise, the gradient of the profile at
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2 VECTORS 2.10 Gradient

constant x is written (∂h/∂y)x. Note that the subscripts denoting constant-x and
constant-y are usually omitted, unless there is any ambiguity. If follows that in
component form

gradh =

(

∂h

∂x
,
∂h

∂y

)

. (2.71)

Now, the equation of the tangent plane at P = (x0, y0) is

hT (x, y) = h(x0, y0) + α (x− x0) + β (y − y0). (2.72)

This has the same local gradients as h(x, y), so

α =
∂h

∂x
, β =

∂h

∂y
, (2.73)

by differentiation of the above. For small dx = x−x0 and dy = y−y0, the function
h is coincident with the tangent plane. We have

dh =
∂h

∂x
dx+

∂h

∂y
dy, (2.74)

but gradh = (∂h/∂x, ∂h/∂y) and dl = (dx, dy), so

dh = gradh · dl. (2.75)

Incidentally, the above equation demonstrates that gradh is a proper vector, since
the left-hand side is a scalar, and, according to the properties of the dot product,
the right-hand side is also a scalar, provided that dl and gradh are both proper
vectors (dl is an obvious vector, because it is directly derived from displacements).

Consider, now, a three-dimensional temperature distribution T (x, y, z) in (say)
a reaction vessel. Let us define gradT , as before, as a vector whose magnitude is
(dT/dl)max, and whose direction is the direction of the maximum gradient. This
vector is written in component form

gradT =

(

∂T

∂x
,
∂T

∂y
,
∂T

∂z

)

. (2.76)

Here, ∂T/∂x ≡ (∂T/∂x)y,z is the gradient of the one-dimensional temperature
profile at constant y and z. The change in T in going from point P to a neighbouring
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2 VECTORS 2.10 Gradient

point offset by dl = (dx, dy, dz) is

dT =
∂T

∂x
dx+

∂T

∂y
dy +

∂T

∂z
dz. (2.77)

In vector form, this becomes

dT = gradT · dl. (2.78)

Suppose that dT = 0 for some dl. It follows that

dT = gradT · dl = 0. (2.79)

So, dl is perpendicular to gradT . Since dT = 0 along so-called “isotherms” (i.e.,
contours of the temperature), we conclude that the isotherms (contours) are every-
where perpendicular to gradT (see Fig. 14).

l
T = constant

isotherms

T
d

grad 

Figure 14:

It is, of course, possible to integrate dT . The line integral from point P to point
Q is written

∫ Q

P
dT =

∫ Q

P
gradT · dl = T (Q) − T (P ). (2.80)

This integral is clearly independent of the path taken between P andQ, so
∫Q
P gradT ·

dl must be path independent.

In general,
∫Q
P A · dl depends on path, but for some special vector fields the

integral is path independent. Such fields are called conservative fields. It can be
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2 VECTORS 2.10 Gradient

shown that if A is a conservative field then A = gradφ for some scalar field φ.
The proof of this is straightforward. Keeping P fixed we have

∫ Q

P
A · dl = V (Q), (2.81)

where V (Q) is a well-defined function, due to the path independent nature of the
line integral. Consider moving the position of the end point by an infinitesimal
amount dx in the x-direction. We have

V (Q+ dx) = V (Q) +
∫ Q+dx

Q
A · dl = V (Q) + Ax dx. (2.82)

Hence,
∂V

∂x
= Ax, (2.83)

with analogous relations for the other components of A. It follows that

A = gradV. (2.84)

In physics, the force due to gravity is a good example of a conservative field.
If A is a force, then

∫

A · dl is the work done in traversing some path. If A is
conservative then

∮

A · dl = 0, (2.85)

where
∮

corresponds to the line integral around some closed loop. The fact that zero
net work is done in going around a closed loop is equivalent to the conservation of
energy (this is why conservative fields are called “conservative”). A good example
of a non-conservative field is the force due to friction. Clearly, a frictional system
loses energy in going around a closed cycle, so

∮

A · dl 6= 0.

It is useful to define the vector operator

∇ ≡
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

, (2.86)

which is usually called the grad or del operator. This operator acts on everything
to its right in an expression, until the end of the expression or a closing bracket is
reached. For instance,

grad f = ∇f =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

. (2.87)
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For two scalar fields φ and ψ,

grad (φψ) = φ gradψ + ψ gradφ, (2.88)

which can be written more succinctly as

∇(φψ) = φ∇ψ + ψ∇φ. (2.89)

Suppose that we rotate the basis about the z-axis by θ degrees. By analogy with
Eqs. (2.7)–(2.9), the old coordinates (x, y, z) are related to the new ones (x′, y′,
z′) via

x = x′ cos θ − y′ sin θ, (2.90)

y = x ′ sin θ + y′ cos θ, (2.91)

z = z′. (2.92)

Now,
∂

∂x′
=

(

∂x

∂x′

)

y′,z′

∂

∂x
+

(

∂y

∂x′

)

y′,z′

∂

∂y
+

(

∂z

∂x′

)

y′,z′

∂

∂z
, (2.93)

giving
∂

∂x′
= cos θ

∂

∂x
+ sin θ

∂

∂y
, (2.94)

and
∇x′ = cos θ∇x + sin θ∇y. (2.95)

It can be seen that the differential operator ∇ transforms like a proper vector,
according to Eqs. (2.10)–(2.12). This is another proof that ∇f is a good vector.

2.11 Useful vector formulae

Vector addition:

a + b ≡ (ax + bx, ay + by, az + bz)

Vector multiplication:

n a ≡ (n ax, n ay, n az)
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2 VECTORS 2.12 Useful trigonometric formulae

Scalar product:

a · b = ax bx + ay by + az bz

Vector product:

a × b = (ay bz − az by, az bx − ax bz, ax by − ay bx)

Scalar triple product:

a · b × c = a × b · c = b · c × a = −b · a × c

Vector triple product:

a × (b × c) = (a · c)b − (a · b) c

(a × b) × c = (a · c)b − (b · c) a

2.12 Useful trigonometric formulae

cos2 a+ sin2 a = 1,

sin (a+ b) = sin a cos b+ cos a sin b,

cos (a+ b) = cos a cos b− sin a sin b,

tan (a+ b) =
tan a+ tan b

1 − tan a tan b
,

sin (2 a) = 2 sin a cos a,

cos (2 a) = 2 cos2 a− 1 = 1 − 2 sin2 a,

2 sin a sin b = cos (a− b) − cos (a+ b),

2 cos a cos b = cos (a− b) + cos (a+ b),

2 sin a cos b = sin (a− b) + sin (a+ b),

sin a+ sin b = 2 sin

(

a+ b

2

)

cos

(

a− b

2

)

,

sin a− sin b = 2 cos

(

a+ b

2

)

sin

(

a− b

2

)

,
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cos a+ cos b = 2 cos

(

a+ b

2

)

cos

(

a− b

2

)

,

cos a− cos b = −2 sin

(

a+ b

2

)

sin

(

a− b

2

)

,

sin−1(a) =
∫ a

0

dy

(1 − y2)1/2
,

tan−1(a) =
∫ a

0

dy

1 + y2
,

cosh2 a− sinh2 a = 1,

sinh (a+ b) = sinh a cosh b+ cosh a sinh b,

cosh (a+ b) = cosh a cosh b+ sinh a sinh b,

tanh (a+ b) =
tanh a+ tanh b

1 + tanh a tanh b
,

sinh (2 a) = 2 sinh a cosh a,

cosh (2 a) = 2 cosh2 a− 1 = 2 sinh2 a+ 1,

2 sinh a sinh b = cosh (a+ b) − cosh (a− b),

2 cosh a cosh b = cosh (a+ b) + cos (a− b),

2 sinh a cosh b = sinh (a+ b) + sinh (a− b),

sinh a+ sinh b = 2 sinh

(

a+ b

2

)

cosh

(

a− b

2

)

,

sinh a− sinh b = 2 cosh

(

a+ b

2

)

sinh

(

a− b

2

)

,

cosh a+ cosh b = 2 cosh

(

a+ b

2

)

cosh

(

a− b

2

)

,

cosh a− cosh b = 2 sinh

(

a+ b

2

)

sinh

(

a− b

2

)

,

sinh−1(a) =
∫ a

0

dy

(1 + y2)1/2
,

tanh−1(a) =
∫ a

0

dy

1 − y2
.
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3 FUNDAMENTALS

3 Fundamentals

3.1 Introduction

In this section, we shall examine the fundamental concepts which underlie all of
classical dynamics.

3.2 Fundamental assumptions

Classical dynamics is a mathematical model which aims to both describe and pre-
dict the motions of the various objects which we encounter in the world around
us. The general principles of this theory were first enunciated by Sir Isaac Newton
in a work entitled Philosophiae Naturalis Principia Mathematica (1687), which is
commonly known as the Principa.

Up until the beginning of the 20th century, Newton’s theory of motion was
thought to constitute a complete description of all types of motion occurring in the
Universe. We now know that this is not the case. The modern view is that Newton’s
theory is an approximation which is generally valid when describing the low speed

(compared to the speed of light) motions of macroscopic objects. Newton’s theory
breaks down, and must be replaced by Einstein’s theory of relativity, when objects
start to move at speeds approaching the speed of light. Newton’s theory also breaks
down on the atomic scale, and must be replaced by quantum mechanics.

Newton’s theory of motion is an axiomatic system. Like all axiomatic systems
(e.g., Euclidean geometry), it starts from a set of terms which are undefined within
the theory. In the present case, the fundamental terms are mass, position, time,
and force. It is taken for granted that we understand what these terms mean, and,
in fact, that they correspond to measurable quantities which can be ascribed to,
or associated with, objects in the world around us. The next component of an
axiomatic system is a set of axioms. These are a set of unproven propositions,
involving the undefined terms, from which all other propositions in the system can
be derived via logic and mathematical analysis. In the present case, the axioms
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3 FUNDAMENTALS 3.3 Newton’s first law of motion

are called Newton’s laws of motion, and can only be justified via experimental
observation.

In the following, it is assumed that we know how to set up a Cartesian frame

of reference, and also know how to measure the positions of objects as functions of
time within that frame. In addition, it is assumed that we have some familiarity
with the laws of mechanics, and that we understand standard mathematics up to,
and including, calculus, as well as the vector analysis outlined in Sect. 2.

3.3 Newton’s first law of motion

As is well-known, Newton’s first law of motion states that an object subject to zero
net external force moves in a straight-line with constant speed (i.e., it does not
accelerate). However, this is only true in special frames of reference called inertial

frames. Indeed, we can think of Newton’s first law as the definition of an inertial
frame: i.e., an inertial frame of reference is one in which an object subject to zero
net external force moves in a straight-line with constant speed.

Suppose that we have found an inertial frame of reference. Let us set up a
Cartesian coordinate system in this frame. The motion of a point object can now
be specified by giving its position vector, r = (x, y, z), with respect to the origin
of our coordinate system, as a function of time, t. Consider a second frame of
reference moving with some constant velocity u with respect to our first frame.
Without loss of generality, we can suppose that the Cartesian axes in the second
frame are parallel to the corresponding axes in the first frame, and that u = (u, 0, 0),
and, finally, that the origins of the two frames instantaneously coincide at t = 0
(see Fig. 15). Suppose that the position vector of our point object is r′ = (x′, y′, z′)
in the second frame of reference. It is fairly obvious, from Fig. 15, that at any given
time, t, the coordinates of the object in the two reference frames satisfy

x′ = x− u t, (3.1)

y′ = y, (3.2)

z′ = z. (3.3)

This transformation law is generally known as the Galilean transformation, after
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origins

y y’

x x’

u t

Figure 15:

Galileo.

The instantaneous velocity of the object in our first reference frame is given by
v = dr/dt = (dx/dt, dy/dt, dz/dt), with an analogous expression for the velocity, v′,
in the second frame. It follows from Eqs. (3.1)–(3.3) that the velocity components
in the two frames satisfy

v′x = vx − u, (3.4)

v′y = vy, (3.5)

v′z = vz. (3.6)

These equations can be written more succinctly as

v′ = v − u. (3.7)

Finally, the instantaneous acceleration of the object in our first reference frame
is given by a = dv/dt = (dvx/dt, dvy/dt, dvz/dt), with an analogous expression for
the acceleration, a′, in the second frame. It follows from Eqs. (3.4)–(3.6) that the
acceleration components in the two frames satisfy

a′x = ax, (3.8)

a′y = ay, (3.9)

a′z = az. (3.10)
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3 FUNDAMENTALS 3.4 Newton’s second law of motion

These equations can be written more succinctly as

a′ = a. (3.11)

According to Eqs. (3.7) and (3.11), if an object is moving in a straight-line with
constant speed in our original inertial frame (i.e., if a = 0) then it also moves in
a (different) straight-line with (a different) constant speed in the second frame of
reference (i.e., a′ = 0). Hence, we conclude that the second frame of reference is
also an inertial frame.

A simple extension of the above argument allows us to conclude that there are
an infinite number of different inertial frames moving with constant velocities with
respect to one another.

But, what happens if the second frame of reference accelerates with respect to
the first? In this case, it is not hard to see that Eq. (3.11) generalizes to

a′ = a − du

dt
, (3.12)

where u(t) is the instantaneous velocity of the second frame with respect to the
first. According to the above formula, if an object is moving in a straight-line
with constant speed in the first frame (i.e., if a = 0) then it does not move in a
straight-line with constant speed in the second frame (i.e., a′ 6= 0). Hence, if the
first frame is an inertial frame then the second is not.

A simple extension of the above argument allows us to conclude that any frame
of reference which accelerates with respect to any inertial frame is not an inertial
frame.

3.4 Newton’s second law of motion

As is well-known, Newton’s second law of motion states that if an object is subject
to an external force, f , then its equation of motion is given by

dp

dt
= f , (3.13)
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3 FUNDAMENTALS 3.4 Newton’s second law of motion

where the momentum, p, is the product of the object’s inertial mass, m, and its
velocity, v. If m is not a function of time then the above expression reduces to the
familiar equation

m
dv

dt
= f . (3.14)

Note that this equation is only valid in a inertial frame. Clearly, the inertial mass
of an object measures its reluctance to deviate from its preferred state of uniform
motion in a straight-line (in an inertial frame). Of course, the above equation of
motion can only be solved if we have an independent expression for the force, f .
Let us suppose that this is the case.

An important corollary of Newton’s second law is that force is a vector quantity.
This must be the case, since the law equates force to the product of a scalar (mass)
and a vector (acceleration). Note that acceleration is obviously a vector because it
is directly related to displacement, which is the prototype of all vectors (see Sect. 2).
One consequence of force being a vector is that two forces, f1 and f2, both acting at
a given point, have the same effect as a single force, f = f1 + f2, acting at the same
point, where the summation is performed according to the laws of vector addition
(see Sect. 2). Likewise, a single force, f , acting at a given point, has the same effect
as two forces, f1 and f2, acting at the same point, provided that f1 + f2 = f . This
method of combining and splitting forces is known as the resolution of forces, and
lies at the heart of many calculations in classical dynamics.

Taking the scalar product of Eq. (3.14) with the velocity, v, we obtain

mv·dv
dt

=
m

2

d(v · v)

dt
=
m

2

dv2

dt
= f · v. (3.15)

This can be written
dK

dt
= f · v. (3.16)

where

K =
1

2
mv2. (3.17)

The right-hand side of Eq. (3.16) represents the rate at which the force does work
on the object: i.e., the rate at which the force transfers energy to the object. The
quantity K represents the energy the object possesses by virtue of its motion. This
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type of energy is generally known as kinetic energy. Thus, Eq. (3.16) states that
any work done on an object by an external force goes to increase the object’s kinetic
energy.

Suppose that, under the action of the force, f , our object moves from point P
at time t1 to point Q at time t2. The net change in the object’s kinetic energy is
obtained by integrating Eq. (3.16):

∆K =
∫ t2

t1
f · v dt =

∫ Q

P
f · dr, (3.18)

since v = dr/dt. Here, dr is an element of the object’s path between points P and
Q.

As described in Sect. 2.10, there are basically two kinds of forces in nature.
Firstly, those for which line integrals of the type

∫Q
P f ·dr depend on the end points,

but not on the path taken between these points. Secondly, those for which line
integrals of the type

∫Q
P f · dr depend both on the end points, and the path taken

between these points. The first kind of force is termed conservative, whereas the
second kind is termed non-conservative. It was also demonstrated in Sect. 2.10
that if the line integral

∫Q
P f · dr is path-independent then the force f can always be

written as the gradient of a scalar potential. In other words, all conservative forces
satisfy

f = −∇U, (3.19)

for some scalar potential U(r). Note that

∫ Q

P
∇U · dr = ∆U = U(Q) − U(P ), (3.20)

irrespective of the path taken between P and Q. Hence. it follows from Eq. (3.18)
that

∆K = −∆U (3.21)

for conservative forces. Another way of writing this is

E = K + U = constant. (3.22)

Of course, we recognize this as an energy conservation equation: E is the object’s
total energy, which is conserved; K is the energy the object has by virtue of its
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motion, otherwise know as its kinetic energy; and U is the energy the object has by
virtue of its position, otherwise known as its potential energy. Note, however, that
we can only write such energy conservation equations for conservative forces (hence,
the name). Gravity is a good example of a conservative force. Non-conservative
forces, on the other hand, do not conserve energy. In general, this is because of
some sort of frictional energy loss which drains energy from the dynamical system
whilst it remains in motion. Note that potential energy is undefined to an arbitrary
additive constant. In fact, it is only the difference in potential energy between
different points in space which is well-defined.

3.5 Newton’s third law of motion

Consider a system of N mutually interacting point mass objects. Let the ith object,
whose mass is mi, be located at vector displacement ri. Suppose that this object
exerts a force fji on the jth object. Likewise, suppose that the jth object exerts a
force fij on the ith object. As is well-known, Newton’s third law of motion states
that these two forces are equal and opposite, irrespective of their nature. In other
words,

fij = −fji. (3.23)

One corollary of Newton’s third law is that an object cannot exert a force on itself.

In an inertial frame, Newton’s second law of motion applied to the ith object
yields

mi
d2ri

dt2
=

j 6=i
∑

j=1,N

fij. (3.24)

Note that the summation on the right-hand side of the above equation excludes
the case j = i, since the ith object cannot exert a force on itself. Let us now take
the above equation and sum it over all objects. We obtain

∑

i=1,N

mi
d2ri

dt2
=

j 6=i
∑

i,j=1,N

fij. (3.25)

Consider the sum over forces on the right-hand side of the above equation. Each
element of this sum—fij, say—can be paired with another element—fji, in this
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case—which is equal and opposite. In other words, the elements of the sum all
cancel out in pairs. Thus, the net value of the sum is zero. It follows that the
above equation can be written

M
d2rcm

dt2
= 0, (3.26)

where M =
∑N
i=1mi is the total mass. The quantity rcm is the vector displacement

of the center of mass of the system, which is an imaginary point whose coordinates
are the mass weighted averages of the coordinates of the objects which constitute
the system. Thus,

rcm =

∑N
i=1mi ri
∑N
i=1mi

. (3.27)

According to Eq. (3.26), the center of mass of the system moves in a uniform
straight-line, in accordance with Newton’s first law of motion, irrespective of the
nature of the forces acting between the various components of the system.

Now, if the center of mass moves in a uniform straight-line, then the center of
mass velocity,

drcm
dt

=

∑N
i=1mi dri/dt
∑N
i=1mi

, (3.28)

is a constant of the motion. However, the momentum of the ith object takes the
form pi = mi dri/dt. Hence, the total momentum of the system is written

P =
N
∑

i=1

mi
dri
dt
. (3.29)

A comparison of Eqs. (3.28) and (3.29) suggests that P is also a constant of the
motion. In other words, the total momentum of the system is a conserved quantity,
irrespective of the nature of the forces acting between the various components of
the system. This result is a direct consequence of Newton’s third law of motion.

Taking the vector product Eq. (3.24) with the position vector ri, we obtain

mi ri ×
d2ri

dt2
=

j 6=i
∑

j=1,N

ri × fij. (3.30)
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However, it is easily seen that

mi ri ×
d2ri

dt2
=
d(mi ri × dri/dt)

dt
=
dli
dt
, (3.31)

where

li = mi ri ×
dri
dt

(3.32)

is the angular momentum of the ith particle about the origin of our coordinate
system. The total angular momentum of the system (about the origin) takes the
form

L =
∑

i=1,N

li (3.33)

Hence, summing Eq. (3.30) over all particles, we obtain

dL

dt
=

i6=j
∑

i,j=1,N

ri × fij. (3.34)

Consider the sum on the right-hand side of the above equation. A general term,
ri × fij, in this sum can always be paired with a matching term, rj × fji, in which
the indices have been swapped. Making use of Eq. (3.23), the sum of a general
matched pair can be written

ri × fij + rj × fji = (ri − rj) × fij. (3.35)

Suppose, now, that the forces acting between the various components of the system
are central in nature, so that fij is parallel to ri − rj. In other words, the force
exerted on object j by object i either points directly towards, or directly away
from, object i, and vice versa. This is not a particularly onerous constraint, since
most forces in nature are of this type (e.g., gravity). It follows that if the forces
are central in nature then the vector product in the above expression is zero. We
conclude that

ri × fij + rj × fji = 0, (3.36)

for all values of i and j. Thus, the sum on the right-hand side of Eq. (3.34) is zero
for any kind of central force. We are left with

dL

dt
= 0. (3.37)

In other words, the total angular momentum of the system is a conserved quantity,
provided that the different components of the system interact via central forces.
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4 ONE-DIMENSIONAL MOTION

4 One-dimensional motion

4.1 Introduction

In this section, we shall use Newton’s laws of motion to investigate various as-
pects of one-dimensional motion. Particular attention will be given to the various
mathematical techniques generally used to analyze oscillatory motion.

4.2 Motion in a general one-dimensional potential

Consider an object of mass m moving in the x-direction, say, under the action of
some x-directed force f(x). Suppose that f is a conservative force, such as gravity.
In this case, according to Eq. (3.19), we can write

f(x) = −dU(x)

dx
, (4.1)

where U(x) is the potential energy of the object at position x. It is generally most
convenient to specify a conservative force, such as f(x), in terms of its associated
potential energy function, U(x).

Suppose that the curve U(x) in Fig. 16 represents the potential energy of some
mass m moving in a one-dimensional conservative force-field. For instance, U(x)
might represent the gravitational potential energy of a cyclist freewheeling in a
hilly region. Note that we have set the potential energy at infinity to zero. This is
a useful, and quite common, convention (recall that potential energy is undefined
to within an arbitrary additive constant). What can we deduce about the motion
of the mass in this potential?

We know that the total energy, E—which is the sum of the kinetic energy, K,
and the potential energy, U—is a constant of the motion—see Eq. (3.22). Hence,
we can write

K(x) = E − U(x). (4.2)

Now, we also know that a kinetic energy can never be negative [sinceK = (1/2)mv2,
and neither m nor v2 can be negative], so the above expression tells us that the
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Figure 16:

motion of the mass is restricted to the region (or regions) in which the potential
energy curve U(x) falls below the value E. This idea is illustrated in Fig. 16. Sup-
pose that the total energy of the system is E0. It is clear, from the figure, that the
mass is trapped inside one or other of the two dips in the potential—these dips are
generally referred to as potential wells. Suppose that we now raise the energy to
E1. In this case, the mass is free to enter or leave each of the potential wells, but its
motion is still bounded to some extent, since it clearly cannot move off to infinity.
Finally, let us raise the energy to E2. Now the mass is unbounded: i.e., it can move
off to infinity. In systems in which it makes sense to adopt the convention that the
potential energy at infinity is zero, bounded systems are characterized by E < 0,
whereas unbounded systems are characterized by E > 0.

The above discussion suggests that the motion of a mass moving in a potential
generally becomes less bounded as the total energy E of the system increases.
Conversely, we would expect the motion to become more bounded as E decreases.
In fact, if the energy becomes sufficiently small, it appears likely that the system
will settle down in some equilibrium state in which the mass is stationary. Let us
try to identify any prospective equilibrium states in Fig. 16. If the mass remains
stationary then it must be subject to zero force (otherwise it would accelerate).
Hence, according to Eq. (4.1), an equilibrium state is characterized by

dU

dx
= 0. (4.3)
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4 ONE-DIMENSIONAL MOTION 4.2 Motion in a general one-dimensional potential

In other words, a equilibrium state corresponds to either a maximum or a minimum

of the potential energy curve U(x). It can be seen that the U(x) curve shown in
Fig. 16 has three associated equilibrium states: these are located at x = x0, x = x1,
and x = x2.

Let us now make a distinction between stable equilibrium points and unstable

equilibrium points. When the system is slightly perturbed from a stable equilibrium
point then the resultant force f should always be such as to attempt to return the
system to this point. In other words, if x = x0 is an equilibrium point, then we
require

df

dx

∣

∣

∣

∣

∣

x0

< 0 (4.4)

for stability: i.e., if the system is perturbed to the right, so that x− x0 > 0, then
the force must act to the left, so that f < 0, and vice versa. Likewise, if

df

dx

∣

∣

∣

∣

∣

x0

> 0 (4.5)

then the equilibrium point x = x0 is unstable. It follows, from Eq. (4.1), that stable
equilibrium points are characterized by

d2U

dx2
> 0. (4.6)

In other words, a stable equilibrium point corresponds to a minimum of the po-
tential energy curve U(x). Likewise, an unstable equilibrium point corresponds to
a maximum of the U(x) curve. Hence, we conclude that x = x0 and x = x2 are
stable equilibrium points, in Fig. 16, whereas x = x1 is an unstable equilibrium
point. Of course, this makes perfect sense if we think of U(x) as a gravitational
potential energy curve, in which case U is directly proportional to height. All we
are saying is that it is easy to confine a low energy mass at the bottom of a valley,
but very difficult to balance the same mass on the top of a hill (since any slight
perturbation to the mass will cause it to fall down the hill). Note, finally, that if

dU

dx
=
d2U

dx2
= 0 (4.7)

at any point (or in any region) then we have what is known as a neutral equilibrium

point. We can move the mass slightly away from such a point and it will still
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remain in equilibrium (i.e., it will neither attempt to return to its initial state, nor
will it continue to move). A neutral equilibrium point corresponds to a flat spot in
a U(x) curve. See Fig. 17.

The equation of motion of an object moving in one dimension under the action
of a conservative force is, in principle, integrable. Since K = (1/2)mv2, the energy
conservation equation (4.2) can be rearranged to give

v = ±




2 [E − U(x)]

m





1/2

, (4.8)

where the ± signs correspond to motion to the left and to the right, respectively.
However, given that v = dx/dt, this expression can be integrated, yielding

t = ±
(

m

2E

)1/2 ∫ x

x0

dx′
√

1 − U(x′)/E
, (4.9)

where x(t = 0) = x0. For sufficiently simple potential functions, U(x), the above
equation can be solved to give x as a function of t.

4.3 Velocity dependent forces

Consider an object of mass m moving in one dimension under the action of a
force, f , which is a function of the object’s speed, v, but not of its displacement,
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x. Note that such a force is intrinsically non-conservative [since it clearly cannot
be expressed as minus the gradient of some potential function, U(x)]. Now, the
object’s equation of motion is written

m
dv

dt
= f(v). (4.10)

Integrating this equation, we obtain

∫ v

v0

dv′

f(v′)
=

t

m
, (4.11)

where v(t = 0) = v0. In principle, the above equation can be solved to give v(t).
The equation of motion is also written

mv
dv

dx
= f(v), (4.12)

since v = dx/dt. Integrating this equation, we obtain

∫ v

v0

v′ dv′

f(v′)
=
x− x0

m
, (4.13)

where x(t = 0) = x0. In principle, the above equation can be solved to give v(x).

Let us now consider a specific example. Suppose that an object of mass m
falls vertically under gravity. Let x be the height through which the object has
fallen since t = 0, at which time the object is assumed to be at rest. It follows
that x0 = v0 = 0. Suppose that, in addition to the force of gravity, our object is
subject to a retarding air resistance force which is proportional to the square of its
instantaneous velocity. The object’s equation of motion is thus

m
dv

dt
= mg − c v2, (4.14)

where c > 0. This equation can be integrated to give

∫ v

0

dv′

1 − (v/vt)2
= g t, (4.15)

where vt = (mg/c)1/2. Making a change of variable, we obtain

∫ v/vt

0

dy

1 − y2
=
g

vt
t. (4.16)
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The left-hand side of the above equation is now a standard integral, which can be
solved to give

tanh−1
(

v

vt

)

=
g t

vt
, (4.17)

or

v = vt tanh

(

g t

vt

)

. (4.18)

Thus, when t � vt/g, we obtain the standard result v ' g t, since tanh x ∼ x for
x � 1. However, when t � vt/g, we get v ' vt, since tanh x ' 1 for x � 1.
It follows that air resistance prevents the downward velocity of our object from
increasing indefinitely as it falls. Instead, at large times, the velocity asymptotically
approaches the so-called terminal velocity, vt (at which the gravitational and air
resistance forces balance).

The equation of motion of our falling object is also written

mv
dv

dx
= mg − c v2. (4.19)

This equation can be integrated to give

∫ v

0

v′ dv′

1 − (v/vt)2
= g x. (4.20)

Making a change of variable, we obtain

∫ (v/vt)
2

0

dy

1 − y
=
x

xt
, (4.21)

where xt = m/(2 c). The left-hand side of the above equation is now a standard
integral, which can be solved to give

− ln



1 −
(

v

vt

)2


 =
x

xt
, (4.22)

or
v = vt

(

1 − e−x/xt

)

. (4.23)

It follows that our object needs to fall a distance of order xt before it achieves its
terminal velocity.
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4 ONE-DIMENSIONAL MOTION 4.4 Simple harmonic motion

4.4 Simple harmonic motion

Consider the motion of an object of massm which is slightly perturbed from a stable
equilibrium point at x = 0. Suppose that the object is moving in the conservative
force-field f(x). According to the analysis in the previous subsection, for x = 0 to
be a stable equilibrium point we require both

f(0) = 0, (4.24)

and
df(0)

dx
< 0. (4.25)

Now, our object obeys Newton’s second law of motion,

m
d2x

dt2
= f(x). (4.26)

Let us assume that it always stays fairly close to its equilibrium position. In this
case, to a good approximation, we can represent f(x) as a truncated Taylor series
about this position. In other words,

f(x) ' f(0) +
df(0)

dx
x+O(x2). (4.27)

However, according to (4.24) and (4.25), the above expression can be written

f(x) ' −mω 2
0 x, (4.28)

where df(0)/dx = −mω 2
0 . Hence, we conclude that our object satisfies the following

approximate equation of motion,

d2x

dt2
+ ω 2

0 x ' 0, (4.29)

provided that it does not stray too far from its equilibrium position (x = 0).

Equation (4.29) is called the simple harmonic equation, and governs the motion
of all one-dimensional conservative systems which are slightly perturbed from some
stable equilibrium point. The solution of Eq. (4.29) is well-known:

x(t) = a sin(ω0 t− φ0). (4.30)
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Figure 18:

The pattern of motion described by above equation, which is called simple harmonic

motion, is periodic in time, with repetition period T0 = 2π/ω0, and oscillates

between x = ±a. Here, a is called the amplitude of the motion. The parameter
φ0, known as the phase angle, simply shifts the pattern of motion backward and
forward in time. Figure 18 shows examples of simple harmonic motion, Here,
φ0 = 0, +π/4, and −π/4 correspond to the solid, short-dashed, and long dashed-
curves, respectively.

Note that the frequency, ω0—and, hence, the period, T0—of simple harmonic
motion is determined by the parameters in the simple harmonic equation, (4.29).
However, the amplitude, a, and the phase angle, φ0, are the two constants of
integration of this second-order differential equation, and are, thus, determined by
the initial conditions: i.e., by the object’s initial displacement and velocity.

Now, from Eqs. (4.1) and (4.28), the potential energy of our object at position
x is approximately

U(x) ' 1

2
mω 2

0 x
2. (4.31)
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4 ONE-DIMENSIONAL MOTION 4.5 Damped oscillatory motion

Hence, the total energy is written

E = K + U =
1

2
m

(

dx

dt

)2

+
1

2
mω 2

0 x
2, (4.32)

giving

E =
1

2
mω 2

0 a
2 cos2(ω0 t− φ0) +

1

2
mω 2

0 a
2 sin2(ω0 t− φ0) =

1

2
mω 2

0 a
2, (4.33)

where use has been made of Eq. (4.30), and the trigonometric identity cos2 θ +
sin2 θ ≡ 1. Note that the total energy is constant in time, as is to be expected for
a conservative system, and is proportional to the amplitude squared of the motion.

4.5 Damped oscillatory motion

According to Eq. (4.30), a one-dimensional conservative system which is slightly
perturbed from a stable equilibrium point (and then left alone) oscillates about
this point with a fixed frequency and a constant amplitude. In other words, the
oscillations never die away. This is not very realistic, since we know that, in prac-
tice, if we slightly perturb a dynamical system (such as a pendulum) from a stable
equilibrium point then it will indeed oscillate about this point, but these oscilla-
tions will eventually die away due to frictional effects, which are present in all real
dynamical systems. In order to model frictional effects, we need to include some
sort of frictional drag force in our perturbed equation of motion, (4.29).

The most common model for a frictional drag force is one which is always di-
rected in the opposite direction to the instantaneous velocity of the object upon
which it acts, and is directly proportional to the magnitude of this velocity. Let us
adopt this model. So, our drag force can be written

fdrag = −2mν
dx

dt
, (4.34)

where ν is a positive constant. Including such a force in our perturbed equation of
motion, (4.29), we obtain

d2x

dt2
+ 2 ν

dx

dt
+ ω 2

0 x = 0. (4.35)
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Thus, the positive constant ν parameterizes the strength of the frictional damping
in our dynamical system.

Equation (4.35) is a linear, second-order, ordinary differential equation, which
we suspect possesses oscillatory solutions. There is a standard trick for solving
such an equation. We search for complex oscillatory solutions of the form

x = a e−iω t, (4.36)

where both ω and a are, in general, complex. Of course, the physical solution
is the real part of the above expression. Note that this method of solution is
only appropriate for linear differential equations. Incidentally, the method works
because

Re[L(x)] ≡ L(Re[x]), (4.37)

where x is a complex variable, and L some real linear differential operator which
acts on this variable.

Substituting Eq. (4.36) into Eq. (4.35), we obtain

a
[

−ω2 − i 2 ν ω + ω 2
0

]

e−iω t = 0, (4.38)

which reduces to the following quadratic equation for ω:

ω2 + i 2 ν ω − ω 2
0 = 0. (4.39)

The solution to this equation is

ω± = −i ν ±
√

ω 2
0 − ν2. (4.40)

Thus, the most general physical solution to Eq. (4.35) is

x(t) = Re
[

a+ e−iω+ t + a− e−iω− t
]

, (4.41)

where a± are two arbitrary complex constants.

We can distinguish three different cases. In the first case, ν < ω0, and the
motion is said to be underdamped. The most general solution is written

x(t) = x0 e−ν t cos(ωr t) +

(

v0 + ν x0

ωr

)

e−ν t sin(ωr t), (4.42)

46



4 ONE-DIMENSIONAL MOTION 4.6 Resonance

where ωr =
√

ω 2
0 − ν2, x0 = x(0), and v0 = dx(0)/dt. It can be seen that the solu-

tion oscillates at some real frequency, ωr, which is somewhat less than the natural
frequency of oscillation of the undamped system, ω0, but also decays exponentially
in time at a rate proportional to the damping coefficient, ν.

In the second case, ν = ω0, and the motion is said to be critically damped. The
most general solution is written

x(t) = [x0 (1 + ω0 t) + v0 t] e
−ω0 t. (4.43)

It can be seen that the solution now decays without oscillating.

In the third case, ν > ω0, and the motion is said to be overdamped. The most
general solution is written

x(t) = −
(

v0 + ν− x0

ν+ − ν−

)

e−ν+ t +
(

v0 + ν+ x0

ν+ − ν−

)

e−ν− t, (4.44)

where ν± = ν ±
√

ν2 − ω 2
0 . It can be seen that the solution again decays without

oscillating, except there are now two independent decay rates. The largest, ν+,
is always greater than the critically damped decay rate, ω0, whereas the smaller,
ν−, is always less than this decay rate. This means that, in general, the criti-
cally damped solution is more rapidly damped than either the underdamped or
overdamped solutions.

Figure 19 shows typical examples of underdamped (i.e., ν = ω0/4) , critically
damped (i.e., ν = ω0), and overdamped (i.e,, ν = 4ω0) solutions, calculated with
the initial conditions x0 = 1 and v0 = 0. Here, T0 = 2π/ω0. The three solutions
correspond to the solid, short-dashed, and long-dashed curves, respectively.

4.6 Resonance

We have seen that when a one-dimensional dynamical system is slightly perturbed
from a stable equilibrium point (and then left alone), it eventually returns to this
point at a rate controlled by the amount of damping in the system. Let us now
suppose that the same system is subject to continuous, constant amplitude, external
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Figure 19:

forcing at some fixed frequency, ω. In this case, we would expect the system to
eventually settle down to some steady oscillatory pattern of motion with the same
frequency. Let us investigate the properties of this type of driven oscillation.

Suppose that our system is subject to an external force of the form

fext(t) = mω 2
0 X1 cos(ω t). (4.45)

Here, X1 measures the typical ratio of the amplitude of the external force to that
of the restoring force, (4.28). Incorporating the above force into our perturbed
equation of motion, (4.35), we obtain

d2x

dt2
+ 2 ν

dx

dt
+ ω 2

0 x = ω 2
0 X1 cos(ω t). (4.46)

Let us search for a solution of the form (4.36), and represent the right-hand side of
the above equation as ω 2

0 X1 exp(−iω t). It is again understood that the physical
terms are the real parts of these expressions. Note that ω is now a real parameter.
We obtain

a
[

−ω2 − i 2 ν ω + ω 2
0

]

e−iω t = ω 2
0 X1 e−iω t. (4.47)

Hence,

a =
ω 2

0 X1

ω 2
0 − ω2 − i 2 ν ω

. (4.48)
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Figure 20:

In general, a is a complex quantity. Thus, we can write

a = x1 e iφ1, (4.49)

where x1 and φ1 are both real. It follows from Eqs. (4.36), (4.48), and (4.49) that
the physical solution takes the form

x(t) = x1 cos(ω t− φ1), (4.50)

where

x1 =
ω 2

0 X1

[(ω 2
0 − ω2)2 + 4 ν2 ω2]

1/2
, (4.51)

and

φ1 = tan−1
(

2 ν ω

ω 2
0 − ω2

)

. (4.52)

We conclude that, in response to the applied sinusoidal force, (4.45), the system
executes a sinusoidal pattern of motion at the same frequency, with fixed amplitude
x1, and phase-lag φ1 (with respect to the external force).

Let us investigate the variation of x1 and φ1 with the forcing frequency, ω. This is
most easily done graphically. Figure 20 shows x1 and φ1 as functions of ω for various
values of ν/ω0. Here, ν/ω0 = 1, 1/2, 1/4, 1/8, and 1/16 correspond to the solid,
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4 ONE-DIMENSIONAL MOTION 4.7 Periodic driving forces

dotted, short-dashed, long-dashed, and dot-dashed curves, respectively. It can be
seen that as the amount of damping in the system is decreased, the amplitude of the
response becomes progressively more peaked at the natural frequency of oscillation
of the system, ω0. This effect is known as resonance, and ω0 is termed the resonant

frequency. Thus, a lightly damped system (i.e., ν � ω0) can be driven to large
amplitude by the application of a relatively small external force which oscillates at
a frequency close to the resonant frequency. Note that the response of the system
is in phase (i.e., φ1 ' 0) with the external driving force for driving frequencies
well below the resonant frequency, is in phase quadrature (i.e., φ1 = π/2) at the
resonant frequency, and is in anti-phase (i.e., φ1 ' π) for frequencies well above the
resonant frequency. It is easily demonstrated that for lightly damped systems the
height of the resonance curve (i.e., the x1 versus ω curve) is inversely proportional
to ν, whereas its width is directly proportional to ν, so that the area under the
curve stays approximately constant as ν decreases.

4.7 Periodic driving forces

In the last section, we investigated the response of a one-dimensional dynamical
system, close to a stable equilibrium point, to an external force which varies as
cos(ω t). Let us now examine the response of the same system to a more complicated
external force.

Consider a general external force which is periodic in time, with period T . By
analogy with Eq. (4.45), we can write such a force as

fext(t) = mω 2
0 X(t), (4.53)

where
X(t+ T ) = X(t) (4.54)

for all t.

Now, we can represent X(t) as a Fourier series in time. In other words, we can
write

X(t) =
∞
∑

n=0

Xn cos(nω t), (4.55)
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where ω = 2π/T . By writing X(t) in this form, we automatically satisfy the
periodicity constraint (4.54). [Note that by choosing a cosine Fourier series we are
limited to even functions in t: i.e., X(−t) = X(t). Odd functions in t can be
represented by sine Fourier series, and mixed functions require a combination of
cosine and sine Fourier series.] The constant coefficients Xn are known as Fourier

coefficients. But, how do we determine these coefficients for a given functional
form, X(t)?

Well, it follows from the periodicity of the cosine function that

1

T

∫ T

0
cos(nω t) dt = δn 0, (4.56)

where δnn′ is unity if n = n′, and zero otherwise, and is known as the Kronecker

delta function. Thus, integrating Eq. (4.55) over t from t = 0 to t = T , and making
use of Eq. (4.56), we obtain

X0 =
1

T

∫ T

0
X(t) dt. (4.57)

It is also easily demonstrated that

2

T

∫ T

0
cos(nω t) cos(n′ ω t) dt = δnn′, (4.58)

provided n, n′ > 0. Thus, multiplying Eq. (4.55) by cos(nω t), integrating over t
from t = 0 to t = T , and making use of Eqs. (4.56) and (4.58), we obtain

Xn =
2

T

∫ T

0
X(t) cos(nω t) dt (4.59)

for n > 0. Hence, we have now determined the Fourier coefficients of the general
periodic function X(t).

We can incorporate the periodic external force (4.53) into our perturbed equation
of motion by writing

d2x

dt2
+ 2 ν

dx

dt
+ ω 2

0 x = ω 2
0

∞
∑

n=0

Xn e−inω t, (4.60)

where we are again using the convention that the physical solution corresponds to
the real part of the complex solution. Note that the above differential equation is
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linear. This means that if xa(t) and xb(t) represent two independent solutions to
this equation then any linear combination of xa(t) and xb(t) is also a solution. We
can exploit the linearity of the above equation to write the solution in the form

x(t) =
∞
∑

n=0

Xn an e−inω t, (4.61)

where the an are the complex amplitudes of the solutions to

d2x

dt2
+ 2 ν

dx

dt
+ ω 2

0 x = ω 2
0 e−inω t. (4.62)

In other words, an is obtained by substituting x = an exp(−inω t) into the above
equation. Hence, it follows that

an =
ω 2

0

ω 2
0 − n2 ω2 − i 2 ν nω

. (4.63)

Thus, the physical solution takes the form

x(t) =
∞
∑

n=0

Xn xn cos(nω t− φn), (4.64)

where
an = xn e iφn, (4.65)

and xn and φn are real parameters. It follows from Eq. (4.63) that

xn =
ω 2

0

[(ω 2
0 − n2 ω2)2 + 4 ν2 n2 ω2]

1/2
, (4.66)

and

φn = tan−1
(

2 ν nω

ω 2
0 − n2 ω2

)

. (4.67)

We have now fully determined the response of our dynamical system to a general
periodic driving force.

As an example, suppose that the external force periodically delivers a brief kick
to the system. For instance, let X(t) = A for 0 ≤ t ≤ T/10 and 9T/10 < t < T ,
and X(t) = 0 otherwise (in the period 0 ≤ t ≤ T ). It follows from Eq. (4.57) and
(4.59) that, in this case,

X0 = 0.2A, (4.68)
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Figure 21:

and

Xn =
2 sin(nπ/5)A

nπ
, (4.69)

for n > 0. Obviously, to obtain an exact solution, we would have to include every
Fourier harmonic in Eq. (4.64), which is impractical. However, we can obtain
a fairly accurate approximate solution by truncating the Fourier series (i.e., by
neglecting all the terms with n > N , where N � 1).

Figure 21 shows an example calculation in which the Fourier series is trun-
cated after 100 terms. The parameters used in this calculation are ω = 1.2ω0 and
ν = 0.8ω0. The left panel shows the Fourier reconstruction of the driving force,
X(t). The glitches at the rising and falling edges of the pulses are called Gibbs

phenomena, and are an inevitable consequence of attempting to represent a dis-
continuous periodic function as a Fourier series. The right panel shows the Fourier
reconstruction of the response, x(t), of the dynamical system to the applied force.
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4 ONE-DIMENSIONAL MOTION 4.8 Transients

4.8 Transients

We saw, in Sect. 4.6, that when a one-dimensional dynamical system, close to a
stable equilibrium point, is subject to a sinusoidal external force of the form (4.45)
then the equation of motion of the system is written

d2x

dt2
+ 2 ν

dx

dt
+ ω 2

0 x = ω 2
0 X1 cos(ω t). (4.70)

We also found that the solution to this equation which oscillates in sympathy with
the applied force takes the form

x(t) = x1 cos(ω t− φ1), (4.71)

where x1 and φ1 are specified in Eqs. (4.51) and (4.52), respectively. However,
(4.71) is not the most general solution to Eq. (4.70). It should be clear that we can
take the above solution and add to it any solution of Eq. (4.70) calculated with the
right-hand side set to zero, and the result will also be a solution of Eq. (4.70). Now,
we investigated the solutions to (4.70) with the right-hand set to zero in Sect. 4.5.
In the underdamped regime (ν < ω0), we found that the most general such solution
takes the form

x(t) = A e−ν t cos(ωr t) +B e−ν t sin(ωr t), (4.72)

where A and B are two arbitrary constants [they are in fact the constants of
integration of the second-order differential equation (4.70)], and ωr =

√

ω 2
0 − ν2.

Thus, the most general solution to Eq. (4.70) is written

x(t) = A e−ν t cos(ωr t) +B e−ν t sin(ωr t) + x1 cos(ω t− φ1). (4.73)

The first two terms on the right-hand side of the above equation are called tran-

sients, since they decay in time. The transients are determined by the initial

conditions. However, if we wait long enough after setting the system into motion
then the transients will always decay away, leaving the time-asymptotic solution
(4.71), which is independent of the initial conditions.

As an example, suppose that we set the system into motion at time t = 0 with
the initial conditions x(0) = dx(0)/dt = 0. Setting x(0) = 0 in Eq. (4.73), we
obtain

A = −x1 cosφ1. (4.74)
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Figure 22:

Moreover, setting dx(0)/dt = 0 in Eq. (4.73), we get

B = −x1 (ν cosφ1 + ω sinφ1)

ωr
. (4.75)

Thus, we have now determined the constants A and B, and, hence, fully specified
the solution for t > 0. Figure 22 shows this solution (solid curve) calculated for
ω = 2ω0 and ν = 0.2ω0. Here, T0 = 2π/ω0. The associated time-asymptotic
solution (4.71) is also shown for the sake of comparison (dashed curve). It can be
seen that the full solution quickly converges to the time-asymptotic solution.

4.9 The simple pendulum

Consider a mass m suspended from a light inextensible string of length l, such that
the mass is free to swing from side to side in a vertical plane, as shown in Fig. 23.
This setup is known as a simple pendulum. Let θ be the angle subtended between
the string and the downward vertical. Obviously, the stable equilibrium state of
the simple pendulum corresponds to the situation in which the mass is stationary,
and hanging vertically down (i.e., θ = 0). The angular equation of motion of the

55



4 ONE-DIMENSIONAL MOTION 4.9 The simple pendulum

θ
l

fixed support

pivot point

m g

m

T

Figure 23:

pendulum is simply

I
d2θ

dt2
= τ, (4.76)

where I is the moment of inertia of the mass, and τ is the torque acting about
the pivot point. For the case in hand, given that the mass is essentially a point
particle, and is situated a distance l from the axis of rotation (i.e., the pivot point),
it is easily seen that I = ml2.

The two forces acting on the mass are the downward gravitational force, mg,
where g is the acceleration due to gravity, and the tension, T , in the string. Note,
however, that the tension makes no contribution to the torque, since its line of
action clearly passes through the pivot point. From simple trigonometry, the line
of action of the gravitational force passes a distance l sin θ from the pivot point.
Hence, the magnitude of the gravitational torque is mg l sin θ. Moreover, the
gravitational torque is a restoring torque: i.e., if the mass is displaced slightly from
its equilibrium state (i.e., θ = 0) then the gravitational torque clearly acts to push
the mass back toward that state. Thus, we can write

τ = −mg l sin θ. (4.77)

Combining the previous two equations, we obtain the following angular equation
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of motion of the pendulum:

l
d2θ

dt2
= −g sin θ. (4.78)

Note that, unlike all of the other equations of motion which we have examined in
this section, the above equation is nonlinear.

Let us assume, as usual, that the system does not stray very far from its equi-
librium point (θ = 0). If this is the case, then we can make the small angle
approximation sin θ ' θ, and the above equation of motion simplifies to

d2θ

dt2
+ ω 2

0 θ ' 0, (4.79)

where ω0 =
√

g/l. Of course, this is just the simple harmonic equation. Hence, we
can immediately write the solution as

θ(t) = θ0 cos(ω0 t). (4.80)

Thus, we conclude that the pendulum swings back and forth at a fixed frequency,
ω0, which depends on l and g, but is independent of the amplitude, θ0, of the
motion.

Suppose, now, that we desire a more accurate solution of Eq. (4.78). One way
in which we could achieve this would be to include more terms in the small angle
expansion of sin θ, which is

sin θ = θ − θ 3

3!
+
θ 5

5!
+ · · · . (4.81)

For instance, keeping the first two terms in this expansion, Eq. (4.78) becomes

d2θ

dt2
+ ω 2

0 (θ − θ 3/6) ' 0. (4.82)

By analogy with (4.80), let us try a trial solution of the form

θ(t) = ϑ0 cos(ω t). (4.83)

Substituting this into Eq. (4.82), and making use of the trigonometric identity

cos3 u ≡ (3/4) cosu+ (1/4) cos(3u), (4.84)
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we obtain

ϑ0

[

ω 2
0 − ω2 − (1/8)ω 2

0 ϑ
2
0

]

cos(ω t) − (1/24)ω 2
0 ϑ

3
0 cos(3ω t) ' 0. (4.85)

It is evident that the above equation cannot be satisfied for all values of t, except in
the trivial case ϑ0 = 0. However, the form of this expression does suggest a better
trial solution, namely

θ(t) = ϑ0 cos(ω t) + αϑ 3
0 cos(3ω t), (4.86)

where α is O(1). Substitution of this expression into Eq. (4.82) yields

ϑ0

[

ω 2
0 − ω2 − (1/8)ω 2

0 ϑ
2
0

]

cos(ω t)+

ϑ 3
0

[

αω 2
0 − 9αω2 − (1/24)ω 2

0

]

cos(3ω t) +O(ϑ 5
0 ) ' 0. (4.87)

We can satisfy the above equation at all values of t, for non-zero ϑ0, by setting the
two expressions in square brackets to zero. This yields

ω ' ω0

√

1 − (1/8)ϑ 2
0 , (4.88)

and

α ' − ω 2
0

192
. (4.89)

Now, the amplitude of the motion is given by

θ0 = ϑ0 + αϑ 3
0 = ϑ0 −

ω 2
0

192
ϑ 3

0 . (4.90)

Hence, Eq. (4.88) simplfies to

ω = ω0



1 − θ 2
0

16
+O(θ 4

0 )



 . (4.91)

The above expression is only approximate, but it illustrates an important point:
i.e., that the frequency of oscillation of a simple pendulum is not, in fact, amplitude
independent. Indeed, the frequency goes down slightly as the amplitude increases.

The above example illustrates how we might go about solving a nonlinear equa-
tion of motion by means of an expansion in a small parameter (in this case, the
amplitude of the motion).
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5 Multi-dimensional motion

5.1 Introduction

In this section, we shall use Newton’s laws of motion to investigate various aspects
of multi-dimensional motion.

5.2 Motion in a two-dimensional harmonic potential

Consider a particle of mass m moving in the two-dimensional harmonic potential

U(x, y) =
1

2
k r2, (5.1)

where r =
√
x2 + y2, and k > 0. It follows that the particle is subject to a force,

f = −∇U = −k (x, y) = −k r, (5.2)

which always points towards the origin, and whose magnitude increases linearly

with increasing distance from the origin. According to Newton’s second law, the
equation of motion of the particle is

m
d2r

dt2
= f = −k r. (5.3)

When written in component form, the above equation reduces to

d2x

dt2
= −ω 2

0 x, (5.4)

d2y

dt2
= −ω 2

0 y, (5.5)

where ω0 =
√

k/m.

Since Eqs. (5.4) and (5.5) are both simple harmonic equations, we can immedi-
ately write their general solutions:

x = A cos(ω0 t− φ1), (5.6)

y = B cos(ω0 t− φ2). (5.7)
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Here, A, B, φ1, and φ2 are arbitrary constants of integration. We can simplify the
above equations slightly by shifting the origin of time (which is, after all, arbitrary):
i.e.,

t→ t′ + φ1/ω0. (5.8)

Hence, we obtain

x = A cos(ω0 t
′), (5.9)

y = B cos(ω0 t
′ −∆), (5.10)

where ∆ = φ2 − φ1. Note that the motion is clearly periodic in time, with period
T = 2 π/ω0. Thus, the particle must trace out some closed trajectory in the x-y
plane. The question, now, is what does this trajectory look like as a function of
the relative phase-shift, ∆, between the oscillations in the x- and y-directions?

Using standard trigonometry, we can write Eq. (5.10) in the form

y = B [cos(ω0 t
′) cos∆+ sin(ω0 t

′) sin∆] . (5.11)

Hence, using Eq. (5.9), we obtain
(

y

B
− x

A
cos∆

)2

= sin2(ω0 t
′) sin2∆ =



1 − x2

A2



 sin2∆, (5.12)

which simplifies to give

x2

A2
− 2

x y

AB
cos∆+

y2

B2
= sin2∆. (5.13)

Unfortunately, the above equation is not immediately recognizable as being the
equation of any particular geometric curve: e.g., a circle, or an ellipse, or a parabola,
etc.

Perhaps our problem is that we are using the wrong coordinates? Suppose that
the rotate our coordinate axes about the z-axis by an angle θ, as illustrated in
Fig. 3. According to Eqs. (2.90) and (2.91), our old coordinates (x, y) are related
to our new coordinates (x′, y′) via

x = x′ cos θ − y′ sin θ, (5.14)

y = x′ sin θ + y′ cos θ. (5.15)
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Let us see whether Eq. (5.13) takes a simpler form when expressed in terms of our
new coordinates. Equations (5.13)–(5.15) yield

x′ 2




cos2 θ

A2
− 2 cos θ sin θ cos∆

AB
+

sin2 θ

B2





+y′ 2




sin2 θ

A2
+

2 cos θ sin θ cos∆

AB
+

cos2 θ

B2



 (5.16)

+x′y′


−2 sin θ cos θ

A2
+

2 (sin2 θ − cos2 θ) cos∆

AB
+

2 cos θ sin θ

B2



 = sin2∆.

We can simplify the above equation by setting the term involving x′y′ to zero.
Hence,

− sin 2 θ

A2
− 2 cos 2 θ cos∆

AB
+

sin 2 θ

B2
= 0, (5.17)

where we have made use of some simple trigonometric identities. Thus, the x′y′

term disappears when θ takes the special value

θ =
1

2
tan−1

(

2AB cos∆

A2 −B2

)

. (5.18)

In this case, Eq. (5.16) reduces to

x′ 2

a2
+
y′ 2

b2
= 1, (5.19)

where

1

a2
=

1

sin2∆





cos2 θ

A2
− 2 cos θ sin θ cos∆

AB
+

sin2 θ

B2



 , (5.20)

1

b2
=

1

sin2∆





sin2 θ

A2
+

2 cos θ sin θ cos∆

AB
+

cos2 θ

B2



 . (5.21)

Of course, we immediately recognize Eq. (5.19) as the equation of an ellipse, cen-
tered on the origin, whose major and minor axes are aligned along the x′- and
y′-axes, and whose major and minor radii are a and b, respectively (assuming that
a > b).

We conclude that, in general, a particle of massmmoving in the two-dimensional
harmonic potential (5.1) executes a closed elliptical orbit (which is not necessarily
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aligned along the x- and y-axes), centered on the origin, with period T = 2 π/ω0,
where ω0 =

√

k/m.

(a) (b)

(c) (d)

Figure 24:

Figure 24 shows some example trajectories calculated for A = 2, B = 1, and the
following values of the phase difference, ∆: (a) ∆ = 0; (b) ∆ = π/4; (c) ∆ = π/2;
(d) ∆ = 3π/4. Note that when ∆ = 0 the trajectory degenerates into a straight-line
(which can be thought of as an ellipse whose minor radius is zero).

Perhaps, the main lesson to be learnt from the above study of two-dimensional
motion in a harmonic potential is that comparatively simple patterns of motion
can be made to look complicated when written in terms of ill-chosen coordinates.

5.3 Motion in crossed electric and magnetic fields

Consider a particle of mass m and electric charge q moving in the uniform elec-
tric and magnetic fields, E and B. Suppose that the fields are “crossed” (i.e.,
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perpendicular to one another), so that E · B = 0.

The force acting on the particle is given by the familiar Lorentz law:

f = q (E + v × B) , (5.22)

where v is the particle’s instantaneous velocity. Hence, from Newton’s second law,
the particle’s equation of motion can be written

m
dv

dt
= q (E + v × B) . (5.23)

It turns out that we can eliminate the electric field from the above equation by
transforming to a different inertial frame. Thus, writing

v =
E × B

B2
+ v′, (5.24)

Eq. (5.23) reduces to

m
dv′

dt
= q v′ × B, (5.25)

where we have made use of the fact that E · B = 0. Thus, we conclude that the
addition of an electric field perpendicular to a given magnetic field simply causes
all particles, irrespective of their charge or mass, to drift perpendicular to both the
electric and magnetic field with the velocity

vEB =
E × B

B2
. (5.26)

Hence, the electric field has no effect on particle motion in a frame of reference
which is co-moving with the so-called E-cross-B velocity given above.

Let us suppose that the magnetic field is directed along the z-axis. As we have
just seen, in the E×B frame, the particle’s equation of motion reduces to Eq. (5.25),
which can be written:

dv′x
dt

= Ω v′y, (5.27)

dv′y
dt

= −Ω v′x, (5.28)

v′z = 0. (5.29)
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Here,

Ω =
q B

m
(5.30)

is the so-called cyclotron frequency. Equations (5.27)–(5.29) can be integrated to
give

v′x = v⊥ sin(Ω t), (5.31)

v′y = v⊥ cos(Ω t) (5.32)

v′z = v‖, (5.33)

where we have judiciously chosen the origin of time so as to eliminate any phase
offset in the arguments of the above trigonometrical functions. According to
Eqs. (5.31)–(5.33), in the E × B frame, charged particles gyrate at the cyclotron
frequency in the plane perpendicular to the magnetic field with some fixed speed
v⊥, and stream parallel to the magnetic field with some fixed speed v‖. The fact
that the cyclotron frequency is positive for positively charged particles, and nega-
tive for negatively charged particles, just means that oppositely charged particles
gyrate in opposite directions in the plane perpendicular to the magnetic field.

Equations (5.31)–(5.33) can be integrated to give

x′ = −ρ cos(Ω t), (5.34)

y′ = ρ sin(Ω t) (5.35)

z′ = v‖ t, (5.36)

where we have judiciously chosen the origin of our coordinate system so as to
eliminate any constant offsets in the above equations. Here,

ρ =
v⊥
Ω

(5.37)

is called the Larmor radius. Equations (5.34)–(5.36) are the equations of a spiral

of radius ρ, aligned along the direction of the magnetic field (i.e., the z-direction).

Hence, we conclude that the general motion of a charged particle in crossed
electric and magnetic field is a combination of E × B drift [see Eq. (5.26)] and
spiral motion aligned along the direction of the magnetic field. Particles drift

64



5 MULTI-DIMENSIONAL MOTION 5.3 Motion in crossed electric and magnetic fields

parallel to the magnetic field with constant speeds, and gyrate at the cyclotron
frequency perpendicular to the magnetic field with constant speeds. Oppositely
charged particles gyrate in opposite directions.
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6 Planetary motion

6.1 Introduction

Classical mechanics was initially developed by Isaac Newton to explain the motion
of the Planets around the Sun. Let us now investigate this problem.

6.2 Kepler’s laws

As is well-known, Johannes Kepler was the first astronomer to correctly describe
planetary motion in the Solar System (in works published between 1609 and 1619).
The motion of the Planets is summed up in three simple laws:

1. The planetary orbits are all ellipses which are confocal with the Sun (i.e., the
Sun lies on one of the focii of the ellipses).

2. Each planet sweeps out an equal area in an equal time interval.

3. The squares of the orbital periods of the planets are proportional to the cubes
of their orbital major radii.

Let us now see if we can derive Kepler’s laws from Newton’s laws of motion.

6.3 Newtonian gravity

As is well-know, the force which maintains the Planets in orbit around the Sun is
called gravity, and was first correctly described by Isaac Newton (in 1687). Ac-
cording to Newton, any two point mass objects (or spherically symmetric objects
of finite extent) exert a force of attraction on one another. This force points along
the line of centers joining the objects, is directly proportional to the product of the
objects’ masses, and inversely proportional to the square of the distance between
them. Suppose that the first object is the Sun, which is of mass M , and is located
at the origin of our coordinate system. Let the second object be some planet, of
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mass m, which is located at position vector r. The gravitational force exerted on
the planet by the Sun is thus written

f = −GM m

r3
r. (6.1)

The constant of proportionality, G, is called the gravitational constant, and takes
the value

G = 6.67300 × 10−11 m3 kg−1 s−2. (6.2)

An equal and opposite force to (6.1) acts on the Sun. However, we shall assume that
the Sun is so much more massive than the planet in question that this force does
not cause the Sun to shift position appreciably. Hence, the Sun will always remain
at the origin of our coordinate system. Likewise, we shall neglect the gravitational
forces exerted on our planet by the other planets in the Solar System compared to
the much larger gravitational force exerted on it by the Sun.

Incidentally, there is something rather curious about Eq. (6.1). According to
this law, the gravitational force acting on an object is directly proportional to its
inertial mass. But why should inertia be related to the force of gravity? After all,
inertia measures the reluctance of a given body to deviate from its preferred state of
uniform motion in a straight-line, in response to some external force. What has this
got to do with gravitational attraction? This question perplexed physicists for many
years, and was only answered when Albert Einstein published his general theory of
relativity in 1916. According to Einstein, inertial mass acts as a sort of gravitational
charge since it impossible to distinguish an acceleration generated by a gravitational
field from an apparent acceleration generated by being in a non-inertial frame.
The assumption that these two types of acceleration are indistinguishable leads
directly to all of the strange predictions of general relativity: e.g., clocks in different
gravitational potentials run at different rates, mass bends space, etc.

According to Eq. (6.1), and Newton’s second law, the equation of motion of our
planet takes the form

d2r

dt2
= −GM

r3
r. (6.3)

Note that the planetary mass, m, has cancelled out on both sides of the above
equation.
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6.4 Conservation laws

Now gravity is a conservative force. Hence, the gravitational force (6.1) can be
written (see Sect. 3.4)

f = −∇U, (6.4)

where the potential energy, U(r), of our planet in the Sun’s gravitational field takes
the form

U(r) = −GM m

r
. (6.5)

It follows that the total energy of our planet is a conserved quantity (see Sect. 3.4).
In other words,

E =
v2

2
− GM

r
(6.6)

is constant in time. Here, E is actually the planet’s total energy per unit mass, and
v = dr/dt.

Gravity is also a central force. Hence, the angular momentum of our planet is a
conserved quantity (see Sect. 3.5). In other words,

h = r × v, (6.7)

which is actually the planet’s angular momentum per unit mass, is constant in
time. Taking the scalar product of the above equation with r, we obtain

h · r = 0. (6.8)

This is the equation of a plane which passes through the origin, and whose normal
is parallel to h. Since h is a constant vector, it always points in the same direction.
We, therefore, conclude that the motion of our planet is two-dimensional in nature:
i.e., it is confined to some fixed plane which passes through the origin. Without
loss of generality, we can let this plane coincide with the x-y plane.

6.5 Polar coordinates

We can determine the instantaneous position of our planet in the x-y plane in
terms of standard Cartesian coordinates, (x, y), or plane polar coordinates, (r, θ),
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θ
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Figure 25:

as illustrated in Fig. 25. It is helpful to define two unit vectors, er ≡ r/r and
eθ ≡ ẑ × er, at the instantaneous position of the planet. The first always points
radially away from the origin, whereas the second is normal to the first, in the
direction of increasing θ. As is easily demonstrated, the Cartesian components of
er and eθ are

er = (cos θ, sin θ), (6.9)

eθ = (− sin θ, cos θ), (6.10)

respectively.

We can write the position vector of our planet as

r = r er. (6.11)

Thus, the planet’s velocity becomes

v =
dr

dt
= ṙ er + r ėr, (6.12)

where ˙ is shorthand for d/dt. Note that er has a non-zero time-derivative (unlike
a Cartesian unit vector) because its direction changes as the planet moves around.
As is easily demonstrated, from differentiating Eq. (6.9) with respect to time,

ėr = θ̇ (− sin θ, cos θ) = θ̇ eθ. (6.13)
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Thus,
v = ṙ er + r θ̇ eθ. (6.14)

Now, the planet’s acceleration is written

a =
dv

dt
=
d2r

dt2
= r̈ er + ṙ ėr + (ṙ θ̇ + r θ̈) eθ + r θ̇ ėθ. (6.15)

Again, eθ has a non-zero time-derivative because its direction changes as the planet
moves around. Differentiation of Eq. (6.10) with respect to time yields

ėθ = θ̇ (− cos θ, − sin θ) = −θ̇ er. (6.16)

Hence,
a = (r̈ − r θ̇ 2) er + (r θ̈ + 2 ṙ θ̇) eθ. (6.17)

It follows that the equation of motion of our planet, (6.3), can be written

a = (r̈ − r θ̇ 2) er + (r θ̈ + 2 ṙ θ̇) eθ = −GM
r2

er. (6.18)

Since er and eθ are mutually orthogonal, we can separately equate the coefficients
of both, in the above equation, to give a radial equation of motion,

r̈ − r θ̇ 2 = −GM
r2

, (6.19)

and a tangential equation of motion,

r θ̈ + 2 ṙ θ̇ = 0. (6.20)
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Figure 27:

6.6 Conic sections

The ellipse, the parabola, and the hyperbola are collectively known as conic sec-

tions, since these three types of curve can be obtained by taking various different
plane sections of a right cone. It turns out that the possible solutions of Eqs. (6.19)
and (6.20) are all conic sections. It is, therefore, appropriate for us to briefly review
these curves.

An ellipse, centered on the origin, of major radius a and minor radius b, aligned
along the x- and y-axes, respectively (see Fig. 26), satisfies the following well-known
equation:

x2

a2
+
y2

b2
= 1. (6.21)

Likewise, a parabola which is aligned along the +x-axis, and passes through the
origin (see Fig. 27), satisfies:

y2 − b x = 0, (6.22)

where b > 0.

Finally, a hyperbola which is aligned along the +x-axis, and whose asymptotes
intersect at the origin (see Fig. 28), satisfies:

x2

a2
− y2

b2
= 1. (6.23)
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Figure 28:

Here, a is the distance of closest approach to the origin. The asymptotes subtend
an angle φ = tan−1(b/a) with the x-axis.

It is not clear, at this stage, what the ellipse, the parabola, and the hyperbola
have have in common. It turns out that what these three curves have in com-
mon is that they can all be represented as the locus of a movable point whose
distance from a fixed point is in a constant ratio to its perpendicular distance to
some fixed straight-line. Let the fixed point (which is termed the focus of the
ellipse/parabola/hyperbola) lie at the origin, and let the fixed line correspond to
y = −d (with d > 0). Thus, the distance of a general point (x, y) (which lies
to the right of the line y = −d) from the origin is r1 =

√
x2 + y2, whereas the

perpendicular distance of the point from the line y = −d is r2 = x+d (see Fig. 29).
In plane polar coordinates, r1 = r and r2 = r cos θ+ d. Hence, the locus of a point
for which r1 and r2 are in a fixed ratio satisfies the following equation:

r1
r2

=

√
x2 + y2

x+ d
=

r

r cos θ + d
= e, (6.24)

where e ≥ 0 is a constant. When expressed in terms of plane polar coordinates,
the above equation can be rearranged to give

r =
rc

1 − e cos θ
, (6.25)

where rc = e d.
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Figure 29:

When expressed in terms of Cartesian coordinates, (6.24) can be rearranged to
give

(x− xc)
2

a2
+
y2

b2
= 1, (6.26)

for e < 1. Here,

a =
rc

1 − e2
, (6.27)

b =
rc√

1 − e2
=

√
1 − e2 a, (6.28)

xc =
e rc

1 − e2
= e a. (6.29)

Equation (6.26) can be recognized as the equation of an ellipse whose center lies
at (xc, 0), and whose major and minor radii, a and b, are aligned along the x- and
y-axes, respectively [cf., Eq. (6.21)].

When again expressed in terms of Cartesian coordinates, Eq. (6.24) can be
rearranged to give

y2 − 2 rc (x− xc) = 0, (6.30)

for e = 1. Here, xc = −rc/2. This is the equation of a parabola which passes through
the point (xc, 0), and which is aligned along the +x-direction [cf., Eq. (6.22)].

Finally, when expressed in terms of Cartesian coordinates, Eq. (6.24) can be
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rearranged to give
(x− xc)

2

a2
− y2

b2
= 1, (6.31)

for e > 1. Here,

a =
rc

e2 − 1
, (6.32)

b =
rc√
e2 − 1

=
√
e2 − 1 a, (6.33)

xc = − e rc
e2 − 1

= −e a. (6.34)

Equation (6.31) can be recognized as the equation of a hyperbola whose asymptotes
intersect at (xc, 0), and which is aligned along the +x-direction. The asymptotes
subtend an angle

φ = tan−1
(

b

a

)

= tan−1(
√
e2 − 1) (6.35)

with the x-axis [cf., Eq. (6.23)].

In conclusion, Eq. (6.25) is the polar equation of a general conic section which
is confocal with the origin. For e < 1, the conic section is an ellipse. For e = 1, the
conic section is a parabola. Finally, for e > 1, the conic section is a hyperbola.

6.7 Kepler’s second law

Multiplying our planet’s tangential equation of motion, (6.20), by r, we obtain

r2 θ̈ + 2 r ṙ θ̇ = 0. (6.36)

However, the above equation can be also written

d(r2 θ̇)

dt
= 0, (6.37)

which implies that
h = r2 θ̇ (6.38)

is constant in time. It is easily demonstrated that h is the magnitude of the vector
h defined in Eq. (6.7). Thus, the fact that h is constant in time is equivalent to the
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δθ
r

r δθ

Figure 30:

statement that the angular momentum of our planet is a constant of its motion.
As we have already mentioned, this is the case because gravity is a central force.

Suppose that the radius vector connecting our planet to the origin sweeps out
an angle δθ between times t and t+ δt (see Fig. 30). The approximately triangular
region swept out by the radius vector has the area

δA ' 1

2
r2 δθ, (6.39)

since the area of a triangle is half its base (r δθ) times its height (r). Hence, the
rate at which the radius vector sweeps out area is

dA

dt
=

1

2
lim
δt→0

r2 δθ

δt
=
r2

2

dθ

dt
=
h

2
. (6.40)

Thus, the radius vector sweeps out area at a constant rate (since h is constant
in time)—this is Kepler’s second law. We conclude that Kepler’s second law of
planetary motion is a direct consequence of angular momentum conservation.

6.8 Kepler’s first law

Our planet’s radial equation of motion, (6.19), can be combined with Eq. (6.38) to
give

r̈ − h2

r3
= −GM

r2
. (6.41)
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Suppose that r = u−1. It follows that

ṙ = − u̇

u2
= −r2 du

dθ

dθ

dt
= −h du

dθ
. (6.42)

Likewise,

r̈ = −h d
2u

dθ2
θ̇ = −u2 h2 d

2u

dθ2
. (6.43)

Hence, Eq. (6.41) can be written

d2u

dθ2
+ u =

GM

h2
. (6.44)

The general solution to the above equation takes the form

u(θ) =
GM

h2
[1 − e cos(θ − θ0)] , (6.45)

where e and θ0 are arbitrary constants. Without loss of generality, we can set
θ0 = 0 by rotating our coordinate system about the z-axis. Thus, we obtain

r(θ) =
rc

1 − e cos θ
, (6.46)

where

rc =
h2

GM
. (6.47)

We immediately recognize Eq. (6.46) as the equation of a conic section which is
confocal with the origin (i.e., with the Sun). Specifically, for e < 1, Eq. (6.46) is
the equation of an ellipse which is confocal with the Sun. Thus, the orbit of our
planet around the Sun in a confocal ellipse—this is Kepler’s first law of planetary
motion. Of course, a planet cannot have a parabolic or a hyperbolic orbit, since
such orbits are only appropriate to objects which are ultimately able to escape from
the Sun’s graviational field.

6.9 Kepler’s third law

We have seen that the radius vector connecting our planet to the origin sweeps out
area at the constant rate dA/dt = h/2 [see Eq. (6.40)]. We have also seen that the
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planetary orbit is an ellipse. Suppose that the major and minor radii of the ellipse
are a and b, respectively. It follows that the area of the ellipse is A = π a b. Now,
we expect the radius vector to sweep out the whole area of the ellipse in a single
orbital period, T . Hence,

T =
A

(dA/dt)
=

2 π a b

h
. (6.48)

It follows from Eqs, (6.27), (6.28), and (6.47) that

T 2 =
4 π2 a3

GM
. (6.49)

In other words, the square of the orbital period of our planet is proportional to the
cube of its orbital major radius—this is Kepler’s third law.

Note that for an elliptical orbit the closest distance to the Sun—the so-called
perihelion distance—is [see Eqs. (6.27) and (6.46)]

rp =
rc

1 + e
= a (1 − e). (6.50)

Likewise, the furthest distance from the Sun—the so-called aphelion distance—is

ra =
rc

1 − e
= a (1 + e). (6.51)

It follows that the major radius, a, is simply the mean of the perihelion and aphelion
distances,

a =
rp + ra

2
. (6.52)

The parameter

e =
ra − rp
ra + rp

(6.53)

is called the eccentricity, and measures the deviation of the orbit from circularity.
Thus, e = 0 corresponds to a circular orbit, whereas e → 1 corresponds to an
infinitely elongated elliptical orbit.
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6 PLANETARY MOTION 6.10 Orbital energies

6.10 Orbital energies

According to Eqs. (6.6) and (6.14), the total energy per unit mass of an object in
orbit around the Sun is given by

E =
ṙ 2 + r2 θ̇ 2

2
− GM

r
. (6.54)

It follows from Eqs. (6.38), (6.42), and (6.47) that

E =
h2

2





(

du

dθ

)2

+ u2 − 2uuc



 , (6.55)

where u = r−1, and uc = r−1
c . However, according to Eq. (6.46),

u(θ) = uc (1 − e cos θ). (6.56)

The previous two equations can be combined with Eqs. (6.47) and (6.50) to give

E =
u 2
c h

2

2
(e2 − 1) =

GM

2 rp
(e− 1). (6.57)

We conclude that elliptical orbits (e < 1) have negative total energies, whereas
parabolic orbits (e = 1) have zero total energies, and hyperbolic orbits (e > 1)
have positive total energies. This makes sense, since in a conservative system
in which the potential energy at infinity is set to zero [see Eq. (6.5)] we expect
bounded orbits to have negative total energies, and unbounded orbits to have positive

total energies (see Sect. 4.2). Thus, elliptical orbits, which are clearly bounded,
should indeed have negative total energies, whereas hyperbolic orbits, which are
clearly unbounded, should indeed have positive total energies. Parabolic orbits are
marginally bounded (i.e., an object executing a parabolic orbit only just escapes
from the Sun’s gravitational field), and thus have zero total energy.

Consider an artificial satellite in an elliptical orbit around the Sun (the same
considerations also apply to satellites in orbit around the Earth). At perihelion,
ṙ = 0, and Eqs. (6.54) and (6.57) can be combined to give

vt
vc

=
√

1 + e. (6.58)
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Here, vt = r θ̇ is the satellite’s tangential velocity, and vc =
√

GM/rp is the tan-
gential velocity that it would need in order to maintain a circular orbit at the
perihelion distance. Likewise, at aphelion,

vt
vc

=
√

1 − e, (6.59)

where vc =
√

GM/ra is now the tangential velocity that the satellite would need
in order to maintain a circular orbit at the aphelion distance.

Suppose that our satellite is initially in a circular orbit of radius r1, and that we
wish to transfer it into a circular orbit of radius r2, where r2 > r1. We can achieve
this by temporarily placing the satellite in an elliptical orbit whose perihelion dis-
tance is r1, and whose aphelion distance is r2. It follows, from Eq. (6.53), that the
required eccentricity of the elliptical orbit is

e =
r2 − r1
r2 + r1

. (6.60)

According to Eq. (6.58), we can transfer our satellite from its initial circular orbit
into the temporary elliptical orbit by increasing its tangential velocity (by briefly
switching on the satellite’s rocket motor) by a factor

α1 =
√

1 + e. (6.61)

We must next allow the satellite to execute half an orbit, so that it attains its
aphelion distance, and then boost the tangential velocity by a factor [see Eq. (6.59)]

α2 =
1√

1 − e
. (6.62)

The satellite will now be in a circular orbit at the aphelion distance, r2. This
process is illustrated in Fig. 31. Obviously, we can transfer our satellite from a
larger to a smaller circular orbit by performing the above process in reverse. Note,
finally, from Eq. (6.58), that if we increase the tangential velocity of a satellite in
a circular orbit about the Sun by a factor greater than

√
2 then we will transfer

it into a hyperbolic orbit (e > 1), and it will eventually escape from the Sun’s
gravitational field.
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Figure 31:

6.11 Motion in a general central force-field

Consider the motion of an object in a general (attractive) central force-field char-
acterized by the potential energy per unit mass function V (r). Since the force-field
is central, it still remains true that

h = r2 θ̇ (6.63)

is a constant of the motion. As is easily demonstrated, Eq. (6.44) generalizes to

d2u

dθ2
+ u = − 1

h2

dV

du
, (6.64)

where u = r−1. Thus, for the case of the standard gravitational potential, V =
−GM u, the above equation reduces to Eq. (6.44).

Suppose, for instance, that we wish to find the potential V (r) which causes an
object to execute the spiral orbit

r = r0 θ
2. (6.65)
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Substitution of u = (r0 θ
2)−1 into Eq. (6.64) yields

dV

du
= −h2

(

6 r0 u
2 + u

)

. (6.66)

Integrating, we obtain

V (u) = −h2



2 r0 u
3 +

u2

2



 , (6.67)

or

V (r) = −h2
(

2 r0
r3

+
1

2 r2

)

. (6.68)

In other words, the spiral pattern (6.65) is obtained from a mixture of an inverse-
square and inverse-cube potential.

6.12 Motion in a nearly circular orbit

In principle, a circular orbit is possible for any attractive central force. However,
not all forces result in stable circular orbits. Let us now consider the stability of
circular orbits in a general central force-field. Equation (6.41) generalizes to

r̈ − h2

r3
= f(r), (6.69)

where f(r) is the radial force per unit mass. For a circular orbit, r̈ = 0, and the
above equation reduces to

− h2

r 3
c

= f(rc), (6.70)

where rc is the radius of the orbit.

Let us now consider small departures from circularity. Let

x = r − rc. (6.71)

Equation (6.69) can be written

ẍ− h2

(rc + x)3
= f(rc + x). (6.72)
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Expanding the two terms involving rc + x as power series in x/rc, and keeping all
terms up to first order, we obtain

ẍ− h2

r 3
c

(

1 − 3
x

rc

)

= f(rc) + f ′(rc) x, (6.73)

where ′ denotes a derivative. Making use of Eq. (6.70), the above equation reduces
to

ẍ+



−3 f(rc)

rc
− f ′(rc)



 x = 0. (6.74)

If the term in square brackets is positive then we obtain a simple harmonic equation,
which we already know has bounded solutions—i.e., the orbit is stable to small
perturbations. On the other hand, if the term is square brackets is negative then
we obtain an equation whose solutions grow exponentially in time—i.e., the orbit
is unstable to small oscillations. Thus, the stability criterion for a circular orbit
of radius rc in a central force-field characterized by a radial force (per unit mass)
function f(r) is

f(rc) +
rc
3
f ′(rc) < 0. (6.75)

For example, consider a power-law force function of the form

f(c) = −c rn, (6.76)

where c > 0. Substituting into the above stability criterion, we obtain

− c r nc − c n

3
r nc < 0, (6.77)

or
n > −3. (6.78)

We conclude that circular orbits in central force-fields which decay faster than
r−3 are unstable. The case n = −3 is special, since the first-order terms in the
expansion of Eq. (6.72) cancel out exactly, and it is necessary to retain the second-
order terms. Doing this, it is easily demonstrated that circular orbits are also
unstable for inverse-cube (n = −3) forces.

An apsis is a point in an orbit at which the radial distance, r, assumes either a
maximum or a minimum value. Thus, the perihelion and aphelion points are the
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apsides of planetary orbits. The angle through which the radius vector rotates in
going between two consecutive apsides is called the apsidal angle. Thus, the apsidal
angle for elliptical orbits in an inverse-square force-field is π.

For the case of stable, nearly circular orbits, we have seen that r oscillates
sinusoidally about its mean value, rc. Indeed, it is clear from Eq. (6.74) that the
period of the oscillation is

T =
2 π

[−3 f(rc)/rc − f ′(rc)]
1/2
. (6.79)

The apsidal angle is the amount by which θ increases in going between a maximum
and a minimum of r. The time taken to achieve this is clearly T/2. Now θ̇ =
h/r2, where h is a constant of the motion, and r is almost constant. Thus, θ̇ is
approximately constant. In fact,

θ̇ ' h

r 2
c

=



−f(rc)

rc





1/2

, (6.80)

where use has been made of Eq. (6.70). Thus, the apsidal angle, ψ, is given by

ψ =
T

2
θ̇ = π



3 + rc
f ′(rc)

f(rc)





−1/2

(6.81)

For the case of power-law central forces of the form f(r) = −c rn, where c > 0,
the apsidal angle becomes

ψ =
π

(3 + n)1/2
. (6.82)

Now, it should be clear that if an orbit is going to close on itself then the apsidal
angle needs to be a rational fraction of 2 π. There are, in fact, only two small
integer values of the power-law index, n, for which this is the case. As we have
seen, for an inverse-square force law (i.e., n = −2), the apsidal angle is π. For a
linear force law (i.e., n = 1), the apsidal angle is π/2 (see Sect. 5.2). However,
for quadratic (i.e., n = 2) or cubic (i.e., n = 3) force laws, the apsidal angle is an
irrational fraction of 2 π, which means that non-circular orbits in such force-fields
never close on themselves.
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Let us, finally, calculate the apsial angle for a nearly circular orbit of radius rc
in a slightly modified (attractive) inverse-square force law of the form

f(r) = − k

r2
− ε

r4
, (6.83)

where ε/(k r 2
c ) is small. Substitution into Eq. (6.81) yields

ψ = π



3 + rc
2 k r−3

c + 4 ε r−5
c

−k r−2
c − ε r−4

c





−1/2

= π



3 − 2
1 + 2 ε/(k r 2

c )

1 + ε/(k r 2
c )





−1/2

. (6.84)

Expanding to first-order in ε/(k r 2
c ), we obtain

ψ ' π
(

3 − 2 [1 + ε/(k r 2
c )]

)−1/2
= π

[

1 − 2 ε/(k r 2
c )
]−1/2 ' π [1 + ε/(k r 2

c )]. (6.85)

We conclude that if ε > 0 then the perihelion (or aphelion) of the orbit advances by
an angle 2 ε/(k r 2

c ) every rotation period. Likewise, if ε < 0 then the perihelion (or
aphelion) regresses. For a given planet, the gravitation influence of the other planets
in the Solar System can be approximated as a small 1/r4 correction to the Sun’s
gravitational field. We, therefore, conclude that the gravitational perturbation due
to the other planets will cause the perihelion of the given planet to advance (or
regress) by a small amount every orbital period. This effect is particularly large for
Mercury, whose perihelion is observed to advance by 574 arc seconds per century.
The gravitational influence of the other planets in the Solar System is responsible
for 531 arc seconds of this advance. The remaining 41 arc seconds is due to general
relativistic corrections to Newtonian gravity, which also give rise to a small 1/r4

correction to the Sun’s gravitational field.
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7 Two-body dynamics

7.1 Introduction

In this section, we shall investigate the dynamics of systems consisting of two freely
moving, interacting, point mass objects.

7.2 Reduced mass

Suppose that our first object is of mass m1, and is located at position vector r1.
Likewise, our second object is of mass m2, and is located at position vector r2.
Let the first object exert a force f21 on the second. By Newton’s third law, the
second object exerts an equal and opposite force, f12 = −f21, on the first. Suppose
that there are no other forces in the problem. The equations of motion of our two
objects are thus

m1
d2r1

dt2
= −f , (7.1)

m2
d2r2

dt2
= f , (7.2)

where f = f21.

Now, the center of mass of our system is located at

rcm =
m1 r1 +m2 r2

m1 +m2
. (7.3)

Hence, we can write

r1 = rcm − m2

m1 +m2
r, (7.4)

r2 = rcm +
m1

m1 +m2
r, (7.5)

where r = r2 − r1. Substituting the above two equations into Eqs. (7.1) and (7.2),
and making use of the fact that the center of mass of an isolated system does not
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accelerate (see Sect. 3.5), we find that both equations yield

µ
d2r

dt2
= f , (7.6)

where
µ =

m1m2

m1 +m2
(7.7)

is called the reduced mass. Hence, we have effectively converted our original two-
body problem into an equivalent one-body problem. In the equivalent problem, the
force f is the same as that acting on both objects in the original problem (modulo
a minus sign). However, the mass, µ, is different, and is less than either of m1 or
m2 (which is why it is called the “reduced” mass).

7.3 Binary star systems

Approximately half of the stars in our galaxy are members of so-called binary star

systems. Such systems consist of two stars orbiting about their common center
of mass. The distance separating the stars is always much less than the distance
to the nearest neighbour star. Hence, a binary star system can be treated as a
two-body dynamical system to a very good approximation.

In a binary star system, the gravitational force which the first star exerts on the
second is

f = −Gm1m2

r3
r, (7.8)

where r = r2 − r1. As we have seen, a two-body system can be reduced to an
equivalent one-body system whose equation of motion is of the form (7.6), where
µ = m1m2/(m1 +m2). Hence, in this particular case, we can write

m1m2

m1 +m2

d2r

dt2
= −Gm1m2

r3
r, (7.9)

which gives
d2r

dt2
= −GM

r3
r, (7.10)
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where
M = m1 +m2. (7.11)

Equation (7.10) is identical to Eq. (6.3), which we have already solved. Hence,
we can immediately write down the solution:

r = (r cos θ, r sin θ, 0), (7.12)

where

r =
a (1 − e2)

1 − e cos θ
, (7.13)

and
dθ

dt
=
h

r2
, (7.14)

with

a =
h2

(1 − e2)GM
. (7.15)

Here, h is a constant, and we have aligned our Cartesian axes so that the plane of
the orbit coincides with the x-y plane. According to the above solution, the second
star executes a Keplerian elliptical orbit, with major radius a and eccentricity e,
relative to the first star, and vice versa. From Eq. (6.49), the period of revolution,
T , is given by

T =

√

√

√

√

4 π2 a3

GM
. (7.16)

In the inertial frame of reference whose origin always coincides with the center
of mass—the so-called center of mass frame—the position vectors of the two stars
are

r1 = − m2

m1 +m2
r, (7.17)

r2 =
m1

m1 +m2
r, (7.18)

where r is specified above. Figure 32 shows an example binary star orbit, in the
center of mass frame, calculated with m1/m2 = 0.5 and e = 0.2. Here, the triangles
and squares denote the positions of the first and second star, respectively. It can be
seen that both stars execute elliptical orbits about their common center of mass.
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Figure 32:
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Binary star systems have been very useful to astronomers, since it is possible to
determine the masses of both stars in such a system by careful observation. The sum

of the masses of the two stars, M = m1 +m2, can be determined from Eq. (7.16)
after a measurement of the major radius, a (which is the mean of the greatest
and smallest distance apart of the two stars during their orbit), and the orbital
period, T . The ratio of the masses of the two stars, m1/m2, can be determined
from Eqs. (7.17) and (7.18) by observing the fixed ratio of the relative distances of
the two stars from the common center of mass about which they both appear to
rotate. Obviously, given the sum of the masses, and the ratio of the masses, the
individual masses themselves can then be determined.

7.4 Scattering in the center of mass frame

Let us now consider scattering due to the collision of two particles. We shall
restrict our discussion to particles which interact via conservative central forces. It
turns out that scattering looks particularly simple when viewed in the center of

mass frame. Let us, therefore, start our investigation by considering two-particle
scattering in the center of mass frame.

As before, the first particle is of mass m1, and is located at position vector r1,
whereas the second particle is of mass m2, and is located at r2. By definition,
there is zero net linear momentum in the center of mass frame at all times. Hence,
if the first particle approaches the collision point with momentum p, then the
second must approach with momentum −p. Likewise, after the collision, if the
first particle recedes from the collision point with momentum p′, then the second
must recede with momentum −p′ (see Fig. 33). Furthermore, since the interaction
force is conservative, the total kinetic energy before and after the collision must be
the same. It follows that the magnitude of the final momentum vector, p′, is equal
to the magnitude of the initial momentum vector, p. Because of this, the collision
event is completely specified once the angle θ through which the first particle is
scattered is given. Of course, in the center of mass frame, the second particle is
scattered through the same angle (see Fig. 33).

Suppose that the two particles interact via the potential U(r), where r is the
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path of second particle

−p’

p’

−p
θ

p

path of first particle

Figure 33:

distance separating the particles. As we have seen, the two-body problem sketched
in Fig. 33 can be converted into the equivalent one-body problem sketched in
Fig. 34. In this equivalent problem, a particle of mass µ = m1m2/(m1 + m2) is
scattered in the fixed potential U(r), where r is now the distance from the origin.
The vector postion r of the particle in the equivalent problem corresponds to the
relative position vector r2 − r1 in the original problem. It follows that the angle
θ through which the particle is scattered in the equivalent problem is the same as
the scattering angle θ in the original problem.

The scattering angle, θ, is largely determined by the so-called impact parameter,
b, which is the distance of closest approach of the two particles in the absence of
an interaction potential. In the equivalent problem, b is the distance of closest
approach to the origin in the absence of an interaction potential (see Fig. 34). If
b = 0 then we have a head-on collision. In this case, we expect the two particles to
reverse direction after colliding: i.e., we expect θ = π. Likewise, if b is large then we
expect the two particles to miss one another entirely, in which case θ = 0. It follows
that the scattering angle, θ, is a decreasing function of the impact parameter, b.

Suppose that the plane polar coordinates of the particle in the equivalent prob-
lem are (r, ϑ). Let the particle approach the origin from the direction ϑ = 0, and
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closest approach

α
β

θ

Θb

origin

particle

Figure 34:

attain its closest distance to the origin when ϑ = Θ. From symmetry, the angle α
in Fig. 34 is equal to the angle β. However, from simple geometry α = Θ. Hence,

θ = π − 2Θ. (7.19)

Now, by analogy with Eq. (6.55), the conserved total energy E in the equivalent
problem, which can easily be shown to be the same as the total energy in the
original problem, is given by

E =
µh2

2





(

du

dϑ

)2

+ u2



 + U(u), (7.20)

where u = r−1, and h is the angular momentum per unit mass in the equivalent
problem. It is easily seen that

h = b v∞ = b

(

2E

µ

)1/2

, (7.21)

where v∞ is the approach velocity in the equivalent problem at large r. It follows
that

E = E b2




(

du

dϑ

)2

+ u2



 + U(u). (7.22)
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The above equation can be rearranged to give

dϑ

du
=

b
√

1 − b2 u2 − U(u)/E
. (7.23)

Integration yields

Θ =
∫ umax

0

b du
√

1 − b2 u2 − U(u)/E
. (7.24)

Here, umax = 1/rmin, where rmin is the distance of closest approach. Since, by
symmetry, (du/dϑ)umax

= 0, it follows from Eq. (7.22) that

1 − b2 u2
max − U(umax)/E = 0. (7.25)

Equations (7.19) and (7.24) enable us to calculate the function b(θ) for a given
interaction potential, U(r), and a given energy, E, of the two particles in the center
of mass frame. The function b(θ) tells us which impact parameter corresponds to
which scattering angle, and vice versa.

Instead of two particles, suppose that we now have two counter-propagating
beams of identical particles (with the same properties as the two particles de-
scribed above) which scatter one another via binary collisions. What is the angular
distribution of the scattered particles? Consider pairs of particles whose impact
parameters lie in the range b to b+db. These particles are scattered in such a man-
ner that their scattering angles lie in the range θ to θ + dθ, where θ is determined
from inverting the function b(θ), and

dθ =
db

|db(θ)/dθ| . (7.26)

Incidentally, we must take the modulus of db(θ)/dθ because b(θ) is a decreasing
function of θ. Assuming, as seems reasonable, that the scattering is azimuthally
symmetric, the range of solid angle into which the particles are scattered is

dΩ = 2π sin θ dθ =
2π sin θ db

|db/dθ| (7.27)

Finally, the cross-sectional area of the annulus through which incoming particles
must pass if they are to have impact parameters in the range b to b+ db is

dσ = 2π b db. (7.28)
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The previous two equations allow us to define the differential scattering cross-

section:
dσ

dΩ
=

b

sin θ

∣

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

∣

(7.29)

The differential scattering cross-section has units of area per steradian, and specifies
the effective target area for scattering into a given range of solid angle. For two
uniform beams scattering off one another, the differential scattering cross-section
thus effectively specifies the probability of scattering into a given range of solid
angle. The total scattering cross-section is the integral of the differential cross-
section over all solid angles,

σ =
∫ dσ

dΩ
dΩ, (7.30)

and measures the effective target area for scattering in any direction. Thus, if the
flux of particles per unit area per unit time, otherwise known as the intensity, of
the two beams is I, then the number of particles of a given type scattered per unit
time is simply I σ.

Let us now calculate the scattering cross-section for the following very simple
interaction potential:

U(r) = 0 for r > a, (7.31)

U(r) = ∞ for r ≤ a. (7.32)

This is the interaction potential of impenetrable spheres which only exert a force on
one another when they are in physical contact (e.g., billiard balls). If the particles
in the first beam have radius R1, and the particles in the second beam have radius
R2, then a = R1 +R2. In other words, the centers of two particles, one from either
beam, can never be less that the distance a apart, where a is the sum of their radii
(since the particles are impenetrable spheres).

Equations (7.19), (7.24), (7.31), and (7.32) yield

θ = π − 2
∫ 1/a

0

b du√
1 − b2 u2

= π − 2 sin−1(b/a). (7.33)

The above formula can be rearranged to give

b(θ) = a cos(θ/2). (7.34)
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Note that

b

∣

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∣

db2

dθ

∣

∣

∣

∣

∣

∣

=
a2

2
sin(θ/2) cos(θ/2) =

a2

4
sin θ. (7.35)

Hence, Eqs. (7.29) and (7.35) yield

dσ

dΩ
=
a2

4
. (7.36)

We thus conclude that when two beams of impenetrable spheres collide, in the
center of mass frame, the particles in the two beams have an equal probability of
being scattered in any direction. The total scattering cross-section is

σ =
∫ dσ

dΩ
dΩ = π a2. (7.37)

Obviously, this result makes a lot of sense—the total scattering cross-section for
two beams of impenetrable spheres is simply the area of a circle whose radius is
the sum of the radii of the two types of particles in the two beams.

Let us now consider scattering by an inverse-square interaction force whose
potential takes the form

U(r) =
k

r
. (7.38)

It follows from Eqs. (7.24) and (7.25) that

Θ =
∫ umax

0

b du
√

1 − b2 u2 − k u/E
=
∫ xmax

0

dx√
1 − x2 − αx

, (7.39)

where α = k/(E b), and
1 − x 2

max − αxmax = 0. (7.40)

Integration yields

Θ =
π

2
− sin−1

(

α√
4 + α2

)

. (7.41)

Hence, from Eq. (7.19), we obtain

θ = 2 sin−1
(

α√
4 + α2

)

. (7.42)
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The above equation can be rearranged to give

b2 =
k2

4E 2
cot2(θ/2). (7.43)

Hence,

2 b

∣

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

∣

=
k2

8E 2

sin θ

sin4(θ/2)
. (7.44)

Finally, using Eq. (7.29), we get

dσ

dΩ
=

k2

16E 2

1

sin4(θ/2)
. (7.45)

There are a number of things to note about the above formula. First, the scattering
cross-section is proportional to k2. This means that repulsive (k > 0) and attrac-

tive (k < 0) inverse-square-law interaction potentials of the same strength give
rise to identical angular distributions of scattered particles. Second, the scattering
cross-section is proportional to E−2. This means that inverse-square-law interac-
tion potentials are much more effective at scattering low energy, rather than high
energy, particles. Finally, the differential scattering cross-section is proportional to
sin−4(θ/2). This means that, with an inverse-square-law interaction potential, the
overwhelming majority of “collisions” consist of small angle scattering events (i.e.,
θ � 1).

Let us now consider a specific case. Suppose that we have particles of electric
charge q scattering off particles of the same charge. The interaction potential due
to the Coulomb force between the particles is simply

U(r) =
q2

4π ε0 r
. (7.46)

Thus, it follows from Eq. (7.45) [with k = q2/(4π ε0)] that the differential scattering
cross-section takes the form

dσ

dΩ
=

q4

16 (4 π ε0)2E 2

1

sin4(θ/2)
. (7.47)

This very famous formula is known as the Rutherford scattering cross-section, since
it was first derived by Earnst Rutherford for use in his celebrated α-particle scat-
tering experiment.
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Note, finally, that if we try to integrate the Rutherford formula to obtain the
total scattering cross-section then we find that the integral is divergent, due to the
very strong increase in dσ/dΩ as θ → 0. This implies that the Coulomb potential
(or any other inverse-square-law potential) has an effectively infinite range. In
practice, however, an electric charge in nature is generally surrounded by charges
of the opposite sign which shield the Coulomb potential of the charge beyond
a certain distance. This shielding effect allows the charge to have a finite total
scattering cross-section (for the scattering of other electric charges). However, the
total scattering cross-section of the charge depends (allbeit, logarithmically) on
the shielding distance, and, hence, on the nature and distribution of the charges
surrounding it.

7.5 Scattering in the laboratory frame

We have seen that two-particle scattering looks fairly simple when viewed in the
center of mass frame. Unfortunately, we are not usually in a position to do this.
In the laboratory, the most common scattering scenario is one in which the second
particle is initially at rest. Let us now investigate this scenario.

Suppose that, in the center of mass frame, the first particle has velocity v1 before
the collision, and velocity v′

1 after the collision. Likewise, the second particle has
velocity v2 before the collision, and v′

2 after the collision. We know that

m1 v1 +m2 v2 = m1 v′
1 +m2 v′

2 = 0 (7.48)

in the center of mass frame. Moreover, since the collision is assumed to be elastic,

v′1 = v1, (7.49)

v′2 = v2. (7.50)

Let us transform to a new inertial frame of reference—which we shall call the
laboratory frame—which is moving with the uniform velocity −v2 with respect
to the center of mass frame. In the new reference frame, the first particle has
initial velocity V1 = v1 − v2, and final velocity V′

1 = v′
1 − v2. Futhermore, the

second particle is initially at rest, and has the final velocity V′
2 = v′

2 − v2. The
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x 1v
1

2

v’2

θ ψ

laboratory framecenter of mass frame

1

1

V

V’

ζ

V’2

v
v’y

Figure 35:

relationship between scattering in the center of mass frame and scattering in the
laboratory frame is illustrated in Fig. 35.

In the center of mass frame, both particles are scattered through the same angle
θ. However, in the laboratory frame, the first and second particles are scattered by
the (generally different) angles ψ and ζ, respectively.

Defining x- and y-axes, as indicated in Fig. 35, it is easily seen that the Cartesian
components of the various velocity vectors in the two frames of reference are:

v1 = v1 (1, 0), (7.51)

v2 = (m1/m2) v1 (−1, 0), (7.52)

v′
1 = v1 (cos θ, sin θ), (7.53)

v′
2 = (m1/m2) v1(− cos θ, − sin θ), (7.54)

V1 = (1 +m1/m2) v1 (1, 0), (7.55)

V′
1 = v1 (cos θ +m1/m2, sin θ), (7.56)

V′
2 = (m1/m2) v1 (1 − cos θ, − sin θ). (7.57)

Let E be the total energy in the center of mass frame, and E1 = (1/2)m1 v
2
1 and

E2 = (1/2)m2 v
2
2 the kinetic energies of the first and second particles, respectively,
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before the collision. Likewise, let E ′
1 = (1/2)m1 v

′ 2
1 and E ′

2 = (1/2)m2 v
′ 2
2 be the

kinetic energies of the first and second particles, respectively, after the collision.
Of course, E = E1 + E2 = E ′

1 + E ′
2. Let E be the total energy in the laboratory

frame. This is, of course, equal to the kinetic energy of the first particle before
the collision. Likewise, let E ′

1 = (1/2)m1 V
′ 2
1 and E ′

2 = (1/2)m2 V
′ 2
2 be the kinetic

energies of the first and second particles, respectively, after the collision. Of course,
E = E ′

1 + E ′
2.

The following results can easily be obtained from the above definitions and
Eqs. (7.51)–(7.57). First,

E =

(

m1 +m2

m2

)

E. (7.58)

Hence, the total energy in the laboratory frame is always greater than that in the
center of mass frame. In fact, it can be demonstrated that the total energy in
the center of mass frame is less than the total energy in any other inertial frame.
Second,

E1 = E ′
1 =

(

m2

m1 +m2

)

E, (7.59)

E2 = E ′
2 =

(

m1

m1 +m2

)

E. (7.60)

These equations specify how the total energy in the center of mass frame is dis-
tributed between the two particles. Note that this distribution is unchanged by the
collision. Finally,

E ′
1 =





m 2
1 + 2m1m2 cos θ +m 2

2

(m1 +m2)2



 E , (7.61)

E ′
2 =





2m1m2 (1 − cos θ)

(m1 +m2)2



 E . (7.62)

These equations specify how the total energy in the laboratory frame is distributed
between the two particles after the collision. Note that the energy distribution in
the laboratory frame is different before and after the collision.

Equations (7.51)–(7.57), and some simple trigonometry, yield

tanψ =
sin θ

cos θ +m1/m2
, (7.63)
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and

tan ζ =
sin θ

1 − cos θ
= tan

(

π

2
− θ

2

)

. (7.64)

The last equation implies that

ζ =
π

2
− θ

2
. (7.65)

Differentiating Eq. (7.63) with respect to θ, we obtain

d tanψ

dθ
=

1 + (m1/m2) cos θ

(cos θ +m1/m2)2
. (7.66)

Thus, tanψ attains an extreme value, which can be shown to correspond to a
maximum possible value of ψ, when the numerator of the above expression is zero:
i.e., when

cos θ = −m2

m1
. (7.67)

Note that it is only possible to solve the above equation when m1 > m2. If this is
the case, then Eq. (7.63) yields

tanψmax =
m2/m1

√

1 − (m2/m1)2
, (7.68)

which reduces to

ψmax = sin−1
(

m2

m1

)

. (7.69)

Hence, we conclude that when m1 > m2 there is a maximum possible value of the
scattering angle, ψ, in the laboratory frame. This maximum value is always less
than π/2, which implies that there is no backward scattering (i.e., ψ > π/2) at all
when m1 > m2. For the special case when m1 = m2, the maximum scattering angle
is π/2. However, for m1 < m2 there is no maximum value, and the scattering angle
in the laboratory frame can thus range all the way to π.

Equations (7.58)–(7.65) enable us to relate the particle energies and scattering
angles in the laboratory frame to those in the center of mass frame. In general, this
relationship is fairly complicated. However, there are two special cases in which
the relationship becomes much simpler.

The first special case is when m2 � m1. In this limit, it is easily seen from
Eqs. (7.58)–(7.65) that the second mass is stationary both before and after the
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collision, and that the center of mass frame coincides with the laboratory frame
(since the energies and scattering angles in the two frames are the same). Hence,
the simple analysis outlined in Sect. 7.4 is applicable in this case.

The second special case is when m1 = m2. In this case, Eq. (7.63) yields

tanψ =
sin θ

cos θ + 1
= tan(θ/2). (7.70)

Hence,

ψ =
θ

2
. (7.71)

In other words, the scattering angle of the first particle in the laboratory frame is
half of the scattering angle in the center of mass frame. The above equation can
be combined with Eq. (7.65) to give

ψ + ζ =
π

2
. (7.72)

Thus, in the laboratory frame, the two particles move off at right-angles to one
another after the collision. Equation (7.58) yields

E = 2E. (7.73)

In other words, the total energy in the laboratory frame is twice that in the center
of mass frame. According to Eqs. (7.59) and (7.60),

E1 = E ′
1 = E2 = E ′

2 =
E

2
. (7.74)

Hence, the total energy in the center of mass frame is divided equally between the
two particles. Finally, Eqs. (7.61) and (7.62) give

E ′
1 =

(

1 + cos θ

2

)

E = cos2(θ/2) E = cos2 ψ E , (7.75)

E ′
2 =

(

1 − cos θ

2

)

E = sin2(θ/2) E = sin2 ψ E . (7.76)

Thus, in the laboratory frame, the unequal energy distribution between the two
particles after the collision is simply related to the scattering angle ψ.
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What is the angular distribution of scattered particles when a beam of par-
ticles of the first type scatter off stationary particles of the second type? Well,
we can define a differential scattering cross-section, dσ(ψ)/dΩ ′, in the laboratory
frame, where Ω′ = 2π sinψ dψ is an element of solid angle in this frame. Thus,
(dσ(ψ)/dΩ′) dΩ′ is the effective cross-sectional area in the laboratory frame for scat-
tering into the range of scattering angles ψ to ψ + dψ. Likewise, (dσ(θ)/dΩ) dΩ
is the effective cross-sectional area in the center of mass frame for scattering into
the range of scattering angles θ to θ + dθ. Note that dΩ = 2π sin θ dθ. However,
a cross-sectional area is not changed when we transform between different inertial
frames. Hence, we can write

dσ(ψ)

dΩ′ dΩ′ =
dσ(θ)

dΩ
dΩ, (7.77)

provided that ψ and θ are related via Eq. (7.63). This equation can be rearranged
to give

dσ(ψ)

dΩ′ =
dΩ

dΩ′
dσ(θ)

dΩ
, (7.78)

or
dσ(ψ)

dΩ′ =
sin θ

sinψ

dθ

dψ

dσ(θ)

dΩ
, (7.79)

The above equation allows us to relate the differential scattering cross-section in the
laboratory frame to that in the center of mass frame. In general, this relationship
is extremely complicated. However, for the special case where the masses of the
two types of particles are equal, we have seen that ψ = θ/2 [see Eq. (7.71)]. Hence,
it follows from Eq. (7.79) that

dσ(ψ)

dΩ′ = 4 cosψ
dσ(θ = 2ψ)

dΩ
. (7.80)

Let us now consider some specific examples. We saw earlier that, in the center
of mass frame, the differential scattering cross-section for impenetrable spheres is
[see Eq. (7.36)]

dσ(θ)

dΩ
=
a2

4
, (7.81)
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where a is the sum of the radii. According to Eq. (7.80), the differential scattering
cross-section (for equal mass spheres) in the laboratory frame is

dσ(ψ)

dΩ′ = a2 cosψ. (7.82)

Note that this cross-section is negative for ψ > π/2. This just tells us that there
is no scattering with scattering angles greater than π/2 (i.e., there is no backward
scattering). Comparing Eqs. (7.81) and (7.82), we can see that the scattering is
isotropic in the center of mass frame, but appears concentrated in the forward
direction in the laboratory frame. We can integrate Eq. (7.82) over all solid angles
to obtain the total scattering cross-section in the laboratory frame. Note that we
only integrate over angular regions where the differential scattering cross-section is
positive. Doing this, we get

σ = π a2, (7.83)

which is the same as the total scattering cross-section in the center of mass frame
[see Eq. (7.37)]. This is a general result. The total scattering cross-section is
frame independent, since a cross-sectional area is not modified by switching between
different frames of reference.

As we have seen, the Rutherford scattering cross-section takes the form [see
Eq. (7.47)]

dσ

dΩ
=

q4

16 (4 π ε0)2E 2

1

sin4(θ/2)
(7.84)

in the center of mass frame. It follows, from Eq. (7.80), that the Rutherford
scattering cross-section (for equal mass particles) in the laboratory frame is written

dσ

dΩ′ =
q4

(4 π ε0)2 E 2

cosψ

sin4 ψ
. (7.85)

Here, we have made use of the fact that E = 2E for equal mass particles [see
Eq. (7.73)]. Note, again, that this cross-section is negative for ψ > π/2, indicating
the absence of backward scattering.
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8 Non-inertial reference frames

8.1 Introduction

As we have seen (in Sect. 3), Newton’s second law of motion is only valid in inertial

frames of reference. Unfortunately, we are sometimes forced to observe motion in
non-inertial reference frames. For instance, it is most convenient for us to observe
the motions of the objects in our immediate vicinity in a reference frame which is
fixed relative to the surface of the Earth. Such a frame of reference is non-inertial

in nature, since it accelerates with respect to a standard inertial frame due to the
Earth’s daily rotation about its axis. (Note that the accelerations of the frame of
reference due to the Earth’s orbital motion about the Sun, or the Sun’s orbital
motion about the Galactic Center, etc., are negligible compared to the acceleration
due to the Earth’s rotation.) Let us now investigate motion in a rotating reference
frame.

8.2 Rotating reference frames

Suppose that a given object has position vector r in some non-rotating inertial

reference frame. Let us observe the motion of this object in a non-inertial reference
frame which rotates with constant angular velocity Ω about an axis passing through
the origin of the inertial frame. Suppose, first of all, that our object appears
stationary in the rotating reference frame. Hence, in the non-rotating frame, the
object’s position vector r will appear to precess about the origin with angular
velocity Ω. It follows, from Eq. (2.41), that in the non-rotating reference frame

dr

dt
= Ω × r. (8.1)

Suppose, now, that our object appears to move in the rotating reference frame with
instantaneous velocity v′. It is fairly obvious that the appropriate generalization
of the above equation is simply

dr

dt
= v′ + Ω × r. (8.2)
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Let and d/dt and d/dt′ denote apparent time derivatives in the non-rotating and
rotating frames of reference, respectively. Since an object which is stationary in
the rotating reference frame appears to move in the non-rotating frame, it is clear
that d/dt 6= d/dt′. Writing the apparent velocity, v′, of our object in the rotating
reference frame as dr/dt′, the above equation takes the form

dr

dt
=
dr

dt′
+ Ω × r, (8.3)

or
d

dt
=

d

dt′
+ Ω×, (8.4)

since r is a general position vector. Equation (8.4) expresses the relationship be-
tween apparent time derivatives in the non-rotating and rotating reference frames.

Operating on the general position vector r with the time derivative (8.4), we get

v = v′ + Ω × r. (8.5)

This equation relates the apparent velocity, v = dr/dt, of an object with position
vector r in the non-rotating reference frame to its apparent velocity, v′ = dr/dt′,
in the rotating reference frame.

Operating twice on the position vector r with the time derivative (8.4), we obtain

a =

(

d

dt′
+ Ω×

)

(v′ + Ω × r) , (8.6)

or
a = a′ + Ω × (Ω × r) + 2Ω × v′. (8.7)

This equation relates the apparent acceleration, a = d2r/dt2, of an object with
position vector r in the non-rotating reference frame to its apparent acceleration,
a′ = d2r/dt′2, in the rotating reference frame.

Applying Newton’s second law of motion in the inertial (i.e., non-rotating) ref-
erence frame, we obtain

m a = f . (8.8)

Here, m is the mass of our object, and f is the (non-fictitious) force acting on it.
Note that these quantities are the same in both reference frames. Making use of
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Eq. (8.7), the apparent equation of motion of our object in the rotating reference
frame takes the form

m a′ = f −mΩ × (Ω × r) − 2mΩ × v′. (8.9)

The last two terms in the above equation are so-called “fictitious forces”. Such
forces are always needed to account for motion observed in non-inertial reference
frames. Let us now investigate the two fictitious forces appearing in Eq. (8.9).

8.3 Centrifugal acceleration

Let our non-rotating inertial frame be one whose origin lies at the center of the
Earth, and let our rotating frame be one whose origin is fixed with respect to some
point, of latitude λ, on the Earth’s surface (see Fig. 36). The latter reference frame
thus rotates with respect to the former (about an axis passing through the Earth’s
center) with an angular velocity vector, Ω, which points from the center of the
Earth towards its North Pole, and is of magnitude

Ω =
2π

24 hrs
= 7.27 × 10−5 rad./s. (8.10)

Consider an object which appears stationary in our rotating reference frame:
i.e., an object which is stationary with respect to the Earth’s surface. According
to Eq. (8.9), the object’s apparent equation of motion in the rotating frame takes
the form

m a′ = f −mΩ × (Ω × r). (8.11)

Let the non-fictitious force acting on our object be the force of gravity, f = mg.
Here, the local gravitational acceleration, g, points directly towards the center of
the Earth. It follows, from the above, that the apparent gravitational acceleration
in the rotating frame is written

g′ = g − Ω × (Ω × R), (8.12)

where R is the displacement vector of the origin of the rotating frame (which lies on
the Earth’s surface) with respect to the center of the Earth. Here, we are assuming
that our object is situated relatively close to the Earth’s surface (i.e., r ' R).
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Figure 36:

It can be seen, from Eq. (8.12), that the apparent gravitational acceleration
of a stationary object close to the Earth’s surface has two components. First,
the true gravitational acceleration, g, of magnitude g ∼ 9.8 m/s2, which always
points directly towards the center of the Earth. Second, the so-called centrifugal

acceleration, −Ω × (Ω × R). This acceleration is normal to the Earth’s axis of
rotation, and always points directly away from this axis. The magnitude of the
centrifugal acceleration is Ω2 ρ = Ω2R cosλ, where ρ is the perpendicular distance
to the Earth’s rotation axis, and R = 6.37×106 m is the Earth’s radius (see Fig. 37).

It is convenient to define Cartesian axes in the rotating reference frame such
that the z′-axis points vertically upward, and x′- and y′-axes are horizontal, with
the x′-axis pointing directly northwards, and the y ′-axis pointing directly westward
(see Fig. 36). The Cartesian components of the Earth’s angular velocity are thus

Ω = Ω (cosλ, 0, sinλ), (8.13)

whilst the vectors R and g are written

R = (0, 0, R), (8.14)

g = (0, 0, −g), (8.15)

respectively. It follows that the Cartesian coordinates of the apparent gravitational
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acceleration, (8.12), are

g′ =
(

−Ω2R cosλ sinλ, 0, −g +Ω2R cos2 λ
)

. (8.16)

The magnitude of this acceleration is approximately

g′ ' g −Ω2R cos2 λ ' 9.8 − 0.034 cos2 λ m/s2. (8.17)

According to the above equation, the centrifugal acceleration causes the magnitude
of the apparent gravitational acceleration on the Earth’s surface to vary by about
0.3%, being largest at the Poles, and smallest at the Equator. This variation
in apparent gravitational acceleration, due (ultimately) to the Earth’s rotation,
causes the Earth itself to bulge slightly at the Equator, which has the effect of
further intensifying the variation, since a point on the surface of the Earth at the
Equator is slightly further away from the Earth’s center than a similar point at
one of the Poles (and, hence, the true gravitational acceleration is slightly weaker
in the former case).

Another consequence of centrifugal acceleration is that the apparent gravita-
tional acceleration on the Earth’s surface has a horizontal component aligned in
the North/South direction. This horizontal component ensures that the apparent
gravitational acceleration does not point directly towards the center of the Earth.
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In other words, a plumb-line on the surface of the Earth does not point vertically
downward, but is deflected slightly away from a true vertical in the North/South
direction. The angular deviation from true vertical can easily be calculated from
Eq. (8.16):

θdev ' −Ω
2R

2 g
sin(2λ) ' −0.1◦ sin(2λ). (8.18)

Here, a positive angle denotes a northward deflection, and vice versa. Thus, the
deflection is southward in the Northern Hemisphere (i.e., λ > 0) and northwards

in the Southern Hemisphere (i.e., λ < 0). The deflection is zero at the Poles and at
the Equator, and reaches its maximum magnitude (which is very small) at middle
latitudes.

8.4 The Coriolis force

We have now accounted for the first fictitious force, −mΩ× (Ω× r), in Eq. (8.9).
Let us now investigate the second, which takes the form −2mΩ×v′, and is called
the Coriolis force. Obviously, this force only affects objects which are moving in
the rotating reference frame.

Consider a particle of mass m free-falling under gravity in our rotating reference
frame. As before, we define Cartesian axes in the rotating frame such that the
z′-axis points vertically upward, and x′- and y′-axes are horizontal, with the x′-
axis pointing directly northwards, and the y ′-axis pointing directly westward. It
follows, from Eq. (8.9), that the Cartesian equations of motion of the particle in
the rotating reference frame take the form:

ẍ′ = 2Ω sinλ ẏ′, (8.19)

ÿ′ = −2Ω sinλ ẋ′ + 2Ω cosλ ż′, (8.20)

z̈′ = −g − 2Ω cosλ ẏ′. (8.21)

Here, ˙≡ d/dt, and g is the local acceleration due to gravity. In the above, we have
neglected the centrifugal acceleration, for the sake of simplicity. This is reason-
able, since the only effect of the centrifugal acceleration is to slightly modify the
magnitude and direction of the local gravitational acceleration.
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Consider a particle which is dropped (at t = 0) from rest a height h above the
Earth’s surface. To lowest order (i.e., neglecting Ω), the particle’s vertical motion
satisfies

z′ = h− g t 2

2
. (8.22)

Substituting this expression into Eqs. (8.19) and (8.20), and neglecting terms in-
volving Ω2, we obtain x′ ' 0, and

y′ ' −g Ω cosλ
t 3

3
. (8.23)

In other words, the particle is deflected eastward (i.e., in the negative y ′-direction).
Now, the particle hits the ground when t '

√

2h/g. Hence, the net eastward
deflection of the particle as strikes the ground is

deast =
Ω

3
cosλ





8h3

g





1/2

. (8.24)

Note that this deflection is in the same direction as the Earth’s rotation (i.e., West
to East), and is greatest at the Equator, and zero at the Poles. A particle dropped
from a height of 100 m at the Equator is deflected by about 2.2 cm.

Consider a particle launched horizontally with some fairly large velocity

V = V0 (cos θ,− sin θ, 0). (8.25)

Here, θ is the compass bearing of the velocity vector (so North is 0◦, East is 90◦,
etc.). Neglecting any vertical motion, Eqs. (8.19) and (8.20) yield

v̇x′ ' −2Ω V0 sinλ sin θ, (8.26)

v̇′y ' −2Ω V0 sinλ cos θ, (8.27)

which can be integrated to give

vx′ ' V0 cos θ − 2Ω V0 sinλ sin θ t, (8.28)

vy′ ' −V0 sin θ − 2Ω V0 sinλ cos θ t. (8.29)

To lowest order in Ω, the above equations are equivalent to

vx′ ' V0 cos(θ + 2Ω sinλ t), (8.30)

vy′ ' −V0 sin(θ + 2Ω sinλ t). (8.31)
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If follows that the Coriolis force causes the compass bearing of the particle’s velocity
vector to rotate steadily as time progresses. The rotation rate is

dθ

dt
' 2Ω sinλ. (8.32)

Hence, the rotation is clockwise (looking from above) in the Northern Hemisphere,
and anti-clockwise in the Southern Hemisphere. The rotation rate is zero at the
Equator, and greatest at the Poles.

The Coriolis force has a significant effect on terrestrial weather patterns. Near
equatorial regions, the intense heating of the Earth’s surface due to the Sun results
in hot air rising. In the Northern Hemisphere, this causes cooler air to move in a
southerly direction towards the Equator. The Coriolis force deflects this moving air
in a clockwise sense (looking from above), resulting in the trade winds, which blow
towards the southwest. In the Southern Hemisphere, the cooler air moves north-
wards, and is deflected by the Coriolis force in an anti-clockwise sense, resulting in
trade winds which blow towards the northwest.

Furthermore, as air flows from high to low pressure regions, the Coriolis force
deflects the air in a clockwise/anti-clockwise manner in the Northern/Southern
Hemisphere, producing cyclonic rotation (see Fig. 38). It follows that cyclonic
rotation is anti-clockwise in the Northern Hemisphere, and clockwise in the South-

ern Hemisphere. Thus, this is the direction of rotation of tropical storms (e.g.,
hurricanes, typhoons) in each hemisphere.

8.5 The Foucault pendulum

Consider a pendulum consisting of a mass m suspended from a light cable of length
l in such a manner that the pendulum is free to oscillate in any plane whose
normal is parallel to the Earth’s surface. The mass is subject to three forces:
first, the force of gravity mg, which is directed vertically downward (we are again
ignoring centrifugal acceleration); second, the tension T in the cable, which is
directly upward along the cable; and, third, the Coriolis force. It follows that the
apparent equation of motion of the mass, in a frame of reference which co-rotates

110



8 NON-INERTIAL REFERENCE FRAMES 8.5 The Foucault pendulum

λ > 0high

E

S

N

low W

Figure 38:

with the Earth, is [see Eq. (8.9)]

m r̈′ = mg + T − 2mΩ × ṙ′. (8.33)

Let us define our usual Cartesian coordinates (x′, y′, z′), and let the origin of
our coordinate system correspond to the equilibrium position of the mass. If the
pendulum is deflected by a small angle θ then it is easily seen that x′ ∼ l θ, y′ ∼ l θ,
and z′ ∼ l θ 2. In other words, the change in height of the mass, z ′, is negligible
compared to its horizontal displacement. Hence, we can write z ′ ' 0, provided that
θ � 1. The tension T has the vertical component T cos θ ' T , and the horizontal
component Thz = −T sin θ r′/r′ ' −T r′/l, since sin θ ' r′/l (see Fig. 39). Hence,
the Cartesian equations of motion of the mass are written [cf., Eqs. (8.19)–(8.21)]

ẍ′ = − T

lm
x′ + 2Ω sinλ ẏ′, (8.34)

ÿ′ = − T

lm
y′ − 2Ω sinλ ẋ′, (8.35)

0 =
T

m
− g − 2Ω cosλ ẏ′. (8.36)
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To lowest order in Ω (i.e., neglecting Ω), the final equation, which is just vertical
force balance, yields T ' mg. Hence, Eqs. (8.34) and (8.35) reduce to

ẍ′ ' −g
l
x′ + 2Ω sinλ ẏ′, (8.37)

ÿ′ ' −g
l
y′ − 2Ω sinλ ẋ′. (8.38)

Let
s = x′ + i y′. (8.39)

Equations (8.37) and (8.38) can be combined to give a single complex equation for
s:

s̈ = −g
l
s− i 2Ω sinλ ṡ. (8.40)

Let us look for a sinusoidally oscillating solution of the form

s = s0 e−iω t. (8.41)

Here, ω is the (real) angular frequency of oscillation, and s0 is an arbitrary complex
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constant. Equations (8.40) and (8.41) yield the following quadratic equation for ω:

ω2 − 2Ω sinλω − g

l
= 0. (8.42)

The solutions are approximately

ω± ' Ω sinλ±
√

g

l
, (8.43)

where we have neglected terms involving Ω 2. Hence, the general solution of (8.41)
takes the form

s = s+ e−iω+ t + s− e−iω− t, (8.44)

where s+ and s− are two arbitrary complex constants.

Making the specific choice s+ = s− = a/2, where a is real, the above solution
reduces to

s = a e−iΩ sinλ t cos

(
√

g

l
t

)

. (8.45)

Now, it is clear from Eq. (8.39) that x′ and y′ are the real and imaginary parts of
s, respectively. Thus, it follows from the above that

x′ = a cos(Ω sinλ t) cos

(
√

g

l
t

)

, (8.46)

y′ = −a sin(Ω sinλ t) cos

(
√

g

l
t

)

. (8.47)

These equations describe sinusoidal oscillations, in a plane whose normal is parallel
to the Earth’s surface, at the standard pendulum frequency

√

g/l. The Coriolis
force, however, causes the plane of oscillation to slowly precess at the angular
frequency Ω sinλ. The period of the precession is

T =
2 π

Ω sinλ
=

24

sinλ
hrs. (8.48)

For example, according to the above equations, the pendulum oscillates in the
x′-direction (i.e., North–South) at t ' 0, in the y ′-direction (i.e., East–West) at
t ' T/4, in the x′-direction again at t ' T/2, etc. The precession is clockwise (look-
ing from above) in the Northern Hemisphere, and anti-clockwise in the Southern

Hemisphere.
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The precession of the plane of oscillation of a pendulum, due to the Coriolis
force, is used in many museums and observatories to demonstrate that the Earth
is rotating. This method of making the Earth’s rotation manifest was first devised
by Foucault in 1851.
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9 Rigid body motion

9.1 Introduction

In this section, we shall investigate the motion of rigid bodies in three dimensions.

9.2 Fundamental equations

We can think of a rigid body as a collection of a large number of small mass elements
which all maintain a fixed spatial relationship with respect to one another. Let there
be N elements, and let the ith element be of mass mi, and instantaneous position
vector ri. The equation of motion of the ith element is written

mi
d2ri

dt2
=

j 6=i
∑

j=1,N

fij + Fi. (9.1)

Here, fij is the internal force exerted on the ith element by the jth element, and Fi

the external force acting on the ith element. The internal forces fij represent the
stresses which develop within the body in order to ensure that its various elements
maintain a constant spatial relationship with respect to one another. Of course,
fij = −fji, by Newton’s third law. The external forces represent forces which
originate outside the body.

Generalizing the analysis contained in Sect. 3.5, we can sum Eq. (9.1) over all
mass elements to obtain

M
d2rcm

dt2
= F. (9.2)

Here, M =
∑

i=1,N mi is the total mass, rcm the position vector of the center of mass
[see Eq. (3.27)], and F =

∑

i=1,N Fi the total external force. It can be seen that the
center of mass of a rigid body moves under the action of the external forces as a
point particle whose mass is identical with that of the body.

Again generalizing the analysis of Sect. 3.5, we can sum ri× Eq. (9.1) over all
mass elements to obtain

dL

dt
= T. (9.3)
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Here, L =
∑

i=1,N mi ri× dri/dt is the total angular momentum of the body (about
the origin), and T =

∑

i=1,N ri×Fi the total external torque (about the origin). Note
that the above equation is only valid if the internal forces are central in nature.
However, this is not a particularly onerous constraint. Equation (9.3) describes
how the angular momentum of a rigid body evolves in time under the action of the
external torques.

In the following, we shall only consider the rotational motion of rigid bodies,
since their translational motion is similar to that of point particles [see Eq. (9.2)],
and, therefore, fairly straightforward in nature.

9.3 The moment of inertia tensor

Consider a rigid body rotating with fixed angular velocity ω about an axis which
passes through the origin (see Fig. 40). Let ri be the position vector of the ith
mass element, whose mass is mi. We expect this position vector to precess about
the axis of rotation (which is parallel to ω) with angular velocity ω. It, therefore,
follows from Eq. (2.41) that

dri
dt

= ω × ri. (9.4)

Thus, the above equation specifies the velocity, vi = dri/dt, of each mass element
as the body rotates with fixed angular velocity ω about an axis passing through
the origin.

The total angular momentum of the body (about the origin) is written

L =
∑

i=1,N

mi ri ×
dri
dt

=
∑

i=1,N

mi ri × (ω × ri) =
∑

i=1,N

mi

[

r 2
i ω − (ri · ω) ri

]

, (9.5)

where use has been made of Eq. (9.4), and some standard vector identities. The
above formula can be written as a matrix equation of the form











Lx
Ly
Lz











=











Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz





















ωx
ωy
ωz











, (9.6)
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where

Ixx =
∑

i=1,N

(y 2
i + z 2

i )mi =
∫

(y2 + z2) dm, (9.7)

Iyy =
∑

i=1,N

(x 2
i + z 2

i )mi =
∫

(x2 + z2) dm, (9.8)

Izz =
∑

i=1,N

(x 2
i + y 2

i )mi =
∫

(x2 + y2) dm, (9.9)

Ixy = Iyx = − ∑

i=1,N

xi yimi = −
∫

x y dm, (9.10)

Iyz = Izy = − ∑

i=1,N

yi zimi = −
∫

y z dm, (9.11)

Ixz = Izx = − ∑

i=1,N

xi zimi = −
∫

x z dm. (9.12)

Here, Ixx is called the moment of inertia about the x-axis, Iyy the moment of inertia
about the y-axis, Ixy the xy product of inertia, Iyz the yz product of inertia, etc.
The matrix of the Iij values is known as the moment of inertia tensor.1 Note that
each component of the moment of inertia tensor can be written as either a sum

1A tensor is the two-dimensional generalization of a vector. However, for our purposes, we can simply think of a
tensor as another name for a matrix.
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over separate mass elements, or an integral over infinitesimal mass elements. In
the integrals, dm = ρ dV , where ρ is the mass density, and dV a volume element.
Equation (9.6) can be written more succinctly as

L = Ĩω. (9.13)

Here, it is understood that L and ω are both column vectors, and Ĩ is the matrix of
the Iij values. Note that Ĩ is a real symmetric matrix: i.e., I ∗

ij = Iij and Iji = Iij.

In general, the angular momentum vector, L, obtained from Eq. (9.13), points
in a different direction to the angular velocity vector, ω. In other words, L is
generally not parallel to ω.

Finally, although the above results were obtained assuming a fixed angular ve-
locity, they remain valid at each instant in time even if the angular velocity varies.

9.4 Rotational kinetic energy

The instantaneous rotational kinetic energy of a rotating rigid body is written

K =
1

2

∑

i=1,N

mi

(

dri
dt

)2

. (9.14)

Making use of Eq. (9.4), and some vector identities, the kinetic energy takes the
form

K =
1

2

∑

i=1,N

mi (ω × ri) · (ω × ri) =
1

2
ω · ∑

i=1,N

mi ri × (ω × ri). (9.15)

Hence, it follows from (9.5) that

K =
1

2
ω · L. (9.16)

Making use of Eq. (9.13), we can also write

K =
1

2
ω
T Ĩω. (9.17)
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Here, ω
T is the row vector of the Cartesian components ωx, ωy, ωz, which is,

of course, the transpose (denoted T ) of the column vector ω. When written in
component form, the above equation yields

K =
1

2

(

Ixx ω
2
x + Iyy ω

2
y + Izz ω

2
z + 2 Ixy ωx ωy + 2 Iyz ωy ωz + 2 Ixz ωx ωz

)

. (9.18)

9.5 Matrix theory

It is time to review a little matrix theory. Suppose that A is a real symmetric

matrix of dimension n. If follows that A∗ = A and AT = A, where ∗ denotes a
complex conjugate, and T denotes a transpose. Consider the matrix equation

Ax = λx. (9.19)

Any column vector x which satisfies the above equation is called an eigenvector

of A. Likewise, the associated number λ is called an eigenvalue of A. Let us
investigate the properties of the eigenvectors and eigenvalues of a real symmetric
matrix.

Equation (9.19) can be rearranged to give

(A − λ1)x = 0, (9.20)

where 1 is the unit matrix. The above matrix equation is essentially a set of n
homogeneous simultaneous algebraic equations for the n components of x. A well-
known property of such a set of equations is that it only has a non-trivial solution
when the determinant of the associated matrix is set to zero. Hence, a necessary
condition for the above set of equations to have a non-trivial solution is that

|A − λ1| = 0. (9.21)

The above formula is essentially an nth-order polynomial equation for λ. We know
that such an equation has n (possibly complex) roots. Hence, we conclude that
there are n eigenvalues, and n associated eigenvectors, of the n-dimensional matrix
A.
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Let us now demonstrate that the n eigenvalues and eigenvectors of the real
symmetric matrix A are all real. We have

Axi = λi xi, (9.22)

and, taking the transpose and complex conjugate,

x∗T
i A = λ ∗

i x∗T
i , (9.23)

where xi and λi are the ith eigenvector and eigenvalue of A respectively. Left
multiplying Eq. (9.22) by x∗T

i , we obtain

x∗T
i Axi = λi x

∗T
i xi. (9.24)

Likewise, right multiplying (9.23) by xi, we get

x∗T
i Axi = λ ∗

i x∗T
i xi. (9.25)

The difference of the previous two equations yields

(λi − λ ∗
i )x

∗T
i xi = 0. (9.26)

It follows that λi = λ ∗
i , since x∗T

i xi (which is x ∗
i · xi in vector notation) is positive

definite. Hence, λi is real. It immediately follows that xi is real.

Next, let us show that two eigenvectors corresponding to two different eigenval-
ues are mutually orthogonal. Let

Axi = λi xi, (9.27)

Axj = λj xj, (9.28)

where λi 6= λj. Taking the transpose of the first equation and right multiplying by
xj, and left multiplying the second equation by xTi , we obtain

xTi Axj = λi x
T
i xj, (9.29)

xTi Axj = λj x
T
i xj. (9.30)

Taking the difference of the above two equations, we get

(λi − λj)x
T
i xj = 0. (9.31)
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Since, by hypothesis, λi 6= λj, it follows that xTi xj = 0. In vector notation, this is
the same as xi ·xj = 0. Hence, the eigenvectors xi and xj are mutually orthogonal.

Suppose that λi = λj = λ. In this case, we cannot conclude that xTi xj = 0 by
the above argument. However, it is easily seen that any linear combination of xi
and xj is an eigenvector of A with eigenvalue λ. Hence, it is possible to define two
new eigenvectors of A, with the eigenvalue λ, which are mutually orthogonal. For
instance,

x′
i = xi, (9.32)

x′
j = xj −





xTi xj

xTi xi



xi. (9.33)

It should be clear that this argument can be generalized to deal with any number
of eigenvalues which take the same value.

In conclusion, a real symmetric, n-dimensional matrix possesses n real eigenval-
ues, with n associated real eigenvectors, which are, or can be chosen to be, mutually

orthogonal.

9.6 The principal axes of rotation

We have seen that the moment of inertia tensor, Ĩ, defined in Sect. 9.3, takes the
form of a real symmetric, three-dimensional matrix. It therefore follows, from the
matrix theory which we have just reviewed, that the moment of inertia tensor
possesses three mutually orthogonal eigenvectors which are associated with three

real eigenvalues. Let the ith eigenvector (which can be normalized to be a unit
vector) be denoted ω̂i, and the ith eigenvalue λi. It then follows that

Ĩ ω̂i = λi ω̂i, (9.34)

for i = 1, 3.

The directions of the three mutually orthogonal unit vectors ω̂i define the three
so-called principal axes of rotation of the rigid body under investigation. These
axes are special because when the body rotates about one of them (i.e., when ω is
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parallel to one of them) the angular momentum vector L becomes parallel to the
angular velocity vector ω. This can be seen from a comparison of Eq. (9.13) and
Eq. (9.34).

Suppose that we reorient our Cartesian coordinate axes so the they coincide with
the mutually orthogonal principal axes of rotation. In this new reference frame,
the eigenvectors of Ĩ are the unit vectors, ex, ey, and ez, and the eigenvalues are
the moments of inertia about these axes, Ixx, Iyy, and Izz, respectively. These
latter quantities are referred to as the principal moments of inertia. Note that the
products of inertia are all zero in the new reference frame. Hence, in this frame,
the moment of inertia tensor takes the form of a diagonal matrix: i.e.,

Ĩ =











Ixx 0 0
0 Iyy 0
0 0 Izz











. (9.35)

Incidentally, it is easy to verify that ex, ey, and ez are indeed the eigenvectors of the
above matrix, with the eigenvalues Ixx, Iyy, and Izz, respectively, and that L = Ĩω

is indeed parallel to ω whenever ω is directed along ex, ey, or ez.

When expressed in our new coordinate system, Eq. (9.13) yields

L = (Ixx ωx, Iyy ωy, Izz ωz) , (9.36)

whereas Eq. (9.18) reduces to

K =
1

2

(

Ixx ω
2
x + Iyy ω

2
y + Izz ω

2
z

)

. (9.37)

In conclusion, there are many great simplifications to be had by choosing a
coordinate system whose axes coincide with the principal axes of rotation of the
rigid body under investigation. But how do we determine the directions of the
principal axes in practice?

Well, in general, we have to solve the eigenvalue equation

Ĩ ω̂ = λ ω̂, (9.38)
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or










Ixx − λ Ixy Ixz
Iyx Iyy − λ Iyz
Izx Izy Izz − λ





















cosα
cos β
cos γ











=











0
0
0











, (9.39)

where ω̂ = (cosα, cos β, cos γ), and cos2 α + cos2 β + cos2 γ = 1. Here, α is the
angle the unit eigenvector subtends with the x-axis, β the angle it subtends with
the y-axis, and γ the angle it subtends with the z-axis. Unfortunately, the analytic
solution of the above matrix equation is generally quite difficult.

Fortunately, however, in many instances the rigid body under investigation pos-
sesses some kind of symmetry, so that at least one principal axis can be found by
inspection. In this case, the other two principal axes can be determined as follows.

Suppose that the z-axis is known to be a principal axes (at the origin) in some
coordinate system. It follows that the two products of inertia Ixz and Iyz are zero
[otherwise, (0, 0, 1) would not be an eigenvector in Eq. (9.39)]. The other two
principal axes must lie in the x-y plane: i.e., cos γ = 0. It then follows that
cos β = sinα, since cos2 α + cos2 β + cos2 γ = 1. The first two rows in the matrix
equation (9.39) thus reduce to

(Ixx − λ) cosα + Ixy sinα = 0, (9.40)

Ixy cosα + (Iyy − λ) sinα = 0. (9.41)

Eliminating λ between the above two equations, we obtain

Ixy (1 − tan2 α) = (Ixx − Iyy) tanα. (9.42)

But, tan(2α) ≡ 2 tanα/(1 − tan2 α). Hence, Eq. (9.42) yields

tan(2α) =
2 Ixy

Ixx − Iyy
. (9.43)

There are two values of α, lying between −π/2 and π/2, which satisfy the above
equation. These specify the angles, α, which the two mutually orthogonal principal
axes in the x-y plane make with the x-axis. Hence, we have now determined the
directions of all three principal axes. Incidentally, once we have determined the
orientation angle, α, of a principal axis, we can substitute back into Eq. (9.40) to
obtain the corresponding principal moment of inertia, λ.
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Figure 41:

As an example, consider a uniform rectangular lamina of mass m and sides a
and b which lies in the x-y plane, as shown in Fig. 41. Suppose that the axis
of rotation passes through the origin (i.e., through a corner of the lamina). Since
z = 0 throughout the lamina, it follows from Eqs. (9.11) and (9.12) that Ixz = Iyz =
0. Hence, the z-axis is a principal axis. After some straightforward integration,
Eqs. (9.7)–(9.10) yield

Ixx =
1

3
mb2, (9.44)

Iyy =
1

3
ma2, (9.45)

Ixy = −1

4
ma b. (9.46)

Thus, it follows from Eq. (9.43) that

α =
1

2
tan−1

(

3

2

a b

a2 − b2

)

. (9.47)

The above equation specifies the orientation of the two principal axes which lie in
the x-y plane. For the special case where a = b, we get α = π/4, 3π/4: i.e., the
two in-plane principal axes of a square lamina (at a corner) are parallel to the two
diagonals of the lamina.
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9.7 Euler’s equations

The fundamental equation of motion of a rotating body [see Eq. (9.3)],

T =
dL

dt
, (9.48)

is only valid in an inertial frame. However, we have seen that L is most simply
expressed in a frame of reference whose axes are aligned along the principal axes
of rotation of the body. Such a frame of reference rotates with the body, and
is, therefore, non-inertial. Thus, it is helpful to define two Cartesian coordinate
systems, with the same origins. The first, with coordinates x, y, z, is a fixed
inertial frame—let us denote this the fixed frame. The second, with coordinates
x′, y′, z′, co-rotates with the body in such a manner that the x′-, y′-, and z′-axes
are always pointing along its principal axes of rotation—we shall refer to this as
the body frame. Since the body frame co-rotates with the body, its instantaneous
angular velocity is the same as that of the body. Hence, it follows from the analysis
in Sect. 8.2 that

dL

dt
=
dL

dt′
+ ω × L. (9.49)

Here, d/dt is the time derivative in the fixed frame, and d/dt′ the time derivative
in the body frame. Combining Eqs. (9.48) and (9.49), we obtain

T =
dL

dt′
+ ω × L. (9.50)

Now, in the body frame let T = (Tx′, Ty′, Tz′) and ω = (ωx′, ωy′, ωz′). It follows
that L = (Ix′x′ ωx′, Iy′y′ ωy′, Iz′z′ ωz′), where Ix′x′, Iy′y′ and Iz′z′ are the principal
moments of inertia. Hence, in the body frame, the components of Eq. (9.50) yield

Tx′ = Ix′x′ ω̇x′ − (Iy′y′ − Iz′z′)ωy′ ωz′, (9.51)

Ty′ = Iy′y′ ω̇y′ − (Iz′z′ − Ix′x′)ωz′ ωx′, (9.52)

Tz′ = Iz′z′ ω̇z′ − (Ix′x′ − Iy′y′)ωx′ ωy′, (9.53)

where ˙ = d/dt. Here, we have made use of the fact that the moments of inertia
of a rigid body are constant in time in the co-rotating body frame. The above
equations are known as Euler’s equations.
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Consider a rigid body which is constrained to rotate about a fixed axis with
constant angular velocity. It follows that ω̇x′ = ω̇y′ = ω̇z′ = 0. Hence, Euler’s
equations, (9.51)–(9.53), reduce to

Tx′ = −(Iy′y′ − Iz′z′)ωy′ ωz′, (9.54)

Ty′ = −(Iz′z′ − Ix′x′)ωz′ ωx′, (9.55)

Tz′ = −(Ix′x′ − Iy′y′)ωx′ ωy′. (9.56)

These equations specify the components of the steady (in the body frame) torque
exerted on the body by the constraining supports. The steady (in the body frame)
angular momentum is written

L = (Ix′x′ ωx′, Iy′y′ ωy′, Iz′z′ ωz′). (9.57)

It is easily demonstrated that T = ω × L. Hence, the torque is perpendicular to
both the angular velocity and the angular momentum vectors. Note that if the axis
of rotation is a principal axis then two of the three components of ω are zero (in
the body frame). It follows from Eqs. (9.54)–(9.56) that all three components of
the torque are zero. In other words, zero external torque is required to make the
body rotate steadily about a principal axis.

Suppose that the body is freely rotating: i.e., there are no external torques.
Furthermore, let the body be rotationally symmetric about the z ′-axis. It follows
that Ix′x′ = Iy′y′ = I⊥. Likewise, we can write Iz′z′ = I‖. In general, however,
I⊥ 6= I‖. Thus, Euler’s equations yield

I⊥
dωx′

dt
+ (I‖ − I⊥)ωz′ ωy′ = 0, (9.58)

I⊥
dωy′

dt
− (I‖ − I⊥)ωz′ ωx′ = 0, (9.59)

dωz′

dt
= 0. (9.60)

Clearly, ωz′ is a constant of the motion. Equation (9.58) and (9.59) can be written

dωx′

dt
+Ω ωy′ = 0, (9.61)

dωy′

dt
−Ω ωx′ = 0, (9.62)
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where Ω = (I‖/I⊥ − 1)ωz′. As is easily demonstrated, the solution to the above
equations is

ωx′ = ω⊥ cos(Ω t), (9.63)

ωy′ = ω⊥ sin(Ω t), (9.64)

where ω⊥ is a constant. Thus, the projection of the angular velocity vector onto
the x′-y′ plane has the fixed length ω⊥, and rotates steadily about the z ′-axis with
angular velocity Ω. It follows that the length of the angular velocity vector, ω =
(ω2

x′ +ω2
y′ +ω2

z′)
1/2, is a constant of the motion. Clearly, the angular velocity vector

makes some constant angle, α, with the z ′-axis, which implies that ωz′ = ω cosα
and ω⊥ = ω sinα. Hence, the components of the angular velocity vector are

ωx′ = ω sinα cos(Ω t), (9.65)

ωy′ = ω sinα sin(Ω t), (9.66)

ωz′ = ω cosα, (9.67)

where

Ω = ω cosα

(

I‖
I⊥

− 1

)

. (9.68)

We conclude that, in the body frame, the angular velocity vector precesses about
the symmetry axis (i.e., the z ′-axis) with the angular frequency Ω. Now, the
components of the angular momentum vector are

Lx′ = I⊥ ω sinα cos(Ω t), (9.69)

Ly′ = I⊥ ω sinα sin(Ω t), (9.70)

Lz′ = I‖ ω cosα. (9.71)

Thus, in the body frame, the angular momentum vector is also of constant length,
and precesses about the symmetry axis with the angular frequency Ω. Furthermore,
the angular momentum vector makes a constant angle θ with the symmetry axis,
where

tan θ =
I⊥
I‖

tanα. (9.72)

Note that the angular momentum vector, the angular velocity vector, and the
symmetry axis all lie in the same plane: i.e., ez′ · L × ω = 0, as can easily be
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verified. Moreover, the angular momentum vector lies between the angular velocity
vector and the symmetry axis (i.e., θ < α) for a flattened (or oblate) body (i.e.,
I⊥ < I‖), whereas the angular velocity vector lies between the angular momentum
vector and the symmetry axis (i.e., θ > α) for an elongated (or prolate) body (i.e.,
I⊥ > I‖).

9.8 Eulerian angles

We have seen how we can solve Euler’s equations to determine the properties of a
rotating body in the co-rotating body frame. Let us now investigate how we can
determine the same properties in the inertial fixed frame.

The fixed frame and the body frame share the same origin. Hence, we can
transform from one to the other by means of an appropriate rotation of our vector
space. In general, if we restrict ourselves to rotations about one of the Cartesian
coordinate axes, three successive rotations are required to transform the fixed frame
into the body frame. There are, in fact, many different ways to combined three
successive rotations in order to achieve this. In the following, we shall describe the
most widely used method, which is due to Euler.

We start in the fixed frame, which has coordinates x, y, z, and unit vectors ex,
ey, ez. Our first rotation is counterclockwise (looking down the axis) through an
angle φ about the z-axis. The new frame has coordinates x′′, y′′, z′′, and unit vectors
ex′′, ey′′, ez′′. According to Eqs. (2.7)–(2.9), the transformation of coordinates can
be represented as follows:











x′′

y′′

z′′











=











cosφ sinφ 0
− sinφ cosφ 0

0 0 1





















x

y
z











. (9.73)

The angular velocity vector associated with φ has the magnitude φ̇, and is directed
along ez (i.e., along the axis of rotation). Hence, we can write

ωφ = φ̇ ez. (9.74)

Clearly, φ̇ is the precession rate about the ez axis, as seen in the fixed frame.
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The second rotation is counterclockwise (looking down the axis) through an
angle θ about the x′′-axis. The new frame has coordinates x′′′, y′′′, z′′′, and unit
vectors ex′′′, ey′′′, ez′′′. By analogy with Eq. (9.73), the transformation of coordinates
can be represented as follows:











x′′′

y′′′

z′′′











=











1 0 0
0 cos θ sin θ
0 − sin θ cos θ





















x′′

y′′

z′′











. (9.75)

The angular velocity vector associated with θ has the magnitude θ̇, and is directed
along ex′′ (i.e., along the axis of rotation). Hence, we can write

ωθ = θ̇ ex′′. (9.76)

The third rotation is counterclockwise (looking down the axis) through an angle
ψ about the z′′′-axis. The new frame is the body frame, which has coordinates
x′, y′, z′, and unit vectors ex′, ey′, ez′. The transformation of coordinates can be
represented as follows:











x′

y′

z′











=











cosψ sinψ 0
− sinψ cosψ 0

0 0 1





















x′′′

y′′′

z′′′











. (9.77)

The angular velocity vector associated with ψ has the magnitude ψ̇, and is directed
along ez′′ (i.e., along the axis of rotation). Note that ez′′′ = ez′, since the third
rotation is about ez′′′. Hence, we can write

ωψ = ψ̇ ez′. (9.78)

Clearly, ψ̇ is minus the precession rate about the ez′ axis, as seen in the body
frame.

The full transformation between the fixed frame and the body frame is rather
complicated. However, the following results can easily be verified:

ez = sinψ sin θ ex′ + cosψ sin θ ey′ + cos θ ez′, (9.79)

ex′′ = cosψ ex′ − sinψ ey′. (9.80)
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It follows from Eq. (9.79) that ez ·ez′ = cos θ. In other words, θ is the angle of
inclination between the z- and z ′-axes. Finally, since the total angular velocity can
be written

ω = ωφ + ωθ + ωψ, (9.81)

Eqs. (9.74), (9.76), and (9.78)–(9.80) yield

ωx′ = sinψ sin θ φ̇+ cosψ θ̇, (9.82)

ωy′ = cosψ sin θ φ̇− sinψ θ̇, (9.83)

ωz′ = cos θ φ̇+ ψ̇. (9.84)

The angles φ, θ, and ψ are termed Eulerian angles. Each has a clear physical
interpretation: φ is the angle of precession about the ez axis in the fixed frame,
ψ is minus the angle of precession about the ez′ axis in the body frame, and θ is
the angle of inclination between the ez and ez′ axes. Moreover, we can express the
components of the angular velocity vector ω in the body frame entirely in terms of
the Eulerian angles, and their time derivatives [see Eqs. (9.82)–(9.84)].

Consider a rigid body which is constrained to rotate about a fixed axis with
the constant angular velocity ω. Let the fixed angular velocity vector point along
the z-axis. In the previous subsection, we saw that the angular momentum and
the torque were both steady in the body frame. Since there is no precession of
quantities in the body frame, it follows that the Eulerian angle ψ is constant.
Since the angular velocity vector is fixed in the body frame, as well as the fixed
frame [as can be seen by applying Eq. (9.49) to ω instead of L], it must subtend a
constant angle with the ez′ axis. Hence, the Eulerian angle θ is also constant. It
follows from Eqs. (9.82)–(9.84) that

ωx′ = sinψ sin θ φ̇, (9.85)

ωy′ = cosψ sin θ φ̇, (9.86)

ωz′ = cos θ φ̇, (9.87)

which implies that ω ≡ (ω 2
x′ + ω 2

y′ + ω 2
z′)

1/2 = φ̇. In other words, the precession

rate, φ̇, in the fixed frame is equal to ω. Hence, in the fixed frame, the constant
torque and angular momentum vectors found in the body frame precess about the
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angular velocity vector (i.e., about the z-axis) at the rate ω. As discussed in the
previous subsection, for the special case where the angular velocity vector is parallel

to one of the principal axes of the body, the angular momentum vector is parallel
to the angular velocity vector, and the torque is zero. Thus, in this case, there is
no precession in the fixed frame.

Consider a rotating device such as a flywheel or a propellor. If the device is
statically balanced then its center of mass lies on the axis of rotation. This is
desirable since, otherwise, gravity, which effectively acts at the center of mass,
exerts a varying torque about the axis of rotation as the device rotates, giving rise
to unsteady rotation. If the device is dynamically balanced then the axis of rotation
is also a principal axis, so that, as the device rotates its angular momentum vector,
L, is parallel to the axis of rotation. This is desirable since, otherwise, the angular
momentum vector is not parallel to the axis of rotation, and, therefore, precesses
around it. Since dL/dt is equal to the torque, a precessing torque must also be
applied to the device (at right-angles to both the axis and L). The result is a
reaction on the bearings which can give rise to violent vibration and wobbling,
even when the device is statically balanced.

Consider a freely rotating body which is rotationally symmetric about one axis.
In the absence of an external torque, the angular momentum vector L is a con-
stant of the motion [see Eq. (9.3)]. Let L point along the z-axis. In the previous
subsection, we saw that the angular momentum vector subtends a constant angle
θ with the axis of symmetry: i.e., with the z ′-axis. Hence, the time derivative
of the Eulerian angle θ is zero. We also saw that the angular momentum vector,
the axis of symmetry, and the angular velocity vector are co-planar. Consider an
instant in time at which all of these vectors lie in the y ′-z′ plane. This implies
that ωx′ = 0. According to the previous subsection, the angular momentum vector
subtends a constant angle α with the symmetry axis. It follows that ωy′ = ω sinα
and ωz′ = ω cosα. Equation (9.82) yields ψ = 0. Hence, Eq. (9.83) yields

ω sinα = sin θ φ̇. (9.88)

This can be combined with Eq. (9.72) to give

φ̇ = ω



1 +





I 2
‖
I 2
⊥
− 1



 cos2 α





1/2

. (9.89)
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Finally, Eqs. (9.84), together with (9.72) and (9.88), yields

ψ̇ = ω cosα− cos θ φ̇ = ω cosα

(

1 − tanα

tan θ

)

= ω cosα

(

1 − I‖
I⊥

)

. (9.90)

A comparison of the above equation with Eq. (9.68) gives

ψ̇ = −Ω. (9.91)

Thus, as expected, ψ̇ is minus the precession rate (of the angular momentum and
angular velocity vectors) in the body frame. On the other hand, φ̇ is the precession
rate (of the angular velocity vector and the symmetry axis) in the fixed frame. Note
that φ̇ and Ω are quite dissimilar. For instance, Ω is negative for elongated bodies
(I‖ < I⊥) whereas φ̇ is positive definite. It follows that the precession is always in
the same sense as Lz in the fixed frame, whereas the precession in the body frame
is in the opposite sense to Lz′ for elongated bodies. We found, in the previous
subsection, that for a flattened body the angular momentum vector lies between
the angular velocity vector and the symmetry axis. This means that, in the fixed
frame, the angular velocity vector and the symmetry axis lie on opposite sides of
the fixed angular momentum vector. On the other hand, for an elongated body we
found that the angular velocity vector lies between the angular momentum vector
and the symmetry axis. This means that, in the fixed frame, the angular velocity
vector and the symmetry axis lie on the same side of the fixed angular momentum
vector.

As an example, consider the free rotation of a thin disk. It is easily demonstrated
(from the perpendicular axis theorem) that

I‖ = 2 I⊥ (9.92)

for such a disk. Hence, from Eq. (9.68), the precession rate in the body frame is

Ω = ω cosα. (9.93)

According to Eq. (9.89), the precession rate in the fixed frame is

φ̇ = ω
[

1 + 3 cos2 α
]1/2

. (9.94)

132



9 RIGID BODY MOTION 9.8 Eulerian angles

In the limit in which α is small (i.e., in which the angular velocity vector is almost
parallel to the symmetry axis), we obtain

Ω ' ω, (9.95)

φ̇ ' 2ω. (9.96)

Thus, the symmetry axis precesses in the fixed frame at approximately twice the
angular speed of rotation. This precession is manifest as a wobbling motion.

It is known that the axis of rotation of the Earth is very slightly inclined to its
symmetry axis (which passes through the two poles). The angle α is approximately
0.2 seconds of an arc. It is also known that the ratio of the moments of inertia is
about I‖/I⊥ = 1.00327, as determined from the Earth’s oblateness. Hence, from
(9.68), the precession rate of the angular velocity vector about the symmetry axis,
as viewed on Earth, is

Ω = 0.00327ω, (9.97)

giving a precession period of

T ′ =
2π

Ω
= 305 days. (9.98)

(Of course, 2π/ω = 1 day.) The observed period of precession is about 440 days.
The disagreement between theory and observation is attributed to the fact that
the Earth is not perfectly rigid. The (theroretical) precession rate of the Earth’s
symmetry axis, as viewed from space, is given by Eq. (9.89):

φ̇ = 1.00327ω. (9.99)

The associated precession period is

T =
2π

φ̇
= 0.997 days. (9.100)

The free precession of the Earth’s symmetry axis in space is superimposed on a
much slower precession, with a period of about 26,000 years, due to the small
gravitational torque exerted on the Earth by the Sun and the Moon, because of
the Earth’s slight oblateness.
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Figure 42:

9.9 Gyroscopic precession

Let us now study the motion of a rotationally symmetric rigid top which is free to
turn about a fixed point (without friction), but which is subject to a gravitational
torque (see Fig. 42). Let the z′-axis coincide with the symmetry axis. Let the
principal moment of inertia about the symmetry axis be I‖, and let the other
principal moments both take the value I⊥. Let the z-axis run vertically upwards,
and let the common origin, O, of the fixed and body frames coincide with the fixed
point about which the top turns. Suppose that the center of mass of the top lies a
distance l along its axis for O, and that the mass of the top is m. Let the symmetry
axis of the top subtend an angle θ (which is an Eulerian angle) with the upward
vertical.

Consider an instant in time at which the Eulerian angle ψ is zero. This implies
that the x′-axis is horizontal, as shown in the diagram. The gravitational force,
which acts at the center of mass, thus exerts a torque mg l sin θ in the x′-direction.
Hence, the components of the torque in the body frame are

Tx′ = mg l sin θ, (9.101)

Ty′ = 0, (9.102)
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Tz′ = 0. (9.103)

The components of the angular velocity vector in the body frame are given by
Eqs. (9.82)–(9.84). Thus, Euler’s equations (9.51)–(9.53) take the form:

mg l sin θ = I⊥ (θ̈ − cos θ sin θ φ̇ 2) + Lψ sin θ φ̇, (9.104)

0 = I⊥ (2 cos θ θ̇ φ̇+ sin θ φ̈) − Lψ θ̇, (9.105)

0 = L̇ψ, (9.106)

where
Lψ = I‖ (cos θ φ̇+ ψ̇) = I‖ ωz′. (9.107)

Multiplying Eq. (9.105) by sin θ, we obtain

L̇φ = 0, (9.108)

where
Lφ = I⊥ sin2 θ φ̇+ Lψ cos θ. (9.109)

According to Eqs. (9.106) and (9.108), the two quantities Lψ and Lφ are constants
of the motion. These two quantities are the angular momenta of the system about
the z′- and z-axis, respectively. They are conserved because the gravitational torque
has no component along either the z ′- or the z-axis.

If there are no frictional forces acting on the top then the total energy, E =
K + U , is also a constant of the motion. Now,

E =
1

2

(

I⊥ ω
2
x′ + I⊥ ω

2
y′ + I‖ ω

2
z′

)

+mg l cos θ. (9.110)

When written in terms of the Eulerian angles (with ψ = 0), this becomes

E =
1

2

(

I⊥ θ̇
2 + I⊥ sin2 θ φ̇ 2 + L 2

ψ/I‖
)

+mg l cos θ. (9.111)

Eliminating φ̇ between Eqs. (9.109) and (9.111), we obtain the following differential
equation for θ:

E =
1

2
I⊥ θ̇

2 +
(Lφ − Lψ cos θ)2

2 I⊥ sin2 θ
+

1

2

L 2
ψ

I‖
+mg l cos θ. (9.112)
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Let

E ′ = E − 1

2

L 2
ψ

I‖
, (9.113)

and u = cos θ. It follows that

u̇ 2 = 2 (E ′ −mg l u) (1 − u2) I−1
⊥ − (Lφ − Lψ u)

2 I−2
⊥ , (9.114)

or
u̇ 2 = f(u), (9.115)

where f(u) is a cubic polynomial. In principal, the above equation can be integrated
to give u (and, hence, θ) as a function of t:

t =
∫ du
√

f(u)
. (9.116)

Fortunately, we do not have to perform the above integration (which is very
ugly) in order to discuss the general properties of the solution to Eq. (9.115). It is
clear, from Eq. (9.116), that f(u) needs to be positive in order to obtain a physical
solution. Hence, the limits of the motion in θ are determined by the three roots of
the equation f(u) = 0. Since θ must lie between 0 and π/2, it follows that u must
lie between 0 and 1. It can easily be demonstrated that f → ±∞ as u → ±∞.
It can also be shown that the largest root u3 lies in the region u3 > 1, and the
two smaller roots u1 and u2 (if they exist) lie in the region −1 ≤ u ≤ +1. It
follows that, in the region −1 ≤ u ≤ 1, f(u) is only positive between u1 and u2.
Figure 43 shows a case where u1 and u2 lie in the range 0 to 1. The corresponding
values of θ—θ1 and θ2, say—are then the limits of the vertical motion. The axis of
the top oscillates backward and forward between these two values of θ as the top
precesses about the vertical axis. This oscillation is called nutation. Incidentally,
if u1 becomes negative then the nutation will cause the top to strike the ground
(assuming that it is spinning on a level surface).

If there is a double root of f(u) = 0 (i.e., if u1 = u2) then there is no nutation,
and the top precesses steadily. However, the criterion for steady precession is most
easily obtained directly from Eq. (9.104). In the absence of nutation, θ̇ = θ̈ = 0.
Hence, we obtain

mg l = −I⊥ cos θ φ̇ 2 + Lψ φ̇, (9.117)
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+1 u

f (u)

u2u1 u3

Figure 43:

or

Lψ =
mg l

φ̇
+ I⊥ cos θ φ̇. (9.118)

The above equation is the criterion for steady precession. Since the right-hand side
of Eq. (9.118) possesses the minimum value 2

√
mg l I⊥ cos θ, it follows that

Lψ > (Lψ)crit = 2
√

mg l I⊥ cos θ (9.119)

is a necessary condition for obtaining steady precession at the inclination angle θ.
For Lψ > (Lψ)crit, there are two roots to Eq. (9.118), corresponding to a slow and
a fast steady precession rate for a given inclination angle θ. If Lψ � (Lψ)crit then
these two roots are approximately given by

(φ̇)slow ' mg l

Lψ
, (9.120)

(φ̇)fast ' Lψ
I⊥ cos θ

. (9.121)

The slower of these two precession rates is the one which is generally observed.
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9.10 Rotational stability

Consider a rigid body for which all of the principal moments of inertia are distinct.
Let Iz′z′ > Iy′y′ > Ix′x′. Suppose that the body is freely rotating about one of its
principal axes. What happens when the body is slightly disturbed?

Let the body be initially rotating about the x′-axis, so that

ω = ωx′ ex′. (9.122)

If we apply a slight perturbation then the angular velocity becomes

ω = ωx′ ex′ + λ ey′ + µ ez′, (9.123)

where λ and µ are both assumed to be small. Euler’s equations (9.51)–(9.53) take
the form

Ix′x′ ω̇x′ − (Iy′y′ − Iz′z′)λµ = 0, (9.124)

Iy′y′ λ̇− (Iz′z′ − Ix′x′)ωx′ µ = 0, (9.125)

Iz′z′ µ̇− (Ix′x′ − Iy′y′)ωx′ λ = 0. (9.126)

Since λµ is second-order in small quantities—and, therefore, negligible—the first
of the above equations tells us that ωx′ is an approximate constant of the motion.
The other two equations can be written

λ̇ =





(Iz′z′ − Ix′x′)ωx′

Iy′y′



µ, (9.127)

µ̇ = −




(Iy′y′ − Ix′x′)ωx′

Iz′z′



λ. (9.128)

Differentiating the first equation with respect to time, and then eliminating µ̇, we
obtain

λ̈+





(Iy′y′ − Ix′x′) (Iz′z′ − Ix′x′)

Iy′y′ Iz′z′



ω 2
x′ λ = 0. (9.129)

It is easily demonstrated that µ satisfies the same differential equation. Since the
term in square brackets in the above equation is positive, the equation takes the
form of a simple harmonic equation, and, thus, has the bounded solution:

λ = λ0 cos(Ωx′ t− α). (9.130)
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Here, λ0 and α are constants of integration, and

Ωx′ =





(Iy′y′ − Ix′x′) (Iz′z′ − Ix′x′)

Iy′y′ Iz′z′





1/2

ωx′. (9.131)

Thus, the body oscillates sinusoidally about its initial state with the angular fre-
quency Ωx′. It follows that the body is stable to small perturbations when rotating
about the x′-axis, in the sense that the amplitude of such perturbations does not
grow in time.

Suppose that the body is initially rotating about the z ′-axis, and is subject to
a small perturbation. A similar argument to the above allows us to conclude that
the body oscillates sinusoidally about its initial state with angular frequency

Ωz′ =





(Iz′z′ − Ix′x′) (Iz′z′ − Iy′y′)

Ix′x′ Iy′y′





1/2

ωz′. (9.132)

Hence, the body is also stable to small perturbations when rotating about the
z′-axis.

Suppose, finally, that the body is initially rotating about the y ′-axis, and is
subject to a small perturbation, such that

ω = λ ex′ + ωy′ ey′ + µ ez′. (9.133)

It is easily demonstrated that λ satisfies the following differential equation:

λ̈−




(Iy′y′ − Ix′x′) (Iz′z′ − Iy′y′)

Ix′x′ Iz′z′



ω 2
y′ λ = 0. (9.134)

Note that the term in square brackets is positive. Hence, the above equation is not

the simple harmonic equation. Indeed its solution takes the form

λ = A e k t +B e−k t. (9.135)

Here, A and B are constants of integration, and

k =





(Iy′y′ − Ix′x′) (Iz′z′ − Iy′y′)

Ix′x′ Iz′z′





1/2

ωy′. (9.136)
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In this case, the amplitude of the perturbation grows exponentially in time. Hence,
the body is unstable to small perturbations when rotating about the y ′-axis.

In conclusion, a rigid body with three distinct principal moments of inertia
is stable to small perturbations when rotating about the principal axes with the
largest and smallest moments, but is unstable when rotating about the axis with
the intermediate moment.

Finally, if two of the principal moments are the same then it can be shown that
the body is only stable to small perturbations when rotating about the principal
axis whose moment is distinct from the other two.
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10 Lagrangian dynamics

10.1 Introduction

In this section, we shall investigate an elegant reformulation of the laws of New-
tonian dynamics due to the French/Italian mathematician Joseph Louis Lagrange.
This reformulation is particularly useful for finding the equations of motion of
complicated dynamical systems.

10.2 Generalized coordinates

Let the qi, for i = 1,F , be a set of coordinates which uniquely specifies the instan-
taneous configuration of some dynamical system. Here, it is assumed that each
of the qi can vary independently. The qi might be Cartesian coordinates, or po-
lar coordinates, or angles, or some mixture of all three types of coordinate, and
are, therefore, termed generalized coordinates. A dynamical system whose instan-
taneous configuration is fully specified by F independent generalized coordinates
is said to have F degrees of freedom. For instance, the instantaneous position of
a particle moving freely in three dimensions is completely specified by its three
Cartesian coordinates, x, y, and z. Moreover, these coordinates are clearly inde-
pendent of one another. Hence, a dynamical system consisting of a single particle
moving freely in three dimensions has three degrees of freedom. If there are two
freely moving particles then the system has six degrees of freedom, and so on.

Suppose that we have a dynamical system consisting of N particles moving
freely in three dimensions. This is an F = 3N degree of freedom system whose
instantaneous configuration can be specified by F Cartesian coordinates. Let us
denote these coordinates the xj, for j = 1,F . Thus, x1, x2, x3 are the Cartesian
coordinates of the first particle, x4, x5, x6 the Cartesian coordinates of the second
particle, etc. Suppose that the instantaneous configuration of the system can also
be specified by F generalized coordinates, which we shall denote the qi, for i = 1,F .
Thus, the qi might be the polar coordinates of the particles. In general, we expect
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10 LAGRANGIAN DYNAMICS 10.3 Generalized forces

the xj to be functions of the qi. In other words,

xj = xj(q1, q2, · · · , qF , t) (10.1)

for j = 1,F . Here, for the sake of generality, we have included the possibility that
the functional relationship between the xj and the qi might depend on the time t
explicitly. This would be the case if the dynamical system were subject to time
varying constraints. For instance, a system consisting of a particle constrained to
move on a surface which is itself moving. Finally, by the chain rule, the variation
of the xj due to a variation of the qi (at constant t) is given by

δxj =
∑

i=1,F

∂xj
∂qi

δqi, (10.2)

for j = 1,F .

10.3 Generalized forces

The work done on the dynamical system when its Cartesian coordinates change by
δxj is simply

δW =
∑

j=1,F
fj δxj (10.3)

Here, the fj are the Cartesian components of the forces acting on the various
particles making up the system. Thus, f1, f2, f3 are the components of the force
acting on the first particle, f4, f5, f6 the components of the force acting on the
second particle, etc. Using Eq. (10.2), we can also write

δW =
∑

j=1,F
fj

∑

i=1,F

∂xj
∂qi

δqi. (10.4)

The above expression can be rearranged to give

δW =
∑

i=1,F
Qi δqi, (10.5)

where

Qi =
∑

j=1,F
fj
∂xj
∂qi

. (10.6)
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10 LAGRANGIAN DYNAMICS 10.4 Lagrange’s equation

Here, the Qi are termed generalized forces. Note that a generalized force does not
necessarily have the dimensions of force. However, the product Qi qi must have
the dimensions of work. Thus, if a particular qi is a Cartesian coordinate then the
associated Qi is a force. Conversely, if a particular qi is an angle then the associated
Qi is a torque.

Suppose that the dynamical system in question is conservative. It follows that

fj = − ∂U

∂xj
, (10.7)

for j = 1,F , where U(x1, x2, · · · , xF , t) is the system’s potential energy. Hence,
according to Eq. (10.6),

Qi = − ∑

j=1,F

∂U

∂xj

∂xj
∂qi

= −∂U
∂qi

, (10.8)

for i = 1,F .

10.4 Lagrange’s equation

The Cartesian equations of motion of our system take the form

mj ẍj = fj, (10.9)

for j = 1,F , where m1,m2,m3 are each equal to the mass of the first particle,
m4,m5,m6 are each equal to the mass of the second particle, etc. Furthermore, the
kinetic energy of the system can be written

K =
1

2

∑

j=1,F
mj ẋ

2
j . (10.10)

Now, since xj = xj(q1, q2, · · · , qF , t), we can write

ẋj =
∑

i=1,F

∂xj
∂qi

q̇i +
∂xj
∂t

, (10.11)
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10 LAGRANGIAN DYNAMICS 10.4 Lagrange’s equation

for j = 1,F . Hence, it follows that ẋj = ẋj(q̇1, q̇2, · · · , q̇F , q1, q2, · · · , qF , t). Accord-
ing to the above equation,

∂ẋj
∂q̇i

=
∂xj
∂qi

, (10.12)

where we are treating the q̇i and the qi as independent variables.

Multiplying Eq. (10.12) by ẋj, and then differentiating with respect to time, we
obtain

d

dt

(

ẋj
∂ẋj
∂q̇i

)

=
d

dt

(

ẋj
∂xj
∂qi

)

= ẍj
∂xj
∂qi

+ ẋj
d

dt

(

∂xj
∂qi

)

. (10.13)

Now,
d

dt

(

∂xj
∂qi

)

=
∑

k=1,F

∂2xj
∂qi ∂qk

q̇k +
∂2xj
∂qi ∂t

. (10.14)

Furthermore,
1

2

∂ẋ 2
j

∂q̇i
= ẋj

∂ẋj
∂q̇i

, (10.15)

and

1

2

∂ẋ 2
j

∂qi
= ẋj

∂ẋj
∂qi

= ẋj
∂

∂qi





∑

k=1,F

∂xj
∂qk

q̇k +
∂xj
∂t





= ẋj





∑

k=1,F

∂2xj
∂qi ∂qk

q̇k +
∂2xj
∂qi ∂t



 .

= ẋj
d

dt

(

∂xj
∂qi

)

, (10.16)

where use has been made of Eq. (10.14). Thus, it follows from Eqs. (10.13), (10.15),
and (10.16) that

d

dt





1

2

∂ẋ 2
j

∂q̇i



 = ẍj
∂xj
∂qi

+
1

2

∂ẋ 2
j

∂qi
. (10.17)

Let us take the above equation, multiply by mj, and then sum over all j. We
obtain

d

dt

(

∂K

∂q̇i

)

=
∑

j=1,F
fj
∂xj
∂qi

+
∂K

∂qi
, (10.18)
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where use has been made of Eqs. (10.9) and (10.10). Thus, it follows from Eq. (10.6)
that

d

dt

(

∂K

∂q̇i

)

= Qi +
∂K

∂qi
. (10.19)

Finally, making use of Eq. (10.8), we get

d

dt

(

∂K

∂q̇i

)

= −∂U
∂qi

+
∂K

∂qi
. (10.20)

It is helpful to introduce a function L, called the Lagrangian, which is defined as
the difference between the kinetic and potential energies of the dynamical system
under investigation:

L = K − U. (10.21)

Since the potential energy U is clearly independent of the q̇i, it follows from
Eq. (10.20) that

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0, (10.22)

for i = 1,F . This equation is known as Lagrange’s equation.

According to the above analysis, if we can express the kinetic and potential
energies of our dynamical system solely in terms of our generalized coordinates and
their time derivatives, then we can immediately write down the equations of motion
of the system, expressed in terms of the generalized coordinates, using Lagrange’s
equation, (10.22). Unfortunately, this scheme only works for conservative systems.
Let us now consider some examples.

10.5 Motion in a central potential

Consider a particle of mass m moving in two dimensions in the central potential
U(r). This is clearly a two degree of freedom dynamical system. As described
in Sect. 6.5, the particle’s instantaneous position is most conveniently specified
in terms of the plane polar coordinates r and θ. These are our two generalized
coordinates. According to Eq. (6.14), the square of the particle’s velocity can be
written

v2 = ṙ 2 + (r θ̇)2. (10.23)
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Hence, the Lagrangian of the system takes the form

L =
1

2
m (ṙ 2 + r2 θ̇ 2) − U(r). (10.24)

Note that
∂L

∂ṙ
= m ṙ,

∂L

∂r
= mr θ̇ 2 − dU/dr, (10.25)

∂L

∂θ̇
= mr2 θ̇,

∂L

∂θ
= 0. (10.26)

Now, Lagrange’s equation (10.22) yields the equations of motion,

d

dt

(

∂L

∂ṙ

)

− ∂L

∂r
= 0, (10.27)

d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
= 0. (10.28)

Hence, we obtain

d

dt
(m ṙ) −mr θ̇ 2 +

dU

dr
= 0, (10.29)

d

dt

(

mr2 θ̇
)

= 0, (10.30)

or

r̈ − r θ̇ 2 = −dV
dr
, (10.31)

r2 θ̇ = h, (10.32)

where V = U/m, and h is a constant. We can recognize Eqs. (10.31) and (10.32) as
the equations we derived in Sect. 6 for motion in a central potential. The advantage
of the Lagrangian method of deriving these equations is that we avoid having to
express the acceleration in terms of the generalized coordinates r and θ.

10.6 Atwood machines

An Atwood machine consists of two weights, of mass m1 and m2, connected by a
light inextensible cord of length l, which passes over a pulley of radius a � l, and
moment of inertia I. See Fig. 44.
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a

m

m1

2

I

l − xx .

Figure 44:
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Referring to the diagram, we can see that this is a one degree of freedom system
whose instantaneous configuration is specified by the coordinate x. Assuming that
the cord does not slip with respect to the pulley, the angular velocity of pulley is
ẋ/a. Hence, the kinetic energy of the system is given by

K =
1

2
m1 ẋ

2 +
1

2
m2 ẋ

2 +
1

2
I
ẋ 2

a2
. (10.33)

The potential energy of the system takes the form

U = −m1 g x−m2 g (l − x). (10.34)

It follows that the Lagrangian is written

1

2

(

m1 +m2 +
I

a2

)

ẋ 2 + g (m1 −m2) x+ const. (10.35)

The equation of motion,
d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= 0, (10.36)

thus yields
(

m1 +m2 +
I

a2

)

ẍ− g (m1 −m2) = 0, (10.37)

or

ẍ =
g (m1 −m2)

m1 +m2 + I/a2
, (10.38)

which is the correct answer.

Consider the dynamical system drawn in Fig. 45. This is an Attwood machine
in which one of the weights has been replaced by a second Attwood machine. The
system now has two degrees of freedom, and its instantaneous position is specified
by the two coordinates x and x′, as shown.

For the sake of simplicity, let us neglect the masses of the two pulleys. Thus,
the kinetic energy of the system is written

K =
1

2
m1 ẋ

2 +
1

2
m2 (−ẋ+ ẋ′)2 +

1

2
m3 (−ẋ− ẋ′)2, (10.39)

whereas the potential energy takes the form

U = −m1 g x−m2 g (l − x+ x′) −m3 g (l − x+ l′ − x′). (10.40)
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.

m1

l − xx .

m3

m2

x’

l’ − x’

Figure 45:
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It follows that the Lagrangian of the system is

L =
1

2
m1 ẋ

2 +
1

2
m2 (−ẋ+ ẋ′)2 +

1

2
m3 (−ẋ− ẋ′)2

+g (m1 −m2 −m3) x+ g (m2 −m3) x
′ + constant. (10.41)

Hence, the equations of motion,

d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= 0, (10.42)

d

dt

(

∂L

∂ẋ′

)

− ∂L

∂x′
= 0, (10.43)

yield

m1 ẍ+m2 (ẍ− ẍ′) +m3 (ẍ+ ẍ′) − g (m1 −m2 −m3) = 0, (10.44)

m2 (−ẍ+ ẍ′) +m3 (ẍ+ ẍ′) − g (m2 −m3) = 0. (10.45)

The accelerations ẍ and ẍ′ can be obtained from the above two equations via simple
algebra.

10.7 Sliding down a sliding plane

Consider the case of a particle of mass m sliding down a smooth inclined plane
of mass M which is, itself, free to slide on a smooth horizontal surface, as shown
in Fig. 46. This is a two degree of freedom system, so we need two coordinates
to specify the configuration. Let us choose x, the horizontal distance of the plane
from some reference point, and x′, the parallel displacement of the particle from
some reference point on the plane.

Defining x- and y-axes, as shown in the diagram, the x- and y-components of
the particle’s velocity are clearly given by

vx = ẋ+ ẋ′ cos θ, (10.46)

vy = −ẋ′ sin θ, (10.47)
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θ

x’

M

x x

y

Figure 46:

respectively, where θ is the angle of inclination of the plane with respect to the
horizontal. Thus,

v2 = v 2
x + v 2

y = ẋ 2 + 2 ẋ ẋ′ cos θ + ẋ′ 2. (10.48)

Hence, the kinetic energy of the system takes the form

K =
1

2
M ẋ 2 +

1

2
m (ẋ 2 + 2 ẋ ẋ′ cos θ + ẋ′ 2), (10.49)

whereas the potential energy is given by

U = −mg x′ sin θ + constant. (10.50)

It follows that the Lagrangian is written

L =
1

2
M ẋ 2 +

1

2
m (ẋ 2 + 2 ẋ ẋ′ cos θ + ẋ′ 2) +mg x′ sin θ + const. (10.51)

The equations of motion,

d

dt

(

∂L

∂ẋ

)

− ∂L

∂x
= 0, (10.52)

d

dt

(

∂L

∂ẋ′

)

− ∂L

∂x′
= 0. (10.53)

thus yield

M ẍ+m (ẍ+ ẍ′ cos θ) = 0, (10.54)

m (ẍ′ + ẍ cos θ) −mg sin θ = 0. (10.55)
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Finally, solving for ẍ and ẍ′, we obtain

ẍ = − g sin θ cos θ

(m+M)/m− cos2 θ
, (10.56)

ẍ′ =
g sin θ

1 −m cos2 θ/(m+M)
. (10.57)

10.8 Generalized momenta

Consider the motion of a single particle moving in one dimension. The kinetic
energy is

K =
1

2
mẋ 2, (10.58)

where m is the mass of the particle, and x its displacement. Now, the particle’s
linear momentum is p = mẋ. However, this can also be written

p =
∂K

∂ẋ
=
∂L

∂ẋ
, (10.59)

since L = K − U , and the potential energy U is independent of ẋ.

Consider a dynamical system described by F generalized coordinates qi, for
i = 1,F . By analogy with the above expression, we can define generalized momenta

of the form

pi =
∂L

∂q̇i
, (10.60)

for i = 1,F . Here, pi is sometimes called the momentum conjugate to the coordi-
nate qi. Hence, Lagrange’s equation (10.22) can be written

dpi
dt

=
∂L

∂qi
, (10.61)

for i = 1,F . Note that a generalized momentum does not necessarily have the
dimensions of linear momentum.

Suppose that the Lagrangian L does not depend explicitly on some coordinate
qk. It follows from Eq. (10.61) that

dpk
dt

=
∂L

∂qk
= 0. (10.62)
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Hence,
pk = const. (10.63)

The coordinate qk is said to be ignorable in this case. Thus, we conclude that the
generalized momentum associated with an ignorable coordinate is a constant of the
motion.

For example, in Sect. 10.5, the Lagrangian (10.24) for a particle moving in a
central potential is independent of the angular coordinate θ. Thus, θ is an ignorable
coordinate, and

pθ =
∂L

∂θ̇
= mr2 θ̇ (10.64)

is a constant of the motion. Of course, pθ is the angular momentum about the
origin. This is conserved because a central force exerts no torque about the origin.

Again, in Sect. 10.7, the Lagrangian (10.51) for a mass sliding down a sliding
slope is independent of the Cartesian coordinate x. It follows that x is an ignorable
coordinate, and

px =
∂L

∂ẋ
= M ẋ+m (ẋ+ ẋ′ cos θ) (10.65)

is a constant of the motion. Of course, px is the total linear momentum in the x-
direction. This is conserved because there is no external force acting on the system
in the x-direction.

10.9 The spherical pendulum

Consider a pendulum consisting of a mass m on the end of light inextensible string
of length l. Suppose that the mass is free to move in any direction (as long as the
string remains taut). Let the fixed end of the string be located at the origin of our
coordinate system. We can define Cartesian coordinates, (x, y, z), such that the
z-axis points vertically upward. We can also define spherical polar coordinates, (r,
θ, φ), whose axis points along the −z-axis. The latter coordinates are the most
convenient, since r is constrained to always take the value l. However, the two
angular coordinates, θ and φ, are free to vary independently. Hence, this is clearly
a two degree of freedom system.
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The Cartesian coordinates can be written in terms of the angular coordinates θ
and φ. In fact,

x = l sin θ sinφ, (10.66)

y = l sin θ cosφ. (10.67)

z = −l cos θ. (10.68)

Hence, the potential energy of the system is

U = mg z = −mg l cos θ. (10.69)

Also,
v2 = ẋ 2 + ẏ 2 + ż 2 = l2 (θ̇ 2 + sin2 θ φ̇ 2). (10.70)

Thus, the Lagrangian of the system is written

L =
1

2
ml2 (θ̇ 2 + sin2 θ φ̇ 2) +mg l cos θ. (10.71)

Note that the Lagrangian is independent of the angular coordinate φ. It follows
that

pφ =
∂L

∂φ̇
= ml2 sin2 θ φ̇ (10.72)

is a constant of the motion. Of course, pφ is the angular momentum of the system
about the z-axis. This is conserved because neither the tension in the string nor the
force of gravity exert a torque about the z-axis. Conservation of angular momentum
about the z-axis implies that

sin2 θ φ̇ = h, (10.73)

where h is a constant.

The equation of motion of the system,

d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
= 0, (10.74)

yields

θ̈ +
g

l
sin θ − sin θ cos θ φ̇ 2 = 0, (10.75)
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10 LAGRANGIAN DYNAMICS 10.9 The spherical pendulum

or

θ̈ +
g

l
sin θ − h2 cos θ

sin3 θ
= 0, (10.76)

where use has been made of Eq. (10.73).

Suppose that φ = φ0 = const. It follows that φ̇ = h = 0. Hence, Eq. (10.76)
yields

θ̈ +
g

l
sin θ = 0. (10.77)

This, of course, is the equation of a simple pendulum whose motion is restricted to
the vertical plane φ = φ0 (see Sect. 4.9).

Suppose that θ = θ0 = const. It follows from Eq. (10.73) that φ̇ = φ̇0 =
const.: i.e., the pendulum bob rotates uniformly in a horizontal plane. According
to Eqs. (10.73) and (10.76),

φ̇0 =

√

g

d
, (10.78)

where d = l cos θ0 is the vertical distance of the plane of rotation below the pivot
point. This type of pendulum is usually called a conical pendulum, since the string
attached to the pendulum bob sweeps out a cone as the bob rotates.

Suppose, finally, that the motion is almost conical: i.e., the value of θ remains
close to the value θ0. Let

θ = θ0 + δθ. (10.79)

Taylor expanding Eq. (10.76) to first order in δθ, the zeroth order terms cancel out,
and we are left with

δθ̈ + φ̇ 2
0 (1 + 3 cos2 θ0) δθ ' 0. (10.80)

Hence, solving the above equation, we obtain

θ ' θ0 + δθ0 cos(Ω t), (10.81)

where
Ω = φ̇0

√

1 + 3 cos2 θ0. (10.82)

Thus, the angle θ executes simple harmonic motion about its mean value θ0 at the
angular frequency Ω.
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Now the azimuthal angle, φ, increases by

∆φ ' φ̇0
π

Ω
=

π√
1 + 3 cos2 θ0

(10.83)

as the angle of inclination to the vertical, θ, goes between successive maxima and
minima. Suppose that θ0 is small. In this case, ∆φ is slightly greater than π/2.
Now if ∆φ were exactly π/2 then the pendulum bob would trace out the outline of a
slightly warped circle: i.e., something like the outline of a potato chip or a saddle.
The fact that ∆φ is slightly greater than π/2 means that this shape precesses

about the z-axis in the same direction as the direction rotation of the bob. The
precession rate increases as the angle of inclination θ0 increases. Suppose, now,
that θ0 is slightly less than π/2. (Of course, θ0 can never exceed π/2). In this case,
∆φ is slighly less than π. Now if ∆φ were exactly π then the pendulum bob would
trace out the outline of a slightly tilted circle. The fact that ∆φ is slightly less
than π means that this shape precesses about the z-axis in the opposite direction
to the direction of rotation of the bob. The precession rate increases as the angle
of inclination θ0 decreases below π/2.
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11 Hamiltonian dynamics

11.1 Introduction

In this section, we shall investigate the application of variational principles to
classical dynamics.

11.2 The calculus of variations

It is a well-known fact, first enunciated by Archimedes, that the shortest distance
between two points in a plane is a straight-line. However, suppose that we wish
to demonstrate this result from first principles. Let us consider the length, l, of
various curves, y(x), which run between two fixed points, A and B, in a plane, as
illustrated in Fig. 47. Now, l takes the form

l =
∫ B

A
[dx2 + dy2]1/2 =

∫ b

a
[1 + y′ 2(x)]1/2 dx, (11.1)

where y′ ≡ dy/dx. Note that l is a function of the function y(x). In mathematics,
a function of a function is termed a functional.

A

b

B

a

y

x
Figure 47:
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11 HAMILTONIAN DYNAMICS 11.2 The calculus of variations

Now, in order to find the shortest path between points A and B, we need to
minimize the functional l with respect to small variations in the function y(x),
subject to the constraint that the end points, A and B, remain fixed. In other
words, we need to solve

δl = 0. (11.2)

The meaning of the above equation is that if y(x) → y(x) + δy(x), where δy(x)
is small, then the first-order variation in l, denoted δl, vanishes. In other words,
l → l + O(δy 2). The particular function y(x) for which δl = 0 obviously yields
an extremum of l (i.e., either a maximum or a minimum). Hopefully, in the case
under consideration, it yields a minimum of l.

Consider a general functional of the form

I =
∫ b

a
F (y, y′, x) dx, (11.3)

where the end points of the integration are fixed. Suppose that y(x) → y(x)+δy(x).
The first-order variation in I is written

δI =
∫ b

a

(

∂F

∂y
δy +

∂F

∂y′
δy′

)

dx, (11.4)

where δy′ = d(δy)/dx. Setting δI to zero, we obtain

∫ b

a

(

∂F

∂y
δy +

∂F

∂y′
δy′

)

dx = 0. (11.5)

This equation must be satisfied for all possible small perturbations δy(x).

Integrating the second term in the integrand of the above equation by parts, we
get

∫ b

a

[

∂F

∂y
− d

dx

(

∂F

∂y′

)]

δy dx+

[

∂F

∂y′
δy

]b

a

= 0. (11.6)

Now, if the end points are fixed then δy = 0 at x = a and x = b. Hence, the last
term on the left-hand side of the above equation is zero. Thus, we obtain

∫ b

a

[

∂F

∂y
− d

dx

(

∂F

∂y′

)]

δy dx = 0. (11.7)
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11 HAMILTONIAN DYNAMICS 11.2 The calculus of variations

The above equation must be satisfied for all small perturbations δy(x). The only
way in which this is possible is for the expression enclosed in square brackets in the
integral to be zero. Hence, the functional I attains an extremum value whenever

d

dx

(

∂F

∂y′

)

− ∂F

∂y
= 0. (11.8)

This condition is known as the Euler-Lagrange equation.

Let us consider some special cases. Suppose that F does not explicitly depend on
y. It follows that ∂F/∂y = 0. Hence, the Euler-Lagrange equation (11.8) simplifies
to

∂F

∂y′
= constant. (11.9)

Next, suppose that F does not depend explicitly on x. Multiplying Eq. (11.8) by
y′, we obtain

y′
d

dx

(

∂F

∂y′

)

− y′
∂F

∂y
= 0. (11.10)

However,
d

dx

(

y′
∂F

∂y′

)

= y′
d

dx

(

∂F

∂y′

)

+ y′′
∂F

∂y′
. (11.11)

Thus, we get
d

dx

(

y′
∂F

∂y′

)

= y′
∂F

∂y
+ y′′

∂F

∂y′
. (11.12)

Now, if F is not an explicit function of x then the right-hand side of the above
equation is the total derivative of F , namely dF/dx. Hence, we obtain

d

dx

(

y′
∂F

∂y′

)

=
dF

dx
, (11.13)

which yields

y′
∂F

∂y′
− F = constant. (11.14)

Returning to the case under consideration, according to Eq. (11.1) and (11.3),
we have F =

√
1 + y′ 2. Hence, F is not an explicit function of y, so Eq. (11.9)

yields
∂F

∂y′
=

y′√
1 + y′ 2

= c, (11.15)
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11 HAMILTONIAN DYNAMICS 11.3 Conditional variation

where c is a constant. So,

y′ =
c√

1 − c2
= constant. (11.16)

Of course, y′ = constant is the equation of a straight-line. Thus, the shortest
distance between two fixed points in a plane is indeed a straight-line.

11.3 Conditional variation

Suppose that we wish to find the function y(x) which maximizes or minimizes the
functional

I =
∫ b

a
F (y, y′, x) dx, (11.17)

subject to the constraint that the value of

J =
∫ b

a
G(y, y′, x) dx (11.18)

remains constant. We can achieve our goal by finding an extremum of the new
functional K = I + λ J , where λ(x) is an undetermined function. We know that
δJ = 0, since the value of J is fixed, so if δK = 0 then δI = 0 as well. In
other words, finding an extremum of K is equivalent to finding an extremum of I.
Application of the Euler-Lagrange equation yields

d

dx

(

∂F

∂y′

)

− ∂F

∂y
+





d

dx





∂[λG]

∂y′



− ∂[λG]

∂y



 = 0. (11.19)

In principle, the above equation, together with the constraint (11.18), yields the
functions λ(x) and y(x). Incidentally, λ is generally termed a Lagrange multiplier.
If F and G have no explicit x-dependence then λ is usually a constant.

As an example, consider the following famous problem. Suppose that a uniform
chain of fixed length l is suspended by its ends from two equal-height fixed points
which are a distance a apart, where a < l. What is the equilibrium configuration
of the chain?

Suppose that the chain has the uniform density per unit length ρ. Let the x- and
y-axes be horizontal and vertical, respectively, and let the two ends of the chain lie
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11 HAMILTONIAN DYNAMICS 11.3 Conditional variation

at (±a/2, 0). The equilibrium configuration of the chain is specified by the function
y(x), for −a/2 ≤ x ≤ +a/2, where y(x) is the vertical distance of the chain below
its end points at horizontal position x. Of course, y(−a/2) = y(+a/2) = 0.

According to the discussion in Sect. 4.2, the stable equilibrium state of a con-
servative dynamical system is one which minimizes the system’s potential energy.
Now, the potential energy of the chain is written

U = −ρ g
∫

y ds = −ρ g
∫ a/2

−a/2
y [1 + y′ 2]1/2 dx, (11.20)

where ds =
√
dx2 + dy2 is an element of length along the chain, and g is the

acceleration due to gravity. Hence, we need to minimize U with respect to small
variations in y(x). However, the variations in y(x) must be such as to conserve
the fixed length of the chain. Hence, our minimization procedure is subject to the
constraint that

l =
∫

ds =
∫ a/2

−a/2
[1 + y′ 2]1/2 dx (11.21)

remains constant.

It follows, from the above discussion, that we need to minimize the functional

K = U + λ l =
∫ a/2

−a/2
(−ρ g y + λ) [1 + y′ 2]1/2 dx, (11.22)

where λ is an, as yet, undetermined constant. Since the integrand in the functional
does not depend explicitly on x, we have from Eq. (11.14) that

y′ 2 (−ρ g y + λ) [1 + y′ 2]−1/2 − (−ρ g y + λ) [1 + y′ 2]1/2 = k, (11.23)

where k is a constant. This expression reduces to

y′ 2 =

(

λ′ +
y

h

)2

− 1, (11.24)

where λ′ = λ/k, and h = −k/ρ g.

Let
λ′ +

y

h
= − cosh z. (11.25)
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11 HAMILTONIAN DYNAMICS 11.4 Multi-function variation

Making this substitution, Eq. (11.24) yields

dz

dx
= −h−1. (11.26)

Hence,

z = −x
h

+ c, (11.27)

where c is a constant. It follows from Eq. (11.25) that

y(x) = −h [λ′ + cosh(−x/h+ c)]. (11.28)

The above solution contains three undetermined constants, h, λ′, and c. We
can eliminate two of these constants by application of the boundary conditions
y(±a/2) = 0. This yields

λ′ + cosh(∓a/2h+ c) = 0. (11.29)

Hence, c = 0, and λ′ = − cosh(a/2h). It follows that

y(x) = h [cosh(a/2h) − cosh(x/h)]. (11.30)

The final unknown constant, h, is determined via the application of the constraint
(11.21). Thus,

l =
∫ a/2

−a/2
[1 + y′ 2]1/2 dx =

∫ a/2

−a/2
cosh(x/h) dx = 2h sinh(a/2h). (11.31)

Hence, the equilibrium configuration of the chain is given by the curve (11.30),
which is known as a catenary, where the parameter h satisfies

l

2h
= sinh

(

a

2h

)

. (11.32)

11.4 Multi-function variation

Suppose that we wish to maximize or minimize the functional

I =
∫ b

a
F (y1, y2, · · · , yN , y′1, y′2, · · · , y′N , x) dx. (11.33)
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11 HAMILTONIAN DYNAMICS 11.5 Hamilton’s principle

Here, the integrand F is now a functional of the N independent functions yi(x),
for i = 1, N . A fairly straightforward extension of the analysis in Sect. 11.2 yields
N separate Euler-Lagrange equations,

d

dx





∂F

∂y′i



− ∂F

∂yi
= 0, (11.34)

for i = 1, N , which determine the N functions yi(x). If F does not explicitly depend
on the function yk then the kth Euler-Lagrange equation simplifies to

∂F

∂y′k
= constant. (11.35)

Likewise, if F does not explicitly depend on x then all N Euler-Lagrange equations
simplify to

y′i
∂F

∂y′i
− F = constant, (11.36)

for i = 1, N .

11.5 Hamilton’s principle

We saw, in Sect. 10, that we can specify the instantaneous configuration of a con-
servative dynamical system with F degrees of freedom in terms of F independent
generalized coordinates qi, for i = 1,F . Let K(q1, q2, · · · , qF , q̇1, q̇2, · · · , q̇F , t) and
U(q1, q2, · · · , qF , t) represent the kinetic and potential energies of the system, re-
spectively, expressed in terms of these generalized coordinates. Here, ˙ ≡ d/dt.
The Lagrangian of the system is defined

L(q1, q2, · · · , qF , q̇1, q̇2, · · · , q̇F , t) = K − U. (11.37)

Finally, the F Lagrangian equations of motion of the system take the form

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0, (11.38)

for i = 1,F .

Note that the above equations of motion have exactly the same mathematical
form as the Euler-Lagrange equations (11.34). Indeed, it is clear, from Sect. 11.4,
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11 HAMILTONIAN DYNAMICS 11.6 Constrained Lagrangian dynamics

that the F Lagrangian equations of motion (11.38) can all be derived from a single
equation: namely,

δ
∫ t2

t1
L(q1, q2, · · · , qF , q̇1, q̇2, · · · , q̇F , t) dt = 0. (11.39)

In other words, the motion of the system in a given time interval is such as to
maximize or minimize the time integral of the Lagrangian, which is know as the
action integral. Thus, all of Newtonian mechanics can be summarized in a single
statement:

The motion of a dynamical system in a given time interval is such as to

maximize or minimize the action integral.

(In practice, the action integral is almost always minimized.) This statement is
known as Hamilton’s principle, and was first formulated in 1834 by the Irish math-
ematician William Hamilton.

11.6 Constrained Lagrangian dynamics

Suppose that we have a dynamical system described by two generalized coordinates,
q1 and q2. Suppose, further, that q1 and q2 are not independent variables. In other
words, q1 and q2 are connected via some constraint equation of the form

f(q1, q2, t) = 0. (11.40)

Let L(q1, q2, q̇1, q̇2, t) be the Lagrangian. How do we write the Lagrangian equations
of motion of the system?

Well, according to Hamilton’s principle,

δ
∫ t2

t1
Ldt =

∫ t2

t1

{[

∂L

∂q1
− d

dt

(

∂L

∂q̇1

)]

δq1 +

[

∂L

∂q2
− d

dt

(

∂L

∂q̇2

)]

δq2

}

dt = 0. (11.41)

However, at any given instant in time, δq1 and δq2 are not independent. Indeed,
Eq. (11.40) yields

δf =
∂f

∂q1
δq1 +

∂f

∂q2
δq2 = 0 (11.42)
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at a fixed time. Eliminating δq2 from Eq. (11.41), we obtain

∫ t2

t1







[

∂L

∂q1
− d

dt

(

∂L

∂q̇1

)]

1

∂f/∂q1
−
[

∂L

∂q2
− d

dt

(

∂L

∂q̇2

)]

1

∂f/∂q2







δq1 dt = 0. (11.43)

This equation must be satisfied for all possible perturbations δq1(t), which implies
that the term enclosed in curly brackets is zero. Hence, we obtain

∂L/∂q1 − (d/dt) (∂L/∂q̇1)

∂f/∂q1
=
∂L/∂q2 − (d/dt) (∂L/∂q̇2)

∂f/∂q2
. (11.44)

One obvious way in which we can solve this equation is to separately set both sides
equal to the same function of time, which we shall denote −λ(t). It follows that
the Lagrangian equations of motion of the system can be written

d

dt

(

∂L

∂q̇1

)

− ∂L

∂q1
− λ(t)

∂f

∂q1
= 0, (11.45)

d

dt

(

∂L

∂q̇2

)

− ∂L

∂q2
− λ(t)

∂f

∂q2
= 0. (11.46)

In principle, the above two equations can be solved, together with the constraint
equation (11.40), to give q1(t), q2(t), and the Lagrange multiplier λ(t). Now,
the generalized force conjugate to the generalized coordinate q1 is written [see
Eqs. (10.8) and (10.21)]

Q1 =
∂L

∂q1
. (11.47)

By analogy, it is clear from Eq. (11.45) that the generalized constraint force [i.e.,
the generalized force responsible for maintaining the constraint (11.40)] conjugate
to q1 takes the form

Q̃1 = λ(t)
∂f

∂q1
, (11.48)

with a similar expression for the generalized constraint force conjugate to q2.

Suppose, now, that we have a dynamical system described by F generalized
coordinates qi, for i = 1,F , which is subject to the constraint

f(q1, q2, · · · , qF , t) = 0. (11.49)
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A simple extension of above analysis yields following the Lagrangian equations of
motion of the system,

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
− λ(t)

∂f

∂qi
= 0, (11.50)

for i = 1,F . As before,

Q̃i = λ(t)
∂f

∂qi
(11.51)

is the generalized constraint force conjugate to qi.

θ

a
φ

x

Figure 48:

Consider the following example. A cylinder of radius a rolls without slipping
down a plane inclined at an angle θ to the horizontal. Let x represent the downward
displacement of the center of mass of the cylinder parallel to the surface of the
plane, and let φ represent the angle of rotation of the cylinder about its symmetry
axis. The fact that the cylinder is rolling without slipping implies that x and φ are
interrelated via the well-known constraint

f = x− a θ = 0. (11.52)

The Lagrangian of the cylinder takes the form

L =
1

2
mẋ 2 +

1

2
I φ̇ 2 +mg x sin θ, (11.53)
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where m is the cylinder’s mass, I its moment of inertia, and g the acceleration due
to gravity.

Note that ∂f/∂x = 1 and ∂f/∂φ = −a. Hence, Eq. (11.50) yields the following
Lagrangian equations of motion:

mẍ−mg sin θ − λ = 0, (11.54)

I φ̈+ λ a = 0. (11.55)

Equations (11.52), (11.54), and (11.55) can be solved to give

ẍ =
g sin θ

1 + I/ma2
, (11.56)

a φ̈ =
g sin θ

1 + I/ma2
, (11.57)

λ = − mg sin θ

1 +ma2/I
. (11.58)

The generalized constraint force conjugate to x is

Q̃x = λ
∂f

∂x
= − mg sin θ

1 +ma2/I
. (11.59)

This represents the frictional force acting parallel to the plane which impedes the
downward acceleration of the cylinder, causing it to be less than the standard value
mg sin θ. The generalized constraint force conjugate to φ is

Q̃φ = λ
∂f

∂φ
=
mg a sin θ

1 +ma2/I
. (11.60)

This represents the frictional torque acting on the cylinder which forces the cylinder
to rotate in such a manner that the constraint (11.52) is always satisfied.

Consider a second example. A bead of mass m slides without friction on a
vertical circular hoop of radius a. Let r be the radial coordinate of the bead, and
let θ be its angular coordinate, with the lowest point on the hoop corresponding to
θ = 0. Both coordinates are measured relative to the center of the hoop. Now, the
bead is constrained to slide along the wire, which implies that

f = r − a = 0. (11.61)
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Note that ∂f/∂r = 1 and ∂f/∂θ = 0. The Lagrangian of the system takes the
form

L =
1

2
m (ṙ 2 + r2 θ̇ 2) +mg r cos θ. (11.62)

Hence, according to Eq. (11.50), the Lagrangian equations of motion of the system
are written

m r̈ −mr θ̇ 2 −mg cos θ − λ = 0, (11.63)

mr2 θ̈ +mg r sin θ = 0. (11.64)

The second of these equations can be integrated (by multiplying by θ̇), subject to
the constraint (11.61), to give

θ̇ 2 =
2 g

a
cos θ + c, (11.65)

where c is a constant. Let v0 be the tangential velocity of the bead at the bottom
of the hoop (i.e., at θ = 0). It follows that

θ̇ 2 =
2 g

a
(cos θ − 1) +

v 2
0

a2
. (11.66)

Equations (11.61), (11.63), and (11.66) can be combined to give

λ = −m


3 g cos θ − 2 g +
v 2

0

a



 . (11.67)

Finally, the constraint force conjugate to r is given by

Q̃r = λ
∂f

∂r
= −m



3 g cos θ − 2 g +
v 2

0

a



 . (11.68)

This represents the radial reaction exerted on the bead by the hoop. Of course,
there is no constraint force conjugate to θ (since ∂f/∂θ = 0) because the bead
slides without friction.

11.7 Hamilton’s equations

Consider a dynamical system with F degrees of freedom described by the gener-
alized coordinates qi, for i = 1,F . Suppose that neither the kinetic energy K nor
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the potential energy U depend explicitly on the time t. Now, in conventional dy-
namical systems, the potential energy is generally independent of the q̇i, whereas
the kinetic energy takes the form of a homogeneous quadratic function of the q̇i. In
other words,

K =
∑

i,j=1,F
mij q̇i q̇j, (11.69)

where the mij depend on the qi, but not on the q̇i. It is easily demonstrated from
the above equation that

∑

i=1,F
q̇i
∂K

∂q̇i
= 2K. (11.70)

Recall, from Sect. 10.8, that generalized momentum conjugate to the ith gener-
alized coordinate is defined

pi =
∂L

∂q̇i
=
∂K

∂q̇i
, (11.71)

where L = K − U is the Lagrangian of the system, and we have made use of the
fact that U is independent of the q̇i. Consider the function

H =
∑

i=1,F
q̇i pi − L =

∑

i=1,F
q̇i pi −K + U. (11.72)

If all of the conditions discussed above are satisfied, then Eqs. (11.70) and (11.71)
yield

H = K + U. (11.73)

In other words, the function H is equal to the total energy of the system.

Consider the variation of the function H. We have

δH =
∑

i=1,F

(

δq̇i pi + q̇i δpi −
∂L

∂q̇i
δq̇i −

∂L

∂qk
δqk

)

. (11.74)

The first and third terms in the bracket cancel, because pi = ∂L/∂q̇i. Furthermore,
since Lagrange’s equation can be written ṗi = ∂L/∂qi [see Sect. 10.8], we obtain

δH =
∑

i=1,F
(q̇i δpi − ṗi δqi) . (11.75)

Suppose, now, that we can express the total energy of the system, H, solely as
a function of the qi and the pi, with no explicit dependence on the q̇i. In other
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words, suppose that we can write H = H(qi, pi). When the energy is written in
this fashion it is generally termed the Hamiltonian of the system. The variation of
the Hamiltonian function takes the form

δH =
∑

i=1,F

(

∂H

∂pi
δpi +

∂H

∂qi
δqi

)

. (11.76)

A comparison of the previous two equations yields

q̇i =
∂H

∂pi
, (11.77)

ṗi = −∂H
∂qi

, (11.78)

for i = 1,F . These 2F first-order differential equations are known as Hamilton’s

equations. Hamilton’s equations are often a useful alternative to Lagrange’s equa-
tions, which take the form of F second-order differential equations.

Consider a one-dimensional harmonic oscillator. The kinetic and potential en-
ergies of the system are written K = (1/2)mẋ 2 and U = (1/2) k x2, where x is the
displacement, m the mass, and k > 0. The generalized momentum conjugate to x
is

p =
∂K

∂ẋ
= mẋ. (11.79)

Hence, we can write

K =
1

2

p 2

m
. (11.80)

So, the Hamiltonian of the system takes the form

H = K + U =
1

2

p 2

m
+

1

2
k x2. (11.81)

Thus, Hamilton’s equations, (11.77) and (11.78), yield

ẋ =
∂H

∂p
=

p

m
, (11.82)

ṗ = −∂H
∂x

= −k x. (11.83)
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Of course, the first equation is just a restatement of Eq. (11.79), whereas the second
is Newton’s second law of motion for the system.

Consider a particle of mass m moving in the central potential U(r). In this case,

K =
1

2
m (ṙ 2 + r2 θ̇ 2), (11.84)

where r, θ are plane polar coordinates. The generalized momenta conjugate to r
and θ are

pr =
∂K

∂ṙ
= m ṙ, (11.85)

pθ =
∂K

∂θ̇
= mr2 θ̇, (11.86)

respectively. Hence, we can write

K =
1

2m



p 2
r +

p 2
θ

r2



 . (11.87)

Thus, the Hamiltonian of the system takes the form

K =
1

2m



p 2
r +

p 2
θ

r2



 + U(r). (11.88)

In this case, Hamilton’s equations yield

ṙ =
∂H

∂pr
=
pr
m
, (11.89)

θ̇ =
∂H

∂pθ
=

pθ
mr2

, (11.90)

which are just restatements of Eqs. (11.85) and (11.86), respectively, as well as

ṗr = −∂H
∂r

=
p 2
θ

mr3
− ∂U

∂r
, (11.91)

ṗθ = −∂H
∂θ

= 0. (11.92)

The last equation implies that

pθ
m

= r2 θ̇ = h, (11.93)
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where h is a constant. This can be combined with Eq. (11.91) to give

ṗr
m

= r̈ =
h2

r3
− ∂V

∂r
, (11.94)

where V = U/r. Of course, Eqs. (11.93) and (11.94) are the conventional equations
of motion for a particle moving in a central potential (see Sect. 6).
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12 Coupled oscillations

12.1 Introduction

In this section, we shall investigate the dynamics of a many degree of freedom
dynamical system which is perturbed from some equilibrium state.

12.2 Equilibrium state

Consider an F degree of freedom dynamical system described by the generalized
coordinates qi, for i = 1,F . Suppose that the kinetic energy K and the potential
energy U are not explicit functions of time. This implies that the system in question
is isolated: i.e., it is not subject to any external forces or time-varying constraints.
In virtually all dynamical systems of interest, the kinetic energy can be expressed
as a quadratic form: i.e.,

K =
1

2

∑

i,j=1,F
mij(q1, q2, · · · , qF) q̇i q̇j. (12.1)

Without loss of generality, we can specify that the weights mij in the above form
are invariant under interchange of the indices i and j: i.e.,

mij = mji. (12.2)

Finally, the potential energy is written U = U(q1, q2, · · · , qF).

Suppose that qi = qi 0, for i = 1,F , corresponds to an equilibrium state of the
system. It follows that qi = qi 0 and q̇i = q̈i = 0, for i = 1,F , should be a possible
solution of the equations of motion. Now, Lagrange’s equations of motion for the
system take the form [see Eq. (10.22)]

d

dt

(

∂K

∂q̇i

)

− ∂K

∂qi
+
∂U

∂qi
= 0, (12.3)

for i = 1,F . Here, we have made use of the definition L = K − U , and the fact
that U is independent of the q̇i. Now, it is clear, from an examination of Eq. (12.1),
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12 COUPLED OSCILLATIONS 12.3 Stability equations

that every component making up the first two terms in the above equation contains
either a q̇j or a q̈j, for some j. But, we can set all of the generalized velocities and
accelerations to zero in an equilibrium state of the system. Hence, the first two
terms in the above equation are zero, and the condition for equilibrium reduces to

Qi 0 = −∂U(q1 0, q2 0, · · · , qF 0)

∂qi
= 0, (12.4)

for i = 1,F . In other words, qi = qi 0, for i = 1,F , is an equilibrium state provided
that all of the generalized forces, Qi [see Eq. (10.8)], evaluated at qi = qi 0, are zero.
Let us suppose that this is the case.

12.3 Stability equations

It is clear that if our system is initialized in some equilibrium state, with all of the
q̇i set to zero, then it will remain in this state for ever. But what happens if the
system is slightly perturbed from the equilibrium state?

Let
qi = qi 0 + δqi, (12.5)

for i = 1,F , where the δqi are small. To lowest order in δqi, the kinetic energy
(12.1) can be written

K ' 1

2

∑

i,j=1,F
Mij δq̇i δq̇j, (12.6)

where
Mij = mij(q1 0, q2 0, · · · , qF 0), (12.7)

and
Mij = Mji. (12.8)

Note that the weights Mij in the quadratic form (12.6) are now constants.

Taylor expanding the potential energy function about the equilibrium state, up
to second order in the δqi, we obtain

U ' U0 −
∑

i=1,F
Qi 0 δqi −

1

2

∑

i,j=1,F
Gij δqi δqj, (12.9)
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where U0 = U(q1 0, q2 0, · · · , qF 0), the Qi 0 are specified in Eq. (12.4), and

Gij = −∂U(q1 0, q2 0, · · · , qF 0)

∂qi ∂qj
. (12.10)

Now, we can set U0 to zero without loss of generality. Moreover, according to
Eq. (12.4), the Qi 0 are all zero. Hence, the expression (12.9) reduces to

U ' −1

2

∑

i,j=1,F
Gij δqi δqj. (12.11)

Note that, since ∂U/∂qi ∂qj ≡ ∂U/∂qj ∂qi, the constants weights Gij in the above
quadratic form are invariant under interchange of the indices i and j: i.e.,

Gij = Gji. (12.12)

With K and U specified by the quadratic forms (12.6) and (12.11), respectively,
Lagrange’s equations of motion (12.3) reduce to

∑

j=1,F
(Mij δq̈j −Gij δqj) = 0, (12.13)

for i = 1,F . Note that the above coupled differential equations are linear in the
δqi. It follows that the solutions are superposable. Let us search for solutions of the
above equations in which all of the perturbed coordinates δqi have a common time
variation of the form

δqi(t) = δqi e
γ t, (12.14)

for i = 1,F . Now, Eqs. (12.13) are a set of F second-order differential equa-
tions. Hence, the most general solution contains 2F arbitrary constants of integra-
tion. Thus, if we can find sufficient independent solutions of the form (12.14) to
Eqs. (12.13) that the superposition of these solutions contains 2F arbitrary con-
stants then we can be sure that we have found the most general solution. Equations
(12.13) and (12.14) yield

∑

j=1,F
(Gij − γ2Mij) δqj = 0, (12.15)

which can be written more succinctly as a matrix equation:

(G − γ2 M) δq = 0. (12.16)
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12 COUPLED OSCILLATIONS 12.4 Mathematical digression

Here, G is the real [see Eq. (12.10)], symmetric [see Eq. (12.12)], F × F matrix
of the Gij values. Furthermore, M is the real [see Eq. (12.1)], symmetric [see
Eq. (12.8)], F ×F matrix of the Mij values. Finally, δq is the 1×F vector of the
δqi values, and 0 is a null vector.

12.4 Mathematical digression

Equation (12.16) takes the form of a matrix eigenvalue equation:

(G − λM)x = 0. (12.17)

Here, G and M are both real symmetric matrices, whereas λ is termed the eigen-

value, and x the associated eigenvector. The above matrix equation is essentially
a set of F homogeneous simultaneous algebraic equations for the components of
x. As is well-known, a necessary condition for such a set of equations to possess a
non-trivial solution is that the determinant of the matrix must be zero: i.e.,

|G − λM| = 0. (12.18)

The above formula reduces to an Fth-order polynomial equation for λ. Hence, we
conclude that Eq. (12.17) is satisfied by F eigenvalues, and F associated eigenvec-
tors.

We can easily demonstrate that the eigenvalues are all real. Suppose that λk
and xk are the kth eigenvalue and eigenvector, respectively. Then we have

Gxk = λk Mxk. (12.19)

Taking the transpose and complex conjugate of the above equation, and right
multiplying by xk, we obtain

x∗T
k G∗T xk = λ∗k x∗T

k M∗T xk. (12.20)

Here, T denotes a transpose, and ∗ a complex conjugate. However, since G and M

are both real symmetric matrices, it follows that G∗T = G and M∗T = M. Hence,

x∗T
k Gxk = λ∗k x∗T

k Mxk. (12.21)
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Next, left multiplying Eq. (12.19) by x∗T
k , we obtain

x∗T
k Gxk = λk x∗T

k Mxk. (12.22)

Taking the difference between the above two expressions, we get

(λ∗k − λk)x
∗T
k Mxk = 0. (12.23)

Since x∗T
k Mxk is not generally zero, except in the trivial case where xk is a null

vector, we conclude that λ∗k = λk for all k. In other words, the eigenvalues are all
real. It immediately follows that the eigenvectors can also be chosen to be all real.

Consider two distinct eigenvalues, λk and λl, with the associated eigenvectors
xk and xl, respectively. We have

Gxk = λk Mxk, (12.24)

Gxl = λl Mxl. (12.25)

Right multiplying the transpose of Eq. (12.24) by xl, and left multiplying Eq. (12.25)
by xTk , we obtain

xTk Gxl = λk xTk Mxl, (12.26)

xTk Gxl = λl x
T
k Mxl. (12.27)

Taking the difference between the above two expressions, we get

(λk − λl)x
T
k Mxl = 0. (12.28)

Hence, we conclude that
xTk Mxl = 0, (12.29)

provided λk 6= λl. In other words, two eigenvectors corresponding to two different
eigenvalues are “orthogonal” to one another (in the sense specified in the above
equation). Moreover, it is easily demonstrated that different eigenvectors corre-
sponding to the same eigenvalue can be chosen in such a manner that they are also
orthogonal to one another (see Sect. 9.5). Thus, we conclude that all of the eigen-
vectors are mutually orthogonal. Since Eq. (12.17) only specifies the directions, and
not the lengths, of the eigenvectors, we are free to normalize our eigenvectors such
that

xTk Mxl = δkl, (12.30)
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where δkl = 1 when k = l, and δkl = 0 otherwise. Note, finally, that since the xk,
for k = 1,F , are mutually orthogonal, they are independent (i.e., one eigenvector
cannot be expressed as a linear combination of the others), and completely span
F -dimensional vector space.

12.5 Normal modes

It follows from Eq. (12.14) and (12.15), plus the mathematical results contained
in the previous subsection, that the most general solution to Eq. (12.13) can be
written

δq(t) =
∑

k=1,F
δqk(t), (12.31)

where
δqk(t) =

(

αk e+
√
λk t + βk e−

√
λk t

)

xk. (12.32)

Here, the λk and the xk are the eigenvalues and eigenvectors obtained by solving
Eq. (12.17). Moreover, the αk and βk are arbitrary constants. Finally, we have
made use of the fact that the two roots of γ2 = λk are γ = ±

√
λk.

According to Eq. (12.31), the most general perturbed motion of the system
consists of a linear combination of F different modes. These modes are generally
termed normal modes, since they are mutually orthogonal (because the xk are
mutually orthogonal). Furthermore, it follows from the independence of the xk
that the normal modes are also independent (i.e., one mode cannot be expressed
as a linear combination of the others). The kth normal mode has a specific pattern
of motion which is specified by the kth eigenvector, xk. Moreover, the kth mode
has a specific time variation which is determined by the associated eigenvalue, λk.
Recall that λk is real. Hence, there are only two possibilities. Either λk is positive,
in which case we can write

δqk(t) =
(

αk e+γk t + βk e−γk t
)

xk, (12.33)

where λk = γ 2
k , or λk is negative, in which case we can write

δqk(t) =
(

αk e+iωk t + βk e−iωk t
)

xk, (12.34)
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where λk = −ω 2
k . In other words, if λk is positive then the kth normal mode grows

or decays secularly in time, whereas if λk is negative then the kth normal mode
oscillates in time. Obviously, if the system possesses one or more normal modes
which grow secularly in time then the equilibrium about which we originally ex-
panded the equations of motion must be an unstable equilibrium. On the other
hand, if all of the normal modes oscillate in time then the equilibrium is stable.
Thus, we conclude that whilst Eq. (12.4) is the condition for the existence of an
equilibrium state in a many degree of freedom system, the condition for the equi-
librium to be stable is that all of the eigenvalues of the stability equation (12.17)
must be negative.

The arbitrary constants αk and βk appearing in expression (12.32) are deter-
mined from the initial conditions. Thus, if δq(0) = δq(t = 0) and δq̇(0) = δq̇(t = 0)
then it is easily demonstrated from Eqs. (12.30)–(12.32) that

xTk M δq(0) = αk + βk, (12.35)

and
xTk M δq̇(0) =

√
λk(αk − βk). (12.36)

Hence,

αk =
xTk M δq(0) + xTk M δq̇(0)/

√
λk

2
, (12.37)

βk =
xTk M δq(0) − xTk M δq̇(0)/

√
λk

2
. (12.38)

Note, finally, that since there are 2F arbitrary constants (two for each of the F
normal modes), we can be sure that Eq. (12.31) represents the most general solution
to Eq. (12.13).

12.6 Normal coordinates

Since the eigenvectors xk, for k = 1,F , span F -dimensional vector space, we can
always write the displacement vector δq as some linear combination of the xk: i.e.,

δq(t) =
∑

k=1,F
ηk(t)xk. (12.39)
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We can regard the ηk(t) as a new set of generalized coordinates, since specifying
the ηk is equivalent to specifying the δqk (and, hence, the qk). The ηk are usually
termed normal coordinates. According to Eqs. (12.30) and (12.39), the normal
coordinates can be written in terms of the δqk as

ηk = xTk M δq. (12.40)

Let us now try to express K, U , and the equations of motion in terms of the ηk.

The kinetic energy can be written

K =
γ2

2
δqT M δq, (12.41)

where use has been made of Eqs. (12.6) and (12.14), It follows from (12.39) that

K =
γ2

2

∑

k,l=1,F
ηk ηl x

T
k Mxl. (12.42)

Finally, making use of the orthonormality condition (12.30), we obtain

K =
γ2

2

∑

k=1,F
η 2
k , (12.43)

or

K =
1

2

∑

k=1,F
η̇ 2
k . (12.44)

Hence, the kinetic energy K takes the form of a diagonal quadratic form when
expressed in terms of the normal coordinates.

The potential energy can be written

U = −1

2
δqT G δq, (12.45)

where use has been made of Eqs. (12.11). It follows from (12.39) that

U = −1

2

∑

k,l=1,F
ηk ηl x

T
k Gxl. (12.46)
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Finally, making use of Eq. (12.19) and the orthonormality condition (12.30), we
obtain

U = −1

2

∑

k=1,F
λk η

2
k . (12.47)

Hence, the potential energy U also takes the form of a diagonal quadratic form
when expressed in terms of the normal coordinates.

Writing Lagrange’s equations of motion in terms of the normal coordinates, we
obtain [cf., Eq. (12.3)]

d

dt

(

∂K

∂η̇k

)

− ∂K

∂ηk
+
∂U

∂ηk
= 0, (12.48)

for k = 1,F . Thus, it follows from Eqs. (12.44) and (12.47) that

η̈k = λk ηk, (12.49)

for k = 1,F . In other words, Lagrange’s equations reduce to a set of F uncoupled

simple harmonic equations when expressed in terms of the normal coordinates. The
solutions to the above equations are obvious: i.e.,

ηk(t) = αk e+
√
λk t + βk e−

√
λk t, (12.50)

where αk and βk are arbitrary constants. Hence, it is clear from Eqs. (12.39) and
(12.50) that the most general solution to the perturbed equations of motion is
indeed given by Eqs. (12.31) and (12.32).

In conclusion, the perturbed equations of motion of a many degree of freedom
dynamical system take a particularly simple form when expressed in terms of the
normal coordinates. Each normal coordinate specifies the instantaneous displace-
ment of an independent mode of oscillation (or secular growth) of the system.
Moreover, each normal coordinate oscillates at a characteristic frequency (or grows
at a characteristic rate), and is completely unaffected by the other coordinates.

12.7 Spring-coupled masses

Consider the two degree of freedom dynamical system pictured in Fig. 49. In this
system, two point objects of mass m are free to move in one dimension. Further-
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q2

k′ k k′

m m

q1

Figure 49:

more, the masses are connected together by a spring of spring constant k, and are
also each attached to fixed supports via springs of spring constant k ′.

Let q1 and q2 be the displacements of the first and second masses, respectively,
from the equilibrium state. If follows that the extensions of the left-hand, middle,
and right-hand springs are q1, q2 − q1, and −q2, respectively. The kinetic energy of
the system takes the form

K =
m

2
(q̇ 2

1 + q̇ 2
2 ), (12.51)

whereas the potential energy is written

U =
1

2

[

k′ q 2
1 + k (q2 − q1)

2 + k′ q 2
2

]

. (12.52)

The above expression can be rearranged to give

U =
1

2

[

(k + k′) q 2
1 − 2 k q1 q2 + (k + k′) q 2

2

]

. (12.53)

A comparison of Eqs. (12.51) and (12.53) with the standard forms (12.6) and
(12.11) yields the following expressions for the mass matrix M and the force matrix
G:

M =





m 0
0 m



 , (12.54)

G =





−k − k′ k

k −k − k′



 . (12.55)

Now, the equation of motion of the system takes the form [see Eq. (12.17)]

(G − λM)x = 0, (12.56)
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where x is the column vector of the q1 and q2 values. The solubility condition for
the above equation is

|G − λM| = 0, (12.57)

or
∣

∣

∣

∣

∣

∣

−k − k′ − λm k

k −k − k′ − λm

∣

∣

∣

∣

∣

∣

= 0, (12.58)

which yields the following quadratic equation for the eigenvalue λ:

m2 λ2 + 2m (k + k′)λ+ k′ (k′ + 2 k) = 0. (12.59)

The two roots of the above equation are

λ1 = −k
′

m
, (12.60)

λ2 = −(2 k + k′)

m
. (12.61)

The fact that the roots are negative implies that both normal modes are oscillatory

in nature: i.e., the original equilibrium is stable. The characteristic oscillation
frequencies of the modes are

ω1 =
√

−λ1 =

√

√

√

√

k′

m
, (12.62)

ω2 =
√

−λ2 =

√

√

√

√

2 k + k′

m
. (12.63)

Now, the first row of Eq. (12.56) gives

q1
q2

=
k

k + k′ + λm
. (12.64)

Moreover, Eqs. (12.30) and (12.54) yield the following normalization condition for
the eigenvectors:

xTk xk = m−1, (12.65)

for k = 1, 2. It follows that the two eigenvectors are

x1 = (2m)−1/2 (1, 1), (12.66)

x2 = (2m)−1/2 (1,−1). (12.67)
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According to Eqs. (12.62)–(12.63) and (12.66)–(12.67), our two degree of freedom
system possesses two normal modes. The first mode oscillates at the frequency ω1,
and is a purely symmetric mode: i.e., q1 = q2. Note that such a mode does not
stretch the middle spring. Hence, ω1 is independent of k. In fact, ω1 is simply the
characteristic oscillation frequency of a mass m on the end of a spring of spring
constant k′. The second mode oscillates at the frequency ω2, and is a purely anti-

symmetric mode: i.e., q1 = −q2. Since such a mode stretches the middle spring,
the second mode experiences a greater restoring force than the first, and hence has
a higher oscillation frequency: i.e., ω2 > ω1.

Note, finally, from Eqs. (12.40) and (12.54), that the normal coordinates of the
system are:

η1 =

√

m

2
(q1 + q2), (12.68)

η2 =

√

m

2
(q1 − q2). (12.69)

When expressed in terms of these normal coordinates, the kinetic and potential
energies of the system reduce to

K =
1

2
(η̇ 2

1 + η̇ 2
2 ), (12.70)

U =
1

2
(ω 2

1 η
2
1 + ω 2

2 η
2
2 ), (12.71)

respectively.

12.8 Triatomic molecule

Consider the simple model of a linear triatomic molecule (e.g., carbon dioxide)
illustrated in Fig. 50. The molecule consists of a central atom of mass M flanked
by two identical atoms of mass m. The atomic bonds are represented as springs
of spring constant k. The linear displacements of the flanking atoms are q1 and
q2, whilst that of the central atom is q3. Let us investigate the linear modes of
oscillation our model molecule.
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m

q1 q2

k k

q3

m M

Figure 50:

The kinetic energy of the molecule is written

K =
m

2
(q̇ 2

1 + q̇ 2
2 ) +

M

2
q̇ 2
3 , (12.72)

whereas the potential energy takes the form

U =
k

2
(q3 − q1)

2 +
k

2
(q2 − q3)

2. (12.73)

Clearly, we have a three degree of freedom dynamical system. However, we can
reduce this to a two degree of freedom system by only considering oscillatory modes
of motion, and, hence, neglecting translational modes. We can achieve this by
demanding that the center of mass of the system remains stationary. In other
words, we require that

m (q1 + q2) +M q3 = 0. (12.74)

This constraint can be rearranged to give

q3 = −m

M
(q1 + q2). (12.75)

Eliminating q3 from Eqs. (12.72) and (12.73), we obtain

K =
m

2

[

(1 + α) q̇ 2
1 + 2α q̇1 q̇2 + (1 + α) q̇ 2

2

]

, (12.76)

and

U =
k

2

[

(1 + 2α + 2α2) q 2
1 + 4α (1 + α) q1 q2 + (1 + 2α + 2α2) q 2

2

]

, (12.77)

respectively, where α = m/M .
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A comparison of the above expressions with the standard forms (12.6) and
(12.11) yields the following expressions for the mass matrix M and the force matrix
G:

M = m





1 + α α

α 1 + α



 , (12.78)

G = −k




1 + 2α + 2α2 2α (1 + α)
2α (1 + α) 1 + 2α + 2α2



 . (12.79)

Now, the equation of motion of the system takes the form [see Eq. (12.17)]

(G − λM)x = 0, (12.80)

where x is the column vector of the q1 and q2 values. The solubility condition for
the above equation is

|G − λM| = 0, (12.81)

which yields the following quadratic equation for the eigenvalue λ:

(1 + 2α)
[

m2 λ2 + 2mk (1 + α)λ+ k2 (1 + 2α)
]

= 0. (12.82)

The two roots of the above equation are

λ1 = − k

m
, (12.83)

λ2 = −k (1 + 2α)

m
. (12.84)

The fact that the roots are negative implies that both normal modes are indeed
oscillatory in nature. The characteristic oscillation frequencies are

ω1 =
√

−λ1 =

√

√

√

√

k

m
, (12.85)

ω2 =
√

−λ2 =

√

√

√

√

k (1 + 2α)

m
. (12.86)

Equation (12.80) can now be solved, subject to the normalization condition (12.30),
to give the two eigenvectors:

x1 = (2m)−1/2 (1,−1), (12.87)

x2 = (2m)−1/2 (1 + 2α)−1/2 (1, 1). (12.88)
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12 COUPLED OSCILLATIONS 12.8 Triatomic molecule

Thus, we conclude from Eqs. (12.75) and (12.85)–(12.88) that our model molecule
possesses two normal modes of oscillation. The first mode oscillates at the frequency
ω1, and is an anti-symmetric mode in which q1 = −q2 and q3 = 0. In other words,
in this mode of oscillation, the two end atoms move in opposite directions whilst
the central atom remains stationary. The second mode oscillates at the frequency
ω2, and is a mixed symmetry mode in which q1 = q2 but q3 = −2α q1. In other
words, in this mode of oscillation, the two end atoms move in the same direction
whilst the central atom moves in the opposite direction.

Finally, it is easily demonstrated that the normal coordinates of the system are

η1 =

√

m

2
(q1 − q2), (12.89)

η2 =

√

√

√

√

m (1 + 2α)

k
(q1 + q2). (12.90)

When expressed in terms of these coordinates, K and U reduce to

K =
1

2
(η̇ 2

1 + η̇ 2
2 ), (12.91)

U =
1

2
(ω 2

1 η
2
1 + ω 2

2 η
2
2 ), (12.92)

respectively.
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