
Advanced C

Programming

Real Time Programming

Contents

 typedef’s

Preprocessor conditionals

Pointer Variables

String

Pointer Arithmetic

Good Coding Practices
 Signed (good) vs Unsigned (bad) Math

– for physical calculations

 Use Braces
{

Always
}

 Simple Readable Code
– Concept of “Self Documenting Code”
– Code as if your grandmother is reading it

 Never use Recursion
– (watch your stack)

 Treat Warnings as Errors

*Disclaimer: Not all code in this presentation follows these
practices due to space limitations

Typedef’s

Using Naturally Named
Data Types

Why Typedef?

You use variable with logical names,
why not use data types with logical
names?

 Is an “int” 8-bits or 16-bits? What’s
a “long”? Better question: why
memorize it?

Most integer data types are platform
dependent!!!

 typedef’s make your code more
portable.

typedef.h Example
typedef unsigned char u8;

typedef signed char s8;

typedef unsigned short u16;

typedef signed short s16;

typedef unsigned long u32;

typedef signed long s32;

In your code:

unsigned char variable;

Is replaced with:

u8 variable;

Preprocessor conditionals

#ifdef macro

only includes the subsequent code if macro was
#defined.

#ifndef macro

only includes the subsequent code if macro was not
#defined

if expression

only includes the subsequent code if expression is
true

Pointer Variables

A pointer is a variable that

stores the memory address of

another variable.

Pointer Variables

 Explanation char *is a character pointer type. p is
called a character pointer variable. stores the
memory address of a character (the first
character (’H’) of the string "Hello")

 Example (A Character Pointer) Pointers, Arrays,
and Strings int main(void) { char s[6] = "Hello";
char *p; p = s; printf("%s n", s); printf("%s n",
p); return 0; }

String

A String in C programming is a sequence of characters terminated with a

null character ‘\0’. The C String is stored as an array of characters. The

difference between a character array and a C string is that the string in C

is terminated with a unique character ‘\0’.

C String Declaration Syntax

Declaring a string in C is as simple as declaring a one-dimensional array.

Below is the basic syntax for declaring a string.

Char string_name[size];

Copying Strings

 A String is an array of characters one character
after the other in memory.

 Strings need to be copied character by character
loop that stops when the end of string is reached.

 Example Pointers, Arrays, and Strings int
main(void) { char b[8], a[6] = "Hello"; int i = 0;
do { b[i] = a[i]; } while (a[i++] != ’ 0’)
printf("%s n", b); return 0; }.

 String a gets copied to b character by character
Integer i counts up the current index into the
array ’0’denotes the end of the string needs to be
copied before finishing the loop

Integer Data Types: Valid Ranges

 u8 : 0 - 255

 s8 : -128 - 127

 u16 : 0 - 65535

 s16 : -32768 - 32767

 u32 : 0 - 4.294967295e9

 s32 : -2.147483648e9 - 2.147483647e9

Note: ranges given are decimal.

Pointer Arithmetic

 Pointers store memory addresses just numbers telling the
processor which memory cell to access.

 Adding 1 to a pointer makes it point to the next memory

location.

 Subtracting 1 from a pointer makes it point to the previous
memory location

 Subtracting two pointers from each other shows how much
space is between the memory locations pointed to by the
pointers.

 Pointers “know” the sizes of the variables they point to.

 adding to an int pointer will probably result in a different
address than adding to a char pointer

