

FTP, SMTP, Telnet, HTTP,...

TCP, UDP

IP, ARP, ICMP

Network Interface

9. TCP/IP

Reference: Charles L. Hedrick, "Introduction to the Internet Protocols", Rutgers University, http://oac3.hsc.uth.tmc.edu/staff/snewton/tcp-tutorial/

A. What is TCP/IP?

- TCP/IP is a set of protocols developed to allow cooperating computers to share resources across a network
- **TCP** stands for "Transmission Control Protocol"
- IP stands for "Internet Protocol"
- They are Transport layer and Network layer protocols respectively of the protocol suite
- The most well known network that adopted TCP/IP is Internet – the biggest WAN in the world

What is a protocol?

- A **protocol** is a collection of **rules** and **procedures** for two computers to exchange information
- Protocol also defines the format of data that is being exchanged

Why TCP/IP is so popular?

- TCP/IP was developed very early
- Technologies were widely discussed and circulated in documents called "Request for Comments" (RFC) – free of charge
- Supported by UNIX operating system

TCP/IP Model

 Because TCP/IP was developed earlier than the OSI 7-layer mode, it does not have 7 layers but only 4 layers

- Application layer protocols define the rules when implementing specific network applications
- Rely on the underlying layers to provide accurate and efficient data delivery
- Typical protocols:
 - **FTP** File Transfer Protocol
 - For file transfer
 - Telnet Remote terminal protocol
 - For remote login on any other computer on the network
 - **SMTP** Simple Mail Transfer Protocol
 - For mail transfer
 - HTTP Hypertext Transfer Protocol
 - For Web browsing

- TCP/IP is built on "connectionless" technology, each datagram finds its own way to its destination
- Transport Layer protocols define the rules of
 - Dividing a chunk of data into segments
 - Reassemble segments into the original chunk
- Typical protocols:
 - **TCP** Transmission Control Protocol
 - Provide further the functions such as reordering and data resend
 - UDP User Datagram Service
 - Use when the message to be sent fit exactly into a datagram
 - Use also when a more simplified data format is required

- Network layer protocols define the rules of how to find the routes for a packet to the destination
- It only gives best effort delivery. Packets can be delayed, corrupted, lost, duplicated, out-of-order
- Typical protocols:
 - IP Internet Protocol
 - Provide packet delivery
 - ARP Address Resolution Protocol
 - Define the procedures of network address / MAC address translation
 - ICMP Internet Control Message Protocol
 - Define the procedures of error message transfer

Application Layer

Application

Transport

Network

Network Interface

9

B. Example: SMTP

- The underlying layers have guaranteed accurate data delivery
- We need to make a lot agreements with the server in application layer before sending mail
 - 1. Agree on how data is represented
 - Binary or ASCII
 - 2. Ensure the right recipient
 - There may be 1000 users served by the server
 - **3.** Ensure the client has the right to send mail
 - Some clients are not welcome
 - 4. How to tell the server it is the end of the message
 - All mail looks the same

• Example: SMTP

The following mail is to be sent:

Date: Fri, 18 Jan 02 13:26:31 EDT From: enpklun@polyu.edu.hk To: tchsun@eee.hku.hk Subject: meeting

Let's get together Monday at 1pm.

250 MAIL accepted

ENG224 INFORMATION TECHNOLOGY – Part I 9. TCP/IP

- The agreement made in the SMTP protocol
 - All messages use normal text
 - All ASCII characters
 - The responses all begin with numbers
 - To indicate the status when receiving the command
 - Some words are reserved words
 - HELO, MAIL, RCPT...
 - Mail ends with a line that contains only a period
- The information passed with the SMTP messages
 - The recipient name
 - The sender name
 - The mail

C. Domain Name (mentioned before)

- Every computer has a network address
 - e.g. 158.132.161.99
- To access a computer, we need to specify its network address
- Human beings are weak in memorizing numbers
- We prefer computer name or domain name
 - e.g. hkpu10.polyu.edu.hk
- Need a machine on the Internet to convert name to number

Domain name hierarchy

edu – education org.

- An organization needs to register its domain name
 - e.g. PolyU has registered its name to the domain of edu.hk
- Once a domain name is assigned, the organization is free to assign other names belong to its domain
 - e.g. we can have

hkpu10.polyu.edu.hk smtp.polyu.edu.hk mail.polyu.edu.hk **INFORMATION TECHNOLOGY – Part I**

9. TCP/IP

ENG224

- Nevertheless, such a complicated procedure needs not perform in most cases
- Client computers usually remember the answers that it got before
- It reduces the loading to the root DNS
- To further reduce loading, there can be many root DNS on the Internet
 - e.g. there are a few "com" root DNS

Transport Layer

D. TCP and UDP

TCP – Transmission Control Protocol

- TCP is a connection-oriented protocol
 - Does not mean it has a physical connection between sender and receiver
 - TCP provides the function to allow a connection virtually exists also called virtual circuit
- TCP provides the functions:
 - Dividing a chunk of data into segments
 - Reassembly segments into the original chunk
 - Provide further the functions such as reordering and data resend
- Offering a reliable byte-stream delivery service

Dividing and Reassembly

- A Typical Procedure
 - Sender
 - TCP divides a message into segments
 - Add sequence no.
 - Send the segments in sequence and wait for acknowledgement
 - If an acknowledgement for a segment is not received for a certain period of time, resend it until an acknowledgement is received
 - Recipient
 - When receiving segments, send the acknowledgement with correct number
 - Reassembly the segments back to the message

Port Multiplexing

- A computer may perform a number of network applications at the same time
 - FTP + SMTP + HTTP, etc.
- Each computer has only one network address, how can it serve so many applications at the same time?

 \Rightarrow by port multiplexing

ENG224 INFORMATION TECHNOLOGY – Part I 9. TCP/IP

Well-known Port Numbers

- Some port numbers are reserved for some purposes
 - Port 21: FTP file transfer
 - Port 25: SMTP mail transfer
 - Port 23: TELNET remote login
 - Port 80: HTTP Web access
- These port numbers are well known to all computers in the network
- E.g. whenever a client access port 25 of the server, it means the client needs SMTP service

ENG224 INFORMATION TECHNOLOGY – Part I

9. TCP/IP

Client

SMTP Server

SMTP port

= 25

Located by: network address + TCP port no.

Source Port	Destination
= 1357	Port = 25

Sequence Number

Acknowledgement Number

Checksum

Message Data

Network Layer

30

E. Network Addresses and Subnets

 A header is added to each segment in the Network layer

$$\blacksquare \square \square \blacksquare \blacksquare \blacksquare \blacksquare$$

Segment

- Total Length Total length of a packet (up to 65535 bytes)
- Time to Live How many times this packet can be routed on the network (up to 255)
- Protocol The transport layer protocol that the packet belongs to
 - **TCP: 6**
 - UDP: 17
 - **ICMP:** 1
- Source address the network address of the computer that sends the data
- **Destination address** the network address of the computer that the data is sending to

- (Already mentioned)
- Each computer (host) must have a unique network address (or IP address for TCP/IP suite)
- Each IP address is 32-bit long (four bytes)
- The four-byte address is written out as a.b.c.d

- IP addresses are hierarchical
 - network I.D. and host I.D.
- Each Network I.D. on the Internet needs to be registered to the Internet Assigned Number Authority

Class A – for very large network

11	oit	7 bits	24 bits
	0	Net I.D.	Host I.D.

- Only 2⁷ (63) networks can belong to this class
- Each network, there are 2²⁴ hosts or computers
- Very few class A networks in the world
 - e.g. Arpanet the earliest packet switched WAN (started 40 years ago)

Class B – for medium size network

21	oits	14 bits	16 bits
1	0	Net I.D.	Host I.D.

- 2¹⁴ (16384) networks can belong to this class
- Each network, there are 2¹⁶ (65536) hosts or computers
- Polyu's address belongs to this group

Host I.D.

Class C – for small network

3	bits 21 bits		21 bits	8 bits	
1	1	0	Net I.D.	Host I.D.	

- 2²¹ networks can belong to this class
- Each network, there are only 2⁸ (256) hosts or computers

Class D – for multicast network

- Packets are addressed to a multicast group
- Not often supported on Internet

Special Addresses

- Host I.D. = all '1's ⇒ Directed broadcast "Broadcast to all hosts in the network or subnetwork", not assigned
- Host I.D. = all '0's ⇒ "This network", not assigned
- Network I.D. = 127 is reserved for loopback and diagnostic purposes, not assigned
- Network I.D. + Host I.D. = all '1's ⇒ Limited broadcast
 - "Broadcast to all hosts in the current network", not assigned

Subnets

- A class B address can have 65536 hosts
- Difficult to manage
- Usually subdivide into a few small subnets
- Subnetting can also help to reduce broadcasting traffic 158.132.1.0

Subnet Mask

- How does the router know which subnet a packet should go?
- For each interface of the router, a subnet mask is provided to redefine which part of the address is Net ID and which part is Host ID
- Become classless addressing

Routing Table

	S 0	S 1	S 2
Subnet	158.132.1.0	158.132.2.0	158.132.3.0
Mask	255.255.255.0	255.255.255.0	255.255.255.0

158.132. 1. 10 AND 255.255.255.0 158.132. 1. 0
 1001 1110.1000 0100.0000 0001.0000 1010

 AND
 1111 111.1111 1111.1111 1111.0000 0000

 1001 1110.1000 0100.0000 0001.0000 0000

Advantage: easy to compute

F. Routing

- How a packet finds its way to a computer in a network?
 - By using Routers
- **Routing** is the selection of a path to guide a packet from the source to the destination
- Criteria in selecting a path may be:
 - Shortest path
 - Quickest path
 - Cheapest path

Hong Kong 158.132.161.99

- Each router has a table that records the estimated distance to all other routers
- If a router knows the entire network topology, the shortest path can be calculated
- To achieve this, routers broadcast Link State Advertisement to all other routers periodically
 - By means of routing protocol
- Each router knows the exact topology, and then calculates the shortest path
- In practice, it is not possible for a router to all paths. Only the nearer ones are kept
 - Hence can give wrong estimation

INFORMATION TECHNOLOGY – Part I

9. TCP/IP

ENG224

ENG224 INFORMATION TECHNOLOGY – Part I 9. TCP/IP

- 1. Host A wants to send a packet to Host B with address 160.64.123.98
- 2. Host A checks that 160.64.123.98 is not in the same network
- **3.** Send packet to default gateway (Router C)
- 4. Default gateway finds that it cannot provide the best route for the packet, inform Host A to send the packet to Router A next time
- 5. Router C sends the packet to Router A
- 6. Router A checks from the table the packet should forward to Router B
- 7. Router B receives the packet and checks in its table the packet should directly deliver to subnet 160.64.123.0
- 8. Host B (160.64.123.98) receives the packet
- **46**

Data Link and Physical Layers

G. Ethernet Encapsulation and ARP

- An IP packet should be encapsulated into a frame for transmission by data link layer
- e.g. if Ethernet (or IEEE 802.3) is used:

Preamb	le	Des. Add	Sour. Add	Length	IP Packet	FCS
7 Bytes	1 Byte	2/6 e Bytes	2/6 Bytes	2 Bytes	46 - 1500 Bytes	4 Bytes
10	IEEE 802.3 Frame					

- Only the hardware address (MAC address) is unique to a host
- Need to convert a network address to MAC address

49

50

ARP – Address Resolution Protocol

ARP – Address Resolution Protocol

ARP Cache

- Will have a heavy traffic if so many ARP broadcast messages are generated
- Each host will have a cache to store the mappings (from IP to MAC address) that were obtained before

IP Address	MAC Address
158.132.148.80	00-60-8C-27-35-9A
158.132.148.28	02-60-8C-1A-37-49

• An entry will only be kept in the cache for a limited amount of time (say, 2 minutes)